[fusl] clang-format fusl

R=viettrungluu@chromium.org

Review URL: https://codereview.chromium.org/1714623002 .
diff --git a/fusl/src/math/__cos.c b/fusl/src/math/__cos.c
index 46cefb3..f7a1af3 100644
--- a/fusl/src/math/__cos.c
+++ b/fusl/src/math/__cos.c
@@ -50,22 +50,21 @@
 
 #include "libm.h"
 
-static const double
-C1  =  4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
-C2  = -1.38888888888741095749e-03, /* 0xBF56C16C, 0x16C15177 */
-C3  =  2.48015872894767294178e-05, /* 0x3EFA01A0, 0x19CB1590 */
-C4  = -2.75573143513906633035e-07, /* 0xBE927E4F, 0x809C52AD */
-C5  =  2.08757232129817482790e-09, /* 0x3E21EE9E, 0xBDB4B1C4 */
-C6  = -1.13596475577881948265e-11; /* 0xBDA8FAE9, 0xBE8838D4 */
+static const double C1 =
+                        4.16666666666666019037e-02, /* 0x3FA55555, 0x5555554C */
+    C2 = -1.38888888888741095749e-03,               /* 0xBF56C16C, 0x16C15177 */
+    C3 = 2.48015872894767294178e-05,                /* 0x3EFA01A0, 0x19CB1590 */
+    C4 = -2.75573143513906633035e-07,               /* 0xBE927E4F, 0x809C52AD */
+    C5 = 2.08757232129817482790e-09,                /* 0x3E21EE9E, 0xBDB4B1C4 */
+    C6 = -1.13596475577881948265e-11;               /* 0xBDA8FAE9, 0xBE8838D4 */
 
-double __cos(double x, double y)
-{
-	double_t hz,z,r,w;
+double __cos(double x, double y) {
+  double_t hz, z, r, w;
 
-	z  = x*x;
-	w  = z*z;
-	r  = z*(C1+z*(C2+z*C3)) + w*w*(C4+z*(C5+z*C6));
-	hz = 0.5*z;
-	w  = 1.0-hz;
-	return w + (((1.0-w)-hz) + (z*r-x*y));
+  z = x * x;
+  w = z * z;
+  r = z * (C1 + z * (C2 + z * C3)) + w * w * (C4 + z * (C5 + z * C6));
+  hz = 0.5 * z;
+  w = 1.0 - hz;
+  return w + (((1.0 - w) - hz) + (z * r - x * y));
 }
diff --git a/fusl/src/math/__cosdf.c b/fusl/src/math/__cosdf.c
index 2124989..7a97e76 100644
--- a/fusl/src/math/__cosdf.c
+++ b/fusl/src/math/__cosdf.c
@@ -17,19 +17,17 @@
 #include "libm.h"
 
 /* |cos(x) - c(x)| < 2**-34.1 (~[-5.37e-11, 5.295e-11]). */
-static const double
-C0  = -0x1ffffffd0c5e81.0p-54, /* -0.499999997251031003120 */
-C1  =  0x155553e1053a42.0p-57, /*  0.0416666233237390631894 */
-C2  = -0x16c087e80f1e27.0p-62, /* -0.00138867637746099294692 */
-C3  =  0x199342e0ee5069.0p-68; /*  0.0000243904487962774090654 */
+static const double C0 = -0x1ffffffd0c5e81.0p-54, /* -0.499999997251031003120 */
+    C1 = 0x155553e1053a42.0p-57,  /*  0.0416666233237390631894 */
+    C2 = -0x16c087e80f1e27.0p-62, /* -0.00138867637746099294692 */
+    C3 = 0x199342e0ee5069.0p-68;  /*  0.0000243904487962774090654 */
 
-float __cosdf(double x)
-{
-	double_t r, w, z;
+float __cosdf(double x) {
+  double_t r, w, z;
 
-	/* Try to optimize for parallel evaluation as in __tandf.c. */
-	z = x*x;
-	w = z*z;
-	r = C2+z*C3;
-	return ((1.0+z*C0) + w*C1) + (w*z)*r;
+  /* Try to optimize for parallel evaluation as in __tandf.c. */
+  z = x * x;
+  w = z * z;
+  r = C2 + z * C3;
+  return ((1.0 + z * C0) + w * C1) + (w * z) * r;
 }
diff --git a/fusl/src/math/__cosl.c b/fusl/src/math/__cosl.c
index fa522dd..b9aee53 100644
--- a/fusl/src/math/__cosl.c
+++ b/fusl/src/math/__cosl.c
@@ -12,7 +12,6 @@
  * ====================================================
  */
 
-
 #include "libm.h"
 
 #if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
@@ -43,16 +42,16 @@
  * almost for free from the complications needed to search for the best
  * higher coefficients.
  */
-static const long double
-C1 =  0.0416666666666666666136L;        /*  0xaaaaaaaaaaaaaa9b.0p-68 */
-static const double
-C2 = -0.0013888888888888874,            /* -0x16c16c16c16c10.0p-62 */
-C3 =  0.000024801587301571716,          /*  0x1a01a01a018e22.0p-68 */
-C4 = -0.00000027557319215507120,        /* -0x127e4fb7602f22.0p-74 */
-C5 =  0.0000000020876754400407278,      /*  0x11eed8caaeccf1.0p-81 */
-C6 = -1.1470297442401303e-11,           /* -0x19393412bd1529.0p-89 */
-C7 =  4.7383039476436467e-14;           /*  0x1aac9d9af5c43e.0p-97 */
-#define POLY(z) (z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7)))))))
+static const long double C1 =
+    0.0416666666666666666136L;                   /*  0xaaaaaaaaaaaaaa9b.0p-68 */
+static const double C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */
+    C3 = 0.000024801587301571716,                /*  0x1a01a01a018e22.0p-68 */
+    C4 = -0.00000027557319215507120,             /* -0x127e4fb7602f22.0p-74 */
+    C5 = 0.0000000020876754400407278,            /*  0x11eed8caaeccf1.0p-81 */
+    C6 = -1.1470297442401303e-11,                /* -0x19393412bd1529.0p-89 */
+    C7 = 4.7383039476436467e-14;                 /*  0x1aac9d9af5c43e.0p-97 */
+#define POLY(z) \
+  (z * (C1 + z * (C2 + z * (C3 + z * (C4 + z * (C5 + z * (C6 + z * C7)))))))
 #elif LDBL_MANT_DIG == 113
 /*
  * ld128 version of __cos.c.  See __cos.c for most comments.
@@ -66,31 +65,37 @@
  * that is 1 ulp below 0.5, but we want it to be precisely 0.5.  See
  * above for more details.
  */
-static const long double
-C1 =  0.04166666666666666666666666666666658424671L,
-C2 = -0.001388888888888888888888888888863490893732L,
-C3 =  0.00002480158730158730158730158600795304914210L,
-C4 = -0.2755731922398589065255474947078934284324e-6L,
-C5 =  0.2087675698786809897659225313136400793948e-8L,
-C6 = -0.1147074559772972315817149986812031204775e-10L,
-C7 =  0.4779477332386808976875457937252120293400e-13L;
-static const double
-C8 = -0.1561920696721507929516718307820958119868e-15,
-C9 =  0.4110317413744594971475941557607804508039e-18,
-C10 = -0.8896592467191938803288521958313920156409e-21,
-C11 =  0.1601061435794535138244346256065192782581e-23;
-#define POLY(z) (z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*(C7+ \
-	z*(C8+z*(C9+z*(C10+z*C11)))))))))))
+static const long double C1 = 0.04166666666666666666666666666666658424671L,
+                         C2 = -0.001388888888888888888888888888863490893732L,
+                         C3 = 0.00002480158730158730158730158600795304914210L,
+                         C4 = -0.2755731922398589065255474947078934284324e-6L,
+                         C5 = 0.2087675698786809897659225313136400793948e-8L,
+                         C6 = -0.1147074559772972315817149986812031204775e-10L,
+                         C7 = 0.4779477332386808976875457937252120293400e-13L;
+static const double C8 = -0.1561920696721507929516718307820958119868e-15,
+                    C9 = 0.4110317413744594971475941557607804508039e-18,
+                    C10 = -0.8896592467191938803288521958313920156409e-21,
+                    C11 = 0.1601061435794535138244346256065192782581e-23;
+#define POLY(z)                             \
+  (z *                                      \
+   (C1 +                                    \
+    z * (C2 +                               \
+         z * (C3 +                          \
+              z * (C4 +                     \
+                   z * (C5 +                \
+                        z * (C6 +           \
+                             z * (C7 +      \
+                                  z * (C8 + \
+                                       z * (C9 + z * (C10 + z * C11)))))))))))
 #endif
 
-long double __cosl(long double x, long double y)
-{
-	long double hz,z,r,w;
+long double __cosl(long double x, long double y) {
+  long double hz, z, r, w;
 
-	z  = x*x;
-	r  = POLY(z);
-	hz = 0.5*z;
-	w  = 1.0-hz;
-	return w + (((1.0-w)-hz) + (z*r-x*y));
+  z = x * x;
+  r = POLY(z);
+  hz = 0.5 * z;
+  w = 1.0 - hz;
+  return w + (((1.0 - w) - hz) + (z * r - x * y));
 }
 #endif
diff --git a/fusl/src/math/__expo2.c b/fusl/src/math/__expo2.c
index 740ac68..af66724 100644
--- a/fusl/src/math/__expo2.c
+++ b/fusl/src/math/__expo2.c
@@ -1,16 +1,16 @@
 #include "libm.h"
 
-/* k is such that k*ln2 has minimal relative error and x - kln2 > log(DBL_MIN) */
+/* k is such that k*ln2 has minimal relative error and x - kln2 > log(DBL_MIN)
+ */
 static const int k = 2043;
 static const double kln2 = 0x1.62066151add8bp+10;
 
 /* exp(x)/2 for x >= log(DBL_MAX), slightly better than 0.5*exp(x/2)*exp(x/2) */
-double __expo2(double x)
-{
-	double scale;
+double __expo2(double x) {
+  double scale;
 
-	/* note that k is odd and scale*scale overflows */
-	INSERT_WORDS(scale, (uint32_t)(0x3ff + k/2) << 20, 0);
-	/* exp(x - k ln2) * 2**(k-1) */
-	return exp(x - kln2) * scale * scale;
+  /* note that k is odd and scale*scale overflows */
+  INSERT_WORDS(scale, (uint32_t)(0x3ff + k / 2) << 20, 0);
+  /* exp(x - k ln2) * 2**(k-1) */
+  return exp(x - kln2) * scale * scale;
 }
diff --git a/fusl/src/math/__expo2f.c b/fusl/src/math/__expo2f.c
index 5163e41..f71e8b5 100644
--- a/fusl/src/math/__expo2f.c
+++ b/fusl/src/math/__expo2f.c
@@ -1,16 +1,17 @@
 #include "libm.h"
 
-/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN) */
+/* k is such that k*ln2 has minimal relative error and x - kln2 > log(FLT_MIN)
+ */
 static const int k = 235;
 static const float kln2 = 0x1.45c778p+7f;
 
-/* expf(x)/2 for x >= log(FLT_MAX), slightly better than 0.5f*expf(x/2)*expf(x/2) */
-float __expo2f(float x)
-{
-	float scale;
+/* expf(x)/2 for x >= log(FLT_MAX), slightly better than
+ * 0.5f*expf(x/2)*expf(x/2) */
+float __expo2f(float x) {
+  float scale;
 
-	/* note that k is odd and scale*scale overflows */
-	SET_FLOAT_WORD(scale, (uint32_t)(0x7f + k/2) << 23);
-	/* exp(x - k ln2) * 2**(k-1) */
-	return expf(x - kln2) * scale * scale;
+  /* note that k is odd and scale*scale overflows */
+  SET_FLOAT_WORD(scale, (uint32_t)(0x7f + k / 2) << 23);
+  /* exp(x - k ln2) * 2**(k-1) */
+  return expf(x - kln2) * scale * scale;
 }
diff --git a/fusl/src/math/__fpclassify.c b/fusl/src/math/__fpclassify.c
index f7c0e2d..17ee9db 100644
--- a/fusl/src/math/__fpclassify.c
+++ b/fusl/src/math/__fpclassify.c
@@ -1,11 +1,15 @@
 #include <math.h>
 #include <stdint.h>
 
-int __fpclassify(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	int e = u.i>>52 & 0x7ff;
-	if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
-	if (e==0x7ff) return u.i<<12 ? FP_NAN : FP_INFINITE;
-	return FP_NORMAL;
+int __fpclassify(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  int e = u.i >> 52 & 0x7ff;
+  if (!e)
+    return u.i << 1 ? FP_SUBNORMAL : FP_ZERO;
+  if (e == 0x7ff)
+    return u.i << 12 ? FP_NAN : FP_INFINITE;
+  return FP_NORMAL;
 }
diff --git a/fusl/src/math/__fpclassifyf.c b/fusl/src/math/__fpclassifyf.c
index fd00eb1..842a0f1 100644
--- a/fusl/src/math/__fpclassifyf.c
+++ b/fusl/src/math/__fpclassifyf.c
@@ -1,11 +1,15 @@
 #include <math.h>
 #include <stdint.h>
 
-int __fpclassifyf(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	int e = u.i>>23 & 0xff;
-	if (!e) return u.i<<1 ? FP_SUBNORMAL : FP_ZERO;
-	if (e==0xff) return u.i<<9 ? FP_NAN : FP_INFINITE;
-	return FP_NORMAL;
+int __fpclassifyf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  int e = u.i >> 23 & 0xff;
+  if (!e)
+    return u.i << 1 ? FP_SUBNORMAL : FP_ZERO;
+  if (e == 0xff)
+    return u.i << 9 ? FP_NAN : FP_INFINITE;
+  return FP_NORMAL;
 }
diff --git a/fusl/src/math/__fpclassifyl.c b/fusl/src/math/__fpclassifyl.c
index 481c0b9..30d54ac 100644
--- a/fusl/src/math/__fpclassifyl.c
+++ b/fusl/src/math/__fpclassifyl.c
@@ -1,34 +1,31 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-int __fpclassifyl(long double x)
-{
-	return __fpclassify(x);
+int __fpclassifyl(long double x) {
+  return __fpclassify(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-int __fpclassifyl(long double x)
-{
-	union ldshape u = {x};
-	int e = u.i.se & 0x7fff;
-	int msb = u.i.m>>63;
-	if (!e && !msb)
-		return u.i.m ? FP_SUBNORMAL : FP_ZERO;
-	if (!msb)
-		return FP_NAN;
-	if (e == 0x7fff)
-		return u.i.m << 1 ? FP_NAN : FP_INFINITE;
-	return FP_NORMAL;
+int __fpclassifyl(long double x) {
+  union ldshape u = {x};
+  int e = u.i.se & 0x7fff;
+  int msb = u.i.m >> 63;
+  if (!e && !msb)
+    return u.i.m ? FP_SUBNORMAL : FP_ZERO;
+  if (!msb)
+    return FP_NAN;
+  if (e == 0x7fff)
+    return u.i.m << 1 ? FP_NAN : FP_INFINITE;
+  return FP_NORMAL;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
-int __fpclassifyl(long double x)
-{
-	union ldshape u = {x};
-	int e = u.i.se & 0x7fff;
-	u.i.se = 0;
-	if (!e)
-		return u.i2.lo | u.i2.hi ? FP_SUBNORMAL : FP_ZERO;
-	if (e == 0x7fff)
-		return u.i2.lo | u.i2.hi ? FP_NAN : FP_INFINITE;
-	return FP_NORMAL;
+int __fpclassifyl(long double x) {
+  union ldshape u = {x};
+  int e = u.i.se & 0x7fff;
+  u.i.se = 0;
+  if (!e)
+    return u.i2.lo | u.i2.hi ? FP_SUBNORMAL : FP_ZERO;
+  if (e == 0x7fff)
+    return u.i2.lo | u.i2.hi ? FP_NAN : FP_INFINITE;
+  return FP_NORMAL;
 }
 #endif
diff --git a/fusl/src/math/__invtrigl.c b/fusl/src/math/__invtrigl.c
index ef7f4e1..f9e05cf 100644
--- a/fusl/src/math/__invtrigl.c
+++ b/fusl/src/math/__invtrigl.c
@@ -2,62 +2,72 @@
 #include "__invtrigl.h"
 
 #if LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-static const long double
-pS0 =  1.66666666666666666631e-01L,
-pS1 = -4.16313987993683104320e-01L,
-pS2 =  3.69068046323246813704e-01L,
-pS3 = -1.36213932016738603108e-01L,
-pS4 =  1.78324189708471965733e-02L,
-pS5 = -2.19216428382605211588e-04L,
-pS6 = -7.10526623669075243183e-06L,
-qS1 = -2.94788392796209867269e+00L,
-qS2 =  3.27309890266528636716e+00L,
-qS3 = -1.68285799854822427013e+00L,
-qS4 =  3.90699412641738801874e-01L,
-qS5 = -3.14365703596053263322e-02L;
+static const long double pS0 = 1.66666666666666666631e-01L,
+                         pS1 = -4.16313987993683104320e-01L,
+                         pS2 = 3.69068046323246813704e-01L,
+                         pS3 = -1.36213932016738603108e-01L,
+                         pS4 = 1.78324189708471965733e-02L,
+                         pS5 = -2.19216428382605211588e-04L,
+                         pS6 = -7.10526623669075243183e-06L,
+                         qS1 = -2.94788392796209867269e+00L,
+                         qS2 = 3.27309890266528636716e+00L,
+                         qS3 = -1.68285799854822427013e+00L,
+                         qS4 = 3.90699412641738801874e-01L,
+                         qS5 = -3.14365703596053263322e-02L;
 
 const long double pio2_hi = 1.57079632679489661926L;
 const long double pio2_lo = -2.50827880633416601173e-20L;
 
 /* used in asinl() and acosl() */
 /* R(x^2) is a rational approximation of (asin(x)-x)/x^3 with Remez algorithm */
-long double __invtrigl_R(long double z)
-{
-	long double p, q;
-	p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*(pS5+z*pS6))))));
-	q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*(qS4+z*qS5))));
-	return p/q;
+long double __invtrigl_R(long double z) {
+  long double p, q;
+  p = z * (pS0 +
+           z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * (pS5 + z * pS6))))));
+  q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * (qS4 + z * qS5))));
+  return p / q;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
-static const long double
-pS0 =  1.66666666666666666666666666666700314e-01L,
-pS1 = -7.32816946414566252574527475428622708e-01L,
-pS2 =  1.34215708714992334609030036562143589e+00L,
-pS3 = -1.32483151677116409805070261790752040e+00L,
-pS4 =  7.61206183613632558824485341162121989e-01L,
-pS5 = -2.56165783329023486777386833928147375e-01L,
-pS6 =  4.80718586374448793411019434585413855e-02L,
-pS7 = -4.42523267167024279410230886239774718e-03L,
-pS8 =  1.44551535183911458253205638280410064e-04L,
-pS9 = -2.10558957916600254061591040482706179e-07L,
-qS1 = -4.84690167848739751544716485245697428e+00L,
-qS2 =  9.96619113536172610135016921140206980e+00L,
-qS3 = -1.13177895428973036660836798461641458e+01L,
-qS4 =  7.74004374389488266169304117714658761e+00L,
-qS5 = -3.25871986053534084709023539900339905e+00L,
-qS6 =  8.27830318881232209752469022352928864e-01L,
-qS7 = -1.18768052702942805423330715206348004e-01L,
-qS8 =  8.32600764660522313269101537926539470e-03L,
-qS9 = -1.99407384882605586705979504567947007e-04L;
+static const long double pS0 = 1.66666666666666666666666666666700314e-01L,
+                         pS1 = -7.32816946414566252574527475428622708e-01L,
+                         pS2 = 1.34215708714992334609030036562143589e+00L,
+                         pS3 = -1.32483151677116409805070261790752040e+00L,
+                         pS4 = 7.61206183613632558824485341162121989e-01L,
+                         pS5 = -2.56165783329023486777386833928147375e-01L,
+                         pS6 = 4.80718586374448793411019434585413855e-02L,
+                         pS7 = -4.42523267167024279410230886239774718e-03L,
+                         pS8 = 1.44551535183911458253205638280410064e-04L,
+                         pS9 = -2.10558957916600254061591040482706179e-07L,
+                         qS1 = -4.84690167848739751544716485245697428e+00L,
+                         qS2 = 9.96619113536172610135016921140206980e+00L,
+                         qS3 = -1.13177895428973036660836798461641458e+01L,
+                         qS4 = 7.74004374389488266169304117714658761e+00L,
+                         qS5 = -3.25871986053534084709023539900339905e+00L,
+                         qS6 = 8.27830318881232209752469022352928864e-01L,
+                         qS7 = -1.18768052702942805423330715206348004e-01L,
+                         qS8 = 8.32600764660522313269101537926539470e-03L,
+                         qS9 = -1.99407384882605586705979504567947007e-04L;
 
 const long double pio2_hi = 1.57079632679489661923132169163975140L;
 const long double pio2_lo = 4.33590506506189051239852201302167613e-35L;
 
-long double __invtrigl_R(long double z)
-{
-	long double p, q;
-	p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*(pS5+z*(pS6+z*(pS7+z*(pS8+z*pS9)))))))));
-	q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*(qS4+z*(qS5+z*(pS6+z*(pS7+z*(pS8+z*pS9))))))));
-	return p/q;
+long double __invtrigl_R(long double z) {
+  long double p, q;
+  p = z * (pS0 +
+           z * (pS1 +
+                z * (pS2 +
+                     z * (pS3 +
+                          z * (pS4 +
+                               z * (pS5 +
+                                    z * (pS6 +
+                                         z * (pS7 + z * (pS8 + z * pS9)))))))));
+  q = 1.0 +
+      z * (qS1 +
+           z * (qS2 +
+                z * (qS3 +
+                     z * (qS4 +
+                          z * (qS5 +
+                               z * (pS6 + z * (pS7 + z * (pS8 + z * pS9))))))));
+  return p / q;
 }
 #endif
diff --git a/fusl/src/math/__polevll.c b/fusl/src/math/__polevll.c
index ce1a840..093b4bc 100644
--- a/fusl/src/math/__polevll.c
+++ b/fusl/src/math/__polevll.c
@@ -62,32 +62,30 @@
  * Polynomial evaluator:
  *  P[0] x^n  +  P[1] x^(n-1)  +  ...  +  P[n]
  */
-long double __polevll(long double x, const long double *P, int n)
-{
-	long double y;
+long double __polevll(long double x, const long double* P, int n) {
+  long double y;
 
-	y = *P++;
-	do {
-		y = y * x + *P++;
-	} while (--n);
+  y = *P++;
+  do {
+    y = y * x + *P++;
+  } while (--n);
 
-	return y;
+  return y;
 }
 
 /*
  * Polynomial evaluator:
  *  x^n  +  P[0] x^(n-1)  +  P[1] x^(n-2)  +  ...  +  P[n]
  */
-long double __p1evll(long double x, const long double *P, int n)
-{
-	long double y;
+long double __p1evll(long double x, const long double* P, int n) {
+  long double y;
 
-	n -= 1;
-	y = x + *P++;
-	do {
-		y = y * x + *P++;
-	} while (--n);
+  n -= 1;
+  y = x + *P++;
+  do {
+    y = y * x + *P++;
+  } while (--n);
 
-	return y;
+  return y;
 }
 #endif
diff --git a/fusl/src/math/__rem_pio2.c b/fusl/src/math/__rem_pio2.c
index d403f81..025ce4e 100644
--- a/fusl/src/math/__rem_pio2.c
+++ b/fusl/src/math/__rem_pio2.c
@@ -19,9 +19,9 @@
 
 #include "libm.h"
 
-#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#if FLT_EVAL_METHOD == 0 || FLT_EVAL_METHOD == 1
 #define EPS DBL_EPSILON
-#elif FLT_EVAL_METHOD==2
+#elif FLT_EVAL_METHOD == 2
 #define EPS LDBL_EPSILON
 #endif
 
@@ -34,144 +34,146 @@
  * pio2_3:   third  33 bit of pi/2
  * pio2_3t:  pi/2 - (pio2_1+pio2_2+pio2_3)
  */
-static const double
-toint   = 1.5/EPS,
-invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
-pio2_1  = 1.57079632673412561417e+00, /* 0x3FF921FB, 0x54400000 */
-pio2_1t = 6.07710050650619224932e-11, /* 0x3DD0B461, 0x1A626331 */
-pio2_2  = 6.07710050630396597660e-11, /* 0x3DD0B461, 0x1A600000 */
-pio2_2t = 2.02226624879595063154e-21, /* 0x3BA3198A, 0x2E037073 */
-pio2_3  = 2.02226624871116645580e-21, /* 0x3BA3198A, 0x2E000000 */
-pio2_3t = 8.47842766036889956997e-32; /* 0x397B839A, 0x252049C1 */
+static const double toint = 1.5 / EPS,
+                    invpio2 =
+                        6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+    pio2_1 = 1.57079632673412561417e+00,            /* 0x3FF921FB, 0x54400000 */
+    pio2_1t = 6.07710050650619224932e-11,           /* 0x3DD0B461, 0x1A626331 */
+    pio2_2 = 6.07710050630396597660e-11,            /* 0x3DD0B461, 0x1A600000 */
+    pio2_2t = 2.02226624879595063154e-21,           /* 0x3BA3198A, 0x2E037073 */
+    pio2_3 = 2.02226624871116645580e-21,            /* 0x3BA3198A, 0x2E000000 */
+    pio2_3t = 8.47842766036889956997e-32;           /* 0x397B839A, 0x252049C1 */
 
 /* caller must handle the case when reduction is not needed: |x| ~<= pi/4 */
-int __rem_pio2(double x, double *y)
-{
-	union {double f; uint64_t i;} u = {x};
-	double_t z,w,t,r,fn;
-	double tx[3],ty[2];
-	uint32_t ix;
-	int sign, n, ex, ey, i;
+int __rem_pio2(double x, double* y) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  double_t z, w, t, r, fn;
+  double tx[3], ty[2];
+  uint32_t ix;
+  int sign, n, ex, ey, i;
 
-	sign = u.i>>63;
-	ix = u.i>>32 & 0x7fffffff;
-	if (ix <= 0x400f6a7a) {  /* |x| ~<= 5pi/4 */
-		if ((ix & 0xfffff) == 0x921fb)  /* |x| ~= pi/2 or 2pi/2 */
-			goto medium;  /* cancellation -- use medium case */
-		if (ix <= 0x4002d97c) {  /* |x| ~<= 3pi/4 */
-			if (!sign) {
-				z = x - pio2_1;  /* one round good to 85 bits */
-				y[0] = z - pio2_1t;
-				y[1] = (z-y[0]) - pio2_1t;
-				return 1;
-			} else {
-				z = x + pio2_1;
-				y[0] = z + pio2_1t;
-				y[1] = (z-y[0]) + pio2_1t;
-				return -1;
-			}
-		} else {
-			if (!sign) {
-				z = x - 2*pio2_1;
-				y[0] = z - 2*pio2_1t;
-				y[1] = (z-y[0]) - 2*pio2_1t;
-				return 2;
-			} else {
-				z = x + 2*pio2_1;
-				y[0] = z + 2*pio2_1t;
-				y[1] = (z-y[0]) + 2*pio2_1t;
-				return -2;
-			}
-		}
-	}
-	if (ix <= 0x401c463b) {  /* |x| ~<= 9pi/4 */
-		if (ix <= 0x4015fdbc) {  /* |x| ~<= 7pi/4 */
-			if (ix == 0x4012d97c)  /* |x| ~= 3pi/2 */
-				goto medium;
-			if (!sign) {
-				z = x - 3*pio2_1;
-				y[0] = z - 3*pio2_1t;
-				y[1] = (z-y[0]) - 3*pio2_1t;
-				return 3;
-			} else {
-				z = x + 3*pio2_1;
-				y[0] = z + 3*pio2_1t;
-				y[1] = (z-y[0]) + 3*pio2_1t;
-				return -3;
-			}
-		} else {
-			if (ix == 0x401921fb)  /* |x| ~= 4pi/2 */
-				goto medium;
-			if (!sign) {
-				z = x - 4*pio2_1;
-				y[0] = z - 4*pio2_1t;
-				y[1] = (z-y[0]) - 4*pio2_1t;
-				return 4;
-			} else {
-				z = x + 4*pio2_1;
-				y[0] = z + 4*pio2_1t;
-				y[1] = (z-y[0]) + 4*pio2_1t;
-				return -4;
-			}
-		}
-	}
-	if (ix < 0x413921fb) {  /* |x| ~< 2^20*(pi/2), medium size */
-medium:
-		/* rint(x/(pi/2)), Assume round-to-nearest. */
-		fn = (double_t)x*invpio2 + toint - toint;
-		n = (int32_t)fn;
-		r = x - fn*pio2_1;
-		w = fn*pio2_1t;  /* 1st round, good to 85 bits */
-		y[0] = r - w;
-		u.f = y[0];
-		ey = u.i>>52 & 0x7ff;
-		ex = ix>>20;
-		if (ex - ey > 16) { /* 2nd round, good to 118 bits */
-			t = r;
-			w = fn*pio2_2;
-			r = t - w;
-			w = fn*pio2_2t - ((t-r)-w);
-			y[0] = r - w;
-			u.f = y[0];
-			ey = u.i>>52 & 0x7ff;
-			if (ex - ey > 49) {  /* 3rd round, good to 151 bits, covers all cases */
-				t = r;
-				w = fn*pio2_3;
-				r = t - w;
-				w = fn*pio2_3t - ((t-r)-w);
-				y[0] = r - w;
-			}
-		}
-		y[1] = (r - y[0]) - w;
-		return n;
-	}
-	/*
-	 * all other (large) arguments
-	 */
-	if (ix >= 0x7ff00000) {  /* x is inf or NaN */
-		y[0] = y[1] = x - x;
-		return 0;
-	}
-	/* set z = scalbn(|x|,-ilogb(x)+23) */
-	u.f = x;
-	u.i &= (uint64_t)-1>>12;
-	u.i |= (uint64_t)(0x3ff + 23)<<52;
-	z = u.f;
-	for (i=0; i < 2; i++) {
-		tx[i] = (double)(int32_t)z;
-		z     = (z-tx[i])*0x1p24;
-	}
-	tx[i] = z;
-	/* skip zero terms, first term is non-zero */
-	while (tx[i] == 0.0)
-		i--;
-	n = __rem_pio2_large(tx,ty,(int)(ix>>20)-(0x3ff+23),i+1,1);
-	if (sign) {
-		y[0] = -ty[0];
-		y[1] = -ty[1];
-		return -n;
-	}
-	y[0] = ty[0];
-	y[1] = ty[1];
-	return n;
+  sign = u.i >> 63;
+  ix = u.i >> 32 & 0x7fffffff;
+  if (ix <= 0x400f6a7a) {          /* |x| ~<= 5pi/4 */
+    if ((ix & 0xfffff) == 0x921fb) /* |x| ~= pi/2 or 2pi/2 */
+      goto medium;                 /* cancellation -- use medium case */
+    if (ix <= 0x4002d97c) {        /* |x| ~<= 3pi/4 */
+      if (!sign) {
+        z = x - pio2_1; /* one round good to 85 bits */
+        y[0] = z - pio2_1t;
+        y[1] = (z - y[0]) - pio2_1t;
+        return 1;
+      } else {
+        z = x + pio2_1;
+        y[0] = z + pio2_1t;
+        y[1] = (z - y[0]) + pio2_1t;
+        return -1;
+      }
+    } else {
+      if (!sign) {
+        z = x - 2 * pio2_1;
+        y[0] = z - 2 * pio2_1t;
+        y[1] = (z - y[0]) - 2 * pio2_1t;
+        return 2;
+      } else {
+        z = x + 2 * pio2_1;
+        y[0] = z + 2 * pio2_1t;
+        y[1] = (z - y[0]) + 2 * pio2_1t;
+        return -2;
+      }
+    }
+  }
+  if (ix <= 0x401c463b) {   /* |x| ~<= 9pi/4 */
+    if (ix <= 0x4015fdbc) { /* |x| ~<= 7pi/4 */
+      if (ix == 0x4012d97c) /* |x| ~= 3pi/2 */
+        goto medium;
+      if (!sign) {
+        z = x - 3 * pio2_1;
+        y[0] = z - 3 * pio2_1t;
+        y[1] = (z - y[0]) - 3 * pio2_1t;
+        return 3;
+      } else {
+        z = x + 3 * pio2_1;
+        y[0] = z + 3 * pio2_1t;
+        y[1] = (z - y[0]) + 3 * pio2_1t;
+        return -3;
+      }
+    } else {
+      if (ix == 0x401921fb) /* |x| ~= 4pi/2 */
+        goto medium;
+      if (!sign) {
+        z = x - 4 * pio2_1;
+        y[0] = z - 4 * pio2_1t;
+        y[1] = (z - y[0]) - 4 * pio2_1t;
+        return 4;
+      } else {
+        z = x + 4 * pio2_1;
+        y[0] = z + 4 * pio2_1t;
+        y[1] = (z - y[0]) + 4 * pio2_1t;
+        return -4;
+      }
+    }
+  }
+  if (ix < 0x413921fb) { /* |x| ~< 2^20*(pi/2), medium size */
+  medium:
+    /* rint(x/(pi/2)), Assume round-to-nearest. */
+    fn = (double_t)x * invpio2 + toint - toint;
+    n = (int32_t)fn;
+    r = x - fn * pio2_1;
+    w = fn * pio2_1t; /* 1st round, good to 85 bits */
+    y[0] = r - w;
+    u.f = y[0];
+    ey = u.i >> 52 & 0x7ff;
+    ex = ix >> 20;
+    if (ex - ey > 16) { /* 2nd round, good to 118 bits */
+      t = r;
+      w = fn * pio2_2;
+      r = t - w;
+      w = fn * pio2_2t - ((t - r) - w);
+      y[0] = r - w;
+      u.f = y[0];
+      ey = u.i >> 52 & 0x7ff;
+      if (ex - ey > 49) { /* 3rd round, good to 151 bits, covers all cases */
+        t = r;
+        w = fn * pio2_3;
+        r = t - w;
+        w = fn * pio2_3t - ((t - r) - w);
+        y[0] = r - w;
+      }
+    }
+    y[1] = (r - y[0]) - w;
+    return n;
+  }
+  /*
+   * all other (large) arguments
+   */
+  if (ix >= 0x7ff00000) { /* x is inf or NaN */
+    y[0] = y[1] = x - x;
+    return 0;
+  }
+  /* set z = scalbn(|x|,-ilogb(x)+23) */
+  u.f = x;
+  u.i &= (uint64_t)-1 >> 12;
+  u.i |= (uint64_t)(0x3ff + 23) << 52;
+  z = u.f;
+  for (i = 0; i < 2; i++) {
+    tx[i] = (double)(int32_t)z;
+    z = (z - tx[i]) * 0x1p24;
+  }
+  tx[i] = z;
+  /* skip zero terms, first term is non-zero */
+  while (tx[i] == 0.0)
+    i--;
+  n = __rem_pio2_large(tx, ty, (int)(ix >> 20) - (0x3ff + 23), i + 1, 1);
+  if (sign) {
+    y[0] = -ty[0];
+    y[1] = -ty[1];
+    return -n;
+  }
+  y[0] = ty[0];
+  y[1] = ty[1];
+  return n;
 }
diff --git a/fusl/src/math/__rem_pio2_large.c b/fusl/src/math/__rem_pio2_large.c
index 958f28c..9381d0e 100644
--- a/fusl/src/math/__rem_pio2_large.c
+++ b/fusl/src/math/__rem_pio2_large.c
@@ -124,7 +124,7 @@
 
 #include "libm.h"
 
-static const int init_jk[] = {3,4,4,6}; /* initial value for jk */
+static const int init_jk[] = {3, 4, 4, 6}; /* initial value for jk */
 
 /*
  * Table of constants for 2/pi, 396 Hex digits (476 decimal) of 2/pi
@@ -139,304 +139,302 @@
  *     For quad precision (e0 <= 16360, jk = 6), this is 686.
  */
 static const int32_t ipio2[] = {
-0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62,
-0x95993C, 0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A,
-0x424DD2, 0xE00649, 0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129,
-0xA73EE8, 0x8235F5, 0x2EBB44, 0x84E99C, 0x7026B4, 0x5F7E41,
-0x3991D6, 0x398353, 0x39F49C, 0x845F8B, 0xBDF928, 0x3B1FF8,
-0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D, 0x367ECF,
-0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
-0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08,
-0x560330, 0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3,
-0x91615E, 0xE61B08, 0x659985, 0x5F14A0, 0x68408D, 0xFFD880,
-0x4D7327, 0x310606, 0x1556CA, 0x73A8C9, 0x60E27B, 0xC08C6B,
+    0xA2F983, 0x6E4E44, 0x1529FC, 0x2757D1, 0xF534DD, 0xC0DB62, 0x95993C,
+    0x439041, 0xFE5163, 0xABDEBB, 0xC561B7, 0x246E3A, 0x424DD2, 0xE00649,
+    0x2EEA09, 0xD1921C, 0xFE1DEB, 0x1CB129, 0xA73EE8, 0x8235F5, 0x2EBB44,
+    0x84E99C, 0x7026B4, 0x5F7E41, 0x3991D6, 0x398353, 0x39F49C, 0x845F8B,
+    0xBDF928, 0x3B1FF8, 0x97FFDE, 0x05980F, 0xEF2F11, 0x8B5A0A, 0x6D1F6D,
+    0x367ECF, 0x27CB09, 0xB74F46, 0x3F669E, 0x5FEA2D, 0x7527BA, 0xC7EBE5,
+    0xF17B3D, 0x0739F7, 0x8A5292, 0xEA6BFB, 0x5FB11F, 0x8D5D08, 0x560330,
+    0x46FC7B, 0x6BABF0, 0xCFBC20, 0x9AF436, 0x1DA9E3, 0x91615E, 0xE61B08,
+    0x659985, 0x5F14A0, 0x68408D, 0xFFD880, 0x4D7327, 0x310606, 0x1556CA,
+    0x73A8C9, 0x60E27B, 0xC08C6B,
 
 #if LDBL_MAX_EXP > 1024
-0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6,
-0xDDAF44, 0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2,
-0xDE4F98, 0x327DBB, 0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35,
-0xCAF27F, 0x1D87F1, 0x21907C, 0x7C246A, 0xFA6ED5, 0x772D30,
-0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD, 0x414D2C, 0x5D000C,
-0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4, 0x97A7B4,
-0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
-0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7,
-0xCB2324, 0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19,
-0xFF319F, 0x6A1E66, 0x615799, 0x47FBAC, 0xD87F7E, 0xB76522,
-0x89E832, 0x60BFE6, 0xCDC4EF, 0x09366C, 0xD43F5D, 0xD7DE16,
-0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628, 0x4D58E2, 0x32CAC6,
-0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018, 0x34132E,
-0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
-0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3,
-0xF2A606, 0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF,
-0xBDD76F, 0x63A62D, 0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55,
-0x36D9CA, 0xD2A828, 0x8D61C2, 0x77C912, 0x142604, 0x9B4612,
-0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700, 0xAD43D4, 0xE54929,
-0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13, 0x80F1EC,
-0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
-0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C,
-0x90A772, 0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4,
-0x9794E8, 0x84E6E2, 0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB,
-0xB49A48, 0x6CA467, 0x427271, 0x325D8D, 0xB8159F, 0x09E5BC,
-0x25318D, 0x3974F7, 0x1C0530, 0x010C0D, 0x68084B, 0x58EE2C,
-0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E, 0xEF169F,
-0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
-0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437,
-0x10D86D, 0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B,
-0x69F52A, 0xD56614, 0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA,
-0x17F987, 0x7D6B49, 0xBA271D, 0x296996, 0xACCCC6, 0x5414AD,
-0x6AE290, 0x89D988, 0x50722C, 0xBEA404, 0x940777, 0x7030F3,
-0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97, 0x973FA3,
-0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
-0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F,
-0xAF806C, 0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61,
-0xB989C7, 0xBD4010, 0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB,
-0xAA140A, 0x2F2689, 0x768364, 0x333B09, 0x1A940E, 0xAA3A51,
-0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D, 0x9C7A2D, 0x9756C0,
-0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439, 0x15200C,
-0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
-0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC,
-0xABA1AE, 0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED,
-0x306529, 0xBF5657, 0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328,
-0x3080AB, 0xF68C66, 0x15CB04, 0x0622FA, 0x1DE4D9, 0xA4B33D,
-0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13, 0xB52333, 0x1AAAF0,
-0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923, 0x048B7B,
-0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
-0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3,
-0xDA4886, 0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F,
-0x6DDED0, 0x1FC790, 0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD,
-0x0457B6, 0xB42D29, 0x7E804B, 0xA707DA, 0x0EAA76, 0xA1597B,
-0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89, 0xFDBE89, 0x6C76E4,
-0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28, 0x336761,
-0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
-0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30,
-0xFD6CBF, 0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262,
-0x845CB9, 0x496170, 0xE0566B, 0x015299, 0x375550, 0xB7D51E,
-0xC4F133, 0x5F6E13, 0xE4305D, 0xA92E85, 0xC3B21D, 0x3632A1,
-0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F, 0x77FF27, 0x80030C,
-0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F, 0x42F9B4,
-0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
-0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196,
-0xDEBE87, 0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9,
-0x4F6A68, 0xA82A4A, 0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4,
-0x8D4D0D, 0xA63A20, 0x5F57A4, 0xB13F14, 0x953880, 0x0120CC,
-0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D, 0x6B0701, 0xACB08C,
-0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3, 0x3540C0,
-0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
-0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0,
-0x3C3ABA, 0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC,
-0xED440E, 0x423E1C, 0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22,
-0x35916F, 0xC5E008, 0x8DD7FF, 0xE26A6E, 0xC6FDB0, 0xC10893,
-0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E, 0x6A11C6, 0xA9CFF7,
-0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74, 0x607DE5,
-0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
-0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4,
-0x27A831, 0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF,
-0x2D8912, 0x34576F, 0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B,
-0x9C2A3E, 0xCC5F11, 0x4A0BFD, 0xFBF4E1, 0x6D3B8E, 0x2C86E2,
-0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E, 0x61392F, 0x442138,
-0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453, 0x8C994E,
-0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
-0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34,
-0xEEBC34, 0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9,
-0x9B5861, 0xBC57E1, 0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D,
-0xA118AF, 0x462C21, 0xD7F359, 0x987AD9, 0xC0549E, 0xFA864F,
-0xFC0656, 0xAE79E5, 0x362289, 0x22AD38, 0xDC9367, 0xAAE855,
-0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9, 0x480569,
-0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
-0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE,
-0x5FD45E, 0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41,
-0x086E59, 0x862A21, 0x834739, 0xE6E389, 0xD49EE5, 0x40FB49,
-0xE956FF, 0xCA0F1C, 0x8A59C5, 0x2BFA94, 0xC5C1D3, 0xCFC50F,
-0xAE5ADB, 0x86C547, 0x624385, 0x3B8621, 0x94792C, 0x876110,
-0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78, 0xE4C4A8,
-0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
-0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A,
-0x9529A8, 0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270,
-0x237C7E, 0x32B90F, 0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5,
-0x4D7E6F, 0x5119A5, 0xABF9B5, 0xD6DF82, 0x61DD96, 0x023616,
-0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39, 0xA9B882, 0x5C326B,
-0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901, 0x8071E0,
+    0x47C419, 0xC367CD, 0xDCE809, 0x2A8359, 0xC4768B, 0x961CA6, 0xDDAF44,
+    0xD15719, 0x053EA5, 0xFF0705, 0x3F7E33, 0xE832C2, 0xDE4F98, 0x327DBB,
+    0xC33D26, 0xEF6B1E, 0x5EF89F, 0x3A1F35, 0xCAF27F, 0x1D87F1, 0x21907C,
+    0x7C246A, 0xFA6ED5, 0x772D30, 0x433B15, 0xC614B5, 0x9D19C3, 0xC2C4AD,
+    0x414D2C, 0x5D000C, 0x467D86, 0x2D71E3, 0x9AC69B, 0x006233, 0x7CD2B4,
+    0x97A7B4, 0xD55537, 0xF63ED7, 0x1810A3, 0xFC764D, 0x2A9D64, 0xABD770,
+    0xF87C63, 0x57B07A, 0xE71517, 0x5649C0, 0xD9D63B, 0x3884A7, 0xCB2324,
+    0x778AD6, 0x23545A, 0xB91F00, 0x1B0AF1, 0xDFCE19, 0xFF319F, 0x6A1E66,
+    0x615799, 0x47FBAC, 0xD87F7E, 0xB76522, 0x89E832, 0x60BFE6, 0xCDC4EF,
+    0x09366C, 0xD43F5D, 0xD7DE16, 0xDE3B58, 0x929BDE, 0x2822D2, 0xE88628,
+    0x4D58E2, 0x32CAC6, 0x16E308, 0xCB7DE0, 0x50C017, 0xA71DF3, 0x5BE018,
+    0x34132E, 0x621283, 0x014883, 0x5B8EF5, 0x7FB0AD, 0xF2E91E, 0x434A48,
+    0xD36710, 0xD8DDAA, 0x425FAE, 0xCE616A, 0xA4280A, 0xB499D3, 0xF2A606,
+    0x7F775C, 0x83C2A3, 0x883C61, 0x78738A, 0x5A8CAF, 0xBDD76F, 0x63A62D,
+    0xCBBFF4, 0xEF818D, 0x67C126, 0x45CA55, 0x36D9CA, 0xD2A828, 0x8D61C2,
+    0x77C912, 0x142604, 0x9B4612, 0xC459C4, 0x44C5C8, 0x91B24D, 0xF31700,
+    0xAD43D4, 0xE54929, 0x10D5FD, 0xFCBE00, 0xCC941E, 0xEECE70, 0xF53E13,
+    0x80F1EC, 0xC3E7B3, 0x28F8C7, 0x940593, 0x3E71C1, 0xB3092E, 0xF3450B,
+    0x9C1288, 0x7B20AB, 0x9FB52E, 0xC29247, 0x2F327B, 0x6D550C, 0x90A772,
+    0x1FE76B, 0x96CB31, 0x4A1679, 0xE27941, 0x89DFF4, 0x9794E8, 0x84E6E2,
+    0x973199, 0x6BED88, 0x365F5F, 0x0EFDBB, 0xB49A48, 0x6CA467, 0x427271,
+    0x325D8D, 0xB8159F, 0x09E5BC, 0x25318D, 0x3974F7, 0x1C0530, 0x010C0D,
+    0x68084B, 0x58EE2C, 0x90AA47, 0x02E774, 0x24D6BD, 0xA67DF7, 0x72486E,
+    0xEF169F, 0xA6948E, 0xF691B4, 0x5153D1, 0xF20ACF, 0x339820, 0x7E4BF5,
+    0x6863B2, 0x5F3EDD, 0x035D40, 0x7F8985, 0x295255, 0xC06437, 0x10D86D,
+    0x324832, 0x754C5B, 0xD4714E, 0x6E5445, 0xC1090B, 0x69F52A, 0xD56614,
+    0x9D0727, 0x50045D, 0xDB3BB4, 0xC576EA, 0x17F987, 0x7D6B49, 0xBA271D,
+    0x296996, 0xACCCC6, 0x5414AD, 0x6AE290, 0x89D988, 0x50722C, 0xBEA404,
+    0x940777, 0x7030F3, 0x27FC00, 0xA871EA, 0x49C266, 0x3DE064, 0x83DD97,
+    0x973FA3, 0xFD9443, 0x8C860D, 0xDE4131, 0x9D3992, 0x8C70DD, 0xE7B717,
+    0x3BDF08, 0x2B3715, 0xA0805C, 0x93805A, 0x921110, 0xD8E80F, 0xAF806C,
+    0x4BFFDB, 0x0F9038, 0x761859, 0x15A562, 0xBBCB61, 0xB989C7, 0xBD4010,
+    0x04F2D2, 0x277549, 0xF6B6EB, 0xBB22DB, 0xAA140A, 0x2F2689, 0x768364,
+    0x333B09, 0x1A940E, 0xAA3A51, 0xC2A31D, 0xAEEDAF, 0x12265C, 0x4DC26D,
+    0x9C7A2D, 0x9756C0, 0x833F03, 0xF6F009, 0x8C402B, 0x99316D, 0x07B439,
+    0x15200C, 0x5BC3D8, 0xC492F5, 0x4BADC6, 0xA5CA4E, 0xCD37A7, 0x36A9E6,
+    0x9492AB, 0x6842DD, 0xDE6319, 0xEF8C76, 0x528B68, 0x37DBFC, 0xABA1AE,
+    0x3115DF, 0xA1AE00, 0xDAFB0C, 0x664D64, 0xB705ED, 0x306529, 0xBF5657,
+    0x3AFF47, 0xB9F96A, 0xF3BE75, 0xDF9328, 0x3080AB, 0xF68C66, 0x15CB04,
+    0x0622FA, 0x1DE4D9, 0xA4B33D, 0x8F1B57, 0x09CD36, 0xE9424E, 0xA4BE13,
+    0xB52333, 0x1AAAF0, 0xA8654F, 0xA5C1D2, 0x0F3F0B, 0xCD785B, 0x76F923,
+    0x048B7B, 0x721789, 0x53A6C6, 0xE26E6F, 0x00EBEF, 0x584A9B, 0xB7DAC4,
+    0xBA66AA, 0xCFCF76, 0x1D02D1, 0x2DF1B1, 0xC1998C, 0x77ADC3, 0xDA4886,
+    0xA05DF7, 0xF480C6, 0x2FF0AC, 0x9AECDD, 0xBC5C3F, 0x6DDED0, 0x1FC790,
+    0xB6DB2A, 0x3A25A3, 0x9AAF00, 0x9353AD, 0x0457B6, 0xB42D29, 0x7E804B,
+    0xA707DA, 0x0EAA76, 0xA1597B, 0x2A1216, 0x2DB7DC, 0xFDE5FA, 0xFEDB89,
+    0xFDBE89, 0x6C76E4, 0xFCA906, 0x70803E, 0x156E85, 0xFF87FD, 0x073E28,
+    0x336761, 0x86182A, 0xEABD4D, 0xAFE7B3, 0x6E6D8F, 0x396795, 0x5BBF31,
+    0x48D784, 0x16DF30, 0x432DC7, 0x356125, 0xCE70C9, 0xB8CB30, 0xFD6CBF,
+    0xA200A4, 0xE46C05, 0xA0DD5A, 0x476F21, 0xD21262, 0x845CB9, 0x496170,
+    0xE0566B, 0x015299, 0x375550, 0xB7D51E, 0xC4F133, 0x5F6E13, 0xE4305D,
+    0xA92E85, 0xC3B21D, 0x3632A1, 0xA4B708, 0xD4B1EA, 0x21F716, 0xE4698F,
+    0x77FF27, 0x80030C, 0x2D408D, 0xA0CD4F, 0x99A520, 0xD3A2B3, 0x0A5D2F,
+    0x42F9B4, 0xCBDA11, 0xD0BE7D, 0xC1DB9B, 0xBD17AB, 0x81A2CA, 0x5C6A08,
+    0x17552E, 0x550027, 0xF0147F, 0x8607E1, 0x640B14, 0x8D4196, 0xDEBE87,
+    0x2AFDDA, 0xB6256B, 0x34897B, 0xFEF305, 0x9EBFB9, 0x4F6A68, 0xA82A4A,
+    0x5AC44F, 0xBCF82D, 0x985AD7, 0x95C7F4, 0x8D4D0D, 0xA63A20, 0x5F57A4,
+    0xB13F14, 0x953880, 0x0120CC, 0x86DD71, 0xB6DEC9, 0xF560BF, 0x11654D,
+    0x6B0701, 0xACB08C, 0xD0C0B2, 0x485551, 0x0EFB1E, 0xC37295, 0x3B06A3,
+    0x3540C0, 0x7BDC06, 0xCC45E0, 0xFA294E, 0xC8CAD6, 0x41F3E8, 0xDE647C,
+    0xD8649B, 0x31BED9, 0xC397A4, 0xD45877, 0xC5E369, 0x13DAF0, 0x3C3ABA,
+    0x461846, 0x5F7555, 0xF5BDD2, 0xC6926E, 0x5D2EAC, 0xED440E, 0x423E1C,
+    0x87C461, 0xE9FD29, 0xF3D6E7, 0xCA7C22, 0x35916F, 0xC5E008, 0x8DD7FF,
+    0xE26A6E, 0xC6FDB0, 0xC10893, 0x745D7C, 0xB2AD6B, 0x9D6ECD, 0x7B723E,
+    0x6A11C6, 0xA9CFF7, 0xDF7329, 0xBAC9B5, 0x5100B7, 0x0DB2E2, 0x24BA74,
+    0x607DE5, 0x8AD874, 0x2C150D, 0x0C1881, 0x94667E, 0x162901, 0x767A9F,
+    0xBEFDFD, 0xEF4556, 0x367ED9, 0x13D9EC, 0xB9BA8B, 0xFC97C4, 0x27A831,
+    0xC36EF1, 0x36C594, 0x56A8D8, 0xB5A8B4, 0x0ECCCF, 0x2D8912, 0x34576F,
+    0x89562C, 0xE3CE99, 0xB920D6, 0xAA5E6B, 0x9C2A3E, 0xCC5F11, 0x4A0BFD,
+    0xFBF4E1, 0x6D3B8E, 0x2C86E2, 0x84D4E9, 0xA9B4FC, 0xD1EEEF, 0xC9352E,
+    0x61392F, 0x442138, 0xC8D91B, 0x0AFC81, 0x6A4AFB, 0xD81C2F, 0x84B453,
+    0x8C994E, 0xCC2254, 0xDC552A, 0xD6C6C0, 0x96190B, 0xB8701A, 0x649569,
+    0x605A26, 0xEE523F, 0x0F117F, 0x11B5F4, 0xF5CBFC, 0x2DBC34, 0xEEBC34,
+    0xCC5DE8, 0x605EDD, 0x9B8E67, 0xEF3392, 0xB817C9, 0x9B5861, 0xBC57E1,
+    0xC68351, 0x103ED8, 0x4871DD, 0xDD1C2D, 0xA118AF, 0x462C21, 0xD7F359,
+    0x987AD9, 0xC0549E, 0xFA864F, 0xFC0656, 0xAE79E5, 0x362289, 0x22AD38,
+    0xDC9367, 0xAAE855, 0x382682, 0x9BE7CA, 0xA40D51, 0xB13399, 0x0ED7A9,
+    0x480569, 0xF0B265, 0xA7887F, 0x974C88, 0x36D1F9, 0xB39221, 0x4A827B,
+    0x21CF98, 0xDC9F40, 0x5547DC, 0x3A74E1, 0x42EB67, 0xDF9DFE, 0x5FD45E,
+    0xA4677B, 0x7AACBA, 0xA2F655, 0x23882B, 0x55BA41, 0x086E59, 0x862A21,
+    0x834739, 0xE6E389, 0xD49EE5, 0x40FB49, 0xE956FF, 0xCA0F1C, 0x8A59C5,
+    0x2BFA94, 0xC5C1D3, 0xCFC50F, 0xAE5ADB, 0x86C547, 0x624385, 0x3B8621,
+    0x94792C, 0x876110, 0x7B4C2A, 0x1A2C80, 0x12BF43, 0x902688, 0x893C78,
+    0xE4C4A8, 0x7BDBE5, 0xC23AC4, 0xEAF426, 0x8A67F7, 0xBF920D, 0x2BA365,
+    0xB1933D, 0x0B7CBD, 0xDC51A4, 0x63DD27, 0xDDE169, 0x19949A, 0x9529A8,
+    0x28CE68, 0xB4ED09, 0x209F44, 0xCA984E, 0x638270, 0x237C7E, 0x32B90F,
+    0x8EF5A7, 0xE75614, 0x08F121, 0x2A9DB5, 0x4D7E6F, 0x5119A5, 0xABF9B5,
+    0xD6DF82, 0x61DD96, 0x023616, 0x9F3AC4, 0xA1A283, 0x6DED72, 0x7A8D39,
+    0xA9B882, 0x5C326B, 0x5B2746, 0xED3400, 0x7700D2, 0x55F4FC, 0x4D5901,
+    0x8071E0,
 #endif
 };
 
 static const double PIo2[] = {
-  1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
-  7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
-  5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
-  3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
-  1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
-  1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
-  2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
-  2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
+    1.57079625129699707031e+00, /* 0x3FF921FB, 0x40000000 */
+    7.54978941586159635335e-08, /* 0x3E74442D, 0x00000000 */
+    5.39030252995776476554e-15, /* 0x3CF84698, 0x80000000 */
+    3.28200341580791294123e-22, /* 0x3B78CC51, 0x60000000 */
+    1.27065575308067607349e-29, /* 0x39F01B83, 0x80000000 */
+    1.22933308981111328932e-36, /* 0x387A2520, 0x40000000 */
+    2.73370053816464559624e-44, /* 0x36E38222, 0x80000000 */
+    2.16741683877804819444e-51, /* 0x3569F31D, 0x00000000 */
 };
 
-int __rem_pio2_large(double *x, double *y, int e0, int nx, int prec)
-{
-	int32_t jz,jx,jv,jp,jk,carry,n,iq[20],i,j,k,m,q0,ih;
-	double z,fw,f[20],fq[20],q[20];
+int __rem_pio2_large(double* x, double* y, int e0, int nx, int prec) {
+  int32_t jz, jx, jv, jp, jk, carry, n, iq[20], i, j, k, m, q0, ih;
+  double z, fw, f[20], fq[20], q[20];
 
-	/* initialize jk*/
-	jk = init_jk[prec];
-	jp = jk;
+  /* initialize jk*/
+  jk = init_jk[prec];
+  jp = jk;
 
-	/* determine jx,jv,q0, note that 3>q0 */
-	jx = nx-1;
-	jv = (e0-3)/24;  if(jv<0) jv=0;
-	q0 = e0-24*(jv+1);
+  /* determine jx,jv,q0, note that 3>q0 */
+  jx = nx - 1;
+  jv = (e0 - 3) / 24;
+  if (jv < 0)
+    jv = 0;
+  q0 = e0 - 24 * (jv + 1);
 
-	/* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
-	j = jv-jx; m = jx+jk;
-	for (i=0; i<=m; i++,j++)
-		f[i] = j<0 ? 0.0 : (double)ipio2[j];
+  /* set up f[0] to f[jx+jk] where f[jx+jk] = ipio2[jv+jk] */
+  j = jv - jx;
+  m = jx + jk;
+  for (i = 0; i <= m; i++, j++)
+    f[i] = j < 0 ? 0.0 : (double)ipio2[j];
 
-	/* compute q[0],q[1],...q[jk] */
-	for (i=0; i<=jk; i++) {
-		for (j=0,fw=0.0; j<=jx; j++)
-			fw += x[j]*f[jx+i-j];
-		q[i] = fw;
-	}
+  /* compute q[0],q[1],...q[jk] */
+  for (i = 0; i <= jk; i++) {
+    for (j = 0, fw = 0.0; j <= jx; j++)
+      fw += x[j] * f[jx + i - j];
+    q[i] = fw;
+  }
 
-	jz = jk;
+  jz = jk;
 recompute:
-	/* distill q[] into iq[] reversingly */
-	for (i=0,j=jz,z=q[jz]; j>0; i++,j--) {
-		fw    = (double)(int32_t)(0x1p-24*z);
-		iq[i] = (int32_t)(z - 0x1p24*fw);
-		z     = q[j-1]+fw;
-	}
+  /* distill q[] into iq[] reversingly */
+  for (i = 0, j = jz, z = q[jz]; j > 0; i++, j--) {
+    fw = (double)(int32_t)(0x1p-24 * z);
+    iq[i] = (int32_t)(z - 0x1p24 * fw);
+    z = q[j - 1] + fw;
+  }
 
-	/* compute n */
-	z  = scalbn(z,q0);       /* actual value of z */
-	z -= 8.0*floor(z*0.125); /* trim off integer >= 8 */
-	n  = (int32_t)z;
-	z -= (double)n;
-	ih = 0;
-	if (q0 > 0) {  /* need iq[jz-1] to determine n */
-		i  = iq[jz-1]>>(24-q0); n += i;
-		iq[jz-1] -= i<<(24-q0);
-		ih = iq[jz-1]>>(23-q0);
-	}
-	else if (q0 == 0) ih = iq[jz-1]>>23;
-	else if (z >= 0.5) ih = 2;
+  /* compute n */
+  z = scalbn(z, q0);           /* actual value of z */
+  z -= 8.0 * floor(z * 0.125); /* trim off integer >= 8 */
+  n = (int32_t)z;
+  z -= (double)n;
+  ih = 0;
+  if (q0 > 0) { /* need iq[jz-1] to determine n */
+    i = iq[jz - 1] >> (24 - q0);
+    n += i;
+    iq[jz - 1] -= i << (24 - q0);
+    ih = iq[jz - 1] >> (23 - q0);
+  } else if (q0 == 0)
+    ih = iq[jz - 1] >> 23;
+  else if (z >= 0.5)
+    ih = 2;
 
-	if (ih > 0) {  /* q > 0.5 */
-		n += 1; carry = 0;
-		for (i=0; i<jz; i++) {  /* compute 1-q */
-			j = iq[i];
-			if (carry == 0) {
-				if (j != 0) {
-					carry = 1;
-					iq[i] = 0x1000000 - j;
-				}
-			} else
-				iq[i] = 0xffffff - j;
-		}
-		if (q0 > 0) {  /* rare case: chance is 1 in 12 */
-			switch(q0) {
-			case 1:
-				iq[jz-1] &= 0x7fffff; break;
-			case 2:
-				iq[jz-1] &= 0x3fffff; break;
-			}
-		}
-		if (ih == 2) {
-			z = 1.0 - z;
-			if (carry != 0)
-				z -= scalbn(1.0,q0);
-		}
-	}
+  if (ih > 0) { /* q > 0.5 */
+    n += 1;
+    carry = 0;
+    for (i = 0; i < jz; i++) { /* compute 1-q */
+      j = iq[i];
+      if (carry == 0) {
+        if (j != 0) {
+          carry = 1;
+          iq[i] = 0x1000000 - j;
+        }
+      } else
+        iq[i] = 0xffffff - j;
+    }
+    if (q0 > 0) { /* rare case: chance is 1 in 12 */
+      switch (q0) {
+        case 1:
+          iq[jz - 1] &= 0x7fffff;
+          break;
+        case 2:
+          iq[jz - 1] &= 0x3fffff;
+          break;
+      }
+    }
+    if (ih == 2) {
+      z = 1.0 - z;
+      if (carry != 0)
+        z -= scalbn(1.0, q0);
+    }
+  }
 
-	/* check if recomputation is needed */
-	if (z == 0.0) {
-		j = 0;
-		for (i=jz-1; i>=jk; i--) j |= iq[i];
-		if (j == 0) {  /* need recomputation */
-			for (k=1; iq[jk-k]==0; k++);  /* k = no. of terms needed */
+  /* check if recomputation is needed */
+  if (z == 0.0) {
+    j = 0;
+    for (i = jz - 1; i >= jk; i--)
+      j |= iq[i];
+    if (j == 0) { /* need recomputation */
+      for (k = 1; iq[jk - k] == 0; k++)
+        ; /* k = no. of terms needed */
 
-			for (i=jz+1; i<=jz+k; i++) {  /* add q[jz+1] to q[jz+k] */
-				f[jx+i] = (double)ipio2[jv+i];
-				for (j=0,fw=0.0; j<=jx; j++)
-					fw += x[j]*f[jx+i-j];
-				q[i] = fw;
-			}
-			jz += k;
-			goto recompute;
-		}
-	}
+      for (i = jz + 1; i <= jz + k; i++) { /* add q[jz+1] to q[jz+k] */
+        f[jx + i] = (double)ipio2[jv + i];
+        for (j = 0, fw = 0.0; j <= jx; j++)
+          fw += x[j] * f[jx + i - j];
+        q[i] = fw;
+      }
+      jz += k;
+      goto recompute;
+    }
+  }
 
-	/* chop off zero terms */
-	if (z == 0.0) {
-		jz -= 1;
-		q0 -= 24;
-		while (iq[jz] == 0) {
-			jz--;
-			q0 -= 24;
-		}
-	} else { /* break z into 24-bit if necessary */
-		z = scalbn(z,-q0);
-		if (z >= 0x1p24) {
-			fw = (double)(int32_t)(0x1p-24*z);
-			iq[jz] = (int32_t)(z - 0x1p24*fw);
-			jz += 1;
-			q0 += 24;
-			iq[jz] = (int32_t)fw;
-		} else
-			iq[jz] = (int32_t)z;
-	}
+  /* chop off zero terms */
+  if (z == 0.0) {
+    jz -= 1;
+    q0 -= 24;
+    while (iq[jz] == 0) {
+      jz--;
+      q0 -= 24;
+    }
+  } else { /* break z into 24-bit if necessary */
+    z = scalbn(z, -q0);
+    if (z >= 0x1p24) {
+      fw = (double)(int32_t)(0x1p-24 * z);
+      iq[jz] = (int32_t)(z - 0x1p24 * fw);
+      jz += 1;
+      q0 += 24;
+      iq[jz] = (int32_t)fw;
+    } else
+      iq[jz] = (int32_t)z;
+  }
 
-	/* convert integer "bit" chunk to floating-point value */
-	fw = scalbn(1.0,q0);
-	for (i=jz; i>=0; i--) {
-		q[i] = fw*(double)iq[i];
-		fw *= 0x1p-24;
-	}
+  /* convert integer "bit" chunk to floating-point value */
+  fw = scalbn(1.0, q0);
+  for (i = jz; i >= 0; i--) {
+    q[i] = fw * (double)iq[i];
+    fw *= 0x1p-24;
+  }
 
-	/* compute PIo2[0,...,jp]*q[jz,...,0] */
-	for(i=jz; i>=0; i--) {
-		for (fw=0.0,k=0; k<=jp && k<=jz-i; k++)
-			fw += PIo2[k]*q[i+k];
-		fq[jz-i] = fw;
-	}
+  /* compute PIo2[0,...,jp]*q[jz,...,0] */
+  for (i = jz; i >= 0; i--) {
+    for (fw = 0.0, k = 0; k <= jp && k <= jz - i; k++)
+      fw += PIo2[k] * q[i + k];
+    fq[jz - i] = fw;
+  }
 
-	/* compress fq[] into y[] */
-	switch(prec) {
-	case 0:
-		fw = 0.0;
-		for (i=jz; i>=0; i--)
-			fw += fq[i];
-		y[0] = ih==0 ? fw : -fw;
-		break;
-	case 1:
-	case 2:
-		fw = 0.0;
-		for (i=jz; i>=0; i--)
-			fw += fq[i];
-		// TODO: drop excess precision here once double_t is used
-		fw = (double)fw;
-		y[0] = ih==0 ? fw : -fw;
-		fw = fq[0]-fw;
-		for (i=1; i<=jz; i++)
-			fw += fq[i];
-		y[1] = ih==0 ? fw : -fw;
-		break;
-	case 3:  /* painful */
-		for (i=jz; i>0; i--) {
-			fw      = fq[i-1]+fq[i];
-			fq[i]  += fq[i-1]-fw;
-			fq[i-1] = fw;
-		}
-		for (i=jz; i>1; i--) {
-			fw      = fq[i-1]+fq[i];
-			fq[i]  += fq[i-1]-fw;
-			fq[i-1] = fw;
-		}
-		for (fw=0.0,i=jz; i>=2; i--)
-			fw += fq[i];
-		if (ih==0) {
-			y[0] =  fq[0]; y[1] =  fq[1]; y[2] =  fw;
-		} else {
-			y[0] = -fq[0]; y[1] = -fq[1]; y[2] = -fw;
-		}
-	}
-	return n&7;
+  /* compress fq[] into y[] */
+  switch (prec) {
+    case 0:
+      fw = 0.0;
+      for (i = jz; i >= 0; i--)
+        fw += fq[i];
+      y[0] = ih == 0 ? fw : -fw;
+      break;
+    case 1:
+    case 2:
+      fw = 0.0;
+      for (i = jz; i >= 0; i--)
+        fw += fq[i];
+      // TODO: drop excess precision here once double_t is used
+      fw = (double)fw;
+      y[0] = ih == 0 ? fw : -fw;
+      fw = fq[0] - fw;
+      for (i = 1; i <= jz; i++)
+        fw += fq[i];
+      y[1] = ih == 0 ? fw : -fw;
+      break;
+    case 3: /* painful */
+      for (i = jz; i > 0; i--) {
+        fw = fq[i - 1] + fq[i];
+        fq[i] += fq[i - 1] - fw;
+        fq[i - 1] = fw;
+      }
+      for (i = jz; i > 1; i--) {
+        fw = fq[i - 1] + fq[i];
+        fq[i] += fq[i - 1] - fw;
+        fq[i - 1] = fw;
+      }
+      for (fw = 0.0, i = jz; i >= 2; i--)
+        fw += fq[i];
+      if (ih == 0) {
+        y[0] = fq[0];
+        y[1] = fq[1];
+        y[2] = fw;
+      } else {
+        y[0] = -fq[0];
+        y[1] = -fq[1];
+        y[2] = -fw;
+      }
+  }
+  return n & 7;
 }
diff --git a/fusl/src/math/__rem_pio2f.c b/fusl/src/math/__rem_pio2f.c
index 4473c1c..e1d6a0d 100644
--- a/fusl/src/math/__rem_pio2f.c
+++ b/fusl/src/math/__rem_pio2f.c
@@ -22,9 +22,9 @@
 
 #include "libm.h"
 
-#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#if FLT_EVAL_METHOD == 0 || FLT_EVAL_METHOD == 1
 #define EPS DBL_EPSILON
-#elif FLT_EVAL_METHOD==2
+#elif FLT_EVAL_METHOD == 2
 #define EPS LDBL_EPSILON
 #endif
 
@@ -33,43 +33,45 @@
  * pio2_1:   first 25 bits of pi/2
  * pio2_1t:  pi/2 - pio2_1
  */
-static const double
-toint   = 1.5/EPS,
-invpio2 = 6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
-pio2_1  = 1.57079631090164184570e+00, /* 0x3FF921FB, 0x50000000 */
-pio2_1t = 1.58932547735281966916e-08; /* 0x3E5110b4, 0x611A6263 */
+static const double toint = 1.5 / EPS,
+                    invpio2 =
+                        6.36619772367581382433e-01, /* 0x3FE45F30, 0x6DC9C883 */
+    pio2_1 = 1.57079631090164184570e+00,            /* 0x3FF921FB, 0x50000000 */
+    pio2_1t = 1.58932547735281966916e-08;           /* 0x3E5110b4, 0x611A6263 */
 
-int __rem_pio2f(float x, double *y)
-{
-	union {float f; uint32_t i;} u = {x};
-	double tx[1],ty[1];
-	double_t fn;
-	uint32_t ix;
-	int n, sign, e0;
+int __rem_pio2f(float x, double* y) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  double tx[1], ty[1];
+  double_t fn;
+  uint32_t ix;
+  int n, sign, e0;
 
-	ix = u.i & 0x7fffffff;
-	/* 25+53 bit pi is good enough for medium size */
-	if (ix < 0x4dc90fdb) {  /* |x| ~< 2^28*(pi/2), medium size */
-		/* Use a specialized rint() to get fn.  Assume round-to-nearest. */
-		fn = (double_t)x*invpio2 + toint - toint;
-		n  = (int32_t)fn;
-		*y = x - fn*pio2_1 - fn*pio2_1t;
-		return n;
-	}
-	if(ix>=0x7f800000) {  /* x is inf or NaN */
-		*y = x-x;
-		return 0;
-	}
-	/* scale x into [2^23, 2^24-1] */
-	sign = u.i>>31;
-	e0 = (ix>>23) - (0x7f+23);  /* e0 = ilogb(|x|)-23, positive */
-	u.i = ix - (e0<<23);
-	tx[0] = u.f;
-	n  =  __rem_pio2_large(tx,ty,e0,1,0);
-	if (sign) {
-		*y = -ty[0];
-		return -n;
-	}
-	*y = ty[0];
-	return n;
+  ix = u.i & 0x7fffffff;
+  /* 25+53 bit pi is good enough for medium size */
+  if (ix < 0x4dc90fdb) { /* |x| ~< 2^28*(pi/2), medium size */
+    /* Use a specialized rint() to get fn.  Assume round-to-nearest. */
+    fn = (double_t)x * invpio2 + toint - toint;
+    n = (int32_t)fn;
+    *y = x - fn * pio2_1 - fn * pio2_1t;
+    return n;
+  }
+  if (ix >= 0x7f800000) { /* x is inf or NaN */
+    *y = x - x;
+    return 0;
+  }
+  /* scale x into [2^23, 2^24-1] */
+  sign = u.i >> 31;
+  e0 = (ix >> 23) - (0x7f + 23); /* e0 = ilogb(|x|)-23, positive */
+  u.i = ix - (e0 << 23);
+  tx[0] = u.f;
+  n = __rem_pio2_large(tx, ty, e0, 1, 0);
+  if (sign) {
+    *y = -ty[0];
+    return -n;
+  }
+  *y = ty[0];
+  return n;
 }
diff --git a/fusl/src/math/__rem_pio2l.c b/fusl/src/math/__rem_pio2l.c
index 77255bd..4b8693d 100644
--- a/fusl/src/math/__rem_pio2l.c
+++ b/fusl/src/math/__rem_pio2l.c
@@ -20,11 +20,13 @@
  * use __rem_pio2_large() for large x
  */
 
-static const long double toint = 1.5/LDBL_EPSILON;
+static const long double toint = 1.5 / LDBL_EPSILON;
 
 #if LDBL_MANT_DIG == 64
 /* u ~< 0x1p25*pi/2 */
-#define SMALL(u) (((u.i.se & 0x7fffU)<<16 | u.i.m>>48) < ((0x3fff + 25)<<16 | 0x921f>>1 | 0x8000))
+#define SMALL(u)                              \
+  (((u.i.se & 0x7fffU) << 16 | u.i.m >> 48) < \
+   ((0x3fff + 25) << 16 | 0x921f >> 1 | 0x8000))
 #define QUOBITS(x) ((uint32_t)(int32_t)x & 0x7fffffff)
 #define ROUND1 22
 #define ROUND2 61
@@ -39,103 +41,118 @@
  * pio2_3:   third  39 bits of pi/2
  * pio2_3t:  pi/2 - (pio2_1+pio2_2+pio2_3)
  */
-static const double
-pio2_1 =  1.57079632679597125389e+00, /* 0x3FF921FB, 0x54444000 */
-pio2_2 = -1.07463465549783099519e-12, /* -0x12e7b967674000.0p-92 */
-pio2_3 =  6.36831716351370313614e-25; /*  0x18a2e037074000.0p-133 */
+static const double pio2_1 =
+                        1.57079632679597125389e+00, /* 0x3FF921FB, 0x54444000 */
+    pio2_2 = -1.07463465549783099519e-12, /* -0x12e7b967674000.0p-92 */
+    pio2_3 = 6.36831716351370313614e-25;  /*  0x18a2e037074000.0p-133 */
 static const long double
-invpio2 =  6.36619772367581343076e-01L, /*  0xa2f9836e4e44152a.0p-64 */
-pio2_1t = -1.07463465549719416346e-12L, /* -0x973dcb3b399d747f.0p-103 */
-pio2_2t =  6.36831716351095013979e-25L, /*  0xc51701b839a25205.0p-144 */
-pio2_3t = -2.75299651904407171810e-37L; /* -0xbb5bf6c7ddd660ce.0p-185 */
+    invpio2 = 6.36619772367581343076e-01L,  /*  0xa2f9836e4e44152a.0p-64 */
+    pio2_1t = -1.07463465549719416346e-12L, /* -0x973dcb3b399d747f.0p-103 */
+    pio2_2t = 6.36831716351095013979e-25L,  /*  0xc51701b839a25205.0p-144 */
+    pio2_3t = -2.75299651904407171810e-37L; /* -0xbb5bf6c7ddd660ce.0p-185 */
 #elif LDBL_MANT_DIG == 113
 /* u ~< 0x1p45*pi/2 */
-#define SMALL(u) (((u.i.se & 0x7fffU)<<16 | u.i.top) < ((0x3fff + 45)<<16 | 0x921f))
+#define SMALL(u) \
+  (((u.i.se & 0x7fffU) << 16 | u.i.top) < ((0x3fff + 45) << 16 | 0x921f))
 #define QUOBITS(x) ((uint32_t)(int64_t)x & 0x7fffffff)
 #define ROUND1 51
 #define ROUND2 119
 #define NX 5
 #define NY 3
 static const long double
-invpio2 =  6.3661977236758134307553505349005747e-01L,	/*  0x145f306dc9c882a53f84eafa3ea6a.0p-113 */
-pio2_1  =  1.5707963267948966192292994253909555e+00L,	/*  0x1921fb54442d18469800000000000.0p-112 */
-pio2_1t =  2.0222662487959507323996846200947577e-21L,	/*  0x13198a2e03707344a4093822299f3.0p-181 */
-pio2_2  =  2.0222662487959507323994779168837751e-21L,	/*  0x13198a2e03707344a400000000000.0p-181 */
-pio2_2t =  2.0670321098263988236496903051604844e-43L,	/*  0x127044533e63a0105df531d89cd91.0p-254 */
-pio2_3  =  2.0670321098263988236499468110329591e-43L,	/*  0x127044533e63a0105e00000000000.0p-254 */
-pio2_3t = -2.5650587247459238361625433492959285e-65L;	/* -0x159c4ec64ddaeb5f78671cbfb2210.0p-327 */
+    invpio2 =
+        6.3661977236758134307553505349005747e-01L, /*  0x145f306dc9c882a53f84eafa3ea6a.0p-113
+                                                      */
+    pio2_1 =
+        1.5707963267948966192292994253909555e+00L, /*  0x1921fb54442d18469800000000000.0p-112
+                                                      */
+    pio2_1t =
+        2.0222662487959507323996846200947577e-21L, /*  0x13198a2e03707344a4093822299f3.0p-181
+                                                      */
+    pio2_2 =
+        2.0222662487959507323994779168837751e-21L, /*  0x13198a2e03707344a400000000000.0p-181
+                                                      */
+    pio2_2t =
+        2.0670321098263988236496903051604844e-43L, /*  0x127044533e63a0105df531d89cd91.0p-254
+                                                      */
+    pio2_3 =
+        2.0670321098263988236499468110329591e-43L, /*  0x127044533e63a0105e00000000000.0p-254
+                                                      */
+    pio2_3t =
+        -2.5650587247459238361625433492959285e-65L; /* -0x159c4ec64ddaeb5f78671cbfb2210.0p-327
+                                                       */
 #endif
 
-int __rem_pio2l(long double x, long double *y)
-{
-	union ldshape u,uz;
-	long double z,w,t,r,fn;
-	double tx[NX],ty[NY];
-	int ex,ey,n,i;
+int __rem_pio2l(long double x, long double* y) {
+  union ldshape u, uz;
+  long double z, w, t, r, fn;
+  double tx[NX], ty[NY];
+  int ex, ey, n, i;
 
-	u.f = x;
-	ex = u.i.se & 0x7fff;
-	if (SMALL(u)) {
-		/* rint(x/(pi/2)), Assume round-to-nearest. */
-		fn = x*invpio2 + toint - toint;
-		n = QUOBITS(fn);
-		r = x-fn*pio2_1;
-		w = fn*pio2_1t;  /* 1st round good to 102/180 bits (ld80/ld128) */
-		y[0] = r-w;
-		u.f = y[0];
-		ey = u.i.se & 0x7fff;
-		if (ex - ey > ROUND1) {  /* 2nd iteration needed, good to 141/248 (ld80/ld128) */
-			t = r;
-			w = fn*pio2_2;
-			r = t-w;
-			w = fn*pio2_2t-((t-r)-w);
-			y[0] = r-w;
-			u.f = y[0];
-			ey = u.i.se & 0x7fff;
-			if (ex - ey > ROUND2) {  /* 3rd iteration, good to 180/316 bits */
-				t = r; /* will cover all possible cases (not verified for ld128) */
-				w = fn*pio2_3;
-				r = t-w;
-				w = fn*pio2_3t-((t-r)-w);
-				y[0] = r-w;
-			}
-		}
-		y[1] = (r - y[0]) - w;
-		return n;
-	}
-	/*
-	 * all other (large) arguments
-	 */
-	if (ex == 0x7fff) {                /* x is inf or NaN */
-		y[0] = y[1] = x - x;
-		return 0;
-	}
-	/* set z = scalbn(|x|,-ilogb(x)+23) */
-	uz.f = x;
-	uz.i.se = 0x3fff + 23;
-	z = uz.f;
-	for (i=0; i < NX - 1; i++) {
-		tx[i] = (double)(int32_t)z;
-		z     = (z-tx[i])*0x1p24;
-	}
-	tx[i] = z;
-	while (tx[i] == 0)
-		i--;
-	n = __rem_pio2_large(tx, ty, ex-0x3fff-23, i+1, NY);
-	w = ty[1];
-	if (NY == 3)
-		w += ty[2];
-	r = ty[0] + w;
-	/* TODO: for ld128 this does not follow the recommendation of the
-	comments of __rem_pio2_large which seem wrong if |ty[0]| > |ty[1]+ty[2]| */
-	w -= r - ty[0];
-	if (u.i.se >> 15) {
-		y[0] = -r;
-		y[1] = -w;
-		return -n;
-	}
-	y[0] = r;
-	y[1] = w;
-	return n;
+  u.f = x;
+  ex = u.i.se & 0x7fff;
+  if (SMALL(u)) {
+    /* rint(x/(pi/2)), Assume round-to-nearest. */
+    fn = x * invpio2 + toint - toint;
+    n = QUOBITS(fn);
+    r = x - fn * pio2_1;
+    w = fn * pio2_1t; /* 1st round good to 102/180 bits (ld80/ld128) */
+    y[0] = r - w;
+    u.f = y[0];
+    ey = u.i.se & 0x7fff;
+    if (ex - ey >
+        ROUND1) { /* 2nd iteration needed, good to 141/248 (ld80/ld128) */
+      t = r;
+      w = fn * pio2_2;
+      r = t - w;
+      w = fn * pio2_2t - ((t - r) - w);
+      y[0] = r - w;
+      u.f = y[0];
+      ey = u.i.se & 0x7fff;
+      if (ex - ey > ROUND2) { /* 3rd iteration, good to 180/316 bits */
+        t = r; /* will cover all possible cases (not verified for ld128) */
+        w = fn * pio2_3;
+        r = t - w;
+        w = fn * pio2_3t - ((t - r) - w);
+        y[0] = r - w;
+      }
+    }
+    y[1] = (r - y[0]) - w;
+    return n;
+  }
+  /*
+   * all other (large) arguments
+   */
+  if (ex == 0x7fff) { /* x is inf or NaN */
+    y[0] = y[1] = x - x;
+    return 0;
+  }
+  /* set z = scalbn(|x|,-ilogb(x)+23) */
+  uz.f = x;
+  uz.i.se = 0x3fff + 23;
+  z = uz.f;
+  for (i = 0; i < NX - 1; i++) {
+    tx[i] = (double)(int32_t)z;
+    z = (z - tx[i]) * 0x1p24;
+  }
+  tx[i] = z;
+  while (tx[i] == 0)
+    i--;
+  n = __rem_pio2_large(tx, ty, ex - 0x3fff - 23, i + 1, NY);
+  w = ty[1];
+  if (NY == 3)
+    w += ty[2];
+  r = ty[0] + w;
+  /* TODO: for ld128 this does not follow the recommendation of the
+  comments of __rem_pio2_large which seem wrong if |ty[0]| > |ty[1]+ty[2]| */
+  w -= r - ty[0];
+  if (u.i.se >> 15) {
+    y[0] = -r;
+    y[1] = -w;
+    return -n;
+  }
+  y[0] = r;
+  y[1] = w;
+  return n;
 }
 #endif
diff --git a/fusl/src/math/__signbit.c b/fusl/src/math/__signbit.c
index e700b6b..7368479 100644
--- a/fusl/src/math/__signbit.c
+++ b/fusl/src/math/__signbit.c
@@ -1,13 +1,10 @@
 #include "libm.h"
 
 // FIXME: macro in math.h
-int __signbit(double x)
-{
-	union {
-		double d;
-		uint64_t i;
-	} y = { x };
-	return y.i>>63;
+int __signbit(double x) {
+  union {
+    double d;
+    uint64_t i;
+  } y = {x};
+  return y.i >> 63;
 }
-
-
diff --git a/fusl/src/math/__signbitf.c b/fusl/src/math/__signbitf.c
index 40ad3cf..a4a8fb5 100644
--- a/fusl/src/math/__signbitf.c
+++ b/fusl/src/math/__signbitf.c
@@ -1,11 +1,10 @@
 #include "libm.h"
 
 // FIXME: macro in math.h
-int __signbitf(float x)
-{
-	union {
-		float f;
-		uint32_t i;
-	} y = { x };
-	return y.i>>31;
+int __signbitf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } y = {x};
+  return y.i >> 31;
 }
diff --git a/fusl/src/math/__signbitl.c b/fusl/src/math/__signbitl.c
index 63b3dc5..1660ac0 100644
--- a/fusl/src/math/__signbitl.c
+++ b/fusl/src/math/__signbitl.c
@@ -1,14 +1,12 @@
 #include "libm.h"
 
 #if (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-int __signbitl(long double x)
-{
-	union ldshape u = {x};
-	return u.i.se >> 15;
+int __signbitl(long double x) {
+  union ldshape u = {x};
+  return u.i.se >> 15;
 }
 #elif LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-int __signbitl(long double x)
-{
-	return __signbit(x);
+int __signbitl(long double x) {
+  return __signbit(x);
 }
 #endif
diff --git a/fusl/src/math/__sin.c b/fusl/src/math/__sin.c
index 4030949..94fecb8 100644
--- a/fusl/src/math/__sin.c
+++ b/fusl/src/math/__sin.c
@@ -42,23 +42,22 @@
 #include "libm.h"
 
 static const double
-S1  = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
-S2  =  8.33333333332248946124e-03, /* 0x3F811111, 0x1110F8A6 */
-S3  = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
-S4  =  2.75573137070700676789e-06, /* 0x3EC71DE3, 0x57B1FE7D */
-S5  = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
-S6  =  1.58969099521155010221e-10; /* 0x3DE5D93A, 0x5ACFD57C */
+    S1 = -1.66666666666666324348e-01, /* 0xBFC55555, 0x55555549 */
+    S2 = 8.33333333332248946124e-03,  /* 0x3F811111, 0x1110F8A6 */
+    S3 = -1.98412698298579493134e-04, /* 0xBF2A01A0, 0x19C161D5 */
+    S4 = 2.75573137070700676789e-06,  /* 0x3EC71DE3, 0x57B1FE7D */
+    S5 = -2.50507602534068634195e-08, /* 0xBE5AE5E6, 0x8A2B9CEB */
+    S6 = 1.58969099521155010221e-10;  /* 0x3DE5D93A, 0x5ACFD57C */
 
-double __sin(double x, double y, int iy)
-{
-	double_t z,r,v,w;
+double __sin(double x, double y, int iy) {
+  double_t z, r, v, w;
 
-	z = x*x;
-	w = z*z;
-	r = S2 + z*(S3 + z*S4) + z*w*(S5 + z*S6);
-	v = z*x;
-	if (iy == 0)
-		return x + v*(S1 + z*r);
-	else
-		return x - ((z*(0.5*y - v*r) - y) - v*S1);
+  z = x * x;
+  w = z * z;
+  r = S2 + z * (S3 + z * S4) + z * w * (S5 + z * S6);
+  v = z * x;
+  if (iy == 0)
+    return x + v * (S1 + z * r);
+  else
+    return x - ((z * (0.5 * y - v * r) - y) - v * S1);
 }
diff --git a/fusl/src/math/__sindf.c b/fusl/src/math/__sindf.c
index 8fec2a3..82e540f 100644
--- a/fusl/src/math/__sindf.c
+++ b/fusl/src/math/__sindf.c
@@ -17,20 +17,18 @@
 #include "libm.h"
 
 /* |sin(x)/x - s(x)| < 2**-37.5 (~[-4.89e-12, 4.824e-12]). */
-static const double
-S1 = -0x15555554cbac77.0p-55, /* -0.166666666416265235595 */
-S2 =  0x111110896efbb2.0p-59, /*  0.0083333293858894631756 */
-S3 = -0x1a00f9e2cae774.0p-65, /* -0.000198393348360966317347 */
-S4 =  0x16cd878c3b46a7.0p-71; /*  0.0000027183114939898219064 */
+static const double S1 = -0x15555554cbac77.0p-55, /* -0.166666666416265235595 */
+    S2 = 0x111110896efbb2.0p-59,  /*  0.0083333293858894631756 */
+    S3 = -0x1a00f9e2cae774.0p-65, /* -0.000198393348360966317347 */
+    S4 = 0x16cd878c3b46a7.0p-71;  /*  0.0000027183114939898219064 */
 
-float __sindf(double x)
-{
-	double_t r, s, w, z;
+float __sindf(double x) {
+  double_t r, s, w, z;
 
-	/* Try to optimize for parallel evaluation as in __tandf.c. */
-	z = x*x;
-	w = z*z;
-	r = S3 + z*S4;
-	s = z*x;
-	return (x + s*(S1 + z*S2)) + s*w*r;
+  /* Try to optimize for parallel evaluation as in __tandf.c. */
+  z = x * x;
+  w = z * z;
+  r = S3 + z * S4;
+  s = z * x;
+  return (x + s * (S1 + z * S2)) + s * w * r;
 }
diff --git a/fusl/src/math/__sinl.c b/fusl/src/math/__sinl.c
index 2525bbe..ee3e9d0 100644
--- a/fusl/src/math/__sinl.c
+++ b/fusl/src/math/__sinl.c
@@ -25,17 +25,17 @@
  *
  * See __cosl.c for more details about the polynomial.
  */
-static const long double
-S1 = -0.166666666666666666671L;   /* -0xaaaaaaaaaaaaaaab.0p-66 */
-static const double
-S2 =  0.0083333333333333332,      /*  0x11111111111111.0p-59 */
-S3 = -0.00019841269841269427,     /* -0x1a01a01a019f81.0p-65 */
-S4 =  0.0000027557319223597490,   /*  0x171de3a55560f7.0p-71 */
-S5 = -0.000000025052108218074604, /* -0x1ae64564f16cad.0p-78 */
-S6 =  1.6059006598854211e-10,     /*  0x161242b90243b5.0p-85 */
-S7 = -7.6429779983024564e-13,     /* -0x1ae42ebd1b2e00.0p-93 */
-S8 =  2.6174587166648325e-15;     /*  0x179372ea0b3f64.0p-101 */
-#define POLY(z) (S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*S8))))))
+static const long double S1 =
+    -0.166666666666666666671L;                  /* -0xaaaaaaaaaaaaaaab.0p-66 */
+static const double S2 = 0.0083333333333333332, /*  0x11111111111111.0p-59 */
+    S3 = -0.00019841269841269427,               /* -0x1a01a01a019f81.0p-65 */
+    S4 = 0.0000027557319223597490,              /*  0x171de3a55560f7.0p-71 */
+    S5 = -0.000000025052108218074604,           /* -0x1ae64564f16cad.0p-78 */
+    S6 = 1.6059006598854211e-10,                /*  0x161242b90243b5.0p-85 */
+    S7 = -7.6429779983024564e-13,               /* -0x1ae42ebd1b2e00.0p-93 */
+    S8 = 2.6174587166648325e-15;                /*  0x179372ea0b3f64.0p-101 */
+#define POLY(z) \
+  (S2 + z * (S3 + z * (S4 + z * (S5 + z * (S6 + z * (S7 + z * S8))))))
 #elif LDBL_MANT_DIG == 113
 /*
  * ld128 version of __sin.c.  See __sin.c for most comments.
@@ -47,32 +47,39 @@
  * See __cosl.c for more details about the polynomial.
  */
 static const long double
-S1 = -0.16666666666666666666666666666666666606732416116558L,
-S2 =  0.0083333333333333333333333333333331135404851288270047L,
-S3 = -0.00019841269841269841269841269839935785325638310428717L,
-S4 =  0.27557319223985890652557316053039946268333231205686e-5L,
-S5 = -0.25052108385441718775048214826384312253862930064745e-7L,
-S6 =  0.16059043836821614596571832194524392581082444805729e-9L,
-S7 = -0.76471637318198151807063387954939213287488216303768e-12L,
-S8 =  0.28114572543451292625024967174638477283187397621303e-14L;
+    S1 = -0.16666666666666666666666666666666666606732416116558L,
+    S2 = 0.0083333333333333333333333333333331135404851288270047L,
+    S3 = -0.00019841269841269841269841269839935785325638310428717L,
+    S4 = 0.27557319223985890652557316053039946268333231205686e-5L,
+    S5 = -0.25052108385441718775048214826384312253862930064745e-7L,
+    S6 = 0.16059043836821614596571832194524392581082444805729e-9L,
+    S7 = -0.76471637318198151807063387954939213287488216303768e-12L,
+    S8 = 0.28114572543451292625024967174638477283187397621303e-14L;
 static const double
-S9  = -0.82206352458348947812512122163446202498005154296863e-17,
-S10 =  0.19572940011906109418080609928334380560135358385256e-19,
-S11 = -0.38680813379701966970673724299207480965452616911420e-22,
-S12 =  0.64038150078671872796678569586315881020659912139412e-25;
-#define POLY(z) (S2+z*(S3+z*(S4+z*(S5+z*(S6+z*(S7+z*(S8+ \
-	z*(S9+z*(S10+z*(S11+z*S12))))))))))
+    S9 = -0.82206352458348947812512122163446202498005154296863e-17,
+    S10 = 0.19572940011906109418080609928334380560135358385256e-19,
+    S11 = -0.38680813379701966970673724299207480965452616911420e-22,
+    S12 = 0.64038150078671872796678569586315881020659912139412e-25;
+#define POLY(z)                            \
+  (S2 +                                    \
+   z * (S3 +                               \
+        z * (S4 +                          \
+             z * (S5 +                     \
+                  z * (S6 +                \
+                       z * (S7 +           \
+                            z * (S8 +      \
+                                 z * (S9 + \
+                                      z * (S10 + z * (S11 + z * S12))))))))))
 #endif
 
-long double __sinl(long double x, long double y, int iy)
-{
-	long double z,r,v;
+long double __sinl(long double x, long double y, int iy) {
+  long double z, r, v;
 
-	z = x*x;
-	v = z*x;
-	r = POLY(z);
-	if (iy == 0)
-		return x+v*(S1+z*r);
-	return x-((z*(0.5*y-v*r)-y)-v*S1);
+  z = x * x;
+  v = z * x;
+  r = POLY(z);
+  if (iy == 0)
+    return x + v * (S1 + z * r);
+  return x - ((z * (0.5 * y - v * r) - y) - v * S1);
 }
 #endif
diff --git a/fusl/src/math/__tan.c b/fusl/src/math/__tan.c
index 8019844..543ac87 100644
--- a/fusl/src/math/__tan.c
+++ b/fusl/src/math/__tan.c
@@ -12,7 +12,8 @@
  * kernel tan function on ~[-pi/4, pi/4] (except on -0), pi/4 ~ 0.7854
  * Input x is assumed to be bounded by ~pi/4 in magnitude.
  * Input y is the tail of x.
- * Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is returned.
+ * Input odd indicates whether tan (if odd = 0) or -1/tan (if odd = 1) is
+ * returned.
  *
  * Algorithm
  *      1. Since tan(-x) = -tan(x), we need only to consider positive x.
@@ -45,66 +46,67 @@
 
 #include "libm.h"
 
-static const double T[] = {
-             3.33333333333334091986e-01, /* 3FD55555, 55555563 */
-             1.33333333333201242699e-01, /* 3FC11111, 1110FE7A */
-             5.39682539762260521377e-02, /* 3FABA1BA, 1BB341FE */
-             2.18694882948595424599e-02, /* 3F9664F4, 8406D637 */
-             8.86323982359930005737e-03, /* 3F8226E3, E96E8493 */
-             3.59207910759131235356e-03, /* 3F6D6D22, C9560328 */
-             1.45620945432529025516e-03, /* 3F57DBC8, FEE08315 */
-             5.88041240820264096874e-04, /* 3F4344D8, F2F26501 */
-             2.46463134818469906812e-04, /* 3F3026F7, 1A8D1068 */
-             7.81794442939557092300e-05, /* 3F147E88, A03792A6 */
-             7.14072491382608190305e-05, /* 3F12B80F, 32F0A7E9 */
-            -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
-             2.59073051863633712884e-05, /* 3EFB2A70, 74BF7AD4 */
+static const double T[] =
+    {
+        3.33333333333334091986e-01,  /* 3FD55555, 55555563 */
+        1.33333333333201242699e-01,  /* 3FC11111, 1110FE7A */
+        5.39682539762260521377e-02,  /* 3FABA1BA, 1BB341FE */
+        2.18694882948595424599e-02,  /* 3F9664F4, 8406D637 */
+        8.86323982359930005737e-03,  /* 3F8226E3, E96E8493 */
+        3.59207910759131235356e-03,  /* 3F6D6D22, C9560328 */
+        1.45620945432529025516e-03,  /* 3F57DBC8, FEE08315 */
+        5.88041240820264096874e-04,  /* 3F4344D8, F2F26501 */
+        2.46463134818469906812e-04,  /* 3F3026F7, 1A8D1068 */
+        7.81794442939557092300e-05,  /* 3F147E88, A03792A6 */
+        7.14072491382608190305e-05,  /* 3F12B80F, 32F0A7E9 */
+        -1.85586374855275456654e-05, /* BEF375CB, DB605373 */
+        2.59073051863633712884e-05,  /* 3EFB2A70, 74BF7AD4 */
 },
-pio4 =       7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
-pio4lo =     3.06161699786838301793e-17; /* 3C81A626, 33145C07 */
+                    pio4 = 7.85398163397448278999e-01, /* 3FE921FB, 54442D18 */
+    pio4lo = 3.06161699786838301793e-17;               /* 3C81A626, 33145C07 */
 
-double __tan(double x, double y, int odd)
-{
-	double_t z, r, v, w, s, a;
-	double w0, a0;
-	uint32_t hx;
-	int big, sign;
+double __tan(double x, double y, int odd) {
+  double_t z, r, v, w, s, a;
+  double w0, a0;
+  uint32_t hx;
+  int big, sign;
 
-	GET_HIGH_WORD(hx,x);
-	big = (hx&0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
-	if (big) {
-		sign = hx>>31;
-		if (sign) {
-			x = -x;
-			y = -y;
-		}
-		x = (pio4 - x) + (pio4lo - y);
-		y = 0.0;
-	}
-	z = x * x;
-	w = z * z;
-	/*
-	 * Break x^5*(T[1]+x^2*T[2]+...) into
-	 * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
-	 * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
-	 */
-	r = T[1] + w*(T[3] + w*(T[5] + w*(T[7] + w*(T[9] + w*T[11]))));
-	v = z*(T[2] + w*(T[4] + w*(T[6] + w*(T[8] + w*(T[10] + w*T[12])))));
-	s = z * x;
-	r = y + z*(s*(r + v) + y) + s*T[0];
-	w = x + r;
-	if (big) {
-		s = 1 - 2*odd;
-		v = s - 2.0 * (x + (r - w*w/(w + s)));
-		return sign ? -v : v;
-	}
-	if (!odd)
-		return w;
-	/* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
-	w0 = w;
-	SET_LOW_WORD(w0, 0);
-	v = r - (w0 - x);       /* w0+v = r+x */
-	a0 = a = -1.0 / w;
-	SET_LOW_WORD(a0, 0);
-	return a0 + a*(1.0 + a0*w0 + a0*v);
+  GET_HIGH_WORD(hx, x);
+  big = (hx & 0x7fffffff) >= 0x3FE59428; /* |x| >= 0.6744 */
+  if (big) {
+    sign = hx >> 31;
+    if (sign) {
+      x = -x;
+      y = -y;
+    }
+    x = (pio4 - x) + (pio4lo - y);
+    y = 0.0;
+  }
+  z = x * x;
+  w = z * z;
+  /*
+   * Break x^5*(T[1]+x^2*T[2]+...) into
+   * x^5(T[1]+x^4*T[3]+...+x^20*T[11]) +
+   * x^5(x^2*(T[2]+x^4*T[4]+...+x^22*[T12]))
+   */
+  r = T[1] + w * (T[3] + w * (T[5] + w * (T[7] + w * (T[9] + w * T[11]))));
+  v = z *
+      (T[2] + w * (T[4] + w * (T[6] + w * (T[8] + w * (T[10] + w * T[12])))));
+  s = z * x;
+  r = y + z * (s * (r + v) + y) + s * T[0];
+  w = x + r;
+  if (big) {
+    s = 1 - 2 * odd;
+    v = s - 2.0 * (x + (r - w * w / (w + s)));
+    return sign ? -v : v;
+  }
+  if (!odd)
+    return w;
+  /* -1.0/(x+r) has up to 2ulp error, so compute it accurately */
+  w0 = w;
+  SET_LOW_WORD(w0, 0);
+  v = r - (w0 - x); /* w0+v = r+x */
+  a0 = a = -1.0 / w;
+  SET_LOW_WORD(a0, 0);
+  return a0 + a * (1.0 + a0 * w0 + a0 * v);
 }
diff --git a/fusl/src/math/__tandf.c b/fusl/src/math/__tandf.c
index 25047ee..ccad354 100644
--- a/fusl/src/math/__tandf.c
+++ b/fusl/src/math/__tandf.c
@@ -17,38 +17,37 @@
 
 /* |tan(x)/x - t(x)| < 2**-25.5 (~[-2e-08, 2e-08]). */
 static const double T[] = {
-  0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
-  0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
-  0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
-  0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
-  0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
-  0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
+    0x15554d3418c99f.0p-54, /* 0.333331395030791399758 */
+    0x1112fd38999f72.0p-55, /* 0.133392002712976742718 */
+    0x1b54c91d865afe.0p-57, /* 0.0533812378445670393523 */
+    0x191df3908c33ce.0p-58, /* 0.0245283181166547278873 */
+    0x185dadfcecf44e.0p-61, /* 0.00297435743359967304927 */
+    0x1362b9bf971bcd.0p-59, /* 0.00946564784943673166728 */
 };
 
-float __tandf(double x, int odd)
-{
-	double_t z,r,w,s,t,u;
+float __tandf(double x, int odd) {
+  double_t z, r, w, s, t, u;
 
-	z = x*x;
-	/*
-	 * Split up the polynomial into small independent terms to give
-	 * opportunities for parallel evaluation.  The chosen splitting is
-	 * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
-	 * relative to Horner's method on sequential machines.
-	 *
-	 * We add the small terms from lowest degree up for efficiency on
-	 * non-sequential machines (the lowest degree terms tend to be ready
-	 * earlier).  Apart from this, we don't care about order of
-	 * operations, and don't need to to care since we have precision to
-	 * spare.  However, the chosen splitting is good for accuracy too,
-	 * and would give results as accurate as Horner's method if the
-	 * small terms were added from highest degree down.
-	 */
-	r = T[4] + z*T[5];
-	t = T[2] + z*T[3];
-	w = z*z;
-	s = z*x;
-	u = T[0] + z*T[1];
-	r = (x + s*u) + (s*w)*(t + w*r);
-	return odd ? -1.0/r : r;
+  z = x * x;
+  /*
+   * Split up the polynomial into small independent terms to give
+   * opportunities for parallel evaluation.  The chosen splitting is
+   * micro-optimized for Athlons (XP, X64).  It costs 2 multiplications
+   * relative to Horner's method on sequential machines.
+   *
+   * We add the small terms from lowest degree up for efficiency on
+   * non-sequential machines (the lowest degree terms tend to be ready
+   * earlier).  Apart from this, we don't care about order of
+   * operations, and don't need to to care since we have precision to
+   * spare.  However, the chosen splitting is good for accuracy too,
+   * and would give results as accurate as Horner's method if the
+   * small terms were added from highest degree down.
+   */
+  r = T[4] + z * T[5];
+  t = T[2] + z * T[3];
+  w = z * z;
+  s = z * x;
+  u = T[0] + z * T[1];
+  r = (x + s * u) + (s * w) * (t + w * r);
+  return odd ? -1.0 / r : r;
 }
diff --git a/fusl/src/math/__tanl.c b/fusl/src/math/__tanl.c
index 54abc3d..c6116b0 100644
--- a/fusl/src/math/__tanl.c
+++ b/fusl/src/math/__tanl.c
@@ -25,29 +25,30 @@
  * See __cosl.c for more details about the polynomial.
  */
 static const long double
-T3 =  0.333333333333333333180L,         /*  0xaaaaaaaaaaaaaaa5.0p-65 */
-T5 =  0.133333333333333372290L,         /*  0x88888888888893c3.0p-66 */
-T7 =  0.0539682539682504975744L,        /*  0xdd0dd0dd0dc13ba2.0p-68 */
-pio4   =  0.785398163397448309628L,     /*  0xc90fdaa22168c235.0p-64 */
-pio4lo = -1.25413940316708300586e-20L;  /* -0xece675d1fc8f8cbb.0p-130 */
-static const double
-T9  =  0.021869488536312216,            /*  0x1664f4882cc1c2.0p-58 */
-T11 =  0.0088632355256619590,           /*  0x1226e355c17612.0p-59 */
-T13 =  0.0035921281113786528,           /*  0x1d6d3d185d7ff8.0p-61 */
-T15 =  0.0014558334756312418,           /*  0x17da354aa3f96b.0p-62 */
-T17 =  0.00059003538700862256,          /*  0x13559358685b83.0p-63 */
-T19 =  0.00023907843576635544,          /*  0x1f56242026b5be.0p-65 */
-T21 =  0.000097154625656538905,         /*  0x1977efc26806f4.0p-66 */
-T23 =  0.000038440165747303162,         /*  0x14275a09b3ceac.0p-67 */
-T25 =  0.000018082171885432524,         /*  0x12f5e563e5487e.0p-68 */
-T27 =  0.0000024196006108814377,        /*  0x144c0d80cc6896.0p-71 */
-T29 =  0.0000078293456938132840,        /*  0x106b59141a6cb3.0p-69 */
-T31 = -0.0000032609076735050182,        /* -0x1b5abef3ba4b59.0p-71 */
-T33 =  0.0000023261313142559411;        /*  0x13835436c0c87f.0p-71 */
-#define RPOLY(w) (T5 + w * (T9 + w * (T13 + w * (T17 + w * (T21 + \
-	w * (T25 + w * (T29 + w * T33)))))))
-#define VPOLY(w) (T7 + w * (T11 + w * (T15 + w * (T19 + w * (T23 + \
-	w * (T27 + w * T31))))))
+    T3 = 0.333333333333333333180L,             /*  0xaaaaaaaaaaaaaaa5.0p-65 */
+    T5 = 0.133333333333333372290L,             /*  0x88888888888893c3.0p-66 */
+    T7 = 0.0539682539682504975744L,            /*  0xdd0dd0dd0dc13ba2.0p-68 */
+    pio4 = 0.785398163397448309628L,           /*  0xc90fdaa22168c235.0p-64 */
+    pio4lo = -1.25413940316708300586e-20L;     /* -0xece675d1fc8f8cbb.0p-130 */
+static const double T9 = 0.021869488536312216, /*  0x1664f4882cc1c2.0p-58 */
+    T11 = 0.0088632355256619590,               /*  0x1226e355c17612.0p-59 */
+    T13 = 0.0035921281113786528,               /*  0x1d6d3d185d7ff8.0p-61 */
+    T15 = 0.0014558334756312418,               /*  0x17da354aa3f96b.0p-62 */
+    T17 = 0.00059003538700862256,              /*  0x13559358685b83.0p-63 */
+    T19 = 0.00023907843576635544,              /*  0x1f56242026b5be.0p-65 */
+    T21 = 0.000097154625656538905,             /*  0x1977efc26806f4.0p-66 */
+    T23 = 0.000038440165747303162,             /*  0x14275a09b3ceac.0p-67 */
+    T25 = 0.000018082171885432524,             /*  0x12f5e563e5487e.0p-68 */
+    T27 = 0.0000024196006108814377,            /*  0x144c0d80cc6896.0p-71 */
+    T29 = 0.0000078293456938132840,            /*  0x106b59141a6cb3.0p-69 */
+    T31 = -0.0000032609076735050182,           /* -0x1b5abef3ba4b59.0p-71 */
+    T33 = 0.0000023261313142559411;            /*  0x13835436c0c87f.0p-71 */
+#define RPOLY(w) \
+  (T5 +          \
+   w * (T9 +     \
+        w * (T13 + w * (T17 + w * (T21 + w * (T25 + w * (T29 + w * T33)))))))
+#define VPOLY(w) \
+  (T7 + w * (T11 + w * (T15 + w * (T19 + w * (T23 + w * (T27 + w * T31))))))
 #elif LDBL_MANT_DIG == 113
 /*
  * ld128 version of __tan.c.  See __tan.c for most comments.
@@ -58,86 +59,108 @@
  *
  * See __cosl.c for more details about the polynomial.
  */
-static const long double
-T3 = 0x1.5555555555555555555555555553p-2L,
-T5 = 0x1.1111111111111111111111111eb5p-3L,
-T7 = 0x1.ba1ba1ba1ba1ba1ba1ba1b694cd6p-5L,
-T9 = 0x1.664f4882c10f9f32d6bbe09d8bcdp-6L,
-T11 = 0x1.226e355e6c23c8f5b4f5762322eep-7L,
-T13 = 0x1.d6d3d0e157ddfb5fed8e84e27b37p-9L,
-T15 = 0x1.7da36452b75e2b5fce9ee7c2c92ep-10L,
-T17 = 0x1.355824803674477dfcf726649efep-11L,
-T19 = 0x1.f57d7734d1656e0aceb716f614c2p-13L,
-T21 = 0x1.967e18afcb180ed942dfdc518d6cp-14L,
-T23 = 0x1.497d8eea21e95bc7e2aa79b9f2cdp-15L,
-T25 = 0x1.0b132d39f055c81be49eff7afd50p-16L,
-T27 = 0x1.b0f72d33eff7bfa2fbc1059d90b6p-18L,
-T29 = 0x1.5ef2daf21d1113df38d0fbc00267p-19L,
-T31 = 0x1.1c77d6eac0234988cdaa04c96626p-20L,
-T33 = 0x1.cd2a5a292b180e0bdd701057dfe3p-22L,
-T35 = 0x1.75c7357d0298c01a31d0a6f7d518p-23L,
-T37 = 0x1.2f3190f4718a9a520f98f50081fcp-24L,
-pio4 = 0x1.921fb54442d18469898cc51701b8p-1L,
-pio4lo = 0x1.cd129024e088a67cc74020bbea60p-116L;
+static const long double T3 = 0x1.5555555555555555555555555553p-2L,
+                         T5 = 0x1.1111111111111111111111111eb5p-3L,
+                         T7 = 0x1.ba1ba1ba1ba1ba1ba1ba1b694cd6p-5L,
+                         T9 = 0x1.664f4882c10f9f32d6bbe09d8bcdp-6L,
+                         T11 = 0x1.226e355e6c23c8f5b4f5762322eep-7L,
+                         T13 = 0x1.d6d3d0e157ddfb5fed8e84e27b37p-9L,
+                         T15 = 0x1.7da36452b75e2b5fce9ee7c2c92ep-10L,
+                         T17 = 0x1.355824803674477dfcf726649efep-11L,
+                         T19 = 0x1.f57d7734d1656e0aceb716f614c2p-13L,
+                         T21 = 0x1.967e18afcb180ed942dfdc518d6cp-14L,
+                         T23 = 0x1.497d8eea21e95bc7e2aa79b9f2cdp-15L,
+                         T25 = 0x1.0b132d39f055c81be49eff7afd50p-16L,
+                         T27 = 0x1.b0f72d33eff7bfa2fbc1059d90b6p-18L,
+                         T29 = 0x1.5ef2daf21d1113df38d0fbc00267p-19L,
+                         T31 = 0x1.1c77d6eac0234988cdaa04c96626p-20L,
+                         T33 = 0x1.cd2a5a292b180e0bdd701057dfe3p-22L,
+                         T35 = 0x1.75c7357d0298c01a31d0a6f7d518p-23L,
+                         T37 = 0x1.2f3190f4718a9a520f98f50081fcp-24L,
+                         pio4 = 0x1.921fb54442d18469898cc51701b8p-1L,
+                         pio4lo = 0x1.cd129024e088a67cc74020bbea60p-116L;
 static const double
-T39 =  0.000000028443389121318352,	/*  0x1e8a7592977938.0p-78 */
-T41 =  0.000000011981013102001973,	/*  0x19baa1b1223219.0p-79 */
-T43 =  0.0000000038303578044958070,	/*  0x107385dfb24529.0p-80 */
-T45 =  0.0000000034664378216909893,	/*  0x1dc6c702a05262.0p-81 */
-T47 = -0.0000000015090641701997785,	/* -0x19ecef3569ebb6.0p-82 */
-T49 =  0.0000000029449552300483952,	/*  0x194c0668da786a.0p-81 */
-T51 = -0.0000000022006995706097711,	/* -0x12e763b8845268.0p-81 */
-T53 =  0.0000000015468200913196612,	/*  0x1a92fc98c29554.0p-82 */
-T55 = -0.00000000061311613386849674,	/* -0x151106cbc779a9.0p-83 */
-T57 =  1.4912469681508012e-10;		/*  0x147edbdba6f43a.0p-85 */
-#define RPOLY(w) (T5 + w * (T9 + w * (T13 + w * (T17 + w * (T21 + \
-	w * (T25 + w * (T29 + w * (T33 + w * (T37 + w * (T41 + \
-	w * (T45 + w * (T49 + w * (T53 + w * T57)))))))))))))
-#define VPOLY(w) (T7 + w * (T11 + w * (T15 + w * (T19 + w * (T23 + \
-	w * (T27 + w * (T31 + w * (T35 + w * (T39 + w * (T43 + \
-	w * (T47 + w * (T51 + w * T55))))))))))))
+    T39 = 0.000000028443389121318352,    /*  0x1e8a7592977938.0p-78 */
+    T41 = 0.000000011981013102001973,    /*  0x19baa1b1223219.0p-79 */
+    T43 = 0.0000000038303578044958070,   /*  0x107385dfb24529.0p-80 */
+    T45 = 0.0000000034664378216909893,   /*  0x1dc6c702a05262.0p-81 */
+    T47 = -0.0000000015090641701997785,  /* -0x19ecef3569ebb6.0p-82 */
+    T49 = 0.0000000029449552300483952,   /*  0x194c0668da786a.0p-81 */
+    T51 = -0.0000000022006995706097711,  /* -0x12e763b8845268.0p-81 */
+    T53 = 0.0000000015468200913196612,   /*  0x1a92fc98c29554.0p-82 */
+    T55 = -0.00000000061311613386849674, /* -0x151106cbc779a9.0p-83 */
+    T57 = 1.4912469681508012e-10;        /*  0x147edbdba6f43a.0p-85 */
+#define RPOLY(w)                                                     \
+  (T5 +                                                              \
+   w * (T9 +                                                         \
+        w * (T13 +                                                   \
+             w * (T17 +                                              \
+                  w * (T21 +                                         \
+                       w * (T25 +                                    \
+                            w * (T29 +                               \
+                                 w * (T33 +                          \
+                                      w * (T37 +                     \
+                                           w * (T41 +                \
+                                                w * (T45 +           \
+                                                     w * (T49 +      \
+                                                          w * (T53 + \
+                                                               w * T57)))))))))))))
+#define VPOLY(w)                                                \
+  (T7 +                                                         \
+   w * (T11 +                                                   \
+        w * (T15 +                                              \
+             w * (T19 +                                         \
+                  w * (T23 +                                    \
+                       w * (T27 +                               \
+                            w * (T31 +                          \
+                                 w * (T35 +                     \
+                                      w * (T39 +                \
+                                           w * (T43 +           \
+                                                w * (T47 +      \
+                                                     w * (T51 + \
+                                                          w * T55))))))))))))
 #endif
 
 long double __tanl(long double x, long double y, int odd) {
-	long double z, r, v, w, s, a, t;
-	int big, sign;
+  long double z, r, v, w, s, a, t;
+  int big, sign;
 
-	big = fabsl(x) >= 0.67434;
-	if (big) {
-		sign = 0;
-		if (x < 0) {
-			sign = 1;
-			x = -x;
-			y = -y;
-		}
-		x = (pio4 - x) + (pio4lo - y);
-		y = 0.0;
-	}
-	z = x * x;
-	w = z * z;
-	r = RPOLY(w);
-	v = z * VPOLY(w);
-	s = z * x;
-	r = y + z * (s * (r + v) + y) + T3 * s;
-	w = x + r;
-	if (big) {
-		s = 1 - 2*odd;
-		v = s - 2.0 * (x + (r - w * w / (w + s)));
-		return sign ? -v : v;
-	}
-	if (!odd)
-		return w;
-	/*
-	 * if allow error up to 2 ulp, simply return
-	 * -1.0 / (x+r) here
-	 */
-	/* compute -1.0 / (x+r) accurately */
-	z = w;
-	z = z + 0x1p32 - 0x1p32;
-	v = r - (z - x);        /* z+v = r+x */
-	t = a = -1.0 / w;       /* a = -1.0/w */
-	t = t + 0x1p32 - 0x1p32;
-	s = 1.0 + t * z;
-	return t + a * (s + t * v);
+  big = fabsl(x) >= 0.67434;
+  if (big) {
+    sign = 0;
+    if (x < 0) {
+      sign = 1;
+      x = -x;
+      y = -y;
+    }
+    x = (pio4 - x) + (pio4lo - y);
+    y = 0.0;
+  }
+  z = x * x;
+  w = z * z;
+  r = RPOLY(w);
+  v = z * VPOLY(w);
+  s = z * x;
+  r = y + z * (s * (r + v) + y) + T3 * s;
+  w = x + r;
+  if (big) {
+    s = 1 - 2 * odd;
+    v = s - 2.0 * (x + (r - w * w / (w + s)));
+    return sign ? -v : v;
+  }
+  if (!odd)
+    return w;
+  /*
+   * if allow error up to 2 ulp, simply return
+   * -1.0 / (x+r) here
+   */
+  /* compute -1.0 / (x+r) accurately */
+  z = w;
+  z = z + 0x1p32 - 0x1p32;
+  v = r - (z - x);  /* z+v = r+x */
+  t = a = -1.0 / w; /* a = -1.0/w */
+  t = t + 0x1p32 - 0x1p32;
+  s = 1.0 + t * z;
+  return t + a * (s + t * v);
 }
 #endif
diff --git a/fusl/src/math/acos.c b/fusl/src/math/acos.c
index ea9c87b..8060868 100644
--- a/fusl/src/math/acos.c
+++ b/fusl/src/math/acos.c
@@ -35,67 +35,65 @@
 
 #include "libm.h"
 
-static const double
-pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
-pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
-pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
-pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
-pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
-pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
-pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
-pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
-qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
-qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
-qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
-qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
+static const double pio2_hi =
+                        1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
+    pio2_lo = 6.12323399573676603587e-17,           /* 0x3C91A626, 0x33145C07 */
+    pS0 = 1.66666666666666657415e-01,               /* 0x3FC55555, 0x55555555 */
+    pS1 = -3.25565818622400915405e-01,              /* 0xBFD4D612, 0x03EB6F7D */
+    pS2 = 2.01212532134862925881e-01,               /* 0x3FC9C155, 0x0E884455 */
+    pS3 = -4.00555345006794114027e-02,              /* 0xBFA48228, 0xB5688F3B */
+    pS4 = 7.91534994289814532176e-04,               /* 0x3F49EFE0, 0x7501B288 */
+    pS5 = 3.47933107596021167570e-05,               /* 0x3F023DE1, 0x0DFDF709 */
+    qS1 = -2.40339491173441421878e+00,              /* 0xC0033A27, 0x1C8A2D4B */
+    qS2 = 2.02094576023350569471e+00,               /* 0x40002AE5, 0x9C598AC8 */
+    qS3 = -6.88283971605453293030e-01,              /* 0xBFE6066C, 0x1B8D0159 */
+    qS4 = 7.70381505559019352791e-02;               /* 0x3FB3B8C5, 0xB12E9282 */
 
-static double R(double z)
-{
-	double_t p, q;
-	p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
-	q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
-	return p/q;
+static double R(double z) {
+  double_t p, q;
+  p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
+  q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
+  return p / q;
 }
 
-double acos(double x)
-{
-	double z,w,s,c,df;
-	uint32_t hx,ix;
+double acos(double x) {
+  double z, w, s, c, df;
+  uint32_t hx, ix;
 
-	GET_HIGH_WORD(hx, x);
-	ix = hx & 0x7fffffff;
-	/* |x| >= 1 or nan */
-	if (ix >= 0x3ff00000) {
-		uint32_t lx;
+  GET_HIGH_WORD(hx, x);
+  ix = hx & 0x7fffffff;
+  /* |x| >= 1 or nan */
+  if (ix >= 0x3ff00000) {
+    uint32_t lx;
 
-		GET_LOW_WORD(lx,x);
-		if ((ix-0x3ff00000 | lx) == 0) {
-			/* acos(1)=0, acos(-1)=pi */
-			if (hx >> 31)
-				return 2*pio2_hi + 0x1p-120f;
-			return 0;
-		}
-		return 0/(x-x);
-	}
-	/* |x| < 0.5 */
-	if (ix < 0x3fe00000) {
-		if (ix <= 0x3c600000)  /* |x| < 2**-57 */
-			return pio2_hi + 0x1p-120f;
-		return pio2_hi - (x - (pio2_lo-x*R(x*x)));
-	}
-	/* x < -0.5 */
-	if (hx >> 31) {
-		z = (1.0+x)*0.5;
-		s = sqrt(z);
-		w = R(z)*s-pio2_lo;
-		return 2*(pio2_hi - (s+w));
-	}
-	/* x > 0.5 */
-	z = (1.0-x)*0.5;
-	s = sqrt(z);
-	df = s;
-	SET_LOW_WORD(df,0);
-	c = (z-df*df)/(s+df);
-	w = R(z)*s+c;
-	return 2*(df+w);
+    GET_LOW_WORD(lx, x);
+    if ((ix - 0x3ff00000 | lx) == 0) {
+      /* acos(1)=0, acos(-1)=pi */
+      if (hx >> 31)
+        return 2 * pio2_hi + 0x1p-120f;
+      return 0;
+    }
+    return 0 / (x - x);
+  }
+  /* |x| < 0.5 */
+  if (ix < 0x3fe00000) {
+    if (ix <= 0x3c600000) /* |x| < 2**-57 */
+      return pio2_hi + 0x1p-120f;
+    return pio2_hi - (x - (pio2_lo - x * R(x * x)));
+  }
+  /* x < -0.5 */
+  if (hx >> 31) {
+    z = (1.0 + x) * 0.5;
+    s = sqrt(z);
+    w = R(z) * s - pio2_lo;
+    return 2 * (pio2_hi - (s + w));
+  }
+  /* x > 0.5 */
+  z = (1.0 - x) * 0.5;
+  s = sqrt(z);
+  df = s;
+  SET_LOW_WORD(df, 0);
+  c = (z - df * df) / (s + df);
+  w = R(z) * s + c;
+  return 2 * (df + w);
 }
diff --git a/fusl/src/math/acosf.c b/fusl/src/math/acosf.c
index 8ee1a71..83ef10e 100644
--- a/fusl/src/math/acosf.c
+++ b/fusl/src/math/acosf.c
@@ -15,57 +15,52 @@
 
 #include "libm.h"
 
-static const float
-pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
-pio2_lo = 7.5497894159e-08, /* 0x33a22168 */
-pS0 =  1.6666586697e-01,
-pS1 = -4.2743422091e-02,
-pS2 = -8.6563630030e-03,
-qS1 = -7.0662963390e-01;
+static const float pio2_hi = 1.5707962513e+00, /* 0x3fc90fda */
+    pio2_lo = 7.5497894159e-08,                /* 0x33a22168 */
+    pS0 = 1.6666586697e-01, pS1 = -4.2743422091e-02, pS2 = -8.6563630030e-03,
+                   qS1 = -7.0662963390e-01;
 
-static float R(float z)
-{
-	float_t p, q;
-	p = z*(pS0+z*(pS1+z*pS2));
-	q = 1.0f+z*qS1;
-	return p/q;
+static float R(float z) {
+  float_t p, q;
+  p = z * (pS0 + z * (pS1 + z * pS2));
+  q = 1.0f + z * qS1;
+  return p / q;
 }
 
-float acosf(float x)
-{
-	float z,w,s,c,df;
-	uint32_t hx,ix;
+float acosf(float x) {
+  float z, w, s, c, df;
+  uint32_t hx, ix;
 
-	GET_FLOAT_WORD(hx, x);
-	ix = hx & 0x7fffffff;
-	/* |x| >= 1 or nan */
-	if (ix >= 0x3f800000) {
-		if (ix == 0x3f800000) {
-			if (hx >> 31)
-				return 2*pio2_hi + 0x1p-120f;
-			return 0;
-		}
-		return 0/(x-x);
-	}
-	/* |x| < 0.5 */
-	if (ix < 0x3f000000) {
-		if (ix <= 0x32800000) /* |x| < 2**-26 */
-			return pio2_hi + 0x1p-120f;
-		return pio2_hi - (x - (pio2_lo-x*R(x*x)));
-	}
-	/* x < -0.5 */
-	if (hx >> 31) {
-		z = (1+x)*0.5f;
-		s = sqrtf(z);
-		w = R(z)*s-pio2_lo;
-		return 2*(pio2_hi - (s+w));
-	}
-	/* x > 0.5 */
-	z = (1-x)*0.5f;
-	s = sqrtf(z);
-	GET_FLOAT_WORD(hx,s);
-	SET_FLOAT_WORD(df,hx&0xfffff000);
-	c = (z-df*df)/(s+df);
-	w = R(z)*s+c;
-	return 2*(df+w);
+  GET_FLOAT_WORD(hx, x);
+  ix = hx & 0x7fffffff;
+  /* |x| >= 1 or nan */
+  if (ix >= 0x3f800000) {
+    if (ix == 0x3f800000) {
+      if (hx >> 31)
+        return 2 * pio2_hi + 0x1p-120f;
+      return 0;
+    }
+    return 0 / (x - x);
+  }
+  /* |x| < 0.5 */
+  if (ix < 0x3f000000) {
+    if (ix <= 0x32800000) /* |x| < 2**-26 */
+      return pio2_hi + 0x1p-120f;
+    return pio2_hi - (x - (pio2_lo - x * R(x * x)));
+  }
+  /* x < -0.5 */
+  if (hx >> 31) {
+    z = (1 + x) * 0.5f;
+    s = sqrtf(z);
+    w = R(z) * s - pio2_lo;
+    return 2 * (pio2_hi - (s + w));
+  }
+  /* x > 0.5 */
+  z = (1 - x) * 0.5f;
+  s = sqrtf(z);
+  GET_FLOAT_WORD(hx, s);
+  SET_FLOAT_WORD(df, hx & 0xfffff000);
+  c = (z - df * df) / (s + df);
+  w = R(z) * s + c;
+  return 2 * (df + w);
 }
diff --git a/fusl/src/math/acosh.c b/fusl/src/math/acosh.c
index badbf90..a0299e5 100644
--- a/fusl/src/math/acosh.c
+++ b/fusl/src/math/acosh.c
@@ -1,24 +1,26 @@
 #include "libm.h"
 
-#if FLT_EVAL_METHOD==2
+#if FLT_EVAL_METHOD == 2
 #undef sqrt
 #define sqrt sqrtl
 #endif
 
 /* acosh(x) = log(x + sqrt(x*x-1)) */
-double acosh(double x)
-{
-	union {double f; uint64_t i;} u = {.f = x};
-	unsigned e = u.i >> 52 & 0x7ff;
+double acosh(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {.f = x};
+  unsigned e = u.i >> 52 & 0x7ff;
 
-	/* x < 1 domain error is handled in the called functions */
+  /* x < 1 domain error is handled in the called functions */
 
-	if (e < 0x3ff + 1)
-		/* |x| < 2, up to 2ulp error in [1,1.125] */
-		return log1p(x-1 + sqrt((x-1)*(x-1)+2*(x-1)));
-	if (e < 0x3ff + 26)
-		/* |x| < 0x1p26 */
-		return log(2*x - 1/(x+sqrt(x*x-1)));
-	/* |x| >= 0x1p26 or nan */
-	return log(x) + 0.693147180559945309417232121458176568;
+  if (e < 0x3ff + 1)
+    /* |x| < 2, up to 2ulp error in [1,1.125] */
+    return log1p(x - 1 + sqrt((x - 1) * (x - 1) + 2 * (x - 1)));
+  if (e < 0x3ff + 26)
+    /* |x| < 0x1p26 */
+    return log(2 * x - 1 / (x + sqrt(x * x - 1)));
+  /* |x| >= 0x1p26 or nan */
+  return log(x) + 0.693147180559945309417232121458176568;
 }
diff --git a/fusl/src/math/acoshf.c b/fusl/src/math/acoshf.c
index 8a4ec4d..e7896cd 100644
--- a/fusl/src/math/acoshf.c
+++ b/fusl/src/math/acoshf.c
@@ -1,26 +1,28 @@
 #include "libm.h"
 
-#if FLT_EVAL_METHOD==2
+#if FLT_EVAL_METHOD == 2
 #undef sqrtf
 #define sqrtf sqrtl
-#elif FLT_EVAL_METHOD==1
+#elif FLT_EVAL_METHOD == 1
 #undef sqrtf
 #define sqrtf sqrt
 #endif
 
 /* acosh(x) = log(x + sqrt(x*x-1)) */
-float acoshf(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	uint32_t a = u.i & 0x7fffffff;
+float acoshf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  uint32_t a = u.i & 0x7fffffff;
 
-	if (a < 0x3f800000+(1<<23))
-		/* |x| < 2, invalid if x < 1 or nan */
-		/* up to 2ulp error in [1,1.125] */
-		return log1pf(x-1 + sqrtf((x-1)*(x-1)+2*(x-1)));
-	if (a < 0x3f800000+(12<<23))
-		/* |x| < 0x1p12 */
-		return logf(2*x - 1/(x+sqrtf(x*x-1)));
-	/* x >= 0x1p12 */
-	return logf(x) + 0.693147180559945309417232121458176568f;
+  if (a < 0x3f800000 + (1 << 23))
+    /* |x| < 2, invalid if x < 1 or nan */
+    /* up to 2ulp error in [1,1.125] */
+    return log1pf(x - 1 + sqrtf((x - 1) * (x - 1) + 2 * (x - 1)));
+  if (a < 0x3f800000 + (12 << 23))
+    /* |x| < 0x1p12 */
+    return logf(2 * x - 1 / (x + sqrtf(x * x - 1)));
+  /* x >= 0x1p12 */
+  return logf(x) + 0.693147180559945309417232121458176568f;
 }
diff --git a/fusl/src/math/acoshl.c b/fusl/src/math/acoshl.c
index 8d4b43f..55800f2 100644
--- a/fusl/src/math/acoshl.c
+++ b/fusl/src/math/acoshl.c
@@ -1,29 +1,26 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double acoshl(long double x)
-{
-	return acosh(x);
+long double acoshl(long double x) {
+  return acosh(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 /* acosh(x) = log(x + sqrt(x*x-1)) */
-long double acoshl(long double x)
-{
-	union ldshape u = {x};
-	int e = u.i.se & 0x7fff;
+long double acoshl(long double x) {
+  union ldshape u = {x};
+  int e = u.i.se & 0x7fff;
 
-	if (e < 0x3fff + 1)
-		/* |x| < 2, invalid if x < 1 or nan */
-		return log1pl(x-1 + sqrtl((x-1)*(x-1)+2*(x-1)));
-	if (e < 0x3fff + 32)
-		/* |x| < 0x1p32 */
-		return logl(2*x - 1/(x+sqrtl(x*x-1)));
-	return logl(x) + 0.693147180559945309417232121458176568L;
+  if (e < 0x3fff + 1)
+    /* |x| < 2, invalid if x < 1 or nan */
+    return log1pl(x - 1 + sqrtl((x - 1) * (x - 1) + 2 * (x - 1)));
+  if (e < 0x3fff + 32)
+    /* |x| < 0x1p32 */
+    return logl(2 * x - 1 / (x + sqrtl(x * x - 1)));
+  return logl(x) + 0.693147180559945309417232121458176568L;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double acoshl(long double x)
-{
-	return acosh(x);
+long double acoshl(long double x) {
+  return acosh(x);
 }
 #endif
diff --git a/fusl/src/math/acosl.c b/fusl/src/math/acosl.c
index c03bdf0..cfabb37 100644
--- a/fusl/src/math/acosl.c
+++ b/fusl/src/math/acosl.c
@@ -17,9 +17,8 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double acosl(long double x)
-{
-	return acos(x);
+long double acosl(long double x) {
+  return acos(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 #include "__invtrigl.h"
@@ -29,39 +28,38 @@
 #define CLEARBOTTOM(u) (u.i.lo = 0)
 #endif
 
-long double acosl(long double x)
-{
-	union ldshape u = {x};
-	long double z, s, c, f;
-	uint16_t e = u.i.se & 0x7fff;
+long double acosl(long double x) {
+  union ldshape u = {x};
+  long double z, s, c, f;
+  uint16_t e = u.i.se & 0x7fff;
 
-	/* |x| >= 1 or nan */
-	if (e >= 0x3fff) {
-		if (x == 1)
-			return 0;
-		if (x == -1)
-			return 2*pio2_hi + 0x1p-120f;
-		return 0/(x-x);
-	}
-	/* |x| < 0.5 */
-	if (e < 0x3fff - 1) {
-		if (e < 0x3fff - LDBL_MANT_DIG - 1)
-			return pio2_hi + 0x1p-120f;
-		return pio2_hi - (__invtrigl_R(x*x)*x - pio2_lo + x);
-	}
-	/* x < -0.5 */
-	if (u.i.se >> 15) {
-		z = (1 + x)*0.5;
-		s = sqrtl(z);
-		return 2*(pio2_hi - (__invtrigl_R(z)*s - pio2_lo + s));
-	}
-	/* x > 0.5 */
-	z = (1 - x)*0.5;
-	s = sqrtl(z);
-	u.f = s;
-	CLEARBOTTOM(u);
-	f = u.f;
-	c = (z - f*f)/(s + f);
-	return 2*(__invtrigl_R(z)*s + c + f);
+  /* |x| >= 1 or nan */
+  if (e >= 0x3fff) {
+    if (x == 1)
+      return 0;
+    if (x == -1)
+      return 2 * pio2_hi + 0x1p-120f;
+    return 0 / (x - x);
+  }
+  /* |x| < 0.5 */
+  if (e < 0x3fff - 1) {
+    if (e < 0x3fff - LDBL_MANT_DIG - 1)
+      return pio2_hi + 0x1p-120f;
+    return pio2_hi - (__invtrigl_R(x * x) * x - pio2_lo + x);
+  }
+  /* x < -0.5 */
+  if (u.i.se >> 15) {
+    z = (1 + x) * 0.5;
+    s = sqrtl(z);
+    return 2 * (pio2_hi - (__invtrigl_R(z) * s - pio2_lo + s));
+  }
+  /* x > 0.5 */
+  z = (1 - x) * 0.5;
+  s = sqrtl(z);
+  u.f = s;
+  CLEARBOTTOM(u);
+  f = u.f;
+  c = (z - f * f) / (s + f);
+  return 2 * (__invtrigl_R(z) * s + c + f);
 }
 #endif
diff --git a/fusl/src/math/arm/fabs.c b/fusl/src/math/arm/fabs.c
index f890520..1b093a7 100644
--- a/fusl/src/math/arm/fabs.c
+++ b/fusl/src/math/arm/fabs.c
@@ -2,10 +2,9 @@
 
 #if __ARM_PCS_VFP
 
-double fabs(double x)
-{
-	__asm__ ("vabs.f64 %P0, %P1" : "=w"(x) : "w"(x));
-	return x;
+double fabs(double x) {
+  __asm__("vabs.f64 %P0, %P1" : "=w"(x) : "w"(x));
+  return x;
 }
 
 #else
diff --git a/fusl/src/math/arm/fabsf.c b/fusl/src/math/arm/fabsf.c
index 28153a6..36e5e96 100644
--- a/fusl/src/math/arm/fabsf.c
+++ b/fusl/src/math/arm/fabsf.c
@@ -2,10 +2,9 @@
 
 #if __ARM_PCS_VFP
 
-float fabsf(float x)
-{
-	__asm__ ("vabs.f32 %0, %1" : "=t"(x) : "t"(x));
-	return x;
+float fabsf(float x) {
+  __asm__("vabs.f32 %0, %1" : "=t"(x) : "t"(x));
+  return x;
 }
 
 #else
diff --git a/fusl/src/math/arm/sqrt.c b/fusl/src/math/arm/sqrt.c
index c9c0008..20f559e 100644
--- a/fusl/src/math/arm/sqrt.c
+++ b/fusl/src/math/arm/sqrt.c
@@ -2,10 +2,9 @@
 
 #if __VFP_FP__ && !__SOFTFP__
 
-double sqrt(double x)
-{
-	__asm__ ("vsqrt.f64 %P0, %P1" : "=w"(x) : "w"(x));
-	return x;
+double sqrt(double x) {
+  __asm__("vsqrt.f64 %P0, %P1" : "=w"(x) : "w"(x));
+  return x;
 }
 
 #else
diff --git a/fusl/src/math/arm/sqrtf.c b/fusl/src/math/arm/sqrtf.c
index e657665..5b51c15 100644
--- a/fusl/src/math/arm/sqrtf.c
+++ b/fusl/src/math/arm/sqrtf.c
@@ -2,10 +2,9 @@
 
 #if __VFP_FP__ && !__SOFTFP__
 
-float sqrtf(float x)
-{
-	__asm__ ("vsqrt.f32 %0, %1" : "=t"(x) : "t"(x));
-	return x;
+float sqrtf(float x) {
+  __asm__("vsqrt.f32 %0, %1" : "=t"(x) : "t"(x));
+  return x;
 }
 
 #else
diff --git a/fusl/src/math/asin.c b/fusl/src/math/asin.c
index c926b18..9b92be8 100644
--- a/fusl/src/math/asin.c
+++ b/fusl/src/math/asin.c
@@ -41,67 +41,66 @@
 
 #include "libm.h"
 
-static const double
-pio2_hi = 1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
-pio2_lo = 6.12323399573676603587e-17, /* 0x3C91A626, 0x33145C07 */
-/* coefficients for R(x^2) */
-pS0 =  1.66666666666666657415e-01, /* 0x3FC55555, 0x55555555 */
-pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
-pS2 =  2.01212532134862925881e-01, /* 0x3FC9C155, 0x0E884455 */
-pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
-pS4 =  7.91534994289814532176e-04, /* 0x3F49EFE0, 0x7501B288 */
-pS5 =  3.47933107596021167570e-05, /* 0x3F023DE1, 0x0DFDF709 */
-qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
-qS2 =  2.02094576023350569471e+00, /* 0x40002AE5, 0x9C598AC8 */
-qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
-qS4 =  7.70381505559019352791e-02; /* 0x3FB3B8C5, 0xB12E9282 */
+static const double pio2_hi =
+                        1.57079632679489655800e+00, /* 0x3FF921FB, 0x54442D18 */
+    pio2_lo = 6.12323399573676603587e-17,           /* 0x3C91A626, 0x33145C07 */
+    /* coefficients for R(x^2) */
+    pS0 = 1.66666666666666657415e-01,  /* 0x3FC55555, 0x55555555 */
+    pS1 = -3.25565818622400915405e-01, /* 0xBFD4D612, 0x03EB6F7D */
+    pS2 = 2.01212532134862925881e-01,  /* 0x3FC9C155, 0x0E884455 */
+    pS3 = -4.00555345006794114027e-02, /* 0xBFA48228, 0xB5688F3B */
+    pS4 = 7.91534994289814532176e-04,  /* 0x3F49EFE0, 0x7501B288 */
+    pS5 = 3.47933107596021167570e-05,  /* 0x3F023DE1, 0x0DFDF709 */
+    qS1 = -2.40339491173441421878e+00, /* 0xC0033A27, 0x1C8A2D4B */
+    qS2 = 2.02094576023350569471e+00,  /* 0x40002AE5, 0x9C598AC8 */
+    qS3 = -6.88283971605453293030e-01, /* 0xBFE6066C, 0x1B8D0159 */
+    qS4 = 7.70381505559019352791e-02;  /* 0x3FB3B8C5, 0xB12E9282 */
 
-static double R(double z)
-{
-	double_t p, q;
-	p = z*(pS0+z*(pS1+z*(pS2+z*(pS3+z*(pS4+z*pS5)))));
-	q = 1.0+z*(qS1+z*(qS2+z*(qS3+z*qS4)));
-	return p/q;
+static double R(double z) {
+  double_t p, q;
+  p = z * (pS0 + z * (pS1 + z * (pS2 + z * (pS3 + z * (pS4 + z * pS5)))));
+  q = 1.0 + z * (qS1 + z * (qS2 + z * (qS3 + z * qS4)));
+  return p / q;
 }
 
-double asin(double x)
-{
-	double z,r,s;
-	uint32_t hx,ix;
+double asin(double x) {
+  double z, r, s;
+  uint32_t hx, ix;
 
-	GET_HIGH_WORD(hx, x);
-	ix = hx & 0x7fffffff;
-	/* |x| >= 1 or nan */
-	if (ix >= 0x3ff00000) {
-		uint32_t lx;
-		GET_LOW_WORD(lx, x);
-		if ((ix-0x3ff00000 | lx) == 0)
-			/* asin(1) = +-pi/2 with inexact */
-			return x*pio2_hi + 0x1p-120f;
-		return 0/(x-x);
-	}
-	/* |x| < 0.5 */
-	if (ix < 0x3fe00000) {
-		/* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
-		if (ix < 0x3e500000 && ix >= 0x00100000)
-			return x;
-		return x + x*R(x*x);
-	}
-	/* 1 > |x| >= 0.5 */
-	z = (1 - fabs(x))*0.5;
-	s = sqrt(z);
-	r = R(z);
-	if (ix >= 0x3fef3333) {  /* if |x| > 0.975 */
-		x = pio2_hi-(2*(s+s*r)-pio2_lo);
-	} else {
-		double f,c;
-		/* f+c = sqrt(z) */
-		f = s;
-		SET_LOW_WORD(f,0);
-		c = (z-f*f)/(s+f);
-		x = 0.5*pio2_hi - (2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f));
-	}
-	if (hx >> 31)
-		return -x;
-	return x;
+  GET_HIGH_WORD(hx, x);
+  ix = hx & 0x7fffffff;
+  /* |x| >= 1 or nan */
+  if (ix >= 0x3ff00000) {
+    uint32_t lx;
+    GET_LOW_WORD(lx, x);
+    if ((ix - 0x3ff00000 | lx) == 0)
+      /* asin(1) = +-pi/2 with inexact */
+      return x * pio2_hi + 0x1p-120f;
+    return 0 / (x - x);
+  }
+  /* |x| < 0.5 */
+  if (ix < 0x3fe00000) {
+    /* if 0x1p-1022 <= |x| < 0x1p-26, avoid raising underflow */
+    if (ix < 0x3e500000 && ix >= 0x00100000)
+      return x;
+    return x + x * R(x * x);
+  }
+  /* 1 > |x| >= 0.5 */
+  z = (1 - fabs(x)) * 0.5;
+  s = sqrt(z);
+  r = R(z);
+  if (ix >= 0x3fef3333) { /* if |x| > 0.975 */
+    x = pio2_hi - (2 * (s + s * r) - pio2_lo);
+  } else {
+    double f, c;
+    /* f+c = sqrt(z) */
+    f = s;
+    SET_LOW_WORD(f, 0);
+    c = (z - f * f) / (s + f);
+    x = 0.5 * pio2_hi -
+        (2 * s * r - (pio2_lo - 2 * c) - (0.5 * pio2_hi - 2 * f));
+  }
+  if (hx >> 31)
+    return -x;
+  return x;
 }
diff --git a/fusl/src/math/asinf.c b/fusl/src/math/asinf.c
index bcd304a..3d5f637 100644
--- a/fusl/src/math/asinf.c
+++ b/fusl/src/math/asinf.c
@@ -14,48 +14,43 @@
  */
 #include "libm.h"
 
-static const double
-pio2 = 1.570796326794896558e+00;
+static const double pio2 = 1.570796326794896558e+00;
 
 static const float
-/* coefficients for R(x^2) */
-pS0 =  1.6666586697e-01,
-pS1 = -4.2743422091e-02,
-pS2 = -8.6563630030e-03,
-qS1 = -7.0662963390e-01;
+    /* coefficients for R(x^2) */
+    pS0 = 1.6666586697e-01,
+    pS1 = -4.2743422091e-02, pS2 = -8.6563630030e-03, qS1 = -7.0662963390e-01;
 
-static float R(float z)
-{
-	float_t p, q;
-	p = z*(pS0+z*(pS1+z*pS2));
-	q = 1.0f+z*qS1;
-	return p/q;
+static float R(float z) {
+  float_t p, q;
+  p = z * (pS0 + z * (pS1 + z * pS2));
+  q = 1.0f + z * qS1;
+  return p / q;
 }
 
-float asinf(float x)
-{
-	double s;
-	float z;
-	uint32_t hx,ix;
+float asinf(float x) {
+  double s;
+  float z;
+  uint32_t hx, ix;
 
-	GET_FLOAT_WORD(hx, x);
-	ix = hx & 0x7fffffff;
-	if (ix >= 0x3f800000) {  /* |x| >= 1 */
-		if (ix == 0x3f800000)  /* |x| == 1 */
-			return x*pio2 + 0x1p-120f;  /* asin(+-1) = +-pi/2 with inexact */
-		return 0/(x-x);  /* asin(|x|>1) is NaN */
-	}
-	if (ix < 0x3f000000) {  /* |x| < 0.5 */
-		/* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */
-		if (ix < 0x39800000 && ix >= 0x00800000)
-			return x;
-		return x + x*R(x*x);
-	}
-	/* 1 > |x| >= 0.5 */
-	z = (1 - fabsf(x))*0.5f;
-	s = sqrt(z);
-	x = pio2 - 2*(s+s*R(z));
-	if (hx >> 31)
-		return -x;
-	return x;
+  GET_FLOAT_WORD(hx, x);
+  ix = hx & 0x7fffffff;
+  if (ix >= 0x3f800000) {          /* |x| >= 1 */
+    if (ix == 0x3f800000)          /* |x| == 1 */
+      return x * pio2 + 0x1p-120f; /* asin(+-1) = +-pi/2 with inexact */
+    return 0 / (x - x);            /* asin(|x|>1) is NaN */
+  }
+  if (ix < 0x3f000000) { /* |x| < 0.5 */
+    /* if 0x1p-126 <= |x| < 0x1p-12, avoid raising underflow */
+    if (ix < 0x39800000 && ix >= 0x00800000)
+      return x;
+    return x + x * R(x * x);
+  }
+  /* 1 > |x| >= 0.5 */
+  z = (1 - fabsf(x)) * 0.5f;
+  s = sqrt(z);
+  x = pio2 - 2 * (s + s * R(z));
+  if (hx >> 31)
+    return -x;
+  return x;
 }
diff --git a/fusl/src/math/asinh.c b/fusl/src/math/asinh.c
index 0829f22..b6d00df 100644
--- a/fusl/src/math/asinh.c
+++ b/fusl/src/math/asinh.c
@@ -1,28 +1,30 @@
 #include "libm.h"
 
 /* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
-double asinh(double x)
-{
-	union {double f; uint64_t i;} u = {.f = x};
-	unsigned e = u.i >> 52 & 0x7ff;
-	unsigned s = u.i >> 63;
+double asinh(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {.f = x};
+  unsigned e = u.i >> 52 & 0x7ff;
+  unsigned s = u.i >> 63;
 
-	/* |x| */
-	u.i &= (uint64_t)-1/2;
-	x = u.f;
+  /* |x| */
+  u.i &= (uint64_t)-1 / 2;
+  x = u.f;
 
-	if (e >= 0x3ff + 26) {
-		/* |x| >= 0x1p26 or inf or nan */
-		x = log(x) + 0.693147180559945309417232121458176568;
-	} else if (e >= 0x3ff + 1) {
-		/* |x| >= 2 */
-		x = log(2*x + 1/(sqrt(x*x+1)+x));
-	} else if (e >= 0x3ff - 26) {
-		/* |x| >= 0x1p-26, up to 1.6ulp error in [0.125,0.5] */
-		x = log1p(x + x*x/(sqrt(x*x+1)+1));
-	} else {
-		/* |x| < 0x1p-26, raise inexact if x != 0 */
-		FORCE_EVAL(x + 0x1p120f);
-	}
-	return s ? -x : x;
+  if (e >= 0x3ff + 26) {
+    /* |x| >= 0x1p26 or inf or nan */
+    x = log(x) + 0.693147180559945309417232121458176568;
+  } else if (e >= 0x3ff + 1) {
+    /* |x| >= 2 */
+    x = log(2 * x + 1 / (sqrt(x * x + 1) + x));
+  } else if (e >= 0x3ff - 26) {
+    /* |x| >= 0x1p-26, up to 1.6ulp error in [0.125,0.5] */
+    x = log1p(x + x * x / (sqrt(x * x + 1) + 1));
+  } else {
+    /* |x| < 0x1p-26, raise inexact if x != 0 */
+    FORCE_EVAL(x + 0x1p120f);
+  }
+  return s ? -x : x;
 }
diff --git a/fusl/src/math/asinhf.c b/fusl/src/math/asinhf.c
index fc9f091..5d79d1c 100644
--- a/fusl/src/math/asinhf.c
+++ b/fusl/src/math/asinhf.c
@@ -1,28 +1,30 @@
 #include "libm.h"
 
 /* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
-float asinhf(float x)
-{
-	union {float f; uint32_t i;} u = {.f = x};
-	uint32_t i = u.i & 0x7fffffff;
-	unsigned s = u.i >> 31;
+float asinhf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {.f = x};
+  uint32_t i = u.i & 0x7fffffff;
+  unsigned s = u.i >> 31;
 
-	/* |x| */
-	u.i = i;
-	x = u.f;
+  /* |x| */
+  u.i = i;
+  x = u.f;
 
-	if (i >= 0x3f800000 + (12<<23)) {
-		/* |x| >= 0x1p12 or inf or nan */
-		x = logf(x) + 0.693147180559945309417232121458176568f;
-	} else if (i >= 0x3f800000 + (1<<23)) {
-		/* |x| >= 2 */
-		x = logf(2*x + 1/(sqrtf(x*x+1)+x));
-	} else if (i >= 0x3f800000 - (12<<23)) {
-		/* |x| >= 0x1p-12, up to 1.6ulp error in [0.125,0.5] */
-		x = log1pf(x + x*x/(sqrtf(x*x+1)+1));
-	} else {
-		/* |x| < 0x1p-12, raise inexact if x!=0 */
-		FORCE_EVAL(x + 0x1p120f);
-	}
-	return s ? -x : x;
+  if (i >= 0x3f800000 + (12 << 23)) {
+    /* |x| >= 0x1p12 or inf or nan */
+    x = logf(x) + 0.693147180559945309417232121458176568f;
+  } else if (i >= 0x3f800000 + (1 << 23)) {
+    /* |x| >= 2 */
+    x = logf(2 * x + 1 / (sqrtf(x * x + 1) + x));
+  } else if (i >= 0x3f800000 - (12 << 23)) {
+    /* |x| >= 0x1p-12, up to 1.6ulp error in [0.125,0.5] */
+    x = log1pf(x + x * x / (sqrtf(x * x + 1) + 1));
+  } else {
+    /* |x| < 0x1p-12, raise inexact if x!=0 */
+    FORCE_EVAL(x + 0x1p120f);
+  }
+  return s ? -x : x;
 }
diff --git a/fusl/src/math/asinhl.c b/fusl/src/math/asinhl.c
index 8635f52..2be91e9 100644
--- a/fusl/src/math/asinhl.c
+++ b/fusl/src/math/asinhl.c
@@ -1,41 +1,38 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double asinhl(long double x)
-{
-	return asinh(x);
+long double asinhl(long double x) {
+  return asinh(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 /* asinh(x) = sign(x)*log(|x|+sqrt(x*x+1)) ~= x - x^3/6 + o(x^5) */
-long double asinhl(long double x)
-{
-	union ldshape u = {x};
-	unsigned e = u.i.se & 0x7fff;
-	unsigned s = u.i.se >> 15;
+long double asinhl(long double x) {
+  union ldshape u = {x};
+  unsigned e = u.i.se & 0x7fff;
+  unsigned s = u.i.se >> 15;
 
-	/* |x| */
-	u.i.se = e;
-	x = u.f;
+  /* |x| */
+  u.i.se = e;
+  x = u.f;
 
-	if (e >= 0x3fff + 32) {
-		/* |x| >= 0x1p32 or inf or nan */
-		x = logl(x) + 0.693147180559945309417232121458176568L;
-	} else if (e >= 0x3fff + 1) {
-		/* |x| >= 2 */
-		x = logl(2*x + 1/(sqrtl(x*x+1)+x));
-	} else if (e >= 0x3fff - 32) {
-		/* |x| >= 0x1p-32 */
-		x = log1pl(x + x*x/(sqrtl(x*x+1)+1));
-	} else {
-		/* |x| < 0x1p-32, raise inexact if x!=0 */
-		FORCE_EVAL(x + 0x1p120f);
-	}
-	return s ? -x : x;
+  if (e >= 0x3fff + 32) {
+    /* |x| >= 0x1p32 or inf or nan */
+    x = logl(x) + 0.693147180559945309417232121458176568L;
+  } else if (e >= 0x3fff + 1) {
+    /* |x| >= 2 */
+    x = logl(2 * x + 1 / (sqrtl(x * x + 1) + x));
+  } else if (e >= 0x3fff - 32) {
+    /* |x| >= 0x1p-32 */
+    x = log1pl(x + x * x / (sqrtl(x * x + 1) + 1));
+  } else {
+    /* |x| < 0x1p-32, raise inexact if x!=0 */
+    FORCE_EVAL(x + 0x1p120f);
+  }
+  return s ? -x : x;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double asinhl(long double x)
-{
-	return asinh(x);
+long double asinhl(long double x) {
+  return asinh(x);
 }
 #endif
diff --git a/fusl/src/math/asinl.c b/fusl/src/math/asinl.c
index 347c535..7494848 100644
--- a/fusl/src/math/asinl.c
+++ b/fusl/src/math/asinl.c
@@ -17,55 +17,54 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double asinl(long double x)
-{
-	return asin(x);
+long double asinl(long double x) {
+  return asin(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 #include "__invtrigl.h"
 #if LDBL_MANT_DIG == 64
-#define CLOSETO1(u) (u.i.m>>56 >= 0xf7)
+#define CLOSETO1(u) (u.i.m >> 56 >= 0xf7)
 #define CLEARBOTTOM(u) (u.i.m &= -1ULL << 32)
 #elif LDBL_MANT_DIG == 113
 #define CLOSETO1(u) (u.i.top >= 0xee00)
 #define CLEARBOTTOM(u) (u.i.lo = 0)
 #endif
 
-long double asinl(long double x)
-{
-	union ldshape u = {x};
-	long double z, r, s;
-	uint16_t e = u.i.se & 0x7fff;
-	int sign = u.i.se >> 15;
+long double asinl(long double x) {
+  union ldshape u = {x};
+  long double z, r, s;
+  uint16_t e = u.i.se & 0x7fff;
+  int sign = u.i.se >> 15;
 
-	if (e >= 0x3fff) {   /* |x| >= 1 or nan */
-		/* asin(+-1)=+-pi/2 with inexact */
-		if (x == 1 || x == -1)
-			return x*pio2_hi + 0x1p-120f;
-		return 0/(x-x);
-	}
-	if (e < 0x3fff - 1) {  /* |x| < 0.5 */
-		if (e < 0x3fff - (LDBL_MANT_DIG+1)/2) {
-			/* return x with inexact if x!=0 */
-			FORCE_EVAL(x + 0x1p120f);
-			return x;
-		}
-		return x + x*__invtrigl_R(x*x);
-	}
-	/* 1 > |x| >= 0.5 */
-	z = (1.0 - fabsl(x))*0.5;
-	s = sqrtl(z);
-	r = __invtrigl_R(z);
-	if (CLOSETO1(u)) {
-		x = pio2_hi - (2*(s+s*r)-pio2_lo);
-	} else {
-		long double f, c;
-		u.f = s;
-		CLEARBOTTOM(u);
-		f = u.f;
-		c = (z - f*f)/(s + f);
-		x = 0.5*pio2_hi-(2*s*r - (pio2_lo-2*c) - (0.5*pio2_hi-2*f));
-	}
-	return sign ? -x : x;
+  if (e >= 0x3fff) { /* |x| >= 1 or nan */
+    /* asin(+-1)=+-pi/2 with inexact */
+    if (x == 1 || x == -1)
+      return x * pio2_hi + 0x1p-120f;
+    return 0 / (x - x);
+  }
+  if (e < 0x3fff - 1) { /* |x| < 0.5 */
+    if (e < 0x3fff - (LDBL_MANT_DIG + 1) / 2) {
+      /* return x with inexact if x!=0 */
+      FORCE_EVAL(x + 0x1p120f);
+      return x;
+    }
+    return x + x * __invtrigl_R(x * x);
+  }
+  /* 1 > |x| >= 0.5 */
+  z = (1.0 - fabsl(x)) * 0.5;
+  s = sqrtl(z);
+  r = __invtrigl_R(z);
+  if (CLOSETO1(u)) {
+    x = pio2_hi - (2 * (s + s * r) - pio2_lo);
+  } else {
+    long double f, c;
+    u.f = s;
+    CLEARBOTTOM(u);
+    f = u.f;
+    c = (z - f * f) / (s + f);
+    x = 0.5 * pio2_hi -
+        (2 * s * r - (pio2_lo - 2 * c) - (0.5 * pio2_hi - 2 * f));
+  }
+  return sign ? -x : x;
 }
 #endif
diff --git a/fusl/src/math/atan.c b/fusl/src/math/atan.c
index 63b0ab2..8d33b53 100644
--- a/fusl/src/math/atan.c
+++ b/fusl/src/math/atan.c
@@ -29,88 +29,87 @@
  * to produce the hexadecimal values shown.
  */
 
-
 #include "libm.h"
 
 static const double atanhi[] = {
-  4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
-  7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
-  9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
-  1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
+    4.63647609000806093515e-01, /* atan(0.5)hi 0x3FDDAC67, 0x0561BB4F */
+    7.85398163397448278999e-01, /* atan(1.0)hi 0x3FE921FB, 0x54442D18 */
+    9.82793723247329054082e-01, /* atan(1.5)hi 0x3FEF730B, 0xD281F69B */
+    1.57079632679489655800e+00, /* atan(inf)hi 0x3FF921FB, 0x54442D18 */
 };
 
 static const double atanlo[] = {
-  2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
-  3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
-  1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
-  6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
+    2.26987774529616870924e-17, /* atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 */
+    3.06161699786838301793e-17, /* atan(1.0)lo 0x3C81A626, 0x33145C07 */
+    1.39033110312309984516e-17, /* atan(1.5)lo 0x3C700788, 0x7AF0CBBD */
+    6.12323399573676603587e-17, /* atan(inf)lo 0x3C91A626, 0x33145C07 */
 };
 
 static const double aT[] = {
-  3.33333333333329318027e-01, /* 0x3FD55555, 0x5555550D */
- -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
-  1.42857142725034663711e-01, /* 0x3FC24924, 0x920083FF */
- -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
-  9.09088713343650656196e-02, /* 0x3FB745CD, 0xC54C206E */
- -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
-  6.66107313738753120669e-02, /* 0x3FB10D66, 0xA0D03D51 */
- -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
-  4.97687799461593236017e-02, /* 0x3FA97B4B, 0x24760DEB */
- -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
-  1.62858201153657823623e-02, /* 0x3F90AD3A, 0xE322DA11 */
+    3.33333333333329318027e-01,  /* 0x3FD55555, 0x5555550D */
+    -1.99999999998764832476e-01, /* 0xBFC99999, 0x9998EBC4 */
+    1.42857142725034663711e-01,  /* 0x3FC24924, 0x920083FF */
+    -1.11111104054623557880e-01, /* 0xBFBC71C6, 0xFE231671 */
+    9.09088713343650656196e-02,  /* 0x3FB745CD, 0xC54C206E */
+    -7.69187620504482999495e-02, /* 0xBFB3B0F2, 0xAF749A6D */
+    6.66107313738753120669e-02,  /* 0x3FB10D66, 0xA0D03D51 */
+    -5.83357013379057348645e-02, /* 0xBFADDE2D, 0x52DEFD9A */
+    4.97687799461593236017e-02,  /* 0x3FA97B4B, 0x24760DEB */
+    -3.65315727442169155270e-02, /* 0xBFA2B444, 0x2C6A6C2F */
+    1.62858201153657823623e-02,  /* 0x3F90AD3A, 0xE322DA11 */
 };
 
-double atan(double x)
-{
-	double_t w,s1,s2,z;
-	uint32_t ix,sign;
-	int id;
+double atan(double x) {
+  double_t w, s1, s2, z;
+  uint32_t ix, sign;
+  int id;
 
-	GET_HIGH_WORD(ix, x);
-	sign = ix >> 31;
-	ix &= 0x7fffffff;
-	if (ix >= 0x44100000) {   /* if |x| >= 2^66 */
-		if (isnan(x))
-			return x;
-		z = atanhi[3] + 0x1p-120f;
-		return sign ? -z : z;
-	}
-	if (ix < 0x3fdc0000) {    /* |x| < 0.4375 */
-		if (ix < 0x3e400000) {  /* |x| < 2^-27 */
-			if (ix < 0x00100000)
-				/* raise underflow for subnormal x */
-				FORCE_EVAL((float)x);
-			return x;
-		}
-		id = -1;
-	} else {
-		x = fabs(x);
-		if (ix < 0x3ff30000) {  /* |x| < 1.1875 */
-			if (ix < 0x3fe60000) {  /*  7/16 <= |x| < 11/16 */
-				id = 0;
-				x = (2.0*x-1.0)/(2.0+x);
-			} else {                /* 11/16 <= |x| < 19/16 */
-				id = 1;
-				x = (x-1.0)/(x+1.0);
-			}
-		} else {
-			if (ix < 0x40038000) {  /* |x| < 2.4375 */
-				id = 2;
-				x = (x-1.5)/(1.0+1.5*x);
-			} else {                /* 2.4375 <= |x| < 2^66 */
-				id = 3;
-				x = -1.0/x;
-			}
-		}
-	}
-	/* end of argument reduction */
-	z = x*x;
-	w = z*z;
-	/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
-	s1 = z*(aT[0]+w*(aT[2]+w*(aT[4]+w*(aT[6]+w*(aT[8]+w*aT[10])))));
-	s2 = w*(aT[1]+w*(aT[3]+w*(aT[5]+w*(aT[7]+w*aT[9]))));
-	if (id < 0)
-		return x - x*(s1+s2);
-	z = atanhi[id] - (x*(s1+s2) - atanlo[id] - x);
-	return sign ? -z : z;
+  GET_HIGH_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
+  if (ix >= 0x44100000) { /* if |x| >= 2^66 */
+    if (isnan(x))
+      return x;
+    z = atanhi[3] + 0x1p-120f;
+    return sign ? -z : z;
+  }
+  if (ix < 0x3fdc0000) {   /* |x| < 0.4375 */
+    if (ix < 0x3e400000) { /* |x| < 2^-27 */
+      if (ix < 0x00100000)
+        /* raise underflow for subnormal x */
+        FORCE_EVAL((float)x);
+      return x;
+    }
+    id = -1;
+  } else {
+    x = fabs(x);
+    if (ix < 0x3ff30000) {   /* |x| < 1.1875 */
+      if (ix < 0x3fe60000) { /*  7/16 <= |x| < 11/16 */
+        id = 0;
+        x = (2.0 * x - 1.0) / (2.0 + x);
+      } else { /* 11/16 <= |x| < 19/16 */
+        id = 1;
+        x = (x - 1.0) / (x + 1.0);
+      }
+    } else {
+      if (ix < 0x40038000) { /* |x| < 2.4375 */
+        id = 2;
+        x = (x - 1.5) / (1.0 + 1.5 * x);
+      } else { /* 2.4375 <= |x| < 2^66 */
+        id = 3;
+        x = -1.0 / x;
+      }
+    }
+  }
+  /* end of argument reduction */
+  z = x * x;
+  w = z * z;
+  /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+  s1 = z * (aT[0] +
+            w * (aT[2] + w * (aT[4] + w * (aT[6] + w * (aT[8] + w * aT[10])))));
+  s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9]))));
+  if (id < 0)
+    return x - x * (s1 + s2);
+  z = atanhi[id] - (x * (s1 + s2) - atanlo[id] - x);
+  return sign ? -z : z;
 }
diff --git a/fusl/src/math/atan2.c b/fusl/src/math/atan2.c
index 5a1903c..11427d7 100644
--- a/fusl/src/math/atan2.c
+++ b/fusl/src/math/atan2.c
@@ -39,69 +39,81 @@
 
 #include "libm.h"
 
-static const double
-pi     = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
-pi_lo  = 1.2246467991473531772E-16; /* 0x3CA1A626, 0x33145C07 */
+static const double pi = 3.1415926535897931160E+00, /* 0x400921FB, 0x54442D18 */
+    pi_lo = 1.2246467991473531772E-16;              /* 0x3CA1A626, 0x33145C07 */
 
-double atan2(double y, double x)
-{
-	double z;
-	uint32_t m,lx,ly,ix,iy;
+double atan2(double y, double x) {
+  double z;
+  uint32_t m, lx, ly, ix, iy;
 
-	if (isnan(x) || isnan(y))
-		return x+y;
-	EXTRACT_WORDS(ix, lx, x);
-	EXTRACT_WORDS(iy, ly, y);
-	if ((ix-0x3ff00000 | lx) == 0)  /* x = 1.0 */
-		return atan(y);
-	m = ((iy>>31)&1) | ((ix>>30)&2);  /* 2*sign(x)+sign(y) */
-	ix = ix & 0x7fffffff;
-	iy = iy & 0x7fffffff;
+  if (isnan(x) || isnan(y))
+    return x + y;
+  EXTRACT_WORDS(ix, lx, x);
+  EXTRACT_WORDS(iy, ly, y);
+  if ((ix - 0x3ff00000 | lx) == 0) /* x = 1.0 */
+    return atan(y);
+  m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
+  ix = ix & 0x7fffffff;
+  iy = iy & 0x7fffffff;
 
-	/* when y = 0 */
-	if ((iy|ly) == 0) {
-		switch(m) {
-		case 0:
-		case 1: return y;   /* atan(+-0,+anything)=+-0 */
-		case 2: return  pi; /* atan(+0,-anything) = pi */
-		case 3: return -pi; /* atan(-0,-anything) =-pi */
-		}
-	}
-	/* when x = 0 */
-	if ((ix|lx) == 0)
-		return m&1 ? -pi/2 : pi/2;
-	/* when x is INF */
-	if (ix == 0x7ff00000) {
-		if (iy == 0x7ff00000) {
-			switch(m) {
-			case 0: return  pi/4;   /* atan(+INF,+INF) */
-			case 1: return -pi/4;   /* atan(-INF,+INF) */
-			case 2: return  3*pi/4; /* atan(+INF,-INF) */
-			case 3: return -3*pi/4; /* atan(-INF,-INF) */
-			}
-		} else {
-			switch(m) {
-			case 0: return  0.0; /* atan(+...,+INF) */
-			case 1: return -0.0; /* atan(-...,+INF) */
-			case 2: return  pi;  /* atan(+...,-INF) */
-			case 3: return -pi;  /* atan(-...,-INF) */
-			}
-		}
-	}
-	/* |y/x| > 0x1p64 */
-	if (ix+(64<<20) < iy || iy == 0x7ff00000)
-		return m&1 ? -pi/2 : pi/2;
+  /* when y = 0 */
+  if ((iy | ly) == 0) {
+    switch (m) {
+      case 0:
+      case 1:
+        return y; /* atan(+-0,+anything)=+-0 */
+      case 2:
+        return pi; /* atan(+0,-anything) = pi */
+      case 3:
+        return -pi; /* atan(-0,-anything) =-pi */
+    }
+  }
+  /* when x = 0 */
+  if ((ix | lx) == 0)
+    return m & 1 ? -pi / 2 : pi / 2;
+  /* when x is INF */
+  if (ix == 0x7ff00000) {
+    if (iy == 0x7ff00000) {
+      switch (m) {
+        case 0:
+          return pi / 4; /* atan(+INF,+INF) */
+        case 1:
+          return -pi / 4; /* atan(-INF,+INF) */
+        case 2:
+          return 3 * pi / 4; /* atan(+INF,-INF) */
+        case 3:
+          return -3 * pi / 4; /* atan(-INF,-INF) */
+      }
+    } else {
+      switch (m) {
+        case 0:
+          return 0.0; /* atan(+...,+INF) */
+        case 1:
+          return -0.0; /* atan(-...,+INF) */
+        case 2:
+          return pi; /* atan(+...,-INF) */
+        case 3:
+          return -pi; /* atan(-...,-INF) */
+      }
+    }
+  }
+  /* |y/x| > 0x1p64 */
+  if (ix + (64 << 20) < iy || iy == 0x7ff00000)
+    return m & 1 ? -pi / 2 : pi / 2;
 
-	/* z = atan(|y/x|) without spurious underflow */
-	if ((m&2) && iy+(64<<20) < ix)  /* |y/x| < 0x1p-64, x<0 */
-		z = 0;
-	else
-		z = atan(fabs(y/x));
-	switch (m) {
-	case 0: return z;              /* atan(+,+) */
-	case 1: return -z;             /* atan(-,+) */
-	case 2: return pi - (z-pi_lo); /* atan(+,-) */
-	default: /* case 3 */
-		return (z-pi_lo) - pi; /* atan(-,-) */
-	}
+  /* z = atan(|y/x|) without spurious underflow */
+  if ((m & 2) && iy + (64 << 20) < ix) /* |y/x| < 0x1p-64, x<0 */
+    z = 0;
+  else
+    z = atan(fabs(y / x));
+  switch (m) {
+    case 0:
+      return z; /* atan(+,+) */
+    case 1:
+      return -z; /* atan(-,+) */
+    case 2:
+      return pi - (z - pi_lo); /* atan(+,-) */
+    default:                   /* case 3 */
+      return (z - pi_lo) - pi; /* atan(-,-) */
+  }
 }
diff --git a/fusl/src/math/atan2f.c b/fusl/src/math/atan2f.c
index c634d00..559f0b7 100644
--- a/fusl/src/math/atan2f.c
+++ b/fusl/src/math/atan2f.c
@@ -15,69 +15,81 @@
 
 #include "libm.h"
 
-static const float
-pi     = 3.1415927410e+00, /* 0x40490fdb */
-pi_lo  = -8.7422776573e-08; /* 0xb3bbbd2e */
+static const float pi = 3.1415927410e+00, /* 0x40490fdb */
+    pi_lo = -8.7422776573e-08;            /* 0xb3bbbd2e */
 
-float atan2f(float y, float x)
-{
-	float z;
-	uint32_t m,ix,iy;
+float atan2f(float y, float x) {
+  float z;
+  uint32_t m, ix, iy;
 
-	if (isnan(x) || isnan(y))
-		return x+y;
-	GET_FLOAT_WORD(ix, x);
-	GET_FLOAT_WORD(iy, y);
-	if (ix == 0x3f800000)  /* x=1.0 */
-		return atanf(y);
-	m = ((iy>>31)&1) | ((ix>>30)&2);  /* 2*sign(x)+sign(y) */
-	ix &= 0x7fffffff;
-	iy &= 0x7fffffff;
+  if (isnan(x) || isnan(y))
+    return x + y;
+  GET_FLOAT_WORD(ix, x);
+  GET_FLOAT_WORD(iy, y);
+  if (ix == 0x3f800000) /* x=1.0 */
+    return atanf(y);
+  m = ((iy >> 31) & 1) | ((ix >> 30) & 2); /* 2*sign(x)+sign(y) */
+  ix &= 0x7fffffff;
+  iy &= 0x7fffffff;
 
-	/* when y = 0 */
-	if (iy == 0) {
-		switch (m) {
-		case 0:
-		case 1: return y;   /* atan(+-0,+anything)=+-0 */
-		case 2: return  pi; /* atan(+0,-anything) = pi */
-		case 3: return -pi; /* atan(-0,-anything) =-pi */
-		}
-	}
-	/* when x = 0 */
-	if (ix == 0)
-		return m&1 ? -pi/2 : pi/2;
-	/* when x is INF */
-	if (ix == 0x7f800000) {
-		if (iy == 0x7f800000) {
-			switch (m) {
-			case 0: return  pi/4; /* atan(+INF,+INF) */
-			case 1: return -pi/4; /* atan(-INF,+INF) */
-			case 2: return 3*pi/4;  /*atan(+INF,-INF)*/
-			case 3: return -3*pi/4; /*atan(-INF,-INF)*/
-			}
-		} else {
-			switch (m) {
-			case 0: return  0.0f;    /* atan(+...,+INF) */
-			case 1: return -0.0f;    /* atan(-...,+INF) */
-			case 2: return  pi; /* atan(+...,-INF) */
-			case 3: return -pi; /* atan(-...,-INF) */
-			}
-		}
-	}
-	/* |y/x| > 0x1p26 */
-	if (ix+(26<<23) < iy || iy == 0x7f800000)
-		return m&1 ? -pi/2 : pi/2;
+  /* when y = 0 */
+  if (iy == 0) {
+    switch (m) {
+      case 0:
+      case 1:
+        return y; /* atan(+-0,+anything)=+-0 */
+      case 2:
+        return pi; /* atan(+0,-anything) = pi */
+      case 3:
+        return -pi; /* atan(-0,-anything) =-pi */
+    }
+  }
+  /* when x = 0 */
+  if (ix == 0)
+    return m & 1 ? -pi / 2 : pi / 2;
+  /* when x is INF */
+  if (ix == 0x7f800000) {
+    if (iy == 0x7f800000) {
+      switch (m) {
+        case 0:
+          return pi / 4; /* atan(+INF,+INF) */
+        case 1:
+          return -pi / 4; /* atan(-INF,+INF) */
+        case 2:
+          return 3 * pi / 4; /*atan(+INF,-INF)*/
+        case 3:
+          return -3 * pi / 4; /*atan(-INF,-INF)*/
+      }
+    } else {
+      switch (m) {
+        case 0:
+          return 0.0f; /* atan(+...,+INF) */
+        case 1:
+          return -0.0f; /* atan(-...,+INF) */
+        case 2:
+          return pi; /* atan(+...,-INF) */
+        case 3:
+          return -pi; /* atan(-...,-INF) */
+      }
+    }
+  }
+  /* |y/x| > 0x1p26 */
+  if (ix + (26 << 23) < iy || iy == 0x7f800000)
+    return m & 1 ? -pi / 2 : pi / 2;
 
-	/* z = atan(|y/x|) with correct underflow */
-	if ((m&2) && iy+(26<<23) < ix)  /*|y/x| < 0x1p-26, x < 0 */
-		z = 0.0;
-	else
-		z = atanf(fabsf(y/x));
-	switch (m) {
-	case 0: return z;              /* atan(+,+) */
-	case 1: return -z;             /* atan(-,+) */
-	case 2: return pi - (z-pi_lo); /* atan(+,-) */
-	default: /* case 3 */
-		return (z-pi_lo) - pi; /* atan(-,-) */
-	}
+  /* z = atan(|y/x|) with correct underflow */
+  if ((m & 2) && iy + (26 << 23) < ix) /*|y/x| < 0x1p-26, x < 0 */
+    z = 0.0;
+  else
+    z = atanf(fabsf(y / x));
+  switch (m) {
+    case 0:
+      return z; /* atan(+,+) */
+    case 1:
+      return -z; /* atan(-,+) */
+    case 2:
+      return pi - (z - pi_lo); /* atan(+,-) */
+    default:                   /* case 3 */
+      return (z - pi_lo) - pi; /* atan(-,-) */
+  }
 }
diff --git a/fusl/src/math/atan2l.c b/fusl/src/math/atan2l.c
index f0937a9..055da95 100644
--- a/fusl/src/math/atan2l.c
+++ b/fusl/src/math/atan2l.c
@@ -18,68 +18,80 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double atan2l(long double y, long double x)
-{
-	return atan2(y, x);
+long double atan2l(long double y, long double x) {
+  return atan2(y, x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 #include "__invtrigl.h"
 
-long double atan2l(long double y, long double x)
-{
-	union ldshape ux, uy;
-	long double z;
-	int m, ex, ey;
+long double atan2l(long double y, long double x) {
+  union ldshape ux, uy;
+  long double z;
+  int m, ex, ey;
 
-	if (isnan(x) || isnan(y))
-		return x+y;
-	if (x == 1)
-		return atanl(y);
-	ux.f = x;
-	uy.f = y;
-	ex = ux.i.se & 0x7fff;
-	ey = uy.i.se & 0x7fff;
-	m = 2*(ux.i.se>>15) | uy.i.se>>15;
-	if (y == 0) {
-		switch(m) {
-		case 0:
-		case 1: return y;           /* atan(+-0,+anything)=+-0 */
-		case 2: return  2*pio2_hi;  /* atan(+0,-anything) = pi */
-		case 3: return -2*pio2_hi;  /* atan(-0,-anything) =-pi */
-		}
-	}
-	if (x == 0)
-		return m&1 ? -pio2_hi : pio2_hi;
-	if (ex == 0x7fff) {
-		if (ey == 0x7fff) {
-			switch(m) {
-			case 0: return  pio2_hi/2;   /* atan(+INF,+INF) */
-			case 1: return -pio2_hi/2;   /* atan(-INF,+INF) */
-			case 2: return  1.5*pio2_hi; /* atan(+INF,-INF) */
-			case 3: return -1.5*pio2_hi; /* atan(-INF,-INF) */
-			}
-		} else {
-			switch(m) {
-			case 0: return  0.0;        /* atan(+...,+INF) */
-			case 1: return -0.0;        /* atan(-...,+INF) */
-			case 2: return  2*pio2_hi;  /* atan(+...,-INF) */
-			case 3: return -2*pio2_hi;  /* atan(-...,-INF) */
-			}
-		}
-	}
-	if (ex+120 < ey || ey == 0x7fff)
-		return m&1 ? -pio2_hi : pio2_hi;
-	/* z = atan(|y/x|) without spurious underflow */
-	if ((m&2) && ey+120 < ex)  /* |y/x| < 0x1p-120, x<0 */
-		z = 0.0;
-	else
-		z = atanl(fabsl(y/x));
-	switch (m) {
-	case 0: return z;               /* atan(+,+) */
-	case 1: return -z;              /* atan(-,+) */
-	case 2: return 2*pio2_hi-(z-2*pio2_lo); /* atan(+,-) */
-	default: /* case 3 */
-		return (z-2*pio2_lo)-2*pio2_hi; /* atan(-,-) */
-	}
+  if (isnan(x) || isnan(y))
+    return x + y;
+  if (x == 1)
+    return atanl(y);
+  ux.f = x;
+  uy.f = y;
+  ex = ux.i.se & 0x7fff;
+  ey = uy.i.se & 0x7fff;
+  m = 2 * (ux.i.se >> 15) | uy.i.se >> 15;
+  if (y == 0) {
+    switch (m) {
+      case 0:
+      case 1:
+        return y; /* atan(+-0,+anything)=+-0 */
+      case 2:
+        return 2 * pio2_hi; /* atan(+0,-anything) = pi */
+      case 3:
+        return -2 * pio2_hi; /* atan(-0,-anything) =-pi */
+    }
+  }
+  if (x == 0)
+    return m & 1 ? -pio2_hi : pio2_hi;
+  if (ex == 0x7fff) {
+    if (ey == 0x7fff) {
+      switch (m) {
+        case 0:
+          return pio2_hi / 2; /* atan(+INF,+INF) */
+        case 1:
+          return -pio2_hi / 2; /* atan(-INF,+INF) */
+        case 2:
+          return 1.5 * pio2_hi; /* atan(+INF,-INF) */
+        case 3:
+          return -1.5 * pio2_hi; /* atan(-INF,-INF) */
+      }
+    } else {
+      switch (m) {
+        case 0:
+          return 0.0; /* atan(+...,+INF) */
+        case 1:
+          return -0.0; /* atan(-...,+INF) */
+        case 2:
+          return 2 * pio2_hi; /* atan(+...,-INF) */
+        case 3:
+          return -2 * pio2_hi; /* atan(-...,-INF) */
+      }
+    }
+  }
+  if (ex + 120 < ey || ey == 0x7fff)
+    return m & 1 ? -pio2_hi : pio2_hi;
+  /* z = atan(|y/x|) without spurious underflow */
+  if ((m & 2) && ey + 120 < ex) /* |y/x| < 0x1p-120, x<0 */
+    z = 0.0;
+  else
+    z = atanl(fabsl(y / x));
+  switch (m) {
+    case 0:
+      return z; /* atan(+,+) */
+    case 1:
+      return -z; /* atan(-,+) */
+    case 2:
+      return 2 * pio2_hi - (z - 2 * pio2_lo); /* atan(+,-) */
+    default:                                  /* case 3 */
+      return (z - 2 * pio2_lo) - 2 * pio2_hi; /* atan(-,-) */
+  }
 }
 #endif
diff --git a/fusl/src/math/atanf.c b/fusl/src/math/atanf.c
index 178341b..a63fccc 100644
--- a/fusl/src/math/atanf.c
+++ b/fusl/src/math/atanf.c
@@ -13,82 +13,77 @@
  * ====================================================
  */
 
-
 #include "libm.h"
 
 static const float atanhi[] = {
-  4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
-  7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
-  9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
-  1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
+    4.6364760399e-01, /* atan(0.5)hi 0x3eed6338 */
+    7.8539812565e-01, /* atan(1.0)hi 0x3f490fda */
+    9.8279368877e-01, /* atan(1.5)hi 0x3f7b985e */
+    1.5707962513e+00, /* atan(inf)hi 0x3fc90fda */
 };
 
 static const float atanlo[] = {
-  5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
-  3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
-  3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
-  7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
+    5.0121582440e-09, /* atan(0.5)lo 0x31ac3769 */
+    3.7748947079e-08, /* atan(1.0)lo 0x33222168 */
+    3.4473217170e-08, /* atan(1.5)lo 0x33140fb4 */
+    7.5497894159e-08, /* atan(inf)lo 0x33a22168 */
 };
 
 static const float aT[] = {
-  3.3333328366e-01,
- -1.9999158382e-01,
-  1.4253635705e-01,
- -1.0648017377e-01,
-  6.1687607318e-02,
+    3.3333328366e-01,  -1.9999158382e-01, 1.4253635705e-01,
+    -1.0648017377e-01, 6.1687607318e-02,
 };
 
-float atanf(float x)
-{
-	float_t w,s1,s2,z;
-	uint32_t ix,sign;
-	int id;
+float atanf(float x) {
+  float_t w, s1, s2, z;
+  uint32_t ix, sign;
+  int id;
 
-	GET_FLOAT_WORD(ix, x);
-	sign = ix>>31;
-	ix &= 0x7fffffff;
-	if (ix >= 0x4c800000) {  /* if |x| >= 2**26 */
-		if (isnan(x))
-			return x;
-		z = atanhi[3] + 0x1p-120f;
-		return sign ? -z : z;
-	}
-	if (ix < 0x3ee00000) {   /* |x| < 0.4375 */
-		if (ix < 0x39800000) {  /* |x| < 2**-12 */
-			if (ix < 0x00800000)
-				/* raise underflow for subnormal x */
-				FORCE_EVAL(x*x);
-			return x;
-		}
-		id = -1;
-	} else {
-		x = fabsf(x);
-		if (ix < 0x3f980000) {  /* |x| < 1.1875 */
-			if (ix < 0x3f300000) {  /*  7/16 <= |x| < 11/16 */
-				id = 0;
-				x = (2.0f*x - 1.0f)/(2.0f + x);
-			} else {                /* 11/16 <= |x| < 19/16 */
-				id = 1;
-				x = (x - 1.0f)/(x + 1.0f);
-			}
-		} else {
-			if (ix < 0x401c0000) {  /* |x| < 2.4375 */
-				id = 2;
-				x = (x - 1.5f)/(1.0f + 1.5f*x);
-			} else {                /* 2.4375 <= |x| < 2**26 */
-				id = 3;
-				x = -1.0f/x;
-			}
-		}
-	}
-	/* end of argument reduction */
-	z = x*x;
-	w = z*z;
-	/* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
-	s1 = z*(aT[0]+w*(aT[2]+w*aT[4]));
-	s2 = w*(aT[1]+w*aT[3]);
-	if (id < 0)
-		return x - x*(s1+s2);
-	z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
-	return sign ? -z : z;
+  GET_FLOAT_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
+  if (ix >= 0x4c800000) { /* if |x| >= 2**26 */
+    if (isnan(x))
+      return x;
+    z = atanhi[3] + 0x1p-120f;
+    return sign ? -z : z;
+  }
+  if (ix < 0x3ee00000) {   /* |x| < 0.4375 */
+    if (ix < 0x39800000) { /* |x| < 2**-12 */
+      if (ix < 0x00800000)
+        /* raise underflow for subnormal x */
+        FORCE_EVAL(x * x);
+      return x;
+    }
+    id = -1;
+  } else {
+    x = fabsf(x);
+    if (ix < 0x3f980000) {   /* |x| < 1.1875 */
+      if (ix < 0x3f300000) { /*  7/16 <= |x| < 11/16 */
+        id = 0;
+        x = (2.0f * x - 1.0f) / (2.0f + x);
+      } else { /* 11/16 <= |x| < 19/16 */
+        id = 1;
+        x = (x - 1.0f) / (x + 1.0f);
+      }
+    } else {
+      if (ix < 0x401c0000) { /* |x| < 2.4375 */
+        id = 2;
+        x = (x - 1.5f) / (1.0f + 1.5f * x);
+      } else { /* 2.4375 <= |x| < 2**26 */
+        id = 3;
+        x = -1.0f / x;
+      }
+    }
+  }
+  /* end of argument reduction */
+  z = x * x;
+  w = z * z;
+  /* break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly */
+  s1 = z * (aT[0] + w * (aT[2] + w * aT[4]));
+  s2 = w * (aT[1] + w * aT[3]);
+  if (id < 0)
+    return x - x * (s1 + s2);
+  z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x);
+  return sign ? -z : z;
 }
diff --git a/fusl/src/math/atanh.c b/fusl/src/math/atanh.c
index 63a035d..291cf15 100644
--- a/fusl/src/math/atanh.c
+++ b/fusl/src/math/atanh.c
@@ -1,29 +1,31 @@
 #include "libm.h"
 
 /* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
-double atanh(double x)
-{
-	union {double f; uint64_t i;} u = {.f = x};
-	unsigned e = u.i >> 52 & 0x7ff;
-	unsigned s = u.i >> 63;
-	double_t y;
+double atanh(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {.f = x};
+  unsigned e = u.i >> 52 & 0x7ff;
+  unsigned s = u.i >> 63;
+  double_t y;
 
-	/* |x| */
-	u.i &= (uint64_t)-1/2;
-	y = u.f;
+  /* |x| */
+  u.i &= (uint64_t)-1 / 2;
+  y = u.f;
 
-	if (e < 0x3ff - 1) {
-		if (e < 0x3ff - 32) {
-			/* handle underflow */
-			if (e == 0)
-				FORCE_EVAL((float)y);
-		} else {
-			/* |x| < 0.5, up to 1.7ulp error */
-			y = 0.5*log1p(2*y + 2*y*y/(1-y));
-		}
-	} else {
-		/* avoid overflow */
-		y = 0.5*log1p(2*(y/(1-y)));
-	}
-	return s ? -y : y;
+  if (e < 0x3ff - 1) {
+    if (e < 0x3ff - 32) {
+      /* handle underflow */
+      if (e == 0)
+        FORCE_EVAL((float)y);
+    } else {
+      /* |x| < 0.5, up to 1.7ulp error */
+      y = 0.5 * log1p(2 * y + 2 * y * y / (1 - y));
+    }
+  } else {
+    /* avoid overflow */
+    y = 0.5 * log1p(2 * (y / (1 - y)));
+  }
+  return s ? -y : y;
 }
diff --git a/fusl/src/math/atanhf.c b/fusl/src/math/atanhf.c
index 65f07c0..346be6b 100644
--- a/fusl/src/math/atanhf.c
+++ b/fusl/src/math/atanhf.c
@@ -1,28 +1,30 @@
 #include "libm.h"
 
 /* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
-float atanhf(float x)
-{
-	union {float f; uint32_t i;} u = {.f = x};
-	unsigned s = u.i >> 31;
-	float_t y;
+float atanhf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {.f = x};
+  unsigned s = u.i >> 31;
+  float_t y;
 
-	/* |x| */
-	u.i &= 0x7fffffff;
-	y = u.f;
+  /* |x| */
+  u.i &= 0x7fffffff;
+  y = u.f;
 
-	if (u.i < 0x3f800000 - (1<<23)) {
-		if (u.i < 0x3f800000 - (32<<23)) {
-			/* handle underflow */
-			if (u.i < (1<<23))
-				FORCE_EVAL((float)(y*y));
-		} else {
-			/* |x| < 0.5, up to 1.7ulp error */
-			y = 0.5f*log1pf(2*y + 2*y*y/(1-y));
-		}
-	} else {
-		/* avoid overflow */
-		y = 0.5f*log1pf(2*(y/(1-y)));
-	}
-	return s ? -y : y;
+  if (u.i < 0x3f800000 - (1 << 23)) {
+    if (u.i < 0x3f800000 - (32 << 23)) {
+      /* handle underflow */
+      if (u.i < (1 << 23))
+        FORCE_EVAL((float)(y * y));
+    } else {
+      /* |x| < 0.5, up to 1.7ulp error */
+      y = 0.5f * log1pf(2 * y + 2 * y * y / (1 - y));
+    }
+  } else {
+    /* avoid overflow */
+    y = 0.5f * log1pf(2 * (y / (1 - y)));
+  }
+  return s ? -y : y;
 }
diff --git a/fusl/src/math/atanhl.c b/fusl/src/math/atanhl.c
index 87cd1cd..4c6db53 100644
--- a/fusl/src/math/atanhl.c
+++ b/fusl/src/math/atanhl.c
@@ -1,35 +1,33 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double atanhl(long double x)
-{
-	return atanh(x);
+long double atanhl(long double x) {
+  return atanh(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 /* atanh(x) = log((1+x)/(1-x))/2 = log1p(2x/(1-x))/2 ~= x + x^3/3 + o(x^5) */
-long double atanhl(long double x)
-{
-	union ldshape u = {x};
-	unsigned e = u.i.se & 0x7fff;
-	unsigned s = u.i.se >> 15;
+long double atanhl(long double x) {
+  union ldshape u = {x};
+  unsigned e = u.i.se & 0x7fff;
+  unsigned s = u.i.se >> 15;
 
-	/* |x| */
-	u.i.se = e;
-	x = u.f;
+  /* |x| */
+  u.i.se = e;
+  x = u.f;
 
-	if (e < 0x3ff - 1) {
-		if (e < 0x3ff - LDBL_MANT_DIG/2) {
-			/* handle underflow */
-			if (e == 0)
-				FORCE_EVAL((float)x);
-		} else {
-			/* |x| < 0.5, up to 1.7ulp error */
-			x = 0.5*log1pl(2*x + 2*x*x/(1-x));
-		}
-	} else {
-		/* avoid overflow */
-		x = 0.5*log1pl(2*(x/(1-x)));
-	}
-	return s ? -x : x;
+  if (e < 0x3ff - 1) {
+    if (e < 0x3ff - LDBL_MANT_DIG / 2) {
+      /* handle underflow */
+      if (e == 0)
+        FORCE_EVAL((float)x);
+    } else {
+      /* |x| < 0.5, up to 1.7ulp error */
+      x = 0.5 * log1pl(2 * x + 2 * x * x / (1 - x));
+    }
+  } else {
+    /* avoid overflow */
+    x = 0.5 * log1pl(2 * (x / (1 - x)));
+  }
+  return s ? -x : x;
 }
 #endif
diff --git a/fusl/src/math/atanl.c b/fusl/src/math/atanl.c
index 79a3edb..cefd937 100644
--- a/fusl/src/math/atanl.c
+++ b/fusl/src/math/atanl.c
@@ -17,168 +17,175 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double atanl(long double x)
-{
-	return atan(x);
+long double atanl(long double x) {
+  return atan(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 
 #if LDBL_MANT_DIG == 64
-#define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | (u.i.m>>55 & 0xff))
+#define EXPMAN(u) ((u.i.se & 0x7fff) << 8 | (u.i.m >> 55 & 0xff))
 
 static const long double atanhi[] = {
-	 4.63647609000806116202e-01L,
-	 7.85398163397448309628e-01L,
-	 9.82793723247329067960e-01L,
-	 1.57079632679489661926e+00L,
+    4.63647609000806116202e-01L, 7.85398163397448309628e-01L,
+    9.82793723247329067960e-01L, 1.57079632679489661926e+00L,
 };
 
 static const long double atanlo[] = {
-	 1.18469937025062860669e-20L,
-	-1.25413940316708300586e-20L,
-	 2.55232234165405176172e-20L,
-	-2.50827880633416601173e-20L,
+    1.18469937025062860669e-20L, -1.25413940316708300586e-20L,
+    2.55232234165405176172e-20L, -2.50827880633416601173e-20L,
 };
 
 static const long double aT[] = {
-	 3.33333333333333333017e-01L,
-	-1.99999999999999632011e-01L,
-	 1.42857142857046531280e-01L,
-	-1.11111111100562372733e-01L,
-	 9.09090902935647302252e-02L,
-	-7.69230552476207730353e-02L,
-	 6.66661718042406260546e-02L,
-	-5.88158892835030888692e-02L,
-	 5.25499891539726639379e-02L,
-	-4.70119845393155721494e-02L,
-	 4.03539201366454414072e-02L,
-	-2.91303858419364158725e-02L,
-	 1.24822046299269234080e-02L,
+    3.33333333333333333017e-01L, -1.99999999999999632011e-01L,
+    1.42857142857046531280e-01L, -1.11111111100562372733e-01L,
+    9.09090902935647302252e-02L, -7.69230552476207730353e-02L,
+    6.66661718042406260546e-02L, -5.88158892835030888692e-02L,
+    5.25499891539726639379e-02L, -4.70119845393155721494e-02L,
+    4.03539201366454414072e-02L, -2.91303858419364158725e-02L,
+    1.24822046299269234080e-02L,
 };
 
-static long double T_even(long double x)
-{
-	return aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] +
-		x * (aT[8] + x * (aT[10] + x * aT[12])))));
+static long double T_even(long double x) {
+  return aT[0] +
+         x * (aT[2] +
+              x * (aT[4] +
+                   x * (aT[6] + x * (aT[8] + x * (aT[10] + x * aT[12])))));
 }
 
-static long double T_odd(long double x)
-{
-	return aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] +
-		x * (aT[9] + x * aT[11]))));
+static long double T_odd(long double x) {
+  return aT[1] +
+         x * (aT[3] + x * (aT[5] + x * (aT[7] + x * (aT[9] + x * aT[11]))));
 }
 #elif LDBL_MANT_DIG == 113
-#define EXPMAN(u) ((u.i.se & 0x7fff)<<8 | u.i.top>>8)
+#define EXPMAN(u) ((u.i.se & 0x7fff) << 8 | u.i.top >> 8)
 
 const long double atanhi[] = {
-	 4.63647609000806116214256231461214397e-01L,
-	 7.85398163397448309615660845819875699e-01L,
-	 9.82793723247329067985710611014666038e-01L,
-	 1.57079632679489661923132169163975140e+00L,
+    4.63647609000806116214256231461214397e-01L,
+    7.85398163397448309615660845819875699e-01L,
+    9.82793723247329067985710611014666038e-01L,
+    1.57079632679489661923132169163975140e+00L,
 };
 
 const long double atanlo[] = {
-	 4.89509642257333492668618435220297706e-36L,
-	 2.16795253253094525619926100651083806e-35L,
-	-2.31288434538183565909319952098066272e-35L,
-	 4.33590506506189051239852201302167613e-35L,
+    4.89509642257333492668618435220297706e-36L,
+    2.16795253253094525619926100651083806e-35L,
+    -2.31288434538183565909319952098066272e-35L,
+    4.33590506506189051239852201302167613e-35L,
 };
 
 const long double aT[] = {
-	 3.33333333333333333333333333333333125e-01L,
-	-1.99999999999999999999999999999180430e-01L,
-	 1.42857142857142857142857142125269827e-01L,
-	-1.11111111111111111111110834490810169e-01L,
-	 9.09090909090909090908522355708623681e-02L,
-	-7.69230769230769230696553844935357021e-02L,
-	 6.66666666666666660390096773046256096e-02L,
-	-5.88235294117646671706582985209643694e-02L,
-	 5.26315789473666478515847092020327506e-02L,
-	-4.76190476189855517021024424991436144e-02L,
-	 4.34782608678695085948531993458097026e-02L,
-	-3.99999999632663469330634215991142368e-02L,
-	 3.70370363987423702891250829918659723e-02L,
-	-3.44827496515048090726669907612335954e-02L,
-	 3.22579620681420149871973710852268528e-02L,
-	-3.03020767654269261041647570626778067e-02L,
-	 2.85641979882534783223403715930946138e-02L,
-	-2.69824879726738568189929461383741323e-02L,
-	 2.54194698498808542954187110873675769e-02L,
-	-2.35083879708189059926183138130183215e-02L,
-	 2.04832358998165364349957325067131428e-02L,
-	-1.54489555488544397858507248612362957e-02L,
-	 8.64492360989278761493037861575248038e-03L,
-	-2.58521121597609872727919154569765469e-03L,
+    3.33333333333333333333333333333333125e-01L,
+    -1.99999999999999999999999999999180430e-01L,
+    1.42857142857142857142857142125269827e-01L,
+    -1.11111111111111111111110834490810169e-01L,
+    9.09090909090909090908522355708623681e-02L,
+    -7.69230769230769230696553844935357021e-02L,
+    6.66666666666666660390096773046256096e-02L,
+    -5.88235294117646671706582985209643694e-02L,
+    5.26315789473666478515847092020327506e-02L,
+    -4.76190476189855517021024424991436144e-02L,
+    4.34782608678695085948531993458097026e-02L,
+    -3.99999999632663469330634215991142368e-02L,
+    3.70370363987423702891250829918659723e-02L,
+    -3.44827496515048090726669907612335954e-02L,
+    3.22579620681420149871973710852268528e-02L,
+    -3.03020767654269261041647570626778067e-02L,
+    2.85641979882534783223403715930946138e-02L,
+    -2.69824879726738568189929461383741323e-02L,
+    2.54194698498808542954187110873675769e-02L,
+    -2.35083879708189059926183138130183215e-02L,
+    2.04832358998165364349957325067131428e-02L,
+    -1.54489555488544397858507248612362957e-02L,
+    8.64492360989278761493037861575248038e-03L,
+    -2.58521121597609872727919154569765469e-03L,
 };
 
-static long double T_even(long double x)
-{
-	return (aT[0] + x * (aT[2] + x * (aT[4] + x * (aT[6] + x * (aT[8] +
-		x * (aT[10] + x * (aT[12] + x * (aT[14] + x * (aT[16] +
-		x * (aT[18] + x * (aT[20] + x * aT[22])))))))))));
+static long double T_even(long double x) {
+  return (
+      aT[0] +
+      x * (aT[2] +
+           x * (aT[4] +
+                x * (aT[6] +
+                     x * (aT[8] +
+                          x * (aT[10] +
+                               x * (aT[12] +
+                                    x * (aT[14] +
+                                         x * (aT[16] +
+                                              x * (aT[18] +
+                                                   x * (aT[20] +
+                                                        x * aT[22])))))))))));
 }
 
-static long double T_odd(long double x)
-{
-	return (aT[1] + x * (aT[3] + x * (aT[5] + x * (aT[7] + x * (aT[9] +
-		x * (aT[11] + x * (aT[13] + x * (aT[15] + x * (aT[17] +
-		x * (aT[19] + x * (aT[21] + x * aT[23])))))))))));
+static long double T_odd(long double x) {
+  return (
+      aT[1] +
+      x * (aT[3] +
+           x * (aT[5] +
+                x * (aT[7] +
+                     x * (aT[9] +
+                          x * (aT[11] +
+                               x * (aT[13] +
+                                    x * (aT[15] +
+                                         x * (aT[17] +
+                                              x * (aT[19] +
+                                                   x * (aT[21] +
+                                                        x * aT[23])))))))))));
 }
 #endif
 
-long double atanl(long double x)
-{
-	union ldshape u = {x};
-	long double w, s1, s2, z;
-	int id;
-	unsigned e = u.i.se & 0x7fff;
-	unsigned sign = u.i.se >> 15;
-	unsigned expman;
+long double atanl(long double x) {
+  union ldshape u = {x};
+  long double w, s1, s2, z;
+  int id;
+  unsigned e = u.i.se & 0x7fff;
+  unsigned sign = u.i.se >> 15;
+  unsigned expman;
 
-	if (e >= 0x3fff + LDBL_MANT_DIG + 1) { /* if |x| is large, atan(x)~=pi/2 */
-		if (isnan(x))
-			return x;
-		return sign ? -atanhi[3] : atanhi[3];
-	}
-	/* Extract the exponent and the first few bits of the mantissa. */
-	expman = EXPMAN(u);
-	if (expman < ((0x3fff - 2) << 8) + 0xc0) {  /* |x| < 0.4375 */
-		if (e < 0x3fff - (LDBL_MANT_DIG+1)/2) {   /* if |x| is small, atanl(x)~=x */
-			/* raise underflow if subnormal */
-			if (e == 0)
-				FORCE_EVAL((float)x);
-			return x;
-		}
-		id = -1;
-	} else {
-		x = fabsl(x);
-		if (expman < (0x3fff << 8) + 0x30) {  /* |x| < 1.1875 */
-			if (expman < ((0x3fff - 1) << 8) + 0x60) { /*  7/16 <= |x| < 11/16 */
-				id = 0;
-				x = (2.0*x-1.0)/(2.0+x);
-			} else {                                 /* 11/16 <= |x| < 19/16 */
-				id = 1;
-				x = (x-1.0)/(x+1.0);
-			}
-		} else {
-			if (expman < ((0x3fff + 1) << 8) + 0x38) { /* |x| < 2.4375 */
-				id = 2;
-				x = (x-1.5)/(1.0+1.5*x);
-			} else {                                 /* 2.4375 <= |x| */
-				id = 3;
-				x = -1.0/x;
-			}
-		}
-	}
-	/* end of argument reduction */
-	z = x*x;
-	w = z*z;
-	/* break sum aT[i]z**(i+1) into odd and even poly */
-	s1 = z*T_even(w);
-	s2 = w*T_odd(w);
-	if (id < 0)
-		return x - x*(s1+s2);
-	z = atanhi[id] - ((x*(s1+s2) - atanlo[id]) - x);
-	return sign ? -z : z;
+  if (e >= 0x3fff + LDBL_MANT_DIG + 1) { /* if |x| is large, atan(x)~=pi/2 */
+    if (isnan(x))
+      return x;
+    return sign ? -atanhi[3] : atanhi[3];
+  }
+  /* Extract the exponent and the first few bits of the mantissa. */
+  expman = EXPMAN(u);
+  if (expman < ((0x3fff - 2) << 8) + 0xc0) { /* |x| < 0.4375 */
+    if (e <
+        0x3fff - (LDBL_MANT_DIG + 1) / 2) { /* if |x| is small, atanl(x)~=x */
+      /* raise underflow if subnormal */
+      if (e == 0)
+        FORCE_EVAL((float)x);
+      return x;
+    }
+    id = -1;
+  } else {
+    x = fabsl(x);
+    if (expman < (0x3fff << 8) + 0x30) {         /* |x| < 1.1875 */
+      if (expman < ((0x3fff - 1) << 8) + 0x60) { /*  7/16 <= |x| < 11/16 */
+        id = 0;
+        x = (2.0 * x - 1.0) / (2.0 + x);
+      } else { /* 11/16 <= |x| < 19/16 */
+        id = 1;
+        x = (x - 1.0) / (x + 1.0);
+      }
+    } else {
+      if (expman < ((0x3fff + 1) << 8) + 0x38) { /* |x| < 2.4375 */
+        id = 2;
+        x = (x - 1.5) / (1.0 + 1.5 * x);
+      } else { /* 2.4375 <= |x| */
+        id = 3;
+        x = -1.0 / x;
+      }
+    }
+  }
+  /* end of argument reduction */
+  z = x * x;
+  w = z * z;
+  /* break sum aT[i]z**(i+1) into odd and even poly */
+  s1 = z * T_even(w);
+  s2 = w * T_odd(w);
+  if (id < 0)
+    return x - x * (s1 + s2);
+  z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x);
+  return sign ? -z : z;
 }
 #endif
diff --git a/fusl/src/math/cbrt.c b/fusl/src/math/cbrt.c
index 7599d3e..d6879df 100644
--- a/fusl/src/math/cbrt.c
+++ b/fusl/src/math/cbrt.c
@@ -19,85 +19,86 @@
 #include <stdint.h>
 
 static const uint32_t
-B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
-B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
+    B1 = 715094163, /* B1 = (1023-1023/3-0.03306235651)*2**20 */
+    B2 = 696219795; /* B2 = (1023-1023/3-54/3-0.03306235651)*2**20 */
 
 /* |1/cbrt(x) - p(x)| < 2**-23.5 (~[-7.93e-8, 7.929e-8]). */
-static const double
-P0 =  1.87595182427177009643,  /* 0x3ffe03e6, 0x0f61e692 */
-P1 = -1.88497979543377169875,  /* 0xbffe28e0, 0x92f02420 */
-P2 =  1.621429720105354466140, /* 0x3ff9f160, 0x4a49d6c2 */
-P3 = -0.758397934778766047437, /* 0xbfe844cb, 0xbee751d9 */
-P4 =  0.145996192886612446982; /* 0x3fc2b000, 0xd4e4edd7 */
+static const double P0 = 1.87595182427177009643, /* 0x3ffe03e6, 0x0f61e692 */
+    P1 = -1.88497979543377169875,                /* 0xbffe28e0, 0x92f02420 */
+    P2 = 1.621429720105354466140,                /* 0x3ff9f160, 0x4a49d6c2 */
+    P3 = -0.758397934778766047437,               /* 0xbfe844cb, 0xbee751d9 */
+    P4 = 0.145996192886612446982;                /* 0x3fc2b000, 0xd4e4edd7 */
 
-double cbrt(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	double_t r,s,t,w;
-	uint32_t hx = u.i>>32 & 0x7fffffff;
+double cbrt(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  double_t r, s, t, w;
+  uint32_t hx = u.i >> 32 & 0x7fffffff;
 
-	if (hx >= 0x7ff00000)  /* cbrt(NaN,INF) is itself */
-		return x+x;
+  if (hx >= 0x7ff00000) /* cbrt(NaN,INF) is itself */
+    return x + x;
 
-	/*
-	 * Rough cbrt to 5 bits:
-	 *    cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
-	 * where e is integral and >= 0, m is real and in [0, 1), and "/" and
-	 * "%" are integer division and modulus with rounding towards minus
-	 * infinity.  The RHS is always >= the LHS and has a maximum relative
-	 * error of about 1 in 16.  Adding a bias of -0.03306235651 to the
-	 * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
-	 * floating point representation, for finite positive normal values,
-	 * ordinary integer divison of the value in bits magically gives
-	 * almost exactly the RHS of the above provided we first subtract the
-	 * exponent bias (1023 for doubles) and later add it back.  We do the
-	 * subtraction virtually to keep e >= 0 so that ordinary integer
-	 * division rounds towards minus infinity; this is also efficient.
-	 */
-	if (hx < 0x00100000) { /* zero or subnormal? */
-		u.f = x*0x1p54;
-		hx = u.i>>32 & 0x7fffffff;
-		if (hx == 0)
-			return x;  /* cbrt(0) is itself */
-		hx = hx/3 + B2;
-	} else
-		hx = hx/3 + B1;
-	u.i &= 1ULL<<63;
-	u.i |= (uint64_t)hx << 32;
-	t = u.f;
+  /*
+   * Rough cbrt to 5 bits:
+   *    cbrt(2**e*(1+m) ~= 2**(e/3)*(1+(e%3+m)/3)
+   * where e is integral and >= 0, m is real and in [0, 1), and "/" and
+   * "%" are integer division and modulus with rounding towards minus
+   * infinity.  The RHS is always >= the LHS and has a maximum relative
+   * error of about 1 in 16.  Adding a bias of -0.03306235651 to the
+   * (e%3+m)/3 term reduces the error to about 1 in 32. With the IEEE
+   * floating point representation, for finite positive normal values,
+   * ordinary integer divison of the value in bits magically gives
+   * almost exactly the RHS of the above provided we first subtract the
+   * exponent bias (1023 for doubles) and later add it back.  We do the
+   * subtraction virtually to keep e >= 0 so that ordinary integer
+   * division rounds towards minus infinity; this is also efficient.
+   */
+  if (hx < 0x00100000) { /* zero or subnormal? */
+    u.f = x * 0x1p54;
+    hx = u.i >> 32 & 0x7fffffff;
+    if (hx == 0)
+      return x; /* cbrt(0) is itself */
+    hx = hx / 3 + B2;
+  } else
+    hx = hx / 3 + B1;
+  u.i &= 1ULL << 63;
+  u.i |= (uint64_t)hx << 32;
+  t = u.f;
 
-	/*
-	 * New cbrt to 23 bits:
-	 *    cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
-	 * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
-	 * to within 2**-23.5 when |r - 1| < 1/10.  The rough approximation
-	 * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
-	 * gives us bounds for r = t**3/x.
-	 *
-	 * Try to optimize for parallel evaluation as in __tanf.c.
-	 */
-	r = (t*t)*(t/x);
-	t = t*((P0+r*(P1+r*P2))+((r*r)*r)*(P3+r*P4));
+  /*
+   * New cbrt to 23 bits:
+   *    cbrt(x) = t*cbrt(x/t**3) ~= t*P(t**3/x)
+   * where P(r) is a polynomial of degree 4 that approximates 1/cbrt(r)
+   * to within 2**-23.5 when |r - 1| < 1/10.  The rough approximation
+   * has produced t such than |t/cbrt(x) - 1| ~< 1/32, and cubing this
+   * gives us bounds for r = t**3/x.
+   *
+   * Try to optimize for parallel evaluation as in __tanf.c.
+   */
+  r = (t * t) * (t / x);
+  t = t * ((P0 + r * (P1 + r * P2)) + ((r * r) * r) * (P3 + r * P4));
 
-	/*
-	 * Round t away from zero to 23 bits (sloppily except for ensuring that
-	 * the result is larger in magnitude than cbrt(x) but not much more than
-	 * 2 23-bit ulps larger).  With rounding towards zero, the error bound
-	 * would be ~5/6 instead of ~4/6.  With a maximum error of 2 23-bit ulps
-	 * in the rounded t, the infinite-precision error in the Newton
-	 * approximation barely affects third digit in the final error
-	 * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
-	 * before the final error is larger than 0.667 ulps.
-	 */
-	u.f = t;
-	u.i = (u.i + 0x80000000) & 0xffffffffc0000000ULL;
-	t = u.f;
+  /*
+   * Round t away from zero to 23 bits (sloppily except for ensuring that
+   * the result is larger in magnitude than cbrt(x) but not much more than
+   * 2 23-bit ulps larger).  With rounding towards zero, the error bound
+   * would be ~5/6 instead of ~4/6.  With a maximum error of 2 23-bit ulps
+   * in the rounded t, the infinite-precision error in the Newton
+   * approximation barely affects third digit in the final error
+   * 0.667; the error in the rounded t can be up to about 3 23-bit ulps
+   * before the final error is larger than 0.667 ulps.
+   */
+  u.f = t;
+  u.i = (u.i + 0x80000000) & 0xffffffffc0000000ULL;
+  t = u.f;
 
-	/* one step Newton iteration to 53 bits with error < 0.667 ulps */
-	s = t*t;         /* t*t is exact */
-	r = x/s;         /* error <= 0.5 ulps; |r| < |t| */
-	w = t+t;         /* t+t is exact */
-	r = (r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
-	t = t+t*r;       /* error <= 0.5 + 0.5/3 + epsilon */
-	return t;
+  /* one step Newton iteration to 53 bits with error < 0.667 ulps */
+  s = t * t;             /* t*t is exact */
+  r = x / s;             /* error <= 0.5 ulps; |r| < |t| */
+  w = t + t;             /* t+t is exact */
+  r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */
+  t = t + t * r;         /* error <= 0.5 + 0.5/3 + epsilon */
+  return t;
 }
diff --git a/fusl/src/math/cbrtf.c b/fusl/src/math/cbrtf.c
index 89c2c86..f86b1b5 100644
--- a/fusl/src/math/cbrtf.c
+++ b/fusl/src/math/cbrtf.c
@@ -21,46 +21,48 @@
 #include <stdint.h>
 
 static const unsigned
-B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */
-B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
+    B1 = 709958130, /* B1 = (127-127.0/3-0.03306235651)*2**23 */
+    B2 = 642849266; /* B2 = (127-127.0/3-24/3-0.03306235651)*2**23 */
 
-float cbrtf(float x)
-{
-	double_t r,T;
-	union {float f; uint32_t i;} u = {x};
-	uint32_t hx = u.i & 0x7fffffff;
+float cbrtf(float x) {
+  double_t r, T;
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  uint32_t hx = u.i & 0x7fffffff;
 
-	if (hx >= 0x7f800000)  /* cbrt(NaN,INF) is itself */
-		return x + x;
+  if (hx >= 0x7f800000) /* cbrt(NaN,INF) is itself */
+    return x + x;
 
-	/* rough cbrt to 5 bits */
-	if (hx < 0x00800000) {  /* zero or subnormal? */
-		if (hx == 0)
-			return x;  /* cbrt(+-0) is itself */
-		u.f = x*0x1p24f;
-		hx = u.i & 0x7fffffff;
-		hx = hx/3 + B2;
-	} else
-		hx = hx/3 + B1;
-	u.i &= 0x80000000;
-	u.i |= hx;
+  /* rough cbrt to 5 bits */
+  if (hx < 0x00800000) { /* zero or subnormal? */
+    if (hx == 0)
+      return x; /* cbrt(+-0) is itself */
+    u.f = x * 0x1p24f;
+    hx = u.i & 0x7fffffff;
+    hx = hx / 3 + B2;
+  } else
+    hx = hx / 3 + B1;
+  u.i &= 0x80000000;
+  u.i |= hx;
 
-	/*
-	 * First step Newton iteration (solving t*t-x/t == 0) to 16 bits.  In
-	 * double precision so that its terms can be arranged for efficiency
-	 * without causing overflow or underflow.
-	 */
-	T = u.f;
-	r = T*T*T;
-	T = T*((double_t)x+x+r)/(x+r+r);
+  /*
+   * First step Newton iteration (solving t*t-x/t == 0) to 16 bits.  In
+   * double precision so that its terms can be arranged for efficiency
+   * without causing overflow or underflow.
+   */
+  T = u.f;
+  r = T * T * T;
+  T = T * ((double_t)x + x + r) / (x + r + r);
 
-	/*
-	 * Second step Newton iteration to 47 bits.  In double precision for
-	 * efficiency and accuracy.
-	 */
-	r = T*T*T;
-	T = T*((double_t)x+x+r)/(x+r+r);
+  /*
+   * Second step Newton iteration to 47 bits.  In double precision for
+   * efficiency and accuracy.
+   */
+  r = T * T * T;
+  T = T * ((double_t)x + x + r) / (x + r + r);
 
-	/* rounding to 24 bits is perfect in round-to-nearest mode */
-	return T;
+  /* rounding to 24 bits is perfect in round-to-nearest mode */
+  return T;
 }
diff --git a/fusl/src/math/cbrtl.c b/fusl/src/math/cbrtl.c
index ceff913..525f4ed 100644
--- a/fusl/src/math/cbrtl.c
+++ b/fusl/src/math/cbrtl.c
@@ -18,107 +18,109 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double cbrtl(long double x)
-{
-	return cbrt(x);
+long double cbrtl(long double x) {
+  return cbrt(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-static const unsigned B1 = 709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
+static const unsigned B1 =
+    709958130; /* B1 = (127-127.0/3-0.03306235651)*2**23 */
 
-long double cbrtl(long double x)
-{
-	union ldshape u = {x}, v;
-	union {float f; uint32_t i;} uft;
-	long double r, s, t, w;
-	double_t dr, dt, dx;
-	float_t ft;
-	int e = u.i.se & 0x7fff;
-	int sign = u.i.se & 0x8000;
+long double cbrtl(long double x) {
+  union ldshape u = {x}, v;
+  union {
+    float f;
+    uint32_t i;
+  } uft;
+  long double r, s, t, w;
+  double_t dr, dt, dx;
+  float_t ft;
+  int e = u.i.se & 0x7fff;
+  int sign = u.i.se & 0x8000;
 
-	/*
-	 * If x = +-Inf, then cbrt(x) = +-Inf.
-	 * If x = NaN, then cbrt(x) = NaN.
-	 */
-	if (e == 0x7fff)
-		return x + x;
-	if (e == 0) {
-		/* Adjust subnormal numbers. */
-		u.f *= 0x1p120;
-		e = u.i.se & 0x7fff;
-		/* If x = +-0, then cbrt(x) = +-0. */
-		if (e == 0)
-			return x;
-		e -= 120;
-	}
-	e -= 0x3fff;
-	u.i.se = 0x3fff;
-	x = u.f;
-	switch (e % 3) {
-	case 1:
-	case -2:
-		x *= 2;
-		e--;
-		break;
-	case 2:
-	case -1:
-		x *= 4;
-		e -= 2;
-		break;
-	}
-	v.f = 1.0;
-	v.i.se = sign | (0x3fff + e/3);
+  /*
+   * If x = +-Inf, then cbrt(x) = +-Inf.
+   * If x = NaN, then cbrt(x) = NaN.
+   */
+  if (e == 0x7fff)
+    return x + x;
+  if (e == 0) {
+    /* Adjust subnormal numbers. */
+    u.f *= 0x1p120;
+    e = u.i.se & 0x7fff;
+    /* If x = +-0, then cbrt(x) = +-0. */
+    if (e == 0)
+      return x;
+    e -= 120;
+  }
+  e -= 0x3fff;
+  u.i.se = 0x3fff;
+  x = u.f;
+  switch (e % 3) {
+    case 1:
+    case -2:
+      x *= 2;
+      e--;
+      break;
+    case 2:
+    case -1:
+      x *= 4;
+      e -= 2;
+      break;
+  }
+  v.f = 1.0;
+  v.i.se = sign | (0x3fff + e / 3);
 
-	/*
-	 * The following is the guts of s_cbrtf, with the handling of
-	 * special values removed and extra care for accuracy not taken,
-	 * but with most of the extra accuracy not discarded.
-	 */
+  /*
+   * The following is the guts of s_cbrtf, with the handling of
+   * special values removed and extra care for accuracy not taken,
+   * but with most of the extra accuracy not discarded.
+   */
 
-	/* ~5-bit estimate: */
-	uft.f = x;
-	uft.i = (uft.i & 0x7fffffff)/3 + B1;
-	ft = uft.f;
+  /* ~5-bit estimate: */
+  uft.f = x;
+  uft.i = (uft.i & 0x7fffffff) / 3 + B1;
+  ft = uft.f;
 
-	/* ~16-bit estimate: */
-	dx = x;
-	dt = ft;
-	dr = dt * dt * dt;
-	dt = dt * (dx + dx + dr) / (dx + dr + dr);
+  /* ~16-bit estimate: */
+  dx = x;
+  dt = ft;
+  dr = dt * dt * dt;
+  dt = dt * (dx + dx + dr) / (dx + dr + dr);
 
-	/* ~47-bit estimate: */
-	dr = dt * dt * dt;
-	dt = dt * (dx + dx + dr) / (dx + dr + dr);
+  /* ~47-bit estimate: */
+  dr = dt * dt * dt;
+  dt = dt * (dx + dx + dr) / (dx + dr + dr);
 
 #if LDBL_MANT_DIG == 64
-	/*
-	 * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8).
-	 * Round it away from zero to 32 bits (32 so that t*t is exact, and
-	 * away from zero for technical reasons).
-	 */
-	t = dt + (0x1.0p32L + 0x1.0p-31L) - 0x1.0p32;
+  /*
+   * dt is cbrtl(x) to ~47 bits (after x has been reduced to 1 <= x < 8).
+   * Round it away from zero to 32 bits (32 so that t*t is exact, and
+   * away from zero for technical reasons).
+   */
+  t = dt + (0x1.0p32L + 0x1.0p-31L) - 0x1.0p32;
 #elif LDBL_MANT_DIG == 113
-	/*
-	 * Round dt away from zero to 47 bits.  Since we don't trust the 47,
-	 * add 2 47-bit ulps instead of 1 to round up.  Rounding is slow and
-	 * might be avoidable in this case, since on most machines dt will
-	 * have been evaluated in 53-bit precision and the technical reasons
-	 * for rounding up might not apply to either case in cbrtl() since
-	 * dt is much more accurate than needed.
-	 */
-	t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60;
+  /*
+   * Round dt away from zero to 47 bits.  Since we don't trust the 47,
+   * add 2 47-bit ulps instead of 1 to round up.  Rounding is slow and
+   * might be avoidable in this case, since on most machines dt will
+   * have been evaluated in 53-bit precision and the technical reasons
+   * for rounding up might not apply to either case in cbrtl() since
+   * dt is much more accurate than needed.
+   */
+  t = dt + 0x2.0p-46 + 0x1.0p60L - 0x1.0p60;
 #endif
 
-	/*
-	 * Final step Newton iteration to 64 or 113 bits with
-	 * error < 0.667 ulps
-	 */
-	s = t*t;         /* t*t is exact */
-	r = x/s;         /* error <= 0.5 ulps; |r| < |t| */
-	w = t+t;         /* t+t is exact */
-	r = (r-t)/(w+r); /* r-t is exact; w+r ~= 3*t */
-	t = t+t*r;       /* error <= 0.5 + 0.5/3 + epsilon */
+  /*
+   * Final step Newton iteration to 64 or 113 bits with
+   * error < 0.667 ulps
+   */
+  s = t * t;             /* t*t is exact */
+  r = x / s;             /* error <= 0.5 ulps; |r| < |t| */
+  w = t + t;             /* t+t is exact */
+  r = (r - t) / (w + r); /* r-t is exact; w+r ~= 3*t */
+  t = t + t * r;         /* error <= 0.5 + 0.5/3 + epsilon */
 
-	t *= v.f;
-	return t;
+  t *= v.f;
+  return t;
 }
 #endif
diff --git a/fusl/src/math/ceil.c b/fusl/src/math/ceil.c
index b13e6f2..4c6ca5e 100644
--- a/fusl/src/math/ceil.c
+++ b/fusl/src/math/ceil.c
@@ -1,31 +1,33 @@
 #include "libm.h"
 
-#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#if FLT_EVAL_METHOD == 0 || FLT_EVAL_METHOD == 1
 #define EPS DBL_EPSILON
-#elif FLT_EVAL_METHOD==2
+#elif FLT_EVAL_METHOD == 2
 #define EPS LDBL_EPSILON
 #endif
-static const double_t toint = 1/EPS;
+static const double_t toint = 1 / EPS;
 
-double ceil(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	int e = u.i >> 52 & 0x7ff;
-	double_t y;
+double ceil(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  int e = u.i >> 52 & 0x7ff;
+  double_t y;
 
-	if (e >= 0x3ff+52 || x == 0)
-		return x;
-	/* y = int(x) - x, where int(x) is an integer neighbor of x */
-	if (u.i >> 63)
-		y = x - toint + toint - x;
-	else
-		y = x + toint - toint - x;
-	/* special case because of non-nearest rounding modes */
-	if (e <= 0x3ff-1) {
-		FORCE_EVAL(y);
-		return u.i >> 63 ? -0.0 : 1;
-	}
-	if (y < 0)
-		return x + y + 1;
-	return x + y;
+  if (e >= 0x3ff + 52 || x == 0)
+    return x;
+  /* y = int(x) - x, where int(x) is an integer neighbor of x */
+  if (u.i >> 63)
+    y = x - toint + toint - x;
+  else
+    y = x + toint - toint - x;
+  /* special case because of non-nearest rounding modes */
+  if (e <= 0x3ff - 1) {
+    FORCE_EVAL(y);
+    return u.i >> 63 ? -0.0 : 1;
+  }
+  if (y < 0)
+    return x + y + 1;
+  return x + y;
 }
diff --git a/fusl/src/math/ceilf.c b/fusl/src/math/ceilf.c
index 869835f..813d614 100644
--- a/fusl/src/math/ceilf.c
+++ b/fusl/src/math/ceilf.c
@@ -1,27 +1,29 @@
 #include "libm.h"
 
-float ceilf(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	int e = (int)(u.i >> 23 & 0xff) - 0x7f;
-	uint32_t m;
+float ceilf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  int e = (int)(u.i >> 23 & 0xff) - 0x7f;
+  uint32_t m;
 
-	if (e >= 23)
-		return x;
-	if (e >= 0) {
-		m = 0x007fffff >> e;
-		if ((u.i & m) == 0)
-			return x;
-		FORCE_EVAL(x + 0x1p120f);
-		if (u.i >> 31 == 0)
-			u.i += m;
-		u.i &= ~m;
-	} else {
-		FORCE_EVAL(x + 0x1p120f);
-		if (u.i >> 31)
-			u.f = -0.0;
-		else if (u.i << 1)
-			u.f = 1.0;
-	}
-	return u.f;
+  if (e >= 23)
+    return x;
+  if (e >= 0) {
+    m = 0x007fffff >> e;
+    if ((u.i & m) == 0)
+      return x;
+    FORCE_EVAL(x + 0x1p120f);
+    if (u.i >> 31 == 0)
+      u.i += m;
+    u.i &= ~m;
+  } else {
+    FORCE_EVAL(x + 0x1p120f);
+    if (u.i >> 31)
+      u.f = -0.0;
+    else if (u.i << 1)
+      u.f = 1.0;
+  }
+  return u.f;
 }
diff --git a/fusl/src/math/ceill.c b/fusl/src/math/ceill.c
index 60a8302..7cc8c73 100644
--- a/fusl/src/math/ceill.c
+++ b/fusl/src/math/ceill.c
@@ -1,34 +1,32 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double ceill(long double x)
-{
-	return ceil(x);
+long double ceill(long double x) {
+  return ceil(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 
-static const long double toint = 1/LDBL_EPSILON;
+static const long double toint = 1 / LDBL_EPSILON;
 
-long double ceill(long double x)
-{
-	union ldshape u = {x};
-	int e = u.i.se & 0x7fff;
-	long double y;
+long double ceill(long double x) {
+  union ldshape u = {x};
+  int e = u.i.se & 0x7fff;
+  long double y;
 
-	if (e >= 0x3fff+LDBL_MANT_DIG-1 || x == 0)
-		return x;
-	/* y = int(x) - x, where int(x) is an integer neighbor of x */
-	if (u.i.se >> 15)
-		y = x - toint + toint - x;
-	else
-		y = x + toint - toint - x;
-	/* special case because of non-nearest rounding modes */
-	if (e <= 0x3fff-1) {
-		FORCE_EVAL(y);
-		return u.i.se >> 15 ? -0.0 : 1;
-	}
-	if (y < 0)
-		return x + y + 1;
-	return x + y;
+  if (e >= 0x3fff + LDBL_MANT_DIG - 1 || x == 0)
+    return x;
+  /* y = int(x) - x, where int(x) is an integer neighbor of x */
+  if (u.i.se >> 15)
+    y = x - toint + toint - x;
+  else
+    y = x + toint - toint - x;
+  /* special case because of non-nearest rounding modes */
+  if (e <= 0x3fff - 1) {
+    FORCE_EVAL(y);
+    return u.i.se >> 15 ? -0.0 : 1;
+  }
+  if (y < 0)
+    return x + y + 1;
+  return x + y;
 }
 #endif
diff --git a/fusl/src/math/copysign.c b/fusl/src/math/copysign.c
index b09331b..226d499 100644
--- a/fusl/src/math/copysign.c
+++ b/fusl/src/math/copysign.c
@@ -1,8 +1,11 @@
 #include "libm.h"
 
 double copysign(double x, double y) {
-	union {double f; uint64_t i;} ux={x}, uy={y};
-	ux.i &= -1ULL/2;
-	ux.i |= uy.i & 1ULL<<63;
-	return ux.f;
+  union {
+    double f;
+    uint64_t i;
+  } ux = {x}, uy = {y};
+  ux.i &= -1ULL / 2;
+  ux.i |= uy.i & 1ULL << 63;
+  return ux.f;
 }
diff --git a/fusl/src/math/copysignf.c b/fusl/src/math/copysignf.c
index 0af6ae9..32626d5 100644
--- a/fusl/src/math/copysignf.c
+++ b/fusl/src/math/copysignf.c
@@ -1,10 +1,12 @@
 #include <math.h>
 #include <stdint.h>
 
-float copysignf(float x, float y)
-{
-	union {float f; uint32_t i;} ux={x}, uy={y};
-	ux.i &= 0x7fffffff;
-	ux.i |= uy.i & 0x80000000;
-	return ux.f;
+float copysignf(float x, float y) {
+  union {
+    float f;
+    uint32_t i;
+  } ux = {x}, uy = {y};
+  ux.i &= 0x7fffffff;
+  ux.i |= uy.i & 0x80000000;
+  return ux.f;
 }
diff --git a/fusl/src/math/copysignl.c b/fusl/src/math/copysignl.c
index 9dd933c..e006650 100644
--- a/fusl/src/math/copysignl.c
+++ b/fusl/src/math/copysignl.c
@@ -1,16 +1,14 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double copysignl(long double x, long double y)
-{
-	return copysign(x, y);
+long double copysignl(long double x, long double y) {
+  return copysign(x, y);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-long double copysignl(long double x, long double y)
-{
-	union ldshape ux = {x}, uy = {y};
-	ux.i.se &= 0x7fff;
-	ux.i.se |= uy.i.se & 0x8000;
-	return ux.f;
+long double copysignl(long double x, long double y) {
+  union ldshape ux = {x}, uy = {y};
+  ux.i.se &= 0x7fff;
+  ux.i.se |= uy.i.se & 0x8000;
+  return ux.f;
 }
 #endif
diff --git a/fusl/src/math/cos.c b/fusl/src/math/cos.c
index ee97f68..fa5989e 100644
--- a/fusl/src/math/cos.c
+++ b/fusl/src/math/cos.c
@@ -42,36 +42,38 @@
 
 #include "libm.h"
 
-double cos(double x)
-{
-	double y[2];
-	uint32_t ix;
-	unsigned n;
+double cos(double x) {
+  double y[2];
+  uint32_t ix;
+  unsigned n;
 
-	GET_HIGH_WORD(ix, x);
-	ix &= 0x7fffffff;
+  GET_HIGH_WORD(ix, x);
+  ix &= 0x7fffffff;
 
-	/* |x| ~< pi/4 */
-	if (ix <= 0x3fe921fb) {
-		if (ix < 0x3e46a09e) {  /* |x| < 2**-27 * sqrt(2) */
-			/* raise inexact if x!=0 */
-			FORCE_EVAL(x + 0x1p120f);
-			return 1.0;
-		}
-		return __cos(x, 0);
-	}
+  /* |x| ~< pi/4 */
+  if (ix <= 0x3fe921fb) {
+    if (ix < 0x3e46a09e) { /* |x| < 2**-27 * sqrt(2) */
+      /* raise inexact if x!=0 */
+      FORCE_EVAL(x + 0x1p120f);
+      return 1.0;
+    }
+    return __cos(x, 0);
+  }
 
-	/* cos(Inf or NaN) is NaN */
-	if (ix >= 0x7ff00000)
-		return x-x;
+  /* cos(Inf or NaN) is NaN */
+  if (ix >= 0x7ff00000)
+    return x - x;
 
-	/* argument reduction */
-	n = __rem_pio2(x, y);
-	switch (n&3) {
-	case 0: return  __cos(y[0], y[1]);
-	case 1: return -__sin(y[0], y[1], 1);
-	case 2: return -__cos(y[0], y[1]);
-	default:
-		return  __sin(y[0], y[1], 1);
-	}
+  /* argument reduction */
+  n = __rem_pio2(x, y);
+  switch (n & 3) {
+    case 0:
+      return __cos(y[0], y[1]);
+    case 1:
+      return -__sin(y[0], y[1], 1);
+    case 2:
+      return -__cos(y[0], y[1]);
+    default:
+      return __sin(y[0], y[1], 1);
+  }
 }
diff --git a/fusl/src/math/cosf.c b/fusl/src/math/cosf.c
index 23f3e5b..d47fe88 100644
--- a/fusl/src/math/cosf.c
+++ b/fusl/src/math/cosf.c
@@ -17,62 +17,63 @@
 #include "libm.h"
 
 /* Small multiples of pi/2 rounded to double precision. */
-static const double
-c1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
-c2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
-c3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
-c4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */
+static const double c1pio2 = 1 * M_PI_2, /* 0x3FF921FB, 0x54442D18 */
+    c2pio2 = 2 * M_PI_2,                 /* 0x400921FB, 0x54442D18 */
+    c3pio2 = 3 * M_PI_2,                 /* 0x4012D97C, 0x7F3321D2 */
+    c4pio2 = 4 * M_PI_2;                 /* 0x401921FB, 0x54442D18 */
 
-float cosf(float x)
-{
-	double y;
-	uint32_t ix;
-	unsigned n, sign;
+float cosf(float x) {
+  double y;
+  uint32_t ix;
+  unsigned n, sign;
 
-	GET_FLOAT_WORD(ix, x);
-	sign = ix >> 31;
-	ix &= 0x7fffffff;
+  GET_FLOAT_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
 
-	if (ix <= 0x3f490fda) {  /* |x| ~<= pi/4 */
-		if (ix < 0x39800000) {  /* |x| < 2**-12 */
-			/* raise inexact if x != 0 */
-			FORCE_EVAL(x + 0x1p120f);
-			return 1.0f;
-		}
-		return __cosdf(x);
-	}
-	if (ix <= 0x407b53d1) {  /* |x| ~<= 5*pi/4 */
-		if (ix > 0x4016cbe3)  /* |x|  ~> 3*pi/4 */
-			return -__cosdf(sign ? x+c2pio2 : x-c2pio2);
-		else {
-			if (sign)
-				return __sindf(x + c1pio2);
-			else
-				return __sindf(c1pio2 - x);
-		}
-	}
-	if (ix <= 0x40e231d5) {  /* |x| ~<= 9*pi/4 */
-		if (ix > 0x40afeddf)  /* |x| ~> 7*pi/4 */
-			return __cosdf(sign ? x+c4pio2 : x-c4pio2);
-		else {
-			if (sign)
-				return __sindf(-x - c3pio2);
-			else
-				return __sindf(x - c3pio2);
-		}
-	}
+  if (ix <= 0x3f490fda) {  /* |x| ~<= pi/4 */
+    if (ix < 0x39800000) { /* |x| < 2**-12 */
+      /* raise inexact if x != 0 */
+      FORCE_EVAL(x + 0x1p120f);
+      return 1.0f;
+    }
+    return __cosdf(x);
+  }
+  if (ix <= 0x407b53d1) { /* |x| ~<= 5*pi/4 */
+    if (ix > 0x4016cbe3)  /* |x|  ~> 3*pi/4 */
+      return -__cosdf(sign ? x + c2pio2 : x - c2pio2);
+    else {
+      if (sign)
+        return __sindf(x + c1pio2);
+      else
+        return __sindf(c1pio2 - x);
+    }
+  }
+  if (ix <= 0x40e231d5) { /* |x| ~<= 9*pi/4 */
+    if (ix > 0x40afeddf)  /* |x| ~> 7*pi/4 */
+      return __cosdf(sign ? x + c4pio2 : x - c4pio2);
+    else {
+      if (sign)
+        return __sindf(-x - c3pio2);
+      else
+        return __sindf(x - c3pio2);
+    }
+  }
 
-	/* cos(Inf or NaN) is NaN */
-	if (ix >= 0x7f800000)
-		return x-x;
+  /* cos(Inf or NaN) is NaN */
+  if (ix >= 0x7f800000)
+    return x - x;
 
-	/* general argument reduction needed */
-	n = __rem_pio2f(x,&y);
-	switch (n&3) {
-	case 0: return  __cosdf(y);
-	case 1: return  __sindf(-y);
-	case 2: return -__cosdf(y);
-	default:
-		return  __sindf(y);
-	}
+  /* general argument reduction needed */
+  n = __rem_pio2f(x, &y);
+  switch (n & 3) {
+    case 0:
+      return __cosdf(y);
+    case 1:
+      return __sindf(-y);
+    case 2:
+      return -__cosdf(y);
+    default:
+      return __sindf(y);
+  }
 }
diff --git a/fusl/src/math/cosh.c b/fusl/src/math/cosh.c
index 100f823..c346db6 100644
--- a/fusl/src/math/cosh.c
+++ b/fusl/src/math/cosh.c
@@ -4,37 +4,39 @@
  *         = 1 + 0.5*(exp(x)-1)*(exp(x)-1)/exp(x)
  *         = 1 + x*x/2 + o(x^4)
  */
-double cosh(double x)
-{
-	union {double f; uint64_t i;} u = {.f = x};
-	uint32_t w;
-	double t;
+double cosh(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {.f = x};
+  uint32_t w;
+  double t;
 
-	/* |x| */
-	u.i &= (uint64_t)-1/2;
-	x = u.f;
-	w = u.i >> 32;
+  /* |x| */
+  u.i &= (uint64_t)-1 / 2;
+  x = u.f;
+  w = u.i >> 32;
 
-	/* |x| < log(2) */
-	if (w < 0x3fe62e42) {
-		if (w < 0x3ff00000 - (26<<20)) {
-			/* raise inexact if x!=0 */
-			FORCE_EVAL(x + 0x1p120f);
-			return 1;
-		}
-		t = expm1(x);
-		return 1 + t*t/(2*(1+t));
-	}
+  /* |x| < log(2) */
+  if (w < 0x3fe62e42) {
+    if (w < 0x3ff00000 - (26 << 20)) {
+      /* raise inexact if x!=0 */
+      FORCE_EVAL(x + 0x1p120f);
+      return 1;
+    }
+    t = expm1(x);
+    return 1 + t * t / (2 * (1 + t));
+  }
 
-	/* |x| < log(DBL_MAX) */
-	if (w < 0x40862e42) {
-		t = exp(x);
-		/* note: if x>log(0x1p26) then the 1/t is not needed */
-		return 0.5*(t + 1/t);
-	}
+  /* |x| < log(DBL_MAX) */
+  if (w < 0x40862e42) {
+    t = exp(x);
+    /* note: if x>log(0x1p26) then the 1/t is not needed */
+    return 0.5 * (t + 1 / t);
+  }
 
-	/* |x| > log(DBL_MAX) or nan */
-	/* note: the result is stored to handle overflow */
-	t = __expo2(x);
-	return t;
+  /* |x| > log(DBL_MAX) or nan */
+  /* note: the result is stored to handle overflow */
+  t = __expo2(x);
+  return t;
 }
diff --git a/fusl/src/math/coshf.c b/fusl/src/math/coshf.c
index b09f2ee..488942e 100644
--- a/fusl/src/math/coshf.c
+++ b/fusl/src/math/coshf.c
@@ -1,33 +1,35 @@
 #include "libm.h"
 
-float coshf(float x)
-{
-	union {float f; uint32_t i;} u = {.f = x};
-	uint32_t w;
-	float t;
+float coshf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {.f = x};
+  uint32_t w;
+  float t;
 
-	/* |x| */
-	u.i &= 0x7fffffff;
-	x = u.f;
-	w = u.i;
+  /* |x| */
+  u.i &= 0x7fffffff;
+  x = u.f;
+  w = u.i;
 
-	/* |x| < log(2) */
-	if (w < 0x3f317217) {
-		if (w < 0x3f800000 - (12<<23)) {
-			FORCE_EVAL(x + 0x1p120f);
-			return 1;
-		}
-		t = expm1f(x);
-		return 1 + t*t/(2*(1+t));
-	}
+  /* |x| < log(2) */
+  if (w < 0x3f317217) {
+    if (w < 0x3f800000 - (12 << 23)) {
+      FORCE_EVAL(x + 0x1p120f);
+      return 1;
+    }
+    t = expm1f(x);
+    return 1 + t * t / (2 * (1 + t));
+  }
 
-	/* |x| < log(FLT_MAX) */
-	if (w < 0x42b17217) {
-		t = expf(x);
-		return 0.5f*(t + 1/t);
-	}
+  /* |x| < log(FLT_MAX) */
+  if (w < 0x42b17217) {
+    t = expf(x);
+    return 0.5f * (t + 1 / t);
+  }
 
-	/* |x| > log(FLT_MAX) or nan */
-	t = __expo2f(x);
-	return t;
+  /* |x| > log(FLT_MAX) or nan */
+  t = __expo2f(x);
+  return t;
 }
diff --git a/fusl/src/math/coshl.c b/fusl/src/math/coshl.c
index 06a56fe..bc2ddf3 100644
--- a/fusl/src/math/coshl.c
+++ b/fusl/src/math/coshl.c
@@ -1,47 +1,44 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double coshl(long double x)
-{
-	return cosh(x);
+long double coshl(long double x) {
+  return cosh(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-long double coshl(long double x)
-{
-	union ldshape u = {x};
-	unsigned ex = u.i.se & 0x7fff;
-	uint32_t w;
-	long double t;
+long double coshl(long double x) {
+  union ldshape u = {x};
+  unsigned ex = u.i.se & 0x7fff;
+  uint32_t w;
+  long double t;
 
-	/* |x| */
-	u.i.se = ex;
-	x = u.f;
-	w = u.i.m >> 32;
+  /* |x| */
+  u.i.se = ex;
+  x = u.f;
+  w = u.i.m >> 32;
 
-	/* |x| < log(2) */
-	if (ex < 0x3fff-1 || (ex == 0x3fff-1 && w < 0xb17217f7)) {
-		if (ex < 0x3fff-32) {
-			FORCE_EVAL(x + 0x1p120f);
-			return 1;
-		}
-		t = expm1l(x);
-		return 1 + t*t/(2*(1+t));
-	}
+  /* |x| < log(2) */
+  if (ex < 0x3fff - 1 || (ex == 0x3fff - 1 && w < 0xb17217f7)) {
+    if (ex < 0x3fff - 32) {
+      FORCE_EVAL(x + 0x1p120f);
+      return 1;
+    }
+    t = expm1l(x);
+    return 1 + t * t / (2 * (1 + t));
+  }
 
-	/* |x| < log(LDBL_MAX) */
-	if (ex < 0x3fff+13 || (ex == 0x3fff+13 && w < 0xb17217f7)) {
-		t = expl(x);
-		return 0.5*(t + 1/t);
-	}
+  /* |x| < log(LDBL_MAX) */
+  if (ex < 0x3fff + 13 || (ex == 0x3fff + 13 && w < 0xb17217f7)) {
+    t = expl(x);
+    return 0.5 * (t + 1 / t);
+  }
 
-	/* |x| > log(LDBL_MAX) or nan */
-	t = expl(0.5*x);
-	return 0.5*t*t;
+  /* |x| > log(LDBL_MAX) or nan */
+  t = expl(0.5 * x);
+  return 0.5 * t * t;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double coshl(long double x)
-{
-	return cosh(x);
+long double coshl(long double x) {
+  return cosh(x);
 }
 #endif
diff --git a/fusl/src/math/cosl.c b/fusl/src/math/cosl.c
index 79c41c7..6c44a5b 100644
--- a/fusl/src/math/cosl.c
+++ b/fusl/src/math/cosl.c
@@ -2,38 +2,37 @@
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
 long double cosl(long double x) {
-	return cos(x);
+  return cos(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-long double cosl(long double x)
-{
-	union ldshape u = {x};
-	unsigned n;
-	long double y[2], hi, lo;
+long double cosl(long double x) {
+  union ldshape u = {x};
+  unsigned n;
+  long double y[2], hi, lo;
 
-	u.i.se &= 0x7fff;
-	if (u.i.se == 0x7fff)
-		return x - x;
-	x = u.f;
-	if (x < M_PI_4) {
-		if (u.i.se < 0x3fff - LDBL_MANT_DIG)
-			/* raise inexact if x!=0 */
-			return 1.0 + x;
-		return __cosl(x, 0);
-	}
-	n = __rem_pio2l(x, y);
-	hi = y[0];
-	lo = y[1];
-	switch (n & 3) {
-	case 0:
-		return __cosl(hi, lo);
-	case 1:
-		return -__sinl(hi, lo, 1);
-	case 2:
-		return -__cosl(hi, lo);
-	case 3:
-	default:
-		return __sinl(hi, lo, 1);
-	}
+  u.i.se &= 0x7fff;
+  if (u.i.se == 0x7fff)
+    return x - x;
+  x = u.f;
+  if (x < M_PI_4) {
+    if (u.i.se < 0x3fff - LDBL_MANT_DIG)
+      /* raise inexact if x!=0 */
+      return 1.0 + x;
+    return __cosl(x, 0);
+  }
+  n = __rem_pio2l(x, y);
+  hi = y[0];
+  lo = y[1];
+  switch (n & 3) {
+    case 0:
+      return __cosl(hi, lo);
+    case 1:
+      return -__sinl(hi, lo, 1);
+    case 2:
+      return -__cosl(hi, lo);
+    case 3:
+    default:
+      return __sinl(hi, lo, 1);
+  }
 }
 #endif
diff --git a/fusl/src/math/erf.c b/fusl/src/math/erf.c
index 2f30a29..aff8bd0 100644
--- a/fusl/src/math/erf.c
+++ b/fusl/src/math/erf.c
@@ -105,169 +105,173 @@
 
 #include "libm.h"
 
-static const double
-erx  = 8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
-/*
- * Coefficients for approximation to  erf on [0,0.84375]
- */
-efx8 =  1.02703333676410069053e+00, /* 0x3FF06EBA, 0x8214DB69 */
-pp0  =  1.28379167095512558561e-01, /* 0x3FC06EBA, 0x8214DB68 */
-pp1  = -3.25042107247001499370e-01, /* 0xBFD4CD7D, 0x691CB913 */
-pp2  = -2.84817495755985104766e-02, /* 0xBF9D2A51, 0xDBD7194F */
-pp3  = -5.77027029648944159157e-03, /* 0xBF77A291, 0x236668E4 */
-pp4  = -2.37630166566501626084e-05, /* 0xBEF8EAD6, 0x120016AC */
-qq1  =  3.97917223959155352819e-01, /* 0x3FD97779, 0xCDDADC09 */
-qq2  =  6.50222499887672944485e-02, /* 0x3FB0A54C, 0x5536CEBA */
-qq3  =  5.08130628187576562776e-03, /* 0x3F74D022, 0xC4D36B0F */
-qq4  =  1.32494738004321644526e-04, /* 0x3F215DC9, 0x221C1A10 */
-qq5  = -3.96022827877536812320e-06, /* 0xBED09C43, 0x42A26120 */
-/*
- * Coefficients for approximation to  erf  in [0.84375,1.25]
- */
-pa0  = -2.36211856075265944077e-03, /* 0xBF6359B8, 0xBEF77538 */
-pa1  =  4.14856118683748331666e-01, /* 0x3FDA8D00, 0xAD92B34D */
-pa2  = -3.72207876035701323847e-01, /* 0xBFD7D240, 0xFBB8C3F1 */
-pa3  =  3.18346619901161753674e-01, /* 0x3FD45FCA, 0x805120E4 */
-pa4  = -1.10894694282396677476e-01, /* 0xBFBC6398, 0x3D3E28EC */
-pa5  =  3.54783043256182359371e-02, /* 0x3FA22A36, 0x599795EB */
-pa6  = -2.16637559486879084300e-03, /* 0xBF61BF38, 0x0A96073F */
-qa1  =  1.06420880400844228286e-01, /* 0x3FBB3E66, 0x18EEE323 */
-qa2  =  5.40397917702171048937e-01, /* 0x3FE14AF0, 0x92EB6F33 */
-qa3  =  7.18286544141962662868e-02, /* 0x3FB2635C, 0xD99FE9A7 */
-qa4  =  1.26171219808761642112e-01, /* 0x3FC02660, 0xE763351F */
-qa5  =  1.36370839120290507362e-02, /* 0x3F8BEDC2, 0x6B51DD1C */
-qa6  =  1.19844998467991074170e-02, /* 0x3F888B54, 0x5735151D */
-/*
- * Coefficients for approximation to  erfc in [1.25,1/0.35]
- */
-ra0  = -9.86494403484714822705e-03, /* 0xBF843412, 0x600D6435 */
-ra1  = -6.93858572707181764372e-01, /* 0xBFE63416, 0xE4BA7360 */
-ra2  = -1.05586262253232909814e+01, /* 0xC0251E04, 0x41B0E726 */
-ra3  = -6.23753324503260060396e+01, /* 0xC04F300A, 0xE4CBA38D */
-ra4  = -1.62396669462573470355e+02, /* 0xC0644CB1, 0x84282266 */
-ra5  = -1.84605092906711035994e+02, /* 0xC067135C, 0xEBCCABB2 */
-ra6  = -8.12874355063065934246e+01, /* 0xC0545265, 0x57E4D2F2 */
-ra7  = -9.81432934416914548592e+00, /* 0xC023A0EF, 0xC69AC25C */
-sa1  =  1.96512716674392571292e+01, /* 0x4033A6B9, 0xBD707687 */
-sa2  =  1.37657754143519042600e+02, /* 0x4061350C, 0x526AE721 */
-sa3  =  4.34565877475229228821e+02, /* 0x407B290D, 0xD58A1A71 */
-sa4  =  6.45387271733267880336e+02, /* 0x40842B19, 0x21EC2868 */
-sa5  =  4.29008140027567833386e+02, /* 0x407AD021, 0x57700314 */
-sa6  =  1.08635005541779435134e+02, /* 0x405B28A3, 0xEE48AE2C */
-sa7  =  6.57024977031928170135e+00, /* 0x401A47EF, 0x8E484A93 */
-sa8  = -6.04244152148580987438e-02, /* 0xBFAEEFF2, 0xEE749A62 */
-/*
- * Coefficients for approximation to  erfc in [1/.35,28]
- */
-rb0  = -9.86494292470009928597e-03, /* 0xBF843412, 0x39E86F4A */
-rb1  = -7.99283237680523006574e-01, /* 0xBFE993BA, 0x70C285DE */
-rb2  = -1.77579549177547519889e+01, /* 0xC031C209, 0x555F995A */
-rb3  = -1.60636384855821916062e+02, /* 0xC064145D, 0x43C5ED98 */
-rb4  = -6.37566443368389627722e+02, /* 0xC083EC88, 0x1375F228 */
-rb5  = -1.02509513161107724954e+03, /* 0xC0900461, 0x6A2E5992 */
-rb6  = -4.83519191608651397019e+02, /* 0xC07E384E, 0x9BDC383F */
-sb1  =  3.03380607434824582924e+01, /* 0x403E568B, 0x261D5190 */
-sb2  =  3.25792512996573918826e+02, /* 0x40745CAE, 0x221B9F0A */
-sb3  =  1.53672958608443695994e+03, /* 0x409802EB, 0x189D5118 */
-sb4  =  3.19985821950859553908e+03, /* 0x40A8FFB7, 0x688C246A */
-sb5  =  2.55305040643316442583e+03, /* 0x40A3F219, 0xCEDF3BE6 */
-sb6  =  4.74528541206955367215e+02, /* 0x407DA874, 0xE79FE763 */
-sb7  = -2.24409524465858183362e+01; /* 0xC03670E2, 0x42712D62 */
+static const double erx =
+                        8.45062911510467529297e-01, /* 0x3FEB0AC1, 0x60000000 */
+                                                    /*
+                                                     * Coefficients for approximation to  erf on [0,0.84375]
+                                                     */
+    efx8 = 1.02703333676410069053e+00,              /* 0x3FF06EBA, 0x8214DB69 */
+    pp0 = 1.28379167095512558561e-01,               /* 0x3FC06EBA, 0x8214DB68 */
+    pp1 = -3.25042107247001499370e-01,              /* 0xBFD4CD7D, 0x691CB913 */
+    pp2 = -2.84817495755985104766e-02,              /* 0xBF9D2A51, 0xDBD7194F */
+    pp3 = -5.77027029648944159157e-03,              /* 0xBF77A291, 0x236668E4 */
+    pp4 = -2.37630166566501626084e-05,              /* 0xBEF8EAD6, 0x120016AC */
+    qq1 = 3.97917223959155352819e-01,               /* 0x3FD97779, 0xCDDADC09 */
+    qq2 = 6.50222499887672944485e-02,               /* 0x3FB0A54C, 0x5536CEBA */
+    qq3 = 5.08130628187576562776e-03,               /* 0x3F74D022, 0xC4D36B0F */
+    qq4 = 1.32494738004321644526e-04,               /* 0x3F215DC9, 0x221C1A10 */
+    qq5 = -3.96022827877536812320e-06,              /* 0xBED09C43, 0x42A26120 */
+                                                    /*
+                                                     * Coefficients for approximation to  erf  in [0.84375,1.25]
+                                                     */
+    pa0 = -2.36211856075265944077e-03,              /* 0xBF6359B8, 0xBEF77538 */
+    pa1 = 4.14856118683748331666e-01,               /* 0x3FDA8D00, 0xAD92B34D */
+    pa2 = -3.72207876035701323847e-01,              /* 0xBFD7D240, 0xFBB8C3F1 */
+    pa3 = 3.18346619901161753674e-01,               /* 0x3FD45FCA, 0x805120E4 */
+    pa4 = -1.10894694282396677476e-01,              /* 0xBFBC6398, 0x3D3E28EC */
+    pa5 = 3.54783043256182359371e-02,               /* 0x3FA22A36, 0x599795EB */
+    pa6 = -2.16637559486879084300e-03,              /* 0xBF61BF38, 0x0A96073F */
+    qa1 = 1.06420880400844228286e-01,               /* 0x3FBB3E66, 0x18EEE323 */
+    qa2 = 5.40397917702171048937e-01,               /* 0x3FE14AF0, 0x92EB6F33 */
+    qa3 = 7.18286544141962662868e-02,               /* 0x3FB2635C, 0xD99FE9A7 */
+    qa4 = 1.26171219808761642112e-01,               /* 0x3FC02660, 0xE763351F */
+    qa5 = 1.36370839120290507362e-02,               /* 0x3F8BEDC2, 0x6B51DD1C */
+    qa6 = 1.19844998467991074170e-02,               /* 0x3F888B54, 0x5735151D */
+                                                    /*
+                                                     * Coefficients for approximation to  erfc in [1.25,1/0.35]
+                                                     */
+    ra0 = -9.86494403484714822705e-03,              /* 0xBF843412, 0x600D6435 */
+    ra1 = -6.93858572707181764372e-01,              /* 0xBFE63416, 0xE4BA7360 */
+    ra2 = -1.05586262253232909814e+01,              /* 0xC0251E04, 0x41B0E726 */
+    ra3 = -6.23753324503260060396e+01,              /* 0xC04F300A, 0xE4CBA38D */
+    ra4 = -1.62396669462573470355e+02,              /* 0xC0644CB1, 0x84282266 */
+    ra5 = -1.84605092906711035994e+02,              /* 0xC067135C, 0xEBCCABB2 */
+    ra6 = -8.12874355063065934246e+01,              /* 0xC0545265, 0x57E4D2F2 */
+    ra7 = -9.81432934416914548592e+00,              /* 0xC023A0EF, 0xC69AC25C */
+    sa1 = 1.96512716674392571292e+01,               /* 0x4033A6B9, 0xBD707687 */
+    sa2 = 1.37657754143519042600e+02,               /* 0x4061350C, 0x526AE721 */
+    sa3 = 4.34565877475229228821e+02,               /* 0x407B290D, 0xD58A1A71 */
+    sa4 = 6.45387271733267880336e+02,               /* 0x40842B19, 0x21EC2868 */
+    sa5 = 4.29008140027567833386e+02,               /* 0x407AD021, 0x57700314 */
+    sa6 = 1.08635005541779435134e+02,               /* 0x405B28A3, 0xEE48AE2C */
+    sa7 = 6.57024977031928170135e+00,               /* 0x401A47EF, 0x8E484A93 */
+    sa8 = -6.04244152148580987438e-02,              /* 0xBFAEEFF2, 0xEE749A62 */
+                                                    /*
+                                                     * Coefficients for approximation to  erfc in [1/.35,28]
+                                                     */
+    rb0 = -9.86494292470009928597e-03,              /* 0xBF843412, 0x39E86F4A */
+    rb1 = -7.99283237680523006574e-01,              /* 0xBFE993BA, 0x70C285DE */
+    rb2 = -1.77579549177547519889e+01,              /* 0xC031C209, 0x555F995A */
+    rb3 = -1.60636384855821916062e+02,              /* 0xC064145D, 0x43C5ED98 */
+    rb4 = -6.37566443368389627722e+02,              /* 0xC083EC88, 0x1375F228 */
+    rb5 = -1.02509513161107724954e+03,              /* 0xC0900461, 0x6A2E5992 */
+    rb6 = -4.83519191608651397019e+02,              /* 0xC07E384E, 0x9BDC383F */
+    sb1 = 3.03380607434824582924e+01,               /* 0x403E568B, 0x261D5190 */
+    sb2 = 3.25792512996573918826e+02,               /* 0x40745CAE, 0x221B9F0A */
+    sb3 = 1.53672958608443695994e+03,               /* 0x409802EB, 0x189D5118 */
+    sb4 = 3.19985821950859553908e+03,               /* 0x40A8FFB7, 0x688C246A */
+    sb5 = 2.55305040643316442583e+03,               /* 0x40A3F219, 0xCEDF3BE6 */
+    sb6 = 4.74528541206955367215e+02,               /* 0x407DA874, 0xE79FE763 */
+    sb7 = -2.24409524465858183362e+01;              /* 0xC03670E2, 0x42712D62 */
 
-static double erfc1(double x)
-{
-	double_t s,P,Q;
+static double erfc1(double x) {
+  double_t s, P, Q;
 
-	s = fabs(x) - 1;
-	P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
-	Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
-	return 1 - erx - P/Q;
+  s = fabs(x) - 1;
+  P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6)))));
+  Q = 1 + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6)))));
+  return 1 - erx - P / Q;
 }
 
-static double erfc2(uint32_t ix, double x)
-{
-	double_t s,R,S;
-	double z;
+static double erfc2(uint32_t ix, double x) {
+  double_t s, R, S;
+  double z;
 
-	if (ix < 0x3ff40000)  /* |x| < 1.25 */
-		return erfc1(x);
+  if (ix < 0x3ff40000) /* |x| < 1.25 */
+    return erfc1(x);
 
-	x = fabs(x);
-	s = 1/(x*x);
-	if (ix < 0x4006db6d) {  /* |x| < 1/.35 ~ 2.85714 */
-		R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
-		     ra5+s*(ra6+s*ra7))))));
-		S = 1.0+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
-		     sa5+s*(sa6+s*(sa7+s*sa8)))))));
-	} else {                /* |x| > 1/.35 */
-		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
-		     rb5+s*rb6)))));
-		S = 1.0+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
-		     sb5+s*(sb6+s*sb7))))));
-	}
-	z = x;
-	SET_LOW_WORD(z,0);
-	return exp(-z*z-0.5625)*exp((z-x)*(z+x)+R/S)/x;
+  x = fabs(x);
+  s = 1 / (x * x);
+  if (ix < 0x4006db6d) { /* |x| < 1/.35 ~ 2.85714 */
+    R = ra0 +
+        s * (ra1 +
+             s * (ra2 +
+                  s * (ra3 + s * (ra4 + s * (ra5 + s * (ra6 + s * ra7))))));
+    S = 1.0 +
+        s * (sa1 +
+             s * (sa2 +
+                  s * (sa3 +
+                       s * (sa4 +
+                            s * (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
+  } else { /* |x| > 1/.35 */
+    R = rb0 +
+        s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6)))));
+    S = 1.0 +
+        s * (sb1 +
+             s * (sb2 +
+                  s * (sb3 + s * (sb4 + s * (sb5 + s * (sb6 + s * sb7))))));
+  }
+  z = x;
+  SET_LOW_WORD(z, 0);
+  return exp(-z * z - 0.5625) * exp((z - x) * (z + x) + R / S) / x;
 }
 
-double erf(double x)
-{
-	double r,s,z,y;
-	uint32_t ix;
-	int sign;
+double erf(double x) {
+  double r, s, z, y;
+  uint32_t ix;
+  int sign;
 
-	GET_HIGH_WORD(ix, x);
-	sign = ix>>31;
-	ix &= 0x7fffffff;
-	if (ix >= 0x7ff00000) {
-		/* erf(nan)=nan, erf(+-inf)=+-1 */
-		return 1-2*sign + 1/x;
-	}
-	if (ix < 0x3feb0000) {  /* |x| < 0.84375 */
-		if (ix < 0x3e300000) {  /* |x| < 2**-28 */
-			/* avoid underflow */
-			return 0.125*(8*x + efx8*x);
-		}
-		z = x*x;
-		r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
-		s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
-		y = r/s;
-		return x + x*y;
-	}
-	if (ix < 0x40180000)  /* 0.84375 <= |x| < 6 */
-		y = 1 - erfc2(ix,x);
-	else
-		y = 1 - 0x1p-1022;
-	return sign ? -y : y;
+  GET_HIGH_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
+  if (ix >= 0x7ff00000) {
+    /* erf(nan)=nan, erf(+-inf)=+-1 */
+    return 1 - 2 * sign + 1 / x;
+  }
+  if (ix < 0x3feb0000) {   /* |x| < 0.84375 */
+    if (ix < 0x3e300000) { /* |x| < 2**-28 */
+      /* avoid underflow */
+      return 0.125 * (8 * x + efx8 * x);
+    }
+    z = x * x;
+    r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
+    s = 1.0 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
+    y = r / s;
+    return x + x * y;
+  }
+  if (ix < 0x40180000) /* 0.84375 <= |x| < 6 */
+    y = 1 - erfc2(ix, x);
+  else
+    y = 1 - 0x1p-1022;
+  return sign ? -y : y;
 }
 
-double erfc(double x)
-{
-	double r,s,z,y;
-	uint32_t ix;
-	int sign;
+double erfc(double x) {
+  double r, s, z, y;
+  uint32_t ix;
+  int sign;
 
-	GET_HIGH_WORD(ix, x);
-	sign = ix>>31;
-	ix &= 0x7fffffff;
-	if (ix >= 0x7ff00000) {
-		/* erfc(nan)=nan, erfc(+-inf)=0,2 */
-		return 2*sign + 1/x;
-	}
-	if (ix < 0x3feb0000) {  /* |x| < 0.84375 */
-		if (ix < 0x3c700000)  /* |x| < 2**-56 */
-			return 1.0 - x;
-		z = x*x;
-		r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
-		s = 1.0+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
-		y = r/s;
-		if (sign || ix < 0x3fd00000) {  /* x < 1/4 */
-			return 1.0 - (x+x*y);
-		}
-		return 0.5 - (x - 0.5 + x*y);
-	}
-	if (ix < 0x403c0000) {  /* 0.84375 <= |x| < 28 */
-		return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
-	}
-	return sign ? 2 - 0x1p-1022 : 0x1p-1022*0x1p-1022;
+  GET_HIGH_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
+  if (ix >= 0x7ff00000) {
+    /* erfc(nan)=nan, erfc(+-inf)=0,2 */
+    return 2 * sign + 1 / x;
+  }
+  if (ix < 0x3feb0000) { /* |x| < 0.84375 */
+    if (ix < 0x3c700000) /* |x| < 2**-56 */
+      return 1.0 - x;
+    z = x * x;
+    r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
+    s = 1.0 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
+    y = r / s;
+    if (sign || ix < 0x3fd00000) { /* x < 1/4 */
+      return 1.0 - (x + x * y);
+    }
+    return 0.5 - (x - 0.5 + x * y);
+  }
+  if (ix < 0x403c0000) { /* 0.84375 <= |x| < 28 */
+    return sign ? 2 - erfc2(ix, x) : erfc2(ix, x);
+  }
+  return sign ? 2 - 0x1p-1022 : 0x1p-1022 * 0x1p-1022;
 }
diff --git a/fusl/src/math/erff.c b/fusl/src/math/erff.c
index ed5f397..13abe22 100644
--- a/fusl/src/math/erff.c
+++ b/fusl/src/math/erff.c
@@ -15,169 +15,172 @@
 
 #include "libm.h"
 
-static const float
-erx  =  8.4506291151e-01, /* 0x3f58560b */
-/*
- * Coefficients for approximation to  erf on [0,0.84375]
- */
-efx8 =  1.0270333290e+00, /* 0x3f8375d4 */
-pp0  =  1.2837916613e-01, /* 0x3e0375d4 */
-pp1  = -3.2504209876e-01, /* 0xbea66beb */
-pp2  = -2.8481749818e-02, /* 0xbce9528f */
-pp3  = -5.7702702470e-03, /* 0xbbbd1489 */
-pp4  = -2.3763017452e-05, /* 0xb7c756b1 */
-qq1  =  3.9791721106e-01, /* 0x3ecbbbce */
-qq2  =  6.5022252500e-02, /* 0x3d852a63 */
-qq3  =  5.0813062117e-03, /* 0x3ba68116 */
-qq4  =  1.3249473704e-04, /* 0x390aee49 */
-qq5  = -3.9602282413e-06, /* 0xb684e21a */
-/*
- * Coefficients for approximation to  erf  in [0.84375,1.25]
- */
-pa0  = -2.3621185683e-03, /* 0xbb1acdc6 */
-pa1  =  4.1485610604e-01, /* 0x3ed46805 */
-pa2  = -3.7220788002e-01, /* 0xbebe9208 */
-pa3  =  3.1834661961e-01, /* 0x3ea2fe54 */
-pa4  = -1.1089469492e-01, /* 0xbde31cc2 */
-pa5  =  3.5478305072e-02, /* 0x3d1151b3 */
-pa6  = -2.1663755178e-03, /* 0xbb0df9c0 */
-qa1  =  1.0642088205e-01, /* 0x3dd9f331 */
-qa2  =  5.4039794207e-01, /* 0x3f0a5785 */
-qa3  =  7.1828655899e-02, /* 0x3d931ae7 */
-qa4  =  1.2617121637e-01, /* 0x3e013307 */
-qa5  =  1.3637083583e-02, /* 0x3c5f6e13 */
-qa6  =  1.1984500103e-02, /* 0x3c445aa3 */
-/*
- * Coefficients for approximation to  erfc in [1.25,1/0.35]
- */
-ra0  = -9.8649440333e-03, /* 0xbc21a093 */
-ra1  = -6.9385856390e-01, /* 0xbf31a0b7 */
-ra2  = -1.0558626175e+01, /* 0xc128f022 */
-ra3  = -6.2375331879e+01, /* 0xc2798057 */
-ra4  = -1.6239666748e+02, /* 0xc322658c */
-ra5  = -1.8460508728e+02, /* 0xc3389ae7 */
-ra6  = -8.1287437439e+01, /* 0xc2a2932b */
-ra7  = -9.8143291473e+00, /* 0xc11d077e */
-sa1  =  1.9651271820e+01, /* 0x419d35ce */
-sa2  =  1.3765776062e+02, /* 0x4309a863 */
-sa3  =  4.3456588745e+02, /* 0x43d9486f */
-sa4  =  6.4538726807e+02, /* 0x442158c9 */
-sa5  =  4.2900814819e+02, /* 0x43d6810b */
-sa6  =  1.0863500214e+02, /* 0x42d9451f */
-sa7  =  6.5702495575e+00, /* 0x40d23f7c */
-sa8  = -6.0424413532e-02, /* 0xbd777f97 */
-/*
- * Coefficients for approximation to  erfc in [1/.35,28]
- */
-rb0  = -9.8649431020e-03, /* 0xbc21a092 */
-rb1  = -7.9928326607e-01, /* 0xbf4c9dd4 */
-rb2  = -1.7757955551e+01, /* 0xc18e104b */
-rb3  = -1.6063638306e+02, /* 0xc320a2ea */
-rb4  = -6.3756646729e+02, /* 0xc41f6441 */
-rb5  = -1.0250950928e+03, /* 0xc480230b */
-rb6  = -4.8351919556e+02, /* 0xc3f1c275 */
-sb1  =  3.0338060379e+01, /* 0x41f2b459 */
-sb2  =  3.2579251099e+02, /* 0x43a2e571 */
-sb3  =  1.5367296143e+03, /* 0x44c01759 */
-sb4  =  3.1998581543e+03, /* 0x4547fdbb */
-sb5  =  2.5530502930e+03, /* 0x451f90ce */
-sb6  =  4.7452853394e+02, /* 0x43ed43a7 */
-sb7  = -2.2440952301e+01; /* 0xc1b38712 */
+static const float erx = 8.4506291151e-01, /* 0x3f58560b */
+                                           /*
+                                            * Coefficients for approximation to  erf on [0,0.84375]
+                                            */
+    efx8 = 1.0270333290e+00,               /* 0x3f8375d4 */
+    pp0 = 1.2837916613e-01,                /* 0x3e0375d4 */
+    pp1 = -3.2504209876e-01,               /* 0xbea66beb */
+    pp2 = -2.8481749818e-02,               /* 0xbce9528f */
+    pp3 = -5.7702702470e-03,               /* 0xbbbd1489 */
+    pp4 = -2.3763017452e-05,               /* 0xb7c756b1 */
+    qq1 = 3.9791721106e-01,                /* 0x3ecbbbce */
+    qq2 = 6.5022252500e-02,                /* 0x3d852a63 */
+    qq3 = 5.0813062117e-03,                /* 0x3ba68116 */
+    qq4 = 1.3249473704e-04,                /* 0x390aee49 */
+    qq5 = -3.9602282413e-06,               /* 0xb684e21a */
+                                           /*
+                                            * Coefficients for approximation to  erf  in [0.84375,1.25]
+                                            */
+    pa0 = -2.3621185683e-03,               /* 0xbb1acdc6 */
+    pa1 = 4.1485610604e-01,                /* 0x3ed46805 */
+    pa2 = -3.7220788002e-01,               /* 0xbebe9208 */
+    pa3 = 3.1834661961e-01,                /* 0x3ea2fe54 */
+    pa4 = -1.1089469492e-01,               /* 0xbde31cc2 */
+    pa5 = 3.5478305072e-02,                /* 0x3d1151b3 */
+    pa6 = -2.1663755178e-03,               /* 0xbb0df9c0 */
+    qa1 = 1.0642088205e-01,                /* 0x3dd9f331 */
+    qa2 = 5.4039794207e-01,                /* 0x3f0a5785 */
+    qa3 = 7.1828655899e-02,                /* 0x3d931ae7 */
+    qa4 = 1.2617121637e-01,                /* 0x3e013307 */
+    qa5 = 1.3637083583e-02,                /* 0x3c5f6e13 */
+    qa6 = 1.1984500103e-02,                /* 0x3c445aa3 */
+                                           /*
+                                            * Coefficients for approximation to  erfc in [1.25,1/0.35]
+                                            */
+    ra0 = -9.8649440333e-03,               /* 0xbc21a093 */
+    ra1 = -6.9385856390e-01,               /* 0xbf31a0b7 */
+    ra2 = -1.0558626175e+01,               /* 0xc128f022 */
+    ra3 = -6.2375331879e+01,               /* 0xc2798057 */
+    ra4 = -1.6239666748e+02,               /* 0xc322658c */
+    ra5 = -1.8460508728e+02,               /* 0xc3389ae7 */
+    ra6 = -8.1287437439e+01,               /* 0xc2a2932b */
+    ra7 = -9.8143291473e+00,               /* 0xc11d077e */
+    sa1 = 1.9651271820e+01,                /* 0x419d35ce */
+    sa2 = 1.3765776062e+02,                /* 0x4309a863 */
+    sa3 = 4.3456588745e+02,                /* 0x43d9486f */
+    sa4 = 6.4538726807e+02,                /* 0x442158c9 */
+    sa5 = 4.2900814819e+02,                /* 0x43d6810b */
+    sa6 = 1.0863500214e+02,                /* 0x42d9451f */
+    sa7 = 6.5702495575e+00,                /* 0x40d23f7c */
+    sa8 = -6.0424413532e-02,               /* 0xbd777f97 */
+                                           /*
+                                            * Coefficients for approximation to  erfc in [1/.35,28]
+                                            */
+    rb0 = -9.8649431020e-03,               /* 0xbc21a092 */
+    rb1 = -7.9928326607e-01,               /* 0xbf4c9dd4 */
+    rb2 = -1.7757955551e+01,               /* 0xc18e104b */
+    rb3 = -1.6063638306e+02,               /* 0xc320a2ea */
+    rb4 = -6.3756646729e+02,               /* 0xc41f6441 */
+    rb5 = -1.0250950928e+03,               /* 0xc480230b */
+    rb6 = -4.8351919556e+02,               /* 0xc3f1c275 */
+    sb1 = 3.0338060379e+01,                /* 0x41f2b459 */
+    sb2 = 3.2579251099e+02,                /* 0x43a2e571 */
+    sb3 = 1.5367296143e+03,                /* 0x44c01759 */
+    sb4 = 3.1998581543e+03,                /* 0x4547fdbb */
+    sb5 = 2.5530502930e+03,                /* 0x451f90ce */
+    sb6 = 4.7452853394e+02,                /* 0x43ed43a7 */
+    sb7 = -2.2440952301e+01;               /* 0xc1b38712 */
 
-static float erfc1(float x)
-{
-	float_t s,P,Q;
+static float erfc1(float x) {
+  float_t s, P, Q;
 
-	s = fabsf(x) - 1;
-	P = pa0+s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))));
-	Q = 1+s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))));
-	return 1 - erx - P/Q;
+  s = fabsf(x) - 1;
+  P = pa0 + s * (pa1 + s * (pa2 + s * (pa3 + s * (pa4 + s * (pa5 + s * pa6)))));
+  Q = 1 + s * (qa1 + s * (qa2 + s * (qa3 + s * (qa4 + s * (qa5 + s * qa6)))));
+  return 1 - erx - P / Q;
 }
 
-static float erfc2(uint32_t ix, float x)
-{
-	float_t s,R,S;
-	float z;
+static float erfc2(uint32_t ix, float x) {
+  float_t s, R, S;
+  float z;
 
-	if (ix < 0x3fa00000)  /* |x| < 1.25 */
-		return erfc1(x);
+  if (ix < 0x3fa00000) /* |x| < 1.25 */
+    return erfc1(x);
 
-	x = fabsf(x);
-	s = 1/(x*x);
-	if (ix < 0x4036db6d) {   /* |x| < 1/0.35 */
-		R = ra0+s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(
-		     ra5+s*(ra6+s*ra7))))));
-		S = 1.0f+s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(
-		     sa5+s*(sa6+s*(sa7+s*sa8)))))));
-	} else {                 /* |x| >= 1/0.35 */
-		R = rb0+s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(
-		     rb5+s*rb6)))));
-		S = 1.0f+s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(
-		     sb5+s*(sb6+s*sb7))))));
-	}
-	GET_FLOAT_WORD(ix, x);
-	SET_FLOAT_WORD(z, ix&0xffffe000);
-	return expf(-z*z - 0.5625f) * expf((z-x)*(z+x) + R/S)/x;
+  x = fabsf(x);
+  s = 1 / (x * x);
+  if (ix < 0x4036db6d) { /* |x| < 1/0.35 */
+    R = ra0 +
+        s * (ra1 +
+             s * (ra2 +
+                  s * (ra3 + s * (ra4 + s * (ra5 + s * (ra6 + s * ra7))))));
+    S = 1.0f +
+        s * (sa1 +
+             s * (sa2 +
+                  s * (sa3 +
+                       s * (sa4 +
+                            s * (sa5 + s * (sa6 + s * (sa7 + s * sa8)))))));
+  } else { /* |x| >= 1/0.35 */
+    R = rb0 +
+        s * (rb1 + s * (rb2 + s * (rb3 + s * (rb4 + s * (rb5 + s * rb6)))));
+    S = 1.0f +
+        s * (sb1 +
+             s * (sb2 +
+                  s * (sb3 + s * (sb4 + s * (sb5 + s * (sb6 + s * sb7))))));
+  }
+  GET_FLOAT_WORD(ix, x);
+  SET_FLOAT_WORD(z, ix & 0xffffe000);
+  return expf(-z * z - 0.5625f) * expf((z - x) * (z + x) + R / S) / x;
 }
 
-float erff(float x)
-{
-	float r,s,z,y;
-	uint32_t ix;
-	int sign;
+float erff(float x) {
+  float r, s, z, y;
+  uint32_t ix;
+  int sign;
 
-	GET_FLOAT_WORD(ix, x);
-	sign = ix>>31;
-	ix &= 0x7fffffff;
-	if (ix >= 0x7f800000) {
-		/* erf(nan)=nan, erf(+-inf)=+-1 */
-		return 1-2*sign + 1/x;
-	}
-	if (ix < 0x3f580000) {  /* |x| < 0.84375 */
-		if (ix < 0x31800000) {  /* |x| < 2**-28 */
-			/*avoid underflow */
-			return 0.125f*(8*x + efx8*x);
-		}
-		z = x*x;
-		r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
-		s = 1+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
-		y = r/s;
-		return x + x*y;
-	}
-	if (ix < 0x40c00000)  /* |x| < 6 */
-		y = 1 - erfc2(ix,x);
-	else
-		y = 1 - 0x1p-120f;
-	return sign ? -y : y;
+  GET_FLOAT_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
+  if (ix >= 0x7f800000) {
+    /* erf(nan)=nan, erf(+-inf)=+-1 */
+    return 1 - 2 * sign + 1 / x;
+  }
+  if (ix < 0x3f580000) {   /* |x| < 0.84375 */
+    if (ix < 0x31800000) { /* |x| < 2**-28 */
+      /*avoid underflow */
+      return 0.125f * (8 * x + efx8 * x);
+    }
+    z = x * x;
+    r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
+    s = 1 + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
+    y = r / s;
+    return x + x * y;
+  }
+  if (ix < 0x40c00000) /* |x| < 6 */
+    y = 1 - erfc2(ix, x);
+  else
+    y = 1 - 0x1p-120f;
+  return sign ? -y : y;
 }
 
-float erfcf(float x)
-{
-	float r,s,z,y;
-	uint32_t ix;
-	int sign;
+float erfcf(float x) {
+  float r, s, z, y;
+  uint32_t ix;
+  int sign;
 
-	GET_FLOAT_WORD(ix, x);
-	sign = ix>>31;
-	ix &= 0x7fffffff;
-	if (ix >= 0x7f800000) {
-		/* erfc(nan)=nan, erfc(+-inf)=0,2 */
-		return 2*sign + 1/x;
-	}
+  GET_FLOAT_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
+  if (ix >= 0x7f800000) {
+    /* erfc(nan)=nan, erfc(+-inf)=0,2 */
+    return 2 * sign + 1 / x;
+  }
 
-	if (ix < 0x3f580000) {  /* |x| < 0.84375 */
-		if (ix < 0x23800000)  /* |x| < 2**-56 */
-			return 1.0f - x;
-		z = x*x;
-		r = pp0+z*(pp1+z*(pp2+z*(pp3+z*pp4)));
-		s = 1.0f+z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))));
-		y = r/s;
-		if (sign || ix < 0x3e800000)  /* x < 1/4 */
-			return 1.0f - (x+x*y);
-		return 0.5f - (x - 0.5f + x*y);
-	}
-	if (ix < 0x41e00000) {  /* |x| < 28 */
-		return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
-	}
-	return sign ? 2 - 0x1p-120f : 0x1p-120f*0x1p-120f;
+  if (ix < 0x3f580000) { /* |x| < 0.84375 */
+    if (ix < 0x23800000) /* |x| < 2**-56 */
+      return 1.0f - x;
+    z = x * x;
+    r = pp0 + z * (pp1 + z * (pp2 + z * (pp3 + z * pp4)));
+    s = 1.0f + z * (qq1 + z * (qq2 + z * (qq3 + z * (qq4 + z * qq5))));
+    y = r / s;
+    if (sign || ix < 0x3e800000) /* x < 1/4 */
+      return 1.0f - (x + x * y);
+    return 0.5f - (x - 0.5f + x * y);
+  }
+  if (ix < 0x41e00000) { /* |x| < 28 */
+    return sign ? 2 - erfc2(ix, x) : erfc2(ix, x);
+  }
+  return sign ? 2 - 0x1p-120f : 0x1p-120f * 0x1p-120f;
 }
diff --git a/fusl/src/math/erfl.c b/fusl/src/math/erfl.c
index e267c23..a5a6a73 100644
--- a/fusl/src/math/erfl.c
+++ b/fusl/src/math/erfl.c
@@ -97,257 +97,277 @@
  *              erfc/erf(NaN) is NaN
  */
 
-
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double erfl(long double x)
-{
-	return erf(x);
+long double erfl(long double x) {
+  return erf(x);
 }
-long double erfcl(long double x)
-{
-	return erfc(x);
+long double erfcl(long double x) {
+  return erfc(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 static const long double
-erx = 0.845062911510467529296875L,
+    erx = 0.845062911510467529296875L,
 
-/*
- * Coefficients for approximation to  erf on [0,0.84375]
- */
-/* 8 * (2/sqrt(pi) - 1) */
-efx8 = 1.0270333367641005911692712249723613735048E0L,
-pp[6] = {
-	1.122751350964552113068262337278335028553E6L,
-	-2.808533301997696164408397079650699163276E6L,
-	-3.314325479115357458197119660818768924100E5L,
-	-6.848684465326256109712135497895525446398E4L,
-	-2.657817695110739185591505062971929859314E3L,
-	-1.655310302737837556654146291646499062882E2L,
+    /*
+     * Coefficients for approximation to  erf on [0,0.84375]
+     */
+    /* 8 * (2/sqrt(pi) - 1) */
+    efx8 = 1.0270333367641005911692712249723613735048E0L,
+    pp[6] =
+        {
+            1.122751350964552113068262337278335028553E6L,
+            -2.808533301997696164408397079650699163276E6L,
+            -3.314325479115357458197119660818768924100E5L,
+            -6.848684465326256109712135497895525446398E4L,
+            -2.657817695110739185591505062971929859314E3L,
+            -1.655310302737837556654146291646499062882E2L,
 },
-qq[6] = {
-	8.745588372054466262548908189000448124232E6L,
-	3.746038264792471129367533128637019611485E6L,
-	7.066358783162407559861156173539693900031E5L,
-	7.448928604824620999413120955705448117056E4L,
-	4.511583986730994111992253980546131408924E3L,
-	1.368902937933296323345610240009071254014E2L,
-	/* 1.000000000000000000000000000000000000000E0 */
+    qq[6] =
+        {
+            8.745588372054466262548908189000448124232E6L,
+            3.746038264792471129367533128637019611485E6L,
+            7.066358783162407559861156173539693900031E5L,
+            7.448928604824620999413120955705448117056E4L,
+            4.511583986730994111992253980546131408924E3L,
+            1.368902937933296323345610240009071254014E2L,
+            /* 1.000000000000000000000000000000000000000E0 */
 },
 
-/*
- * Coefficients for approximation to  erf  in [0.84375,1.25]
- */
-/* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x)
-   -0.15625 <= x <= +.25
-   Peak relative error 8.5e-22  */
-pa[8] = {
-	-1.076952146179812072156734957705102256059E0L,
-	 1.884814957770385593365179835059971587220E2L,
-	-5.339153975012804282890066622962070115606E1L,
-	 4.435910679869176625928504532109635632618E1L,
-	 1.683219516032328828278557309642929135179E1L,
-	-2.360236618396952560064259585299045804293E0L,
-	 1.852230047861891953244413872297940938041E0L,
-	 9.394994446747752308256773044667843200719E-2L,
+    /*
+     * Coefficients for approximation to  erf  in [0.84375,1.25]
+     */
+    /* erf(x+1) = 0.845062911510467529296875 + pa(x)/qa(x)
+       -0.15625 <= x <= +.25
+       Peak relative error 8.5e-22  */
+    pa[8] =
+        {
+            -1.076952146179812072156734957705102256059E0L,
+            1.884814957770385593365179835059971587220E2L,
+            -5.339153975012804282890066622962070115606E1L,
+            4.435910679869176625928504532109635632618E1L,
+            1.683219516032328828278557309642929135179E1L,
+            -2.360236618396952560064259585299045804293E0L,
+            1.852230047861891953244413872297940938041E0L,
+            9.394994446747752308256773044667843200719E-2L,
 },
-qa[7] =  {
-	4.559263722294508998149925774781887811255E2L,
-	3.289248982200800575749795055149780689738E2L,
-	2.846070965875643009598627918383314457912E2L,
-	1.398715859064535039433275722017479994465E2L,
-	6.060190733759793706299079050985358190726E1L,
-	2.078695677795422351040502569964299664233E1L,
-	4.641271134150895940966798357442234498546E0L,
-	/* 1.000000000000000000000000000000000000000E0 */
+    qa[7] =
+        {
+            4.559263722294508998149925774781887811255E2L,
+            3.289248982200800575749795055149780689738E2L,
+            2.846070965875643009598627918383314457912E2L,
+            1.398715859064535039433275722017479994465E2L,
+            6.060190733759793706299079050985358190726E1L,
+            2.078695677795422351040502569964299664233E1L,
+            4.641271134150895940966798357442234498546E0L,
+            /* 1.000000000000000000000000000000000000000E0 */
 },
 
-/*
- * Coefficients for approximation to  erfc in [1.25,1/0.35]
- */
-/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2))
-   1/2.85711669921875 < 1/x < 1/1.25
-   Peak relative error 3.1e-21  */
-ra[] = {
-	1.363566591833846324191000679620738857234E-1L,
-	1.018203167219873573808450274314658434507E1L,
-	1.862359362334248675526472871224778045594E2L,
-	1.411622588180721285284945138667933330348E3L,
-	5.088538459741511988784440103218342840478E3L,
-	8.928251553922176506858267311750789273656E3L,
-	7.264436000148052545243018622742770549982E3L,
-	2.387492459664548651671894725748959751119E3L,
-	2.220916652813908085449221282808458466556E2L,
+    /*
+     * Coefficients for approximation to  erfc in [1.25,1/0.35]
+     */
+    /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + ra(x^2)/sa(x^2))
+       1/2.85711669921875 < 1/x < 1/1.25
+       Peak relative error 3.1e-21  */
+    ra[] =
+        {
+            1.363566591833846324191000679620738857234E-1L,
+            1.018203167219873573808450274314658434507E1L,
+            1.862359362334248675526472871224778045594E2L,
+            1.411622588180721285284945138667933330348E3L,
+            5.088538459741511988784440103218342840478E3L,
+            8.928251553922176506858267311750789273656E3L,
+            7.264436000148052545243018622742770549982E3L,
+            2.387492459664548651671894725748959751119E3L,
+            2.220916652813908085449221282808458466556E2L,
 },
-sa[] = {
-	-1.382234625202480685182526402169222331847E1L,
-	-3.315638835627950255832519203687435946482E2L,
-	-2.949124863912936259747237164260785326692E3L,
-	-1.246622099070875940506391433635999693661E4L,
-	-2.673079795851665428695842853070996219632E4L,
-	-2.880269786660559337358397106518918220991E4L,
-	-1.450600228493968044773354186390390823713E4L,
-	-2.874539731125893533960680525192064277816E3L,
-	-1.402241261419067750237395034116942296027E2L,
-	/* 1.000000000000000000000000000000000000000E0 */
+    sa[] =
+        {
+            -1.382234625202480685182526402169222331847E1L,
+            -3.315638835627950255832519203687435946482E2L,
+            -2.949124863912936259747237164260785326692E3L,
+            -1.246622099070875940506391433635999693661E4L,
+            -2.673079795851665428695842853070996219632E4L,
+            -2.880269786660559337358397106518918220991E4L,
+            -1.450600228493968044773354186390390823713E4L,
+            -2.874539731125893533960680525192064277816E3L,
+            -1.402241261419067750237395034116942296027E2L,
+            /* 1.000000000000000000000000000000000000000E0 */
 },
 
-/*
- * Coefficients for approximation to  erfc in [1/.35,107]
- */
-/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2))
-   1/6.6666259765625 < 1/x < 1/2.85711669921875
-   Peak relative error 4.2e-22  */
-rb[] = {
-	-4.869587348270494309550558460786501252369E-5L,
-	-4.030199390527997378549161722412466959403E-3L,
-	-9.434425866377037610206443566288917589122E-2L,
-	-9.319032754357658601200655161585539404155E-1L,
-	-4.273788174307459947350256581445442062291E0L,
-	-8.842289940696150508373541814064198259278E0L,
-	-7.069215249419887403187988144752613025255E0L,
-	-1.401228723639514787920274427443330704764E0L,
+    /*
+     * Coefficients for approximation to  erfc in [1/.35,107]
+     */
+    /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rb(x^2)/sb(x^2))
+       1/6.6666259765625 < 1/x < 1/2.85711669921875
+       Peak relative error 4.2e-22  */
+    rb[] =
+        {
+            -4.869587348270494309550558460786501252369E-5L,
+            -4.030199390527997378549161722412466959403E-3L,
+            -9.434425866377037610206443566288917589122E-2L,
+            -9.319032754357658601200655161585539404155E-1L,
+            -4.273788174307459947350256581445442062291E0L,
+            -8.842289940696150508373541814064198259278E0L,
+            -7.069215249419887403187988144752613025255E0L,
+            -1.401228723639514787920274427443330704764E0L,
 },
-sb[] = {
-	4.936254964107175160157544545879293019085E-3L,
-	1.583457624037795744377163924895349412015E-1L,
-	1.850647991850328356622940552450636420484E0L,
-	9.927611557279019463768050710008450625415E0L,
-	2.531667257649436709617165336779212114570E1L,
-	2.869752886406743386458304052862814690045E1L,
-	1.182059497870819562441683560749192539345E1L,
-	/* 1.000000000000000000000000000000000000000E0 */
+    sb[] =
+        {
+            4.936254964107175160157544545879293019085E-3L,
+            1.583457624037795744377163924895349412015E-1L,
+            1.850647991850328356622940552450636420484E0L,
+            9.927611557279019463768050710008450625415E0L,
+            2.531667257649436709617165336779212114570E1L,
+            2.869752886406743386458304052862814690045E1L,
+            1.182059497870819562441683560749192539345E1L,
+            /* 1.000000000000000000000000000000000000000E0 */
 },
-/* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2))
-   1/107 <= 1/x <= 1/6.6666259765625
-   Peak relative error 1.1e-21  */
-rc[] = {
-	-8.299617545269701963973537248996670806850E-5L,
-	-6.243845685115818513578933902532056244108E-3L,
-	-1.141667210620380223113693474478394397230E-1L,
-	-7.521343797212024245375240432734425789409E-1L,
-	-1.765321928311155824664963633786967602934E0L,
-	-1.029403473103215800456761180695263439188E0L,
+    /* erfc(1/x) = x exp (-1/x^2 - 0.5625 + rc(x^2)/sc(x^2))
+       1/107 <= 1/x <= 1/6.6666259765625
+       Peak relative error 1.1e-21  */
+    rc[] =
+        {
+            -8.299617545269701963973537248996670806850E-5L,
+            -6.243845685115818513578933902532056244108E-3L,
+            -1.141667210620380223113693474478394397230E-1L,
+            -7.521343797212024245375240432734425789409E-1L,
+            -1.765321928311155824664963633786967602934E0L,
+            -1.029403473103215800456761180695263439188E0L,
 },
-sc[] = {
-	8.413244363014929493035952542677768808601E-3L,
-	2.065114333816877479753334599639158060979E-1L,
-	1.639064941530797583766364412782135680148E0L,
-	4.936788463787115555582319302981666347450E0L,
-	5.005177727208955487404729933261347679090E0L,
-	/* 1.000000000000000000000000000000000000000E0 */
+    sc[] = {
+        8.413244363014929493035952542677768808601E-3L,
+        2.065114333816877479753334599639158060979E-1L,
+        1.639064941530797583766364412782135680148E0L,
+        4.936788463787115555582319302981666347450E0L,
+        5.005177727208955487404729933261347679090E0L,
+        /* 1.000000000000000000000000000000000000000E0 */
 };
 
-static long double erfc1(long double x)
-{
-	long double s,P,Q;
+static long double erfc1(long double x) {
+  long double s, P, Q;
 
-	s = fabsl(x) - 1;
-	P = pa[0] + s * (pa[1] + s * (pa[2] +
-	     s * (pa[3] + s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));
-	Q = qa[0] + s * (qa[1] + s * (qa[2] +
-	     s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));
-	return 1 - erx - P / Q;
+  s = fabsl(x) - 1;
+  P = pa[0] +
+      s * (pa[1] +
+           s * (pa[2] +
+                s * (pa[3] +
+                     s * (pa[4] + s * (pa[5] + s * (pa[6] + s * pa[7]))))));
+  Q = qa[0] +
+      s * (qa[1] +
+           s * (qa[2] +
+                s * (qa[3] + s * (qa[4] + s * (qa[5] + s * (qa[6] + s))))));
+  return 1 - erx - P / Q;
 }
 
-static long double erfc2(uint32_t ix, long double x)
-{
-	union ldshape u;
-	long double s,z,R,S;
+static long double erfc2(uint32_t ix, long double x) {
+  union ldshape u;
+  long double s, z, R, S;
 
-	if (ix < 0x3fffa000)  /* 0.84375 <= |x| < 1.25 */
-		return erfc1(x);
+  if (ix < 0x3fffa000) /* 0.84375 <= |x| < 1.25 */
+    return erfc1(x);
 
-	x = fabsl(x);
-	s = 1 / (x * x);
-	if (ix < 0x4000b6db) {  /* 1.25 <= |x| < 2.857 ~ 1/.35 */
-		R = ra[0] + s * (ra[1] + s * (ra[2] + s * (ra[3] + s * (ra[4] +
-		     s * (ra[5] + s * (ra[6] + s * (ra[7] + s * ra[8])))))));
-		S = sa[0] + s * (sa[1] + s * (sa[2] + s * (sa[3] + s * (sa[4] +
-		     s * (sa[5] + s * (sa[6] + s * (sa[7] + s * (sa[8] + s))))))));
-	} else if (ix < 0x4001d555) {  /* 2.857 <= |x| < 6.6666259765625 */
-		R = rb[0] + s * (rb[1] + s * (rb[2] + s * (rb[3] + s * (rb[4] +
-		     s * (rb[5] + s * (rb[6] + s * rb[7]))))));
-		S = sb[0] + s * (sb[1] + s * (sb[2] + s * (sb[3] + s * (sb[4] +
-		     s * (sb[5] + s * (sb[6] + s))))));
-	} else { /* 6.666 <= |x| < 107 (erfc only) */
-		R = rc[0] + s * (rc[1] + s * (rc[2] + s * (rc[3] +
-		     s * (rc[4] + s * rc[5]))));
-		S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] +
-		     s * (sc[4] + s))));
-	}
-	u.f = x;
-	u.i.m &= -1ULL << 40;
-	z = u.f;
-	return expl(-z*z - 0.5625) * expl((z - x) * (z + x) + R / S) / x;
+  x = fabsl(x);
+  s = 1 / (x * x);
+  if (ix < 0x4000b6db) { /* 1.25 <= |x| < 2.857 ~ 1/.35 */
+    R = ra[0] +
+        s * (ra[1] +
+             s * (ra[2] +
+                  s * (ra[3] +
+                       s * (ra[4] +
+                            s * (ra[5] +
+                                 s * (ra[6] + s * (ra[7] + s * ra[8])))))));
+    S = sa[0] +
+        s * (sa[1] +
+             s * (sa[2] +
+                  s * (sa[3] +
+                       s * (sa[4] +
+                            s * (sa[5] +
+                                 s * (sa[6] +
+                                      s * (sa[7] + s * (sa[8] + s))))))));
+  } else if (ix < 0x4001d555) { /* 2.857 <= |x| < 6.6666259765625 */
+    R = rb[0] +
+        s * (rb[1] +
+             s * (rb[2] +
+                  s * (rb[3] +
+                       s * (rb[4] + s * (rb[5] + s * (rb[6] + s * rb[7]))))));
+    S = sb[0] +
+        s * (sb[1] +
+             s * (sb[2] +
+                  s * (sb[3] + s * (sb[4] + s * (sb[5] + s * (sb[6] + s))))));
+  } else { /* 6.666 <= |x| < 107 (erfc only) */
+    R = rc[0] +
+        s * (rc[1] + s * (rc[2] + s * (rc[3] + s * (rc[4] + s * rc[5]))));
+    S = sc[0] + s * (sc[1] + s * (sc[2] + s * (sc[3] + s * (sc[4] + s))));
+  }
+  u.f = x;
+  u.i.m &= -1ULL << 40;
+  z = u.f;
+  return expl(-z * z - 0.5625) * expl((z - x) * (z + x) + R / S) / x;
 }
 
-long double erfl(long double x)
-{
-	long double r, s, z, y;
-	union ldshape u = {x};
-	uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48;
-	int sign = u.i.se >> 15;
+long double erfl(long double x) {
+  long double r, s, z, y;
+  union ldshape u = {x};
+  uint32_t ix = (u.i.se & 0x7fffU) << 16 | u.i.m >> 48;
+  int sign = u.i.se >> 15;
 
-	if (ix >= 0x7fff0000)
-		/* erf(nan)=nan, erf(+-inf)=+-1 */
-		return 1 - 2*sign + 1/x;
-	if (ix < 0x3ffed800) {  /* |x| < 0.84375 */
-		if (ix < 0x3fde8000) {  /* |x| < 2**-33 */
-			return 0.125 * (8 * x + efx8 * x);  /* avoid underflow */
-		}
-		z = x * x;
-		r = pp[0] + z * (pp[1] +
-		     z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
-		s = qq[0] + z * (qq[1] +
-		     z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
-		y = r / s;
-		return x + x * y;
-	}
-	if (ix < 0x4001d555)  /* |x| < 6.6666259765625 */
-		y = 1 - erfc2(ix,x);
-	else
-		y = 1 - 0x1p-16382L;
-	return sign ? -y : y;
+  if (ix >= 0x7fff0000)
+    /* erf(nan)=nan, erf(+-inf)=+-1 */
+    return 1 - 2 * sign + 1 / x;
+  if (ix < 0x3ffed800) {                 /* |x| < 0.84375 */
+    if (ix < 0x3fde8000) {               /* |x| < 2**-33 */
+      return 0.125 * (8 * x + efx8 * x); /* avoid underflow */
+    }
+    z = x * x;
+    r = pp[0] +
+        z * (pp[1] + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
+    s = qq[0] +
+        z * (qq[1] + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
+    y = r / s;
+    return x + x * y;
+  }
+  if (ix < 0x4001d555) /* |x| < 6.6666259765625 */
+    y = 1 - erfc2(ix, x);
+  else
+    y = 1 - 0x1p-16382L;
+  return sign ? -y : y;
 }
 
-long double erfcl(long double x)
-{
-	long double r, s, z, y;
-	union ldshape u = {x};
-	uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48;
-	int sign = u.i.se >> 15;
+long double erfcl(long double x) {
+  long double r, s, z, y;
+  union ldshape u = {x};
+  uint32_t ix = (u.i.se & 0x7fffU) << 16 | u.i.m >> 48;
+  int sign = u.i.se >> 15;
 
-	if (ix >= 0x7fff0000)
-		/* erfc(nan) = nan, erfc(+-inf) = 0,2 */
-		return 2*sign + 1/x;
-	if (ix < 0x3ffed800) {  /* |x| < 0.84375 */
-		if (ix < 0x3fbe0000)  /* |x| < 2**-65 */
-			return 1.0 - x;
-		z = x * x;
-		r = pp[0] + z * (pp[1] +
-		     z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
-		s = qq[0] + z * (qq[1] +
-		     z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
-		y = r / s;
-		if (ix < 0x3ffd8000) /* x < 1/4 */
-			return 1.0 - (x + x * y);
-		return 0.5 - (x - 0.5 + x * y);
-	}
-	if (ix < 0x4005d600)  /* |x| < 107 */
-		return sign ? 2 - erfc2(ix,x) : erfc2(ix,x);
-	y = 0x1p-16382L;
-	return sign ? 2 - y : y*y;
+  if (ix >= 0x7fff0000)
+    /* erfc(nan) = nan, erfc(+-inf) = 0,2 */
+    return 2 * sign + 1 / x;
+  if (ix < 0x3ffed800) { /* |x| < 0.84375 */
+    if (ix < 0x3fbe0000) /* |x| < 2**-65 */
+      return 1.0 - x;
+    z = x * x;
+    r = pp[0] +
+        z * (pp[1] + z * (pp[2] + z * (pp[3] + z * (pp[4] + z * pp[5]))));
+    s = qq[0] +
+        z * (qq[1] + z * (qq[2] + z * (qq[3] + z * (qq[4] + z * (qq[5] + z)))));
+    y = r / s;
+    if (ix < 0x3ffd8000) /* x < 1/4 */
+      return 1.0 - (x + x * y);
+    return 0.5 - (x - 0.5 + x * y);
+  }
+  if (ix < 0x4005d600) /* |x| < 107 */
+    return sign ? 2 - erfc2(ix, x) : erfc2(ix, x);
+  y = 0x1p-16382L;
+  return sign ? 2 - y : y * y;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double erfl(long double x)
-{
-	return erf(x);
+long double erfl(long double x) {
+  return erf(x);
 }
-long double erfcl(long double x)
-{
-	return erfc(x);
+long double erfcl(long double x) {
+  return erfc(x);
 }
 #endif
diff --git a/fusl/src/math/exp.c b/fusl/src/math/exp.c
index 9ea672f..d196944 100644
--- a/fusl/src/math/exp.c
+++ b/fusl/src/math/exp.c
@@ -67,68 +67,67 @@
 
 #include "libm.h"
 
-static const double
-half[2] = {0.5,-0.5},
-ln2hi = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
-ln2lo = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
-invln2 = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
-P1   =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
-P2   = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
-P3   =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
-P4   = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
-P5   =  4.13813679705723846039e-08; /* 0x3E663769, 0x72BEA4D0 */
+static const double half[2] = {0.5, -0.5},
+                    ln2hi =
+                        6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
+    ln2lo = 1.90821492927058770002e-10,             /* 0x3dea39ef, 0x35793c76 */
+    invln2 = 1.44269504088896338700e+00,            /* 0x3ff71547, 0x652b82fe */
+    P1 = 1.66666666666666019037e-01,                /* 0x3FC55555, 0x5555553E */
+    P2 = -2.77777777770155933842e-03,               /* 0xBF66C16C, 0x16BEBD93 */
+    P3 = 6.61375632143793436117e-05,                /* 0x3F11566A, 0xAF25DE2C */
+    P4 = -1.65339022054652515390e-06,               /* 0xBEBBBD41, 0xC5D26BF1 */
+    P5 = 4.13813679705723846039e-08;                /* 0x3E663769, 0x72BEA4D0 */
 
-double exp(double x)
-{
-	double_t hi, lo, c, xx, y;
-	int k, sign;
-	uint32_t hx;
+double exp(double x) {
+  double_t hi, lo, c, xx, y;
+  int k, sign;
+  uint32_t hx;
 
-	GET_HIGH_WORD(hx, x);
-	sign = hx>>31;
-	hx &= 0x7fffffff;  /* high word of |x| */
+  GET_HIGH_WORD(hx, x);
+  sign = hx >> 31;
+  hx &= 0x7fffffff; /* high word of |x| */
 
-	/* special cases */
-	if (hx >= 0x4086232b) {  /* if |x| >= 708.39... */
-		if (isnan(x))
-			return x;
-		if (x > 709.782712893383973096) {
-			/* overflow if x!=inf */
-			x *= 0x1p1023;
-			return x;
-		}
-		if (x < -708.39641853226410622) {
-			/* underflow if x!=-inf */
-			FORCE_EVAL((float)(-0x1p-149/x));
-			if (x < -745.13321910194110842)
-				return 0;
-		}
-	}
+  /* special cases */
+  if (hx >= 0x4086232b) { /* if |x| >= 708.39... */
+    if (isnan(x))
+      return x;
+    if (x > 709.782712893383973096) {
+      /* overflow if x!=inf */
+      x *= 0x1p1023;
+      return x;
+    }
+    if (x < -708.39641853226410622) {
+      /* underflow if x!=-inf */
+      FORCE_EVAL((float)(-0x1p-149 / x));
+      if (x < -745.13321910194110842)
+        return 0;
+    }
+  }
 
-	/* argument reduction */
-	if (hx > 0x3fd62e42) {  /* if |x| > 0.5 ln2 */
-		if (hx >= 0x3ff0a2b2)  /* if |x| >= 1.5 ln2 */
-			k = (int)(invln2*x + half[sign]);
-		else
-			k = 1 - sign - sign;
-		hi = x - k*ln2hi;  /* k*ln2hi is exact here */
-		lo = k*ln2lo;
-		x = hi - lo;
-	} else if (hx > 0x3e300000)  {  /* if |x| > 2**-28 */
-		k = 0;
-		hi = x;
-		lo = 0;
-	} else {
-		/* inexact if x!=0 */
-		FORCE_EVAL(0x1p1023 + x);
-		return 1 + x;
-	}
+  /* argument reduction */
+  if (hx > 0x3fd62e42) {  /* if |x| > 0.5 ln2 */
+    if (hx >= 0x3ff0a2b2) /* if |x| >= 1.5 ln2 */
+      k = (int)(invln2 * x + half[sign]);
+    else
+      k = 1 - sign - sign;
+    hi = x - k * ln2hi; /* k*ln2hi is exact here */
+    lo = k * ln2lo;
+    x = hi - lo;
+  } else if (hx > 0x3e300000) { /* if |x| > 2**-28 */
+    k = 0;
+    hi = x;
+    lo = 0;
+  } else {
+    /* inexact if x!=0 */
+    FORCE_EVAL(0x1p1023 + x);
+    return 1 + x;
+  }
 
-	/* x is now in primary range */
-	xx = x*x;
-	c = x - xx*(P1+xx*(P2+xx*(P3+xx*(P4+xx*P5))));
-	y = 1 + (x*c/(2-c) - lo + hi);
-	if (k == 0)
-		return y;
-	return scalbn(y, k);
+  /* x is now in primary range */
+  xx = x * x;
+  c = x - xx * (P1 + xx * (P2 + xx * (P3 + xx * (P4 + xx * P5))));
+  y = 1 + (x * c / (2 - c) - lo + hi);
+  if (k == 0)
+    return y;
+  return scalbn(y, k);
 }
diff --git a/fusl/src/math/exp10.c b/fusl/src/math/exp10.c
index 9f5e3c2..eb926b5 100644
--- a/fusl/src/math/exp10.c
+++ b/fusl/src/math/exp10.c
@@ -3,23 +3,24 @@
 #include <stdint.h>
 #include "libc.h"
 
-double exp10(double x)
-{
-	static const double p10[] = {
-		1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10,
-		1e-9, 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1,
-		1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
-		1e10, 1e11, 1e12, 1e13, 1e14, 1e15
-	};
-	double n, y = modf(x, &n);
-	union {double f; uint64_t i;} u = {n};
-	/* fabs(n) < 16 without raising invalid on nan */
-	if ((u.i>>52 & 0x7ff) < 0x3ff+4) {
-		if (!y) return p10[(int)n+15];
-		y = exp2(3.32192809488736234787031942948939 * y);
-		return y * p10[(int)n+15];
-	}
-	return pow(10.0, x);
+double exp10(double x) {
+  static const double p10[] = {
+      1e-15, 1e-14, 1e-13, 1e-12, 1e-11, 1e-10, 1e-9, 1e-8, 1e-7, 1e-6, 1e-5,
+      1e-4,  1e-3,  1e-2,  1e-1,  1,     1e1,   1e2,  1e3,  1e4,  1e5,  1e6,
+      1e7,   1e8,   1e9,   1e10,  1e11,  1e12,  1e13, 1e14, 1e15};
+  double n, y = modf(x, &n);
+  union {
+    double f;
+    uint64_t i;
+  } u = {n};
+  /* fabs(n) < 16 without raising invalid on nan */
+  if ((u.i >> 52 & 0x7ff) < 0x3ff + 4) {
+    if (!y)
+      return p10[(int)n + 15];
+    y = exp2(3.32192809488736234787031942948939 * y);
+    return y * p10[(int)n + 15];
+  }
+  return pow(10.0, x);
 }
 
 weak_alias(exp10, pow10);
diff --git a/fusl/src/math/exp10f.c b/fusl/src/math/exp10f.c
index 7a8d447..1a23b74 100644
--- a/fusl/src/math/exp10f.c
+++ b/fusl/src/math/exp10f.c
@@ -3,21 +3,23 @@
 #include <stdint.h>
 #include "libc.h"
 
-float exp10f(float x)
-{
-	static const float p10[] = {
-		1e-7f, 1e-6f, 1e-5f, 1e-4f, 1e-3f, 1e-2f, 1e-1f,
-		1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7
-	};
-	float n, y = modff(x, &n);
-	union {float f; uint32_t i;} u = {n};
-	/* fabsf(n) < 8 without raising invalid on nan */
-	if ((u.i>>23 & 0xff) < 0x7f+3) {
-		if (!y) return p10[(int)n+7];
-		y = exp2f(3.32192809488736234787031942948939f * y);
-		return y * p10[(int)n+7];
-	}
-	return exp2(3.32192809488736234787031942948939 * x);
+float exp10f(float x) {
+  static const float p10[] = {1e-7f, 1e-6f, 1e-5f, 1e-4f, 1e-3f,
+                              1e-2f, 1e-1f, 1,     1e1,   1e2,
+                              1e3,   1e4,   1e5,   1e6,   1e7};
+  float n, y = modff(x, &n);
+  union {
+    float f;
+    uint32_t i;
+  } u = {n};
+  /* fabsf(n) < 8 without raising invalid on nan */
+  if ((u.i >> 23 & 0xff) < 0x7f + 3) {
+    if (!y)
+      return p10[(int)n + 7];
+    y = exp2f(3.32192809488736234787031942948939f * y);
+    return y * p10[(int)n + 7];
+  }
+  return exp2(3.32192809488736234787031942948939 * x);
 }
 
 weak_alias(exp10f, pow10f);
diff --git a/fusl/src/math/exp10l.c b/fusl/src/math/exp10l.c
index b758ebf..7805c38 100644
--- a/fusl/src/math/exp10l.c
+++ b/fusl/src/math/exp10l.c
@@ -5,28 +5,26 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double exp10l(long double x)
-{
-	return exp10(x);
+long double exp10l(long double x) {
+  return exp10(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-long double exp10l(long double x)
-{
-	static const long double p10[] = {
-		1e-15L, 1e-14L, 1e-13L, 1e-12L, 1e-11L, 1e-10L,
-		1e-9L, 1e-8L, 1e-7L, 1e-6L, 1e-5L, 1e-4L, 1e-3L, 1e-2L, 1e-1L,
-		1, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
-		1e10, 1e11, 1e12, 1e13, 1e14, 1e15
-	};
-	long double n, y = modfl(x, &n);
-	union ldshape u = {n};
-	/* fabsl(n) < 16 without raising invalid on nan */
-	if ((u.i.se & 0x7fff) < 0x3fff+4) {
-		if (!y) return p10[(int)n+15];
-		y = exp2l(3.32192809488736234787031942948939L * y);
-		return y * p10[(int)n+15];
-	}
-	return powl(10.0, x);
+long double exp10l(long double x) {
+  static const long double p10[] = {
+      1e-15L, 1e-14L, 1e-13L, 1e-12L, 1e-11L, 1e-10L, 1e-9L, 1e-8L,
+      1e-7L,  1e-6L,  1e-5L,  1e-4L,  1e-3L,  1e-2L,  1e-1L, 1,
+      1e1,    1e2,    1e3,    1e4,    1e5,    1e6,    1e7,   1e8,
+      1e9,    1e10,   1e11,   1e12,   1e13,   1e14,   1e15};
+  long double n, y = modfl(x, &n);
+  union ldshape u = {n};
+  /* fabsl(n) < 16 without raising invalid on nan */
+  if ((u.i.se & 0x7fff) < 0x3fff + 4) {
+    if (!y)
+      return p10[(int)n + 15];
+    y = exp2l(3.32192809488736234787031942948939L * y);
+    return y * p10[(int)n + 15];
+  }
+  return powl(10.0, x);
 }
 #endif
 
diff --git a/fusl/src/math/exp2.c b/fusl/src/math/exp2.c
index e14adba..26397bf 100644
--- a/fusl/src/math/exp2.c
+++ b/fusl/src/math/exp2.c
@@ -29,272 +29,140 @@
 
 #define TBLSIZE 256
 
-static const double
-redux = 0x1.8p52 / TBLSIZE,
-P1    = 0x1.62e42fefa39efp-1,
-P2    = 0x1.ebfbdff82c575p-3,
-P3    = 0x1.c6b08d704a0a6p-5,
-P4    = 0x1.3b2ab88f70400p-7,
-P5    = 0x1.5d88003875c74p-10;
+static const double redux = 0x1.8p52 / TBLSIZE, P1 = 0x1.62e42fefa39efp-1,
+                    P2 = 0x1.ebfbdff82c575p-3, P3 = 0x1.c6b08d704a0a6p-5,
+                    P4 = 0x1.3b2ab88f70400p-7, P5 = 0x1.5d88003875c74p-10;
 
 static const double tbl[TBLSIZE * 2] = {
-/*  exp2(z + eps)          eps     */
-  0x1.6a09e667f3d5dp-1,  0x1.9880p-44,
-  0x1.6b052fa751744p-1,  0x1.8000p-50,
-  0x1.6c012750bd9fep-1, -0x1.8780p-45,
-  0x1.6cfdcddd476bfp-1,  0x1.ec00p-46,
-  0x1.6dfb23c651a29p-1, -0x1.8000p-50,
-  0x1.6ef9298593ae3p-1, -0x1.c000p-52,
-  0x1.6ff7df9519386p-1, -0x1.fd80p-45,
-  0x1.70f7466f42da3p-1, -0x1.c880p-45,
-  0x1.71f75e8ec5fc3p-1,  0x1.3c00p-46,
-  0x1.72f8286eacf05p-1, -0x1.8300p-44,
-  0x1.73f9a48a58152p-1, -0x1.0c00p-47,
-  0x1.74fbd35d7ccfcp-1,  0x1.f880p-45,
-  0x1.75feb564267f1p-1,  0x1.3e00p-47,
-  0x1.77024b1ab6d48p-1, -0x1.7d00p-45,
-  0x1.780694fde5d38p-1, -0x1.d000p-50,
-  0x1.790b938ac1d00p-1,  0x1.3000p-49,
-  0x1.7a11473eb0178p-1, -0x1.d000p-49,
-  0x1.7b17b0976d060p-1,  0x1.0400p-45,
-  0x1.7c1ed0130c133p-1,  0x1.0000p-53,
-  0x1.7d26a62ff8636p-1, -0x1.6900p-45,
-  0x1.7e2f336cf4e3bp-1, -0x1.2e00p-47,
-  0x1.7f3878491c3e8p-1, -0x1.4580p-45,
-  0x1.80427543e1b4ep-1,  0x1.3000p-44,
-  0x1.814d2add1071ap-1,  0x1.f000p-47,
-  0x1.82589994ccd7ep-1, -0x1.1c00p-45,
-  0x1.8364c1eb942d0p-1,  0x1.9d00p-45,
-  0x1.8471a4623cab5p-1,  0x1.7100p-43,
-  0x1.857f4179f5bbcp-1,  0x1.2600p-45,
-  0x1.868d99b4491afp-1, -0x1.2c40p-44,
-  0x1.879cad931a395p-1, -0x1.3000p-45,
-  0x1.88ac7d98a65b8p-1, -0x1.a800p-45,
-  0x1.89bd0a4785800p-1, -0x1.d000p-49,
-  0x1.8ace5422aa223p-1,  0x1.3280p-44,
-  0x1.8be05bad619fap-1,  0x1.2b40p-43,
-  0x1.8cf3216b54383p-1, -0x1.ed00p-45,
-  0x1.8e06a5e08664cp-1, -0x1.0500p-45,
-  0x1.8f1ae99157807p-1,  0x1.8280p-45,
-  0x1.902fed0282c0ep-1, -0x1.cb00p-46,
-  0x1.9145b0b91ff96p-1, -0x1.5e00p-47,
-  0x1.925c353aa2ff9p-1,  0x1.5400p-48,
-  0x1.93737b0cdc64ap-1,  0x1.7200p-46,
-  0x1.948b82b5f98aep-1, -0x1.9000p-47,
-  0x1.95a44cbc852cbp-1,  0x1.5680p-45,
-  0x1.96bdd9a766f21p-1, -0x1.6d00p-44,
-  0x1.97d829fde4e2ap-1, -0x1.1000p-47,
-  0x1.98f33e47a23a3p-1,  0x1.d000p-45,
-  0x1.9a0f170ca0604p-1, -0x1.8a40p-44,
-  0x1.9b2bb4d53ff89p-1,  0x1.55c0p-44,
-  0x1.9c49182a3f15bp-1,  0x1.6b80p-45,
-  0x1.9d674194bb8c5p-1, -0x1.c000p-49,
-  0x1.9e86319e3238ep-1,  0x1.7d00p-46,
-  0x1.9fa5e8d07f302p-1,  0x1.6400p-46,
-  0x1.a0c667b5de54dp-1, -0x1.5000p-48,
-  0x1.a1e7aed8eb8f6p-1,  0x1.9e00p-47,
-  0x1.a309bec4a2e27p-1,  0x1.ad80p-45,
-  0x1.a42c980460a5dp-1, -0x1.af00p-46,
-  0x1.a5503b23e259bp-1,  0x1.b600p-47,
-  0x1.a674a8af46213p-1,  0x1.8880p-44,
-  0x1.a799e1330b3a7p-1,  0x1.1200p-46,
-  0x1.a8bfe53c12e8dp-1,  0x1.6c00p-47,
-  0x1.a9e6b5579fcd2p-1, -0x1.9b80p-45,
-  0x1.ab0e521356fb8p-1,  0x1.b700p-45,
-  0x1.ac36bbfd3f381p-1,  0x1.9000p-50,
-  0x1.ad5ff3a3c2780p-1,  0x1.4000p-49,
-  0x1.ae89f995ad2a3p-1, -0x1.c900p-45,
-  0x1.afb4ce622f367p-1,  0x1.6500p-46,
-  0x1.b0e07298db790p-1,  0x1.fd40p-45,
-  0x1.b20ce6c9a89a9p-1,  0x1.2700p-46,
-  0x1.b33a2b84f1a4bp-1,  0x1.d470p-43,
-  0x1.b468415b747e7p-1, -0x1.8380p-44,
-  0x1.b59728de5593ap-1,  0x1.8000p-54,
-  0x1.b6c6e29f1c56ap-1,  0x1.ad00p-47,
-  0x1.b7f76f2fb5e50p-1,  0x1.e800p-50,
-  0x1.b928cf22749b2p-1, -0x1.4c00p-47,
-  0x1.ba5b030a10603p-1, -0x1.d700p-47,
-  0x1.bb8e0b79a6f66p-1,  0x1.d900p-47,
-  0x1.bcc1e904bc1ffp-1,  0x1.2a00p-47,
-  0x1.bdf69c3f3a16fp-1, -0x1.f780p-46,
-  0x1.bf2c25bd71db8p-1, -0x1.0a00p-46,
-  0x1.c06286141b2e9p-1, -0x1.1400p-46,
-  0x1.c199bdd8552e0p-1,  0x1.be00p-47,
-  0x1.c2d1cd9fa64eep-1, -0x1.9400p-47,
-  0x1.c40ab5fffd02fp-1, -0x1.ed00p-47,
-  0x1.c544778fafd15p-1,  0x1.9660p-44,
-  0x1.c67f12e57d0cbp-1, -0x1.a100p-46,
-  0x1.c7ba88988c1b6p-1, -0x1.8458p-42,
-  0x1.c8f6d9406e733p-1, -0x1.a480p-46,
-  0x1.ca3405751c4dfp-1,  0x1.b000p-51,
-  0x1.cb720dcef9094p-1,  0x1.1400p-47,
-  0x1.ccb0f2e6d1689p-1,  0x1.0200p-48,
-  0x1.cdf0b555dc412p-1,  0x1.3600p-48,
-  0x1.cf3155b5bab3bp-1, -0x1.6900p-47,
-  0x1.d072d4a0789bcp-1,  0x1.9a00p-47,
-  0x1.d1b532b08c8fap-1, -0x1.5e00p-46,
-  0x1.d2f87080d8a85p-1,  0x1.d280p-46,
-  0x1.d43c8eacaa203p-1,  0x1.1a00p-47,
-  0x1.d5818dcfba491p-1,  0x1.f000p-50,
-  0x1.d6c76e862e6a1p-1, -0x1.3a00p-47,
-  0x1.d80e316c9834ep-1, -0x1.cd80p-47,
-  0x1.d955d71ff6090p-1,  0x1.4c00p-48,
-  0x1.da9e603db32aep-1,  0x1.f900p-48,
-  0x1.dbe7cd63a8325p-1,  0x1.9800p-49,
-  0x1.dd321f301b445p-1, -0x1.5200p-48,
-  0x1.de7d5641c05bfp-1, -0x1.d700p-46,
-  0x1.dfc97337b9aecp-1, -0x1.6140p-46,
-  0x1.e11676b197d5ep-1,  0x1.b480p-47,
-  0x1.e264614f5a3e7p-1,  0x1.0ce0p-43,
-  0x1.e3b333b16ee5cp-1,  0x1.c680p-47,
-  0x1.e502ee78b3fb4p-1, -0x1.9300p-47,
-  0x1.e653924676d68p-1, -0x1.5000p-49,
-  0x1.e7a51fbc74c44p-1, -0x1.7f80p-47,
-  0x1.e8f7977cdb726p-1, -0x1.3700p-48,
-  0x1.ea4afa2a490e8p-1,  0x1.5d00p-49,
-  0x1.eb9f4867ccae4p-1,  0x1.61a0p-46,
-  0x1.ecf482d8e680dp-1,  0x1.5500p-48,
-  0x1.ee4aaa2188514p-1,  0x1.6400p-51,
-  0x1.efa1bee615a13p-1, -0x1.e800p-49,
-  0x1.f0f9c1cb64106p-1, -0x1.a880p-48,
-  0x1.f252b376bb963p-1, -0x1.c900p-45,
-  0x1.f3ac948dd7275p-1,  0x1.a000p-53,
-  0x1.f50765b6e4524p-1, -0x1.4f00p-48,
-  0x1.f6632798844fdp-1,  0x1.a800p-51,
-  0x1.f7bfdad9cbe38p-1,  0x1.abc0p-48,
-  0x1.f91d802243c82p-1, -0x1.4600p-50,
-  0x1.fa7c1819e908ep-1, -0x1.b0c0p-47,
-  0x1.fbdba3692d511p-1, -0x1.0e00p-51,
-  0x1.fd3c22b8f7194p-1, -0x1.0de8p-46,
-  0x1.fe9d96b2a23eep-1,  0x1.e430p-49,
-  0x1.0000000000000p+0,  0x0.0000p+0,
-  0x1.00b1afa5abcbep+0, -0x1.3400p-52,
-  0x1.0163da9fb3303p+0, -0x1.2170p-46,
-  0x1.02168143b0282p+0,  0x1.a400p-52,
-  0x1.02c9a3e77806cp+0,  0x1.f980p-49,
-  0x1.037d42e11bbcap+0, -0x1.7400p-51,
-  0x1.04315e86e7f89p+0,  0x1.8300p-50,
-  0x1.04e5f72f65467p+0, -0x1.a3f0p-46,
-  0x1.059b0d315855ap+0, -0x1.2840p-47,
-  0x1.0650a0e3c1f95p+0,  0x1.1600p-48,
-  0x1.0706b29ddf71ap+0,  0x1.5240p-46,
-  0x1.07bd42b72a82dp+0, -0x1.9a00p-49,
-  0x1.0874518759bd0p+0,  0x1.6400p-49,
-  0x1.092bdf66607c8p+0, -0x1.0780p-47,
-  0x1.09e3ecac6f383p+0, -0x1.8000p-54,
-  0x1.0a9c79b1f3930p+0,  0x1.fa00p-48,
-  0x1.0b5586cf988fcp+0, -0x1.ac80p-48,
-  0x1.0c0f145e46c8ap+0,  0x1.9c00p-50,
-  0x1.0cc922b724816p+0,  0x1.5200p-47,
-  0x1.0d83b23395dd8p+0, -0x1.ad00p-48,
-  0x1.0e3ec32d3d1f3p+0,  0x1.bac0p-46,
-  0x1.0efa55fdfa9a6p+0, -0x1.4e80p-47,
-  0x1.0fb66affed2f0p+0, -0x1.d300p-47,
-  0x1.1073028d7234bp+0,  0x1.1500p-48,
-  0x1.11301d0125b5bp+0,  0x1.c000p-49,
-  0x1.11edbab5e2af9p+0,  0x1.6bc0p-46,
-  0x1.12abdc06c31d5p+0,  0x1.8400p-49,
-  0x1.136a814f2047dp+0, -0x1.ed00p-47,
-  0x1.1429aaea92de9p+0,  0x1.8e00p-49,
-  0x1.14e95934f3138p+0,  0x1.b400p-49,
-  0x1.15a98c8a58e71p+0,  0x1.5300p-47,
-  0x1.166a45471c3dfp+0,  0x1.3380p-47,
-  0x1.172b83c7d5211p+0,  0x1.8d40p-45,
-  0x1.17ed48695bb9fp+0, -0x1.5d00p-47,
-  0x1.18af9388c8d93p+0, -0x1.c880p-46,
-  0x1.1972658375d66p+0,  0x1.1f00p-46,
-  0x1.1a35beb6fcba7p+0,  0x1.0480p-46,
-  0x1.1af99f81387e3p+0, -0x1.7390p-43,
-  0x1.1bbe084045d54p+0,  0x1.4e40p-45,
-  0x1.1c82f95281c43p+0, -0x1.a200p-47,
-  0x1.1d4873168b9b2p+0,  0x1.3800p-49,
-  0x1.1e0e75eb44031p+0,  0x1.ac00p-49,
-  0x1.1ed5022fcd938p+0,  0x1.1900p-47,
-  0x1.1f9c18438cdf7p+0, -0x1.b780p-46,
-  0x1.2063b88628d8fp+0,  0x1.d940p-45,
-  0x1.212be3578a81ep+0,  0x1.8000p-50,
-  0x1.21f49917ddd41p+0,  0x1.b340p-45,
-  0x1.22bdda2791323p+0,  0x1.9f80p-46,
-  0x1.2387a6e7561e7p+0, -0x1.9c80p-46,
-  0x1.2451ffb821427p+0,  0x1.2300p-47,
-  0x1.251ce4fb2a602p+0, -0x1.3480p-46,
-  0x1.25e85711eceb0p+0,  0x1.2700p-46,
-  0x1.26b4565e27d16p+0,  0x1.1d00p-46,
-  0x1.2780e341de00fp+0,  0x1.1ee0p-44,
-  0x1.284dfe1f5633ep+0, -0x1.4c00p-46,
-  0x1.291ba7591bb30p+0, -0x1.3d80p-46,
-  0x1.29e9df51fdf09p+0,  0x1.8b00p-47,
-  0x1.2ab8a66d10e9bp+0, -0x1.27c0p-45,
-  0x1.2b87fd0dada3ap+0,  0x1.a340p-45,
-  0x1.2c57e39771af9p+0, -0x1.0800p-46,
-  0x1.2d285a6e402d9p+0, -0x1.ed00p-47,
-  0x1.2df961f641579p+0, -0x1.4200p-48,
-  0x1.2ecafa93e2ecfp+0, -0x1.4980p-45,
-  0x1.2f9d24abd8822p+0, -0x1.6300p-46,
-  0x1.306fe0a31b625p+0, -0x1.2360p-44,
-  0x1.31432edeea50bp+0, -0x1.0df8p-40,
-  0x1.32170fc4cd7b8p+0, -0x1.2480p-45,
-  0x1.32eb83ba8e9a2p+0, -0x1.5980p-45,
-  0x1.33c08b2641766p+0,  0x1.ed00p-46,
-  0x1.3496266e3fa27p+0, -0x1.c000p-50,
-  0x1.356c55f929f0fp+0, -0x1.0d80p-44,
-  0x1.36431a2de88b9p+0,  0x1.2c80p-45,
-  0x1.371a7373aaa39p+0,  0x1.0600p-45,
-  0x1.37f26231e74fep+0, -0x1.6600p-46,
-  0x1.38cae6d05d838p+0, -0x1.ae00p-47,
-  0x1.39a401b713ec3p+0, -0x1.4720p-43,
-  0x1.3a7db34e5a020p+0,  0x1.8200p-47,
-  0x1.3b57fbfec6e95p+0,  0x1.e800p-44,
-  0x1.3c32dc313a8f2p+0,  0x1.f800p-49,
-  0x1.3d0e544ede122p+0, -0x1.7a00p-46,
-  0x1.3dea64c1234bbp+0,  0x1.6300p-45,
-  0x1.3ec70df1c4eccp+0, -0x1.8a60p-43,
-  0x1.3fa4504ac7e8cp+0, -0x1.cdc0p-44,
-  0x1.40822c367a0bbp+0,  0x1.5b80p-45,
-  0x1.4160a21f72e95p+0,  0x1.ec00p-46,
-  0x1.423fb27094646p+0, -0x1.3600p-46,
-  0x1.431f5d950a920p+0,  0x1.3980p-45,
-  0x1.43ffa3f84b9ebp+0,  0x1.a000p-48,
-  0x1.44e0860618919p+0, -0x1.6c00p-48,
-  0x1.45c2042a7d201p+0, -0x1.bc00p-47,
-  0x1.46a41ed1d0016p+0, -0x1.2800p-46,
-  0x1.4786d668b3326p+0,  0x1.0e00p-44,
-  0x1.486a2b5c13c00p+0, -0x1.d400p-45,
-  0x1.494e1e192af04p+0,  0x1.c200p-47,
-  0x1.4a32af0d7d372p+0, -0x1.e500p-46,
-  0x1.4b17dea6db801p+0,  0x1.7800p-47,
-  0x1.4bfdad53629e1p+0, -0x1.3800p-46,
-  0x1.4ce41b817c132p+0,  0x1.0800p-47,
-  0x1.4dcb299fddddbp+0,  0x1.c700p-45,
-  0x1.4eb2d81d8ab96p+0, -0x1.ce00p-46,
-  0x1.4f9b2769d2d02p+0,  0x1.9200p-46,
-  0x1.508417f4531c1p+0, -0x1.8c00p-47,
-  0x1.516daa2cf662ap+0, -0x1.a000p-48,
-  0x1.5257de83f51eap+0,  0x1.a080p-43,
-  0x1.5342b569d4edap+0, -0x1.6d80p-45,
-  0x1.542e2f4f6ac1ap+0, -0x1.2440p-44,
-  0x1.551a4ca5d94dbp+0,  0x1.83c0p-43,
-  0x1.56070dde9116bp+0,  0x1.4b00p-45,
-  0x1.56f4736b529dep+0,  0x1.15a0p-43,
-  0x1.57e27dbe2c40ep+0, -0x1.9e00p-45,
-  0x1.58d12d497c76fp+0, -0x1.3080p-45,
-  0x1.59c0827ff0b4cp+0,  0x1.dec0p-43,
-  0x1.5ab07dd485427p+0, -0x1.4000p-51,
-  0x1.5ba11fba87af4p+0,  0x1.0080p-44,
-  0x1.5c9268a59460bp+0, -0x1.6c80p-45,
-  0x1.5d84590998e3fp+0,  0x1.69a0p-43,
-  0x1.5e76f15ad20e1p+0, -0x1.b400p-46,
-  0x1.5f6a320dcebcap+0,  0x1.7700p-46,
-  0x1.605e1b976dcb8p+0,  0x1.6f80p-45,
-  0x1.6152ae6cdf715p+0,  0x1.1000p-47,
-  0x1.6247eb03a5531p+0, -0x1.5d00p-46,
-  0x1.633dd1d1929b5p+0, -0x1.2d00p-46,
-  0x1.6434634ccc313p+0, -0x1.a800p-49,
-  0x1.652b9febc8efap+0, -0x1.8600p-45,
-  0x1.6623882553397p+0,  0x1.1fe0p-40,
-  0x1.671c1c708328ep+0, -0x1.7200p-44,
-  0x1.68155d44ca97ep+0,  0x1.6800p-49,
-  0x1.690f4b19e9471p+0, -0x1.9780p-45,
+    /*  exp2(z + eps)          eps     */
+    0x1.6a09e667f3d5dp-1, 0x1.9880p-44,  0x1.6b052fa751744p-1, 0x1.8000p-50,
+    0x1.6c012750bd9fep-1, -0x1.8780p-45, 0x1.6cfdcddd476bfp-1, 0x1.ec00p-46,
+    0x1.6dfb23c651a29p-1, -0x1.8000p-50, 0x1.6ef9298593ae3p-1, -0x1.c000p-52,
+    0x1.6ff7df9519386p-1, -0x1.fd80p-45, 0x1.70f7466f42da3p-1, -0x1.c880p-45,
+    0x1.71f75e8ec5fc3p-1, 0x1.3c00p-46,  0x1.72f8286eacf05p-1, -0x1.8300p-44,
+    0x1.73f9a48a58152p-1, -0x1.0c00p-47, 0x1.74fbd35d7ccfcp-1, 0x1.f880p-45,
+    0x1.75feb564267f1p-1, 0x1.3e00p-47,  0x1.77024b1ab6d48p-1, -0x1.7d00p-45,
+    0x1.780694fde5d38p-1, -0x1.d000p-50, 0x1.790b938ac1d00p-1, 0x1.3000p-49,
+    0x1.7a11473eb0178p-1, -0x1.d000p-49, 0x1.7b17b0976d060p-1, 0x1.0400p-45,
+    0x1.7c1ed0130c133p-1, 0x1.0000p-53,  0x1.7d26a62ff8636p-1, -0x1.6900p-45,
+    0x1.7e2f336cf4e3bp-1, -0x1.2e00p-47, 0x1.7f3878491c3e8p-1, -0x1.4580p-45,
+    0x1.80427543e1b4ep-1, 0x1.3000p-44,  0x1.814d2add1071ap-1, 0x1.f000p-47,
+    0x1.82589994ccd7ep-1, -0x1.1c00p-45, 0x1.8364c1eb942d0p-1, 0x1.9d00p-45,
+    0x1.8471a4623cab5p-1, 0x1.7100p-43,  0x1.857f4179f5bbcp-1, 0x1.2600p-45,
+    0x1.868d99b4491afp-1, -0x1.2c40p-44, 0x1.879cad931a395p-1, -0x1.3000p-45,
+    0x1.88ac7d98a65b8p-1, -0x1.a800p-45, 0x1.89bd0a4785800p-1, -0x1.d000p-49,
+    0x1.8ace5422aa223p-1, 0x1.3280p-44,  0x1.8be05bad619fap-1, 0x1.2b40p-43,
+    0x1.8cf3216b54383p-1, -0x1.ed00p-45, 0x1.8e06a5e08664cp-1, -0x1.0500p-45,
+    0x1.8f1ae99157807p-1, 0x1.8280p-45,  0x1.902fed0282c0ep-1, -0x1.cb00p-46,
+    0x1.9145b0b91ff96p-1, -0x1.5e00p-47, 0x1.925c353aa2ff9p-1, 0x1.5400p-48,
+    0x1.93737b0cdc64ap-1, 0x1.7200p-46,  0x1.948b82b5f98aep-1, -0x1.9000p-47,
+    0x1.95a44cbc852cbp-1, 0x1.5680p-45,  0x1.96bdd9a766f21p-1, -0x1.6d00p-44,
+    0x1.97d829fde4e2ap-1, -0x1.1000p-47, 0x1.98f33e47a23a3p-1, 0x1.d000p-45,
+    0x1.9a0f170ca0604p-1, -0x1.8a40p-44, 0x1.9b2bb4d53ff89p-1, 0x1.55c0p-44,
+    0x1.9c49182a3f15bp-1, 0x1.6b80p-45,  0x1.9d674194bb8c5p-1, -0x1.c000p-49,
+    0x1.9e86319e3238ep-1, 0x1.7d00p-46,  0x1.9fa5e8d07f302p-1, 0x1.6400p-46,
+    0x1.a0c667b5de54dp-1, -0x1.5000p-48, 0x1.a1e7aed8eb8f6p-1, 0x1.9e00p-47,
+    0x1.a309bec4a2e27p-1, 0x1.ad80p-45,  0x1.a42c980460a5dp-1, -0x1.af00p-46,
+    0x1.a5503b23e259bp-1, 0x1.b600p-47,  0x1.a674a8af46213p-1, 0x1.8880p-44,
+    0x1.a799e1330b3a7p-1, 0x1.1200p-46,  0x1.a8bfe53c12e8dp-1, 0x1.6c00p-47,
+    0x1.a9e6b5579fcd2p-1, -0x1.9b80p-45, 0x1.ab0e521356fb8p-1, 0x1.b700p-45,
+    0x1.ac36bbfd3f381p-1, 0x1.9000p-50,  0x1.ad5ff3a3c2780p-1, 0x1.4000p-49,
+    0x1.ae89f995ad2a3p-1, -0x1.c900p-45, 0x1.afb4ce622f367p-1, 0x1.6500p-46,
+    0x1.b0e07298db790p-1, 0x1.fd40p-45,  0x1.b20ce6c9a89a9p-1, 0x1.2700p-46,
+    0x1.b33a2b84f1a4bp-1, 0x1.d470p-43,  0x1.b468415b747e7p-1, -0x1.8380p-44,
+    0x1.b59728de5593ap-1, 0x1.8000p-54,  0x1.b6c6e29f1c56ap-1, 0x1.ad00p-47,
+    0x1.b7f76f2fb5e50p-1, 0x1.e800p-50,  0x1.b928cf22749b2p-1, -0x1.4c00p-47,
+    0x1.ba5b030a10603p-1, -0x1.d700p-47, 0x1.bb8e0b79a6f66p-1, 0x1.d900p-47,
+    0x1.bcc1e904bc1ffp-1, 0x1.2a00p-47,  0x1.bdf69c3f3a16fp-1, -0x1.f780p-46,
+    0x1.bf2c25bd71db8p-1, -0x1.0a00p-46, 0x1.c06286141b2e9p-1, -0x1.1400p-46,
+    0x1.c199bdd8552e0p-1, 0x1.be00p-47,  0x1.c2d1cd9fa64eep-1, -0x1.9400p-47,
+    0x1.c40ab5fffd02fp-1, -0x1.ed00p-47, 0x1.c544778fafd15p-1, 0x1.9660p-44,
+    0x1.c67f12e57d0cbp-1, -0x1.a100p-46, 0x1.c7ba88988c1b6p-1, -0x1.8458p-42,
+    0x1.c8f6d9406e733p-1, -0x1.a480p-46, 0x1.ca3405751c4dfp-1, 0x1.b000p-51,
+    0x1.cb720dcef9094p-1, 0x1.1400p-47,  0x1.ccb0f2e6d1689p-1, 0x1.0200p-48,
+    0x1.cdf0b555dc412p-1, 0x1.3600p-48,  0x1.cf3155b5bab3bp-1, -0x1.6900p-47,
+    0x1.d072d4a0789bcp-1, 0x1.9a00p-47,  0x1.d1b532b08c8fap-1, -0x1.5e00p-46,
+    0x1.d2f87080d8a85p-1, 0x1.d280p-46,  0x1.d43c8eacaa203p-1, 0x1.1a00p-47,
+    0x1.d5818dcfba491p-1, 0x1.f000p-50,  0x1.d6c76e862e6a1p-1, -0x1.3a00p-47,
+    0x1.d80e316c9834ep-1, -0x1.cd80p-47, 0x1.d955d71ff6090p-1, 0x1.4c00p-48,
+    0x1.da9e603db32aep-1, 0x1.f900p-48,  0x1.dbe7cd63a8325p-1, 0x1.9800p-49,
+    0x1.dd321f301b445p-1, -0x1.5200p-48, 0x1.de7d5641c05bfp-1, -0x1.d700p-46,
+    0x1.dfc97337b9aecp-1, -0x1.6140p-46, 0x1.e11676b197d5ep-1, 0x1.b480p-47,
+    0x1.e264614f5a3e7p-1, 0x1.0ce0p-43,  0x1.e3b333b16ee5cp-1, 0x1.c680p-47,
+    0x1.e502ee78b3fb4p-1, -0x1.9300p-47, 0x1.e653924676d68p-1, -0x1.5000p-49,
+    0x1.e7a51fbc74c44p-1, -0x1.7f80p-47, 0x1.e8f7977cdb726p-1, -0x1.3700p-48,
+    0x1.ea4afa2a490e8p-1, 0x1.5d00p-49,  0x1.eb9f4867ccae4p-1, 0x1.61a0p-46,
+    0x1.ecf482d8e680dp-1, 0x1.5500p-48,  0x1.ee4aaa2188514p-1, 0x1.6400p-51,
+    0x1.efa1bee615a13p-1, -0x1.e800p-49, 0x1.f0f9c1cb64106p-1, -0x1.a880p-48,
+    0x1.f252b376bb963p-1, -0x1.c900p-45, 0x1.f3ac948dd7275p-1, 0x1.a000p-53,
+    0x1.f50765b6e4524p-1, -0x1.4f00p-48, 0x1.f6632798844fdp-1, 0x1.a800p-51,
+    0x1.f7bfdad9cbe38p-1, 0x1.abc0p-48,  0x1.f91d802243c82p-1, -0x1.4600p-50,
+    0x1.fa7c1819e908ep-1, -0x1.b0c0p-47, 0x1.fbdba3692d511p-1, -0x1.0e00p-51,
+    0x1.fd3c22b8f7194p-1, -0x1.0de8p-46, 0x1.fe9d96b2a23eep-1, 0x1.e430p-49,
+    0x1.0000000000000p+0, 0x0.0000p+0,   0x1.00b1afa5abcbep+0, -0x1.3400p-52,
+    0x1.0163da9fb3303p+0, -0x1.2170p-46, 0x1.02168143b0282p+0, 0x1.a400p-52,
+    0x1.02c9a3e77806cp+0, 0x1.f980p-49,  0x1.037d42e11bbcap+0, -0x1.7400p-51,
+    0x1.04315e86e7f89p+0, 0x1.8300p-50,  0x1.04e5f72f65467p+0, -0x1.a3f0p-46,
+    0x1.059b0d315855ap+0, -0x1.2840p-47, 0x1.0650a0e3c1f95p+0, 0x1.1600p-48,
+    0x1.0706b29ddf71ap+0, 0x1.5240p-46,  0x1.07bd42b72a82dp+0, -0x1.9a00p-49,
+    0x1.0874518759bd0p+0, 0x1.6400p-49,  0x1.092bdf66607c8p+0, -0x1.0780p-47,
+    0x1.09e3ecac6f383p+0, -0x1.8000p-54, 0x1.0a9c79b1f3930p+0, 0x1.fa00p-48,
+    0x1.0b5586cf988fcp+0, -0x1.ac80p-48, 0x1.0c0f145e46c8ap+0, 0x1.9c00p-50,
+    0x1.0cc922b724816p+0, 0x1.5200p-47,  0x1.0d83b23395dd8p+0, -0x1.ad00p-48,
+    0x1.0e3ec32d3d1f3p+0, 0x1.bac0p-46,  0x1.0efa55fdfa9a6p+0, -0x1.4e80p-47,
+    0x1.0fb66affed2f0p+0, -0x1.d300p-47, 0x1.1073028d7234bp+0, 0x1.1500p-48,
+    0x1.11301d0125b5bp+0, 0x1.c000p-49,  0x1.11edbab5e2af9p+0, 0x1.6bc0p-46,
+    0x1.12abdc06c31d5p+0, 0x1.8400p-49,  0x1.136a814f2047dp+0, -0x1.ed00p-47,
+    0x1.1429aaea92de9p+0, 0x1.8e00p-49,  0x1.14e95934f3138p+0, 0x1.b400p-49,
+    0x1.15a98c8a58e71p+0, 0x1.5300p-47,  0x1.166a45471c3dfp+0, 0x1.3380p-47,
+    0x1.172b83c7d5211p+0, 0x1.8d40p-45,  0x1.17ed48695bb9fp+0, -0x1.5d00p-47,
+    0x1.18af9388c8d93p+0, -0x1.c880p-46, 0x1.1972658375d66p+0, 0x1.1f00p-46,
+    0x1.1a35beb6fcba7p+0, 0x1.0480p-46,  0x1.1af99f81387e3p+0, -0x1.7390p-43,
+    0x1.1bbe084045d54p+0, 0x1.4e40p-45,  0x1.1c82f95281c43p+0, -0x1.a200p-47,
+    0x1.1d4873168b9b2p+0, 0x1.3800p-49,  0x1.1e0e75eb44031p+0, 0x1.ac00p-49,
+    0x1.1ed5022fcd938p+0, 0x1.1900p-47,  0x1.1f9c18438cdf7p+0, -0x1.b780p-46,
+    0x1.2063b88628d8fp+0, 0x1.d940p-45,  0x1.212be3578a81ep+0, 0x1.8000p-50,
+    0x1.21f49917ddd41p+0, 0x1.b340p-45,  0x1.22bdda2791323p+0, 0x1.9f80p-46,
+    0x1.2387a6e7561e7p+0, -0x1.9c80p-46, 0x1.2451ffb821427p+0, 0x1.2300p-47,
+    0x1.251ce4fb2a602p+0, -0x1.3480p-46, 0x1.25e85711eceb0p+0, 0x1.2700p-46,
+    0x1.26b4565e27d16p+0, 0x1.1d00p-46,  0x1.2780e341de00fp+0, 0x1.1ee0p-44,
+    0x1.284dfe1f5633ep+0, -0x1.4c00p-46, 0x1.291ba7591bb30p+0, -0x1.3d80p-46,
+    0x1.29e9df51fdf09p+0, 0x1.8b00p-47,  0x1.2ab8a66d10e9bp+0, -0x1.27c0p-45,
+    0x1.2b87fd0dada3ap+0, 0x1.a340p-45,  0x1.2c57e39771af9p+0, -0x1.0800p-46,
+    0x1.2d285a6e402d9p+0, -0x1.ed00p-47, 0x1.2df961f641579p+0, -0x1.4200p-48,
+    0x1.2ecafa93e2ecfp+0, -0x1.4980p-45, 0x1.2f9d24abd8822p+0, -0x1.6300p-46,
+    0x1.306fe0a31b625p+0, -0x1.2360p-44, 0x1.31432edeea50bp+0, -0x1.0df8p-40,
+    0x1.32170fc4cd7b8p+0, -0x1.2480p-45, 0x1.32eb83ba8e9a2p+0, -0x1.5980p-45,
+    0x1.33c08b2641766p+0, 0x1.ed00p-46,  0x1.3496266e3fa27p+0, -0x1.c000p-50,
+    0x1.356c55f929f0fp+0, -0x1.0d80p-44, 0x1.36431a2de88b9p+0, 0x1.2c80p-45,
+    0x1.371a7373aaa39p+0, 0x1.0600p-45,  0x1.37f26231e74fep+0, -0x1.6600p-46,
+    0x1.38cae6d05d838p+0, -0x1.ae00p-47, 0x1.39a401b713ec3p+0, -0x1.4720p-43,
+    0x1.3a7db34e5a020p+0, 0x1.8200p-47,  0x1.3b57fbfec6e95p+0, 0x1.e800p-44,
+    0x1.3c32dc313a8f2p+0, 0x1.f800p-49,  0x1.3d0e544ede122p+0, -0x1.7a00p-46,
+    0x1.3dea64c1234bbp+0, 0x1.6300p-45,  0x1.3ec70df1c4eccp+0, -0x1.8a60p-43,
+    0x1.3fa4504ac7e8cp+0, -0x1.cdc0p-44, 0x1.40822c367a0bbp+0, 0x1.5b80p-45,
+    0x1.4160a21f72e95p+0, 0x1.ec00p-46,  0x1.423fb27094646p+0, -0x1.3600p-46,
+    0x1.431f5d950a920p+0, 0x1.3980p-45,  0x1.43ffa3f84b9ebp+0, 0x1.a000p-48,
+    0x1.44e0860618919p+0, -0x1.6c00p-48, 0x1.45c2042a7d201p+0, -0x1.bc00p-47,
+    0x1.46a41ed1d0016p+0, -0x1.2800p-46, 0x1.4786d668b3326p+0, 0x1.0e00p-44,
+    0x1.486a2b5c13c00p+0, -0x1.d400p-45, 0x1.494e1e192af04p+0, 0x1.c200p-47,
+    0x1.4a32af0d7d372p+0, -0x1.e500p-46, 0x1.4b17dea6db801p+0, 0x1.7800p-47,
+    0x1.4bfdad53629e1p+0, -0x1.3800p-46, 0x1.4ce41b817c132p+0, 0x1.0800p-47,
+    0x1.4dcb299fddddbp+0, 0x1.c700p-45,  0x1.4eb2d81d8ab96p+0, -0x1.ce00p-46,
+    0x1.4f9b2769d2d02p+0, 0x1.9200p-46,  0x1.508417f4531c1p+0, -0x1.8c00p-47,
+    0x1.516daa2cf662ap+0, -0x1.a000p-48, 0x1.5257de83f51eap+0, 0x1.a080p-43,
+    0x1.5342b569d4edap+0, -0x1.6d80p-45, 0x1.542e2f4f6ac1ap+0, -0x1.2440p-44,
+    0x1.551a4ca5d94dbp+0, 0x1.83c0p-43,  0x1.56070dde9116bp+0, 0x1.4b00p-45,
+    0x1.56f4736b529dep+0, 0x1.15a0p-43,  0x1.57e27dbe2c40ep+0, -0x1.9e00p-45,
+    0x1.58d12d497c76fp+0, -0x1.3080p-45, 0x1.59c0827ff0b4cp+0, 0x1.dec0p-43,
+    0x1.5ab07dd485427p+0, -0x1.4000p-51, 0x1.5ba11fba87af4p+0, 0x1.0080p-44,
+    0x1.5c9268a59460bp+0, -0x1.6c80p-45, 0x1.5d84590998e3fp+0, 0x1.69a0p-43,
+    0x1.5e76f15ad20e1p+0, -0x1.b400p-46, 0x1.5f6a320dcebcap+0, 0x1.7700p-46,
+    0x1.605e1b976dcb8p+0, 0x1.6f80p-45,  0x1.6152ae6cdf715p+0, 0x1.1000p-47,
+    0x1.6247eb03a5531p+0, -0x1.5d00p-46, 0x1.633dd1d1929b5p+0, -0x1.2d00p-46,
+    0x1.6434634ccc313p+0, -0x1.a800p-49, 0x1.652b9febc8efap+0, -0x1.8600p-45,
+    0x1.6623882553397p+0, 0x1.1fe0p-40,  0x1.671c1c708328ep+0, -0x1.7200p-44,
+    0x1.68155d44ca97ep+0, 0x1.6800p-49,  0x1.690f4b19e9471p+0, -0x1.9780p-45,
 };
 
 /*
@@ -328,48 +196,53 @@
  *      Gal, S. and Bachelis, B.  An Accurate Elementary Mathematical Library
  *      for the IEEE Floating Point Standard.  TOMS 17(1), 26-46 (1991).
  */
-double exp2(double x)
-{
-	double_t r, t, z;
-	uint32_t ix, i0;
-	union {double f; uint64_t i;} u = {x};
-	union {uint32_t u; int32_t i;} k;
+double exp2(double x) {
+  double_t r, t, z;
+  uint32_t ix, i0;
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  union {
+    uint32_t u;
+    int32_t i;
+  } k;
 
-	/* Filter out exceptional cases. */
-	ix = u.i>>32 & 0x7fffffff;
-	if (ix >= 0x408ff000) {  /* |x| >= 1022 or nan */
-		if (ix >= 0x40900000 && u.i>>63 == 0) {  /* x >= 1024 or nan */
-			/* overflow */
-			x *= 0x1p1023;
-			return x;
-		}
-		if (ix >= 0x7ff00000)  /* -inf or -nan */
-			return -1/x;
-		if (u.i>>63) {  /* x <= -1022 */
-			/* underflow */
-			if (x <= -1075 || x - 0x1p52 + 0x1p52 != x)
-				FORCE_EVAL((float)(-0x1p-149/x));
-			if (x <= -1075)
-				return 0;
-		}
-	} else if (ix < 0x3c900000) {  /* |x| < 0x1p-54 */
-		return 1.0 + x;
-	}
+  /* Filter out exceptional cases. */
+  ix = u.i >> 32 & 0x7fffffff;
+  if (ix >= 0x408ff000) {                     /* |x| >= 1022 or nan */
+    if (ix >= 0x40900000 && u.i >> 63 == 0) { /* x >= 1024 or nan */
+      /* overflow */
+      x *= 0x1p1023;
+      return x;
+    }
+    if (ix >= 0x7ff00000) /* -inf or -nan */
+      return -1 / x;
+    if (u.i >> 63) { /* x <= -1022 */
+      /* underflow */
+      if (x <= -1075 || x - 0x1p52 + 0x1p52 != x)
+        FORCE_EVAL((float)(-0x1p-149 / x));
+      if (x <= -1075)
+        return 0;
+    }
+  } else if (ix < 0x3c900000) { /* |x| < 0x1p-54 */
+    return 1.0 + x;
+  }
 
-	/* Reduce x, computing z, i0, and k. */
-	u.f = x + redux;
-	i0 = u.i;
-	i0 += TBLSIZE / 2;
-	k.u = i0 / TBLSIZE * TBLSIZE;
-	k.i /= TBLSIZE;
-	i0 %= TBLSIZE;
-	u.f -= redux;
-	z = x - u.f;
+  /* Reduce x, computing z, i0, and k. */
+  u.f = x + redux;
+  i0 = u.i;
+  i0 += TBLSIZE / 2;
+  k.u = i0 / TBLSIZE * TBLSIZE;
+  k.i /= TBLSIZE;
+  i0 %= TBLSIZE;
+  u.f -= redux;
+  z = x - u.f;
 
-	/* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
-	t = tbl[2*i0];       /* exp2t[i0] */
-	z -= tbl[2*i0 + 1];  /* eps[i0]   */
-	r = t + t * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * P5))));
+  /* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
+  t = tbl[2 * i0];      /* exp2t[i0] */
+  z -= tbl[2 * i0 + 1]; /* eps[i0]   */
+  r = t + t * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * P5))));
 
-	return scalbn(r, k.i);
+  return scalbn(r, k.i);
 }
diff --git a/fusl/src/math/exp2f.c b/fusl/src/math/exp2f.c
index cf6126e..e88fa69 100644
--- a/fusl/src/math/exp2f.c
+++ b/fusl/src/math/exp2f.c
@@ -29,30 +29,17 @@
 
 #define TBLSIZE 16
 
-static const float
-redux = 0x1.8p23f / TBLSIZE,
-P1    = 0x1.62e430p-1f,
-P2    = 0x1.ebfbe0p-3f,
-P3    = 0x1.c6b348p-5f,
-P4    = 0x1.3b2c9cp-7f;
+static const float redux = 0x1.8p23f / TBLSIZE, P1 = 0x1.62e430p-1f,
+                   P2 = 0x1.ebfbe0p-3f, P3 = 0x1.c6b348p-5f,
+                   P4 = 0x1.3b2c9cp-7f;
 
 static const double exp2ft[TBLSIZE] = {
-  0x1.6a09e667f3bcdp-1,
-  0x1.7a11473eb0187p-1,
-  0x1.8ace5422aa0dbp-1,
-  0x1.9c49182a3f090p-1,
-  0x1.ae89f995ad3adp-1,
-  0x1.c199bdd85529cp-1,
-  0x1.d5818dcfba487p-1,
-  0x1.ea4afa2a490dap-1,
-  0x1.0000000000000p+0,
-  0x1.0b5586cf9890fp+0,
-  0x1.172b83c7d517bp+0,
-  0x1.2387a6e756238p+0,
-  0x1.306fe0a31b715p+0,
-  0x1.3dea64c123422p+0,
-  0x1.4bfdad5362a27p+0,
-  0x1.5ab07dd485429p+0,
+    0x1.6a09e667f3bcdp-1, 0x1.7a11473eb0187p-1, 0x1.8ace5422aa0dbp-1,
+    0x1.9c49182a3f090p-1, 0x1.ae89f995ad3adp-1, 0x1.c199bdd85529cp-1,
+    0x1.d5818dcfba487p-1, 0x1.ea4afa2a490dap-1, 0x1.0000000000000p+0,
+    0x1.0b5586cf9890fp+0, 0x1.172b83c7d517bp+0, 0x1.2387a6e756238p+0,
+    0x1.306fe0a31b715p+0, 0x1.3dea64c123422p+0, 0x1.4bfdad5362a27p+0,
+    0x1.5ab07dd485429p+0,
 };
 
 /*
@@ -81,44 +68,49 @@
  *      Tang, P.  Table-driven Implementation of the Exponential Function
  *      in IEEE Floating-Point Arithmetic.  TOMS 15(2), 144-157 (1989).
  */
-float exp2f(float x)
-{
-	double_t t, r, z;
-	union {float f; uint32_t i;} u = {x};
-	union {double f; uint64_t i;} uk;
-	uint32_t ix, i0, k;
+float exp2f(float x) {
+  double_t t, r, z;
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  union {
+    double f;
+    uint64_t i;
+  } uk;
+  uint32_t ix, i0, k;
 
-	/* Filter out exceptional cases. */
-	ix = u.i & 0x7fffffff;
-	if (ix > 0x42fc0000) {  /* |x| > 126 */
-		if (u.i >= 0x43000000 && u.i < 0x80000000) {  /* x >= 128 */
-			x *= 0x1p127f;
-			return x;
-		}
-		if (u.i >= 0x80000000) {  /* x < -126 */
-			if (u.i >= 0xc3160000 || (u.i & 0x0000ffff))
-				FORCE_EVAL(-0x1p-149f/x);
-			if (u.i >= 0xc3160000)  /* x <= -150 */
-				return 0;
-		}
-	} else if (ix <= 0x33000000) {  /* |x| <= 0x1p-25 */
-		return 1.0f + x;
-	}
+  /* Filter out exceptional cases. */
+  ix = u.i & 0x7fffffff;
+  if (ix > 0x42fc0000) {                         /* |x| > 126 */
+    if (u.i >= 0x43000000 && u.i < 0x80000000) { /* x >= 128 */
+      x *= 0x1p127f;
+      return x;
+    }
+    if (u.i >= 0x80000000) { /* x < -126 */
+      if (u.i >= 0xc3160000 || (u.i & 0x0000ffff))
+        FORCE_EVAL(-0x1p-149f / x);
+      if (u.i >= 0xc3160000) /* x <= -150 */
+        return 0;
+    }
+  } else if (ix <= 0x33000000) { /* |x| <= 0x1p-25 */
+    return 1.0f + x;
+  }
 
-	/* Reduce x, computing z, i0, and k. */
-	u.f = x + redux;
-	i0 = u.i;
-	i0 += TBLSIZE / 2;
-	k = i0 / TBLSIZE;
-	uk.i = (uint64_t)(0x3ff + k)<<52;
-	i0 &= TBLSIZE - 1;
-	u.f -= redux;
-	z = x - u.f;
-	/* Compute r = exp2(y) = exp2ft[i0] * p(z). */
-	r = exp2ft[i0];
-	t = r * z;
-	r = r + t * (P1 + z * P2) + t * (z * z) * (P3 + z * P4);
+  /* Reduce x, computing z, i0, and k. */
+  u.f = x + redux;
+  i0 = u.i;
+  i0 += TBLSIZE / 2;
+  k = i0 / TBLSIZE;
+  uk.i = (uint64_t)(0x3ff + k) << 52;
+  i0 &= TBLSIZE - 1;
+  u.f -= redux;
+  z = x - u.f;
+  /* Compute r = exp2(y) = exp2ft[i0] * p(z). */
+  r = exp2ft[i0];
+  t = r * z;
+  r = r + t * (P1 + z * P2) + t * (z * z) * (P3 + z * P4);
 
-	/* Scale by 2**k */
-	return r * uk.f;
+  /* Scale by 2**k */
+  return r * uk.f;
 }
diff --git a/fusl/src/math/exp2l.c b/fusl/src/math/exp2l.c
index 3565c1e..0528a47 100644
--- a/fusl/src/math/exp2l.c
+++ b/fusl/src/math/exp2l.c
@@ -1,4 +1,5 @@
-/* origin: FreeBSD /usr/src/lib/msun/ld80/s_exp2l.c and /usr/src/lib/msun/ld128/s_exp2l.c */
+/* origin: FreeBSD /usr/src/lib/msun/ld80/s_exp2l.c and
+ * /usr/src/lib/msun/ld128/s_exp2l.c */
 /*-
  * Copyright (c) 2005-2008 David Schultz <das@FreeBSD.ORG>
  * All rights reserved.
@@ -28,152 +29,275 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double exp2l(long double x)
-{
-	return exp2(x);
+long double exp2l(long double x) {
+  return exp2(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 #define TBLBITS 7
 #define TBLSIZE (1 << TBLBITS)
 
-static const double
-redux = 0x1.8p63 / TBLSIZE,
-P1    = 0x1.62e42fefa39efp-1,
-P2    = 0x1.ebfbdff82c58fp-3,
-P3    = 0x1.c6b08d7049fap-5,
-P4    = 0x1.3b2ab6fba4da5p-7,
-P5    = 0x1.5d8804780a736p-10,
-P6    = 0x1.430918835e33dp-13;
+static const double redux = 0x1.8p63 / TBLSIZE, P1 = 0x1.62e42fefa39efp-1,
+                    P2 = 0x1.ebfbdff82c58fp-3, P3 = 0x1.c6b08d7049fap-5,
+                    P4 = 0x1.3b2ab6fba4da5p-7, P5 = 0x1.5d8804780a736p-10,
+                    P6 = 0x1.430918835e33dp-13;
 
 static const double tbl[TBLSIZE * 2] = {
-	0x1.6a09e667f3bcdp-1,   -0x1.bdd3413b2648p-55,
-	0x1.6c012750bdabfp-1,   -0x1.2895667ff0cp-57,
-	0x1.6dfb23c651a2fp-1,   -0x1.bbe3a683c88p-58,
-	0x1.6ff7df9519484p-1,   -0x1.83c0f25860fp-56,
-	0x1.71f75e8ec5f74p-1,   -0x1.16e4786887bp-56,
-	0x1.73f9a48a58174p-1,   -0x1.0a8d96c65d5p-55,
-	0x1.75feb564267c9p-1,   -0x1.0245957316ep-55,
-	0x1.780694fde5d3fp-1,    0x1.866b80a0216p-55,
-	0x1.7a11473eb0187p-1,   -0x1.41577ee0499p-56,
-	0x1.7c1ed0130c132p-1,    0x1.f124cd1164ep-55,
-	0x1.7e2f336cf4e62p-1,    0x1.05d02ba157ap-57,
-	0x1.80427543e1a12p-1,   -0x1.27c86626d97p-55,
-	0x1.82589994cce13p-1,   -0x1.d4c1dd41533p-55,
-	0x1.8471a4623c7adp-1,   -0x1.8d684a341cep-56,
-	0x1.868d99b4492edp-1,   -0x1.fc6f89bd4f68p-55,
-	0x1.88ac7d98a6699p-1,    0x1.994c2f37cb5p-55,
-	0x1.8ace5422aa0dbp-1,    0x1.6e9f156864bp-55,
-	0x1.8cf3216b5448cp-1,   -0x1.0d55e32e9e4p-57,
-	0x1.8f1ae99157736p-1,    0x1.5cc13a2e397p-56,
-	0x1.9145b0b91ffc6p-1,   -0x1.dd6792e5825p-55,
-	0x1.93737b0cdc5e5p-1,   -0x1.75fc781b58p-58,
-	0x1.95a44cbc8520fp-1,   -0x1.64b7c96a5fp-57,
-	0x1.97d829fde4e5p-1,    -0x1.d185b7c1b86p-55,
-	0x1.9a0f170ca07bap-1,   -0x1.173bd91cee6p-55,
-	0x1.9c49182a3f09p-1,     0x1.c7c46b071f2p-57,
-	0x1.9e86319e32323p-1,    0x1.824ca78e64cp-57,
-	0x1.a0c667b5de565p-1,   -0x1.359495d1cd5p-55,
-	0x1.a309bec4a2d33p-1,    0x1.6305c7ddc368p-55,
-	0x1.a5503b23e255dp-1,   -0x1.d2f6edb8d42p-55,
-	0x1.a799e1330b358p-1,    0x1.bcb7ecac564p-55,
-	0x1.a9e6b5579fdbfp-1,    0x1.0fac90ef7fdp-55,
-	0x1.ac36bbfd3f37ap-1,   -0x1.f9234cae76dp-56,
-	0x1.ae89f995ad3adp-1,    0x1.7a1cd345dcc8p-55,
-	0x1.b0e07298db666p-1,   -0x1.bdef54c80e4p-55,
-	0x1.b33a2b84f15fbp-1,   -0x1.2805e3084d8p-58,
-	0x1.b59728de5593ap-1,   -0x1.c71dfbbba6ep-55,
-	0x1.b7f76f2fb5e47p-1,   -0x1.5584f7e54acp-57,
-	0x1.ba5b030a1064ap-1,   -0x1.efcd30e5429p-55,
-	0x1.bcc1e904bc1d2p-1,    0x1.23dd07a2d9fp-56,
-	0x1.bf2c25bd71e09p-1,   -0x1.efdca3f6b9c8p-55,
-	0x1.c199bdd85529cp-1,    0x1.11065895049p-56,
-	0x1.c40ab5fffd07ap-1,    0x1.b4537e083c6p-55,
-	0x1.c67f12e57d14bp-1,    0x1.2884dff483c8p-55,
-	0x1.c8f6d9406e7b5p-1,    0x1.1acbc48805cp-57,
-	0x1.cb720dcef9069p-1,    0x1.503cbd1e94ap-57,
-	0x1.cdf0b555dc3fap-1,   -0x1.dd83b53829dp-56,
-	0x1.d072d4a07897cp-1,   -0x1.cbc3743797a8p-55,
-	0x1.d2f87080d89f2p-1,   -0x1.d487b719d858p-55,
-	0x1.d5818dcfba487p-1,    0x1.2ed02d75b37p-56,
-	0x1.d80e316c98398p-1,   -0x1.11ec18bedep-55,
-	0x1.da9e603db3285p-1,    0x1.c2300696db5p-55,
-	0x1.dd321f301b46p-1,     0x1.2da5778f019p-55,
-	0x1.dfc97337b9b5fp-1,   -0x1.1a5cd4f184b8p-55,
-	0x1.e264614f5a129p-1,   -0x1.7b627817a148p-55,
-	0x1.e502ee78b3ff6p-1,    0x1.39e8980a9cdp-56,
-	0x1.e7a51fbc74c83p-1,    0x1.2d522ca0c8ep-55,
-	0x1.ea4afa2a490dap-1,   -0x1.e9c23179c288p-55,
-	0x1.ecf482d8e67f1p-1,   -0x1.c93f3b411ad8p-55,
-	0x1.efa1bee615a27p-1,    0x1.dc7f486a4b68p-55,
-	0x1.f252b376bba97p-1,    0x1.3a1a5bf0d8e8p-55,
-	0x1.f50765b6e454p-1,     0x1.9d3e12dd8a18p-55,
-	0x1.f7bfdad9cbe14p-1,   -0x1.dbb12d00635p-55,
-	0x1.fa7c1819e90d8p-1,    0x1.74853f3a593p-56,
-	0x1.fd3c22b8f71f1p-1,    0x1.2eb74966578p-58,
-	0x1p+0,                  0x0p+0,
-	0x1.0163da9fb3335p+0,    0x1.b61299ab8cd8p-54,
-	0x1.02c9a3e778061p+0,   -0x1.19083535b08p-56,
-	0x1.04315e86e7f85p+0,   -0x1.0a31c1977c98p-54,
-	0x1.059b0d3158574p+0,    0x1.d73e2a475b4p-55,
-	0x1.0706b29ddf6dep+0,   -0x1.c91dfe2b13cp-55,
-	0x1.0874518759bc8p+0,    0x1.186be4bb284p-57,
-	0x1.09e3ecac6f383p+0,    0x1.14878183161p-54,
-	0x1.0b5586cf9890fp+0,    0x1.8a62e4adc61p-54,
-	0x1.0cc922b7247f7p+0,    0x1.01edc16e24f8p-54,
-	0x1.0e3ec32d3d1a2p+0,    0x1.03a1727c58p-59,
-	0x1.0fb66affed31bp+0,   -0x1.b9bedc44ebcp-57,
-	0x1.11301d0125b51p+0,   -0x1.6c51039449bp-54,
-	0x1.12abdc06c31ccp+0,   -0x1.1b514b36ca8p-58,
-	0x1.1429aaea92dep+0,    -0x1.32fbf9af1368p-54,
-	0x1.15a98c8a58e51p+0,    0x1.2406ab9eeabp-55,
-	0x1.172b83c7d517bp+0,   -0x1.19041b9d78ap-55,
-	0x1.18af9388c8deap+0,   -0x1.11023d1970f8p-54,
-	0x1.1a35beb6fcb75p+0,    0x1.e5b4c7b4969p-55,
-	0x1.1bbe084045cd4p+0,   -0x1.95386352ef6p-54,
-	0x1.1d4873168b9aap+0,    0x1.e016e00a264p-54,
-	0x1.1ed5022fcd91dp+0,   -0x1.1df98027bb78p-54,
-	0x1.2063b88628cd6p+0,    0x1.dc775814a85p-55,
-	0x1.21f49917ddc96p+0,    0x1.2a97e9494a6p-55,
-	0x1.2387a6e756238p+0,    0x1.9b07eb6c7058p-54,
-	0x1.251ce4fb2a63fp+0,    0x1.ac155bef4f5p-55,
-	0x1.26b4565e27cddp+0,    0x1.2bd339940eap-55,
-	0x1.284dfe1f56381p+0,   -0x1.a4c3a8c3f0d8p-54,
-	0x1.29e9df51fdee1p+0,    0x1.612e8afad12p-55,
-	0x1.2b87fd0dad99p+0,    -0x1.10adcd6382p-59,
-	0x1.2d285a6e4030bp+0,    0x1.0024754db42p-54,
-	0x1.2ecafa93e2f56p+0,    0x1.1ca0f45d524p-56,
-	0x1.306fe0a31b715p+0,    0x1.6f46ad23183p-55,
-	0x1.32170fc4cd831p+0,    0x1.a9ce78e1804p-55,
-	0x1.33c08b26416ffp+0,    0x1.327218436598p-54,
-	0x1.356c55f929ff1p+0,   -0x1.b5cee5c4e46p-55,
-	0x1.371a7373aa9cbp+0,   -0x1.63aeabf42ebp-54,
-	0x1.38cae6d05d866p+0,   -0x1.e958d3c99048p-54,
-	0x1.3a7db34e59ff7p+0,   -0x1.5e436d661f6p-56,
-	0x1.3c32dc313a8e5p+0,   -0x1.efff8375d2ap-54,
-	0x1.3dea64c123422p+0,    0x1.ada0911f09fp-55,
-	0x1.3fa4504ac801cp+0,   -0x1.7d023f956fap-54,
-	0x1.4160a21f72e2ap+0,   -0x1.ef3691c309p-58,
-	0x1.431f5d950a897p+0,   -0x1.1c7dde35f7ap-55,
-	0x1.44e086061892dp+0,    0x1.89b7a04ef8p-59,
-	0x1.46a41ed1d0057p+0,    0x1.c944bd1648a8p-54,
-	0x1.486a2b5c13cdp+0,     0x1.3c1a3b69062p-56,
-	0x1.4a32af0d7d3dep+0,    0x1.9cb62f3d1be8p-54,
-	0x1.4bfdad5362a27p+0,    0x1.d4397afec42p-56,
-	0x1.4dcb299fddd0dp+0,    0x1.8ecdbbc6a78p-54,
-	0x1.4f9b2769d2ca7p+0,   -0x1.4b309d25958p-54,
-	0x1.516daa2cf6642p+0,   -0x1.f768569bd94p-55,
-	0x1.5342b569d4f82p+0,   -0x1.07abe1db13dp-55,
-	0x1.551a4ca5d920fp+0,   -0x1.d689cefede6p-55,
-	0x1.56f4736b527dap+0,    0x1.9bb2c011d938p-54,
-	0x1.58d12d497c7fdp+0,    0x1.295e15b9a1ep-55,
-	0x1.5ab07dd485429p+0,    0x1.6324c0546478p-54,
-	0x1.5c9268a5946b7p+0,    0x1.c4b1b81698p-60,
-	0x1.5e76f15ad2148p+0,    0x1.ba6f93080e68p-54,
-	0x1.605e1b976dc09p+0,   -0x1.3e2429b56de8p-54,
-	0x1.6247eb03a5585p+0,   -0x1.383c17e40b48p-54,
-	0x1.6434634ccc32p+0,    -0x1.c483c759d89p-55,
-	0x1.6623882552225p+0,   -0x1.bb60987591cp-54,
-	0x1.68155d44ca973p+0,    0x1.038ae44f74p-57,
+    0x1.6a09e667f3bcdp-1,
+    -0x1.bdd3413b2648p-55,
+    0x1.6c012750bdabfp-1,
+    -0x1.2895667ff0cp-57,
+    0x1.6dfb23c651a2fp-1,
+    -0x1.bbe3a683c88p-58,
+    0x1.6ff7df9519484p-1,
+    -0x1.83c0f25860fp-56,
+    0x1.71f75e8ec5f74p-1,
+    -0x1.16e4786887bp-56,
+    0x1.73f9a48a58174p-1,
+    -0x1.0a8d96c65d5p-55,
+    0x1.75feb564267c9p-1,
+    -0x1.0245957316ep-55,
+    0x1.780694fde5d3fp-1,
+    0x1.866b80a0216p-55,
+    0x1.7a11473eb0187p-1,
+    -0x1.41577ee0499p-56,
+    0x1.7c1ed0130c132p-1,
+    0x1.f124cd1164ep-55,
+    0x1.7e2f336cf4e62p-1,
+    0x1.05d02ba157ap-57,
+    0x1.80427543e1a12p-1,
+    -0x1.27c86626d97p-55,
+    0x1.82589994cce13p-1,
+    -0x1.d4c1dd41533p-55,
+    0x1.8471a4623c7adp-1,
+    -0x1.8d684a341cep-56,
+    0x1.868d99b4492edp-1,
+    -0x1.fc6f89bd4f68p-55,
+    0x1.88ac7d98a6699p-1,
+    0x1.994c2f37cb5p-55,
+    0x1.8ace5422aa0dbp-1,
+    0x1.6e9f156864bp-55,
+    0x1.8cf3216b5448cp-1,
+    -0x1.0d55e32e9e4p-57,
+    0x1.8f1ae99157736p-1,
+    0x1.5cc13a2e397p-56,
+    0x1.9145b0b91ffc6p-1,
+    -0x1.dd6792e5825p-55,
+    0x1.93737b0cdc5e5p-1,
+    -0x1.75fc781b58p-58,
+    0x1.95a44cbc8520fp-1,
+    -0x1.64b7c96a5fp-57,
+    0x1.97d829fde4e5p-1,
+    -0x1.d185b7c1b86p-55,
+    0x1.9a0f170ca07bap-1,
+    -0x1.173bd91cee6p-55,
+    0x1.9c49182a3f09p-1,
+    0x1.c7c46b071f2p-57,
+    0x1.9e86319e32323p-1,
+    0x1.824ca78e64cp-57,
+    0x1.a0c667b5de565p-1,
+    -0x1.359495d1cd5p-55,
+    0x1.a309bec4a2d33p-1,
+    0x1.6305c7ddc368p-55,
+    0x1.a5503b23e255dp-1,
+    -0x1.d2f6edb8d42p-55,
+    0x1.a799e1330b358p-1,
+    0x1.bcb7ecac564p-55,
+    0x1.a9e6b5579fdbfp-1,
+    0x1.0fac90ef7fdp-55,
+    0x1.ac36bbfd3f37ap-1,
+    -0x1.f9234cae76dp-56,
+    0x1.ae89f995ad3adp-1,
+    0x1.7a1cd345dcc8p-55,
+    0x1.b0e07298db666p-1,
+    -0x1.bdef54c80e4p-55,
+    0x1.b33a2b84f15fbp-1,
+    -0x1.2805e3084d8p-58,
+    0x1.b59728de5593ap-1,
+    -0x1.c71dfbbba6ep-55,
+    0x1.b7f76f2fb5e47p-1,
+    -0x1.5584f7e54acp-57,
+    0x1.ba5b030a1064ap-1,
+    -0x1.efcd30e5429p-55,
+    0x1.bcc1e904bc1d2p-1,
+    0x1.23dd07a2d9fp-56,
+    0x1.bf2c25bd71e09p-1,
+    -0x1.efdca3f6b9c8p-55,
+    0x1.c199bdd85529cp-1,
+    0x1.11065895049p-56,
+    0x1.c40ab5fffd07ap-1,
+    0x1.b4537e083c6p-55,
+    0x1.c67f12e57d14bp-1,
+    0x1.2884dff483c8p-55,
+    0x1.c8f6d9406e7b5p-1,
+    0x1.1acbc48805cp-57,
+    0x1.cb720dcef9069p-1,
+    0x1.503cbd1e94ap-57,
+    0x1.cdf0b555dc3fap-1,
+    -0x1.dd83b53829dp-56,
+    0x1.d072d4a07897cp-1,
+    -0x1.cbc3743797a8p-55,
+    0x1.d2f87080d89f2p-1,
+    -0x1.d487b719d858p-55,
+    0x1.d5818dcfba487p-1,
+    0x1.2ed02d75b37p-56,
+    0x1.d80e316c98398p-1,
+    -0x1.11ec18bedep-55,
+    0x1.da9e603db3285p-1,
+    0x1.c2300696db5p-55,
+    0x1.dd321f301b46p-1,
+    0x1.2da5778f019p-55,
+    0x1.dfc97337b9b5fp-1,
+    -0x1.1a5cd4f184b8p-55,
+    0x1.e264614f5a129p-1,
+    -0x1.7b627817a148p-55,
+    0x1.e502ee78b3ff6p-1,
+    0x1.39e8980a9cdp-56,
+    0x1.e7a51fbc74c83p-1,
+    0x1.2d522ca0c8ep-55,
+    0x1.ea4afa2a490dap-1,
+    -0x1.e9c23179c288p-55,
+    0x1.ecf482d8e67f1p-1,
+    -0x1.c93f3b411ad8p-55,
+    0x1.efa1bee615a27p-1,
+    0x1.dc7f486a4b68p-55,
+    0x1.f252b376bba97p-1,
+    0x1.3a1a5bf0d8e8p-55,
+    0x1.f50765b6e454p-1,
+    0x1.9d3e12dd8a18p-55,
+    0x1.f7bfdad9cbe14p-1,
+    -0x1.dbb12d00635p-55,
+    0x1.fa7c1819e90d8p-1,
+    0x1.74853f3a593p-56,
+    0x1.fd3c22b8f71f1p-1,
+    0x1.2eb74966578p-58,
+    0x1p+0,
+    0x0p+0,
+    0x1.0163da9fb3335p+0,
+    0x1.b61299ab8cd8p-54,
+    0x1.02c9a3e778061p+0,
+    -0x1.19083535b08p-56,
+    0x1.04315e86e7f85p+0,
+    -0x1.0a31c1977c98p-54,
+    0x1.059b0d3158574p+0,
+    0x1.d73e2a475b4p-55,
+    0x1.0706b29ddf6dep+0,
+    -0x1.c91dfe2b13cp-55,
+    0x1.0874518759bc8p+0,
+    0x1.186be4bb284p-57,
+    0x1.09e3ecac6f383p+0,
+    0x1.14878183161p-54,
+    0x1.0b5586cf9890fp+0,
+    0x1.8a62e4adc61p-54,
+    0x1.0cc922b7247f7p+0,
+    0x1.01edc16e24f8p-54,
+    0x1.0e3ec32d3d1a2p+0,
+    0x1.03a1727c58p-59,
+    0x1.0fb66affed31bp+0,
+    -0x1.b9bedc44ebcp-57,
+    0x1.11301d0125b51p+0,
+    -0x1.6c51039449bp-54,
+    0x1.12abdc06c31ccp+0,
+    -0x1.1b514b36ca8p-58,
+    0x1.1429aaea92dep+0,
+    -0x1.32fbf9af1368p-54,
+    0x1.15a98c8a58e51p+0,
+    0x1.2406ab9eeabp-55,
+    0x1.172b83c7d517bp+0,
+    -0x1.19041b9d78ap-55,
+    0x1.18af9388c8deap+0,
+    -0x1.11023d1970f8p-54,
+    0x1.1a35beb6fcb75p+0,
+    0x1.e5b4c7b4969p-55,
+    0x1.1bbe084045cd4p+0,
+    -0x1.95386352ef6p-54,
+    0x1.1d4873168b9aap+0,
+    0x1.e016e00a264p-54,
+    0x1.1ed5022fcd91dp+0,
+    -0x1.1df98027bb78p-54,
+    0x1.2063b88628cd6p+0,
+    0x1.dc775814a85p-55,
+    0x1.21f49917ddc96p+0,
+    0x1.2a97e9494a6p-55,
+    0x1.2387a6e756238p+0,
+    0x1.9b07eb6c7058p-54,
+    0x1.251ce4fb2a63fp+0,
+    0x1.ac155bef4f5p-55,
+    0x1.26b4565e27cddp+0,
+    0x1.2bd339940eap-55,
+    0x1.284dfe1f56381p+0,
+    -0x1.a4c3a8c3f0d8p-54,
+    0x1.29e9df51fdee1p+0,
+    0x1.612e8afad12p-55,
+    0x1.2b87fd0dad99p+0,
+    -0x1.10adcd6382p-59,
+    0x1.2d285a6e4030bp+0,
+    0x1.0024754db42p-54,
+    0x1.2ecafa93e2f56p+0,
+    0x1.1ca0f45d524p-56,
+    0x1.306fe0a31b715p+0,
+    0x1.6f46ad23183p-55,
+    0x1.32170fc4cd831p+0,
+    0x1.a9ce78e1804p-55,
+    0x1.33c08b26416ffp+0,
+    0x1.327218436598p-54,
+    0x1.356c55f929ff1p+0,
+    -0x1.b5cee5c4e46p-55,
+    0x1.371a7373aa9cbp+0,
+    -0x1.63aeabf42ebp-54,
+    0x1.38cae6d05d866p+0,
+    -0x1.e958d3c99048p-54,
+    0x1.3a7db34e59ff7p+0,
+    -0x1.5e436d661f6p-56,
+    0x1.3c32dc313a8e5p+0,
+    -0x1.efff8375d2ap-54,
+    0x1.3dea64c123422p+0,
+    0x1.ada0911f09fp-55,
+    0x1.3fa4504ac801cp+0,
+    -0x1.7d023f956fap-54,
+    0x1.4160a21f72e2ap+0,
+    -0x1.ef3691c309p-58,
+    0x1.431f5d950a897p+0,
+    -0x1.1c7dde35f7ap-55,
+    0x1.44e086061892dp+0,
+    0x1.89b7a04ef8p-59,
+    0x1.46a41ed1d0057p+0,
+    0x1.c944bd1648a8p-54,
+    0x1.486a2b5c13cdp+0,
+    0x1.3c1a3b69062p-56,
+    0x1.4a32af0d7d3dep+0,
+    0x1.9cb62f3d1be8p-54,
+    0x1.4bfdad5362a27p+0,
+    0x1.d4397afec42p-56,
+    0x1.4dcb299fddd0dp+0,
+    0x1.8ecdbbc6a78p-54,
+    0x1.4f9b2769d2ca7p+0,
+    -0x1.4b309d25958p-54,
+    0x1.516daa2cf6642p+0,
+    -0x1.f768569bd94p-55,
+    0x1.5342b569d4f82p+0,
+    -0x1.07abe1db13dp-55,
+    0x1.551a4ca5d920fp+0,
+    -0x1.d689cefede6p-55,
+    0x1.56f4736b527dap+0,
+    0x1.9bb2c011d938p-54,
+    0x1.58d12d497c7fdp+0,
+    0x1.295e15b9a1ep-55,
+    0x1.5ab07dd485429p+0,
+    0x1.6324c0546478p-54,
+    0x1.5c9268a5946b7p+0,
+    0x1.c4b1b81698p-60,
+    0x1.5e76f15ad2148p+0,
+    0x1.ba6f93080e68p-54,
+    0x1.605e1b976dc09p+0,
+    -0x1.3e2429b56de8p-54,
+    0x1.6247eb03a5585p+0,
+    -0x1.383c17e40b48p-54,
+    0x1.6434634ccc32p+0,
+    -0x1.c483c759d89p-55,
+    0x1.6623882552225p+0,
+    -0x1.bb60987591cp-54,
+    0x1.68155d44ca973p+0,
+    0x1.038ae44f74p-57,
 };
 
 /*
@@ -197,339 +321,179 @@
  *   The table entries each have 104 bits of accuracy, encoded as
  *   a pair of double precision values.
  */
-long double exp2l(long double x)
-{
-	union ldshape u = {x};
-	int e = u.i.se & 0x7fff;
-	long double r, z;
-	uint32_t i0;
-	union {uint32_t u; int32_t i;} k;
+long double exp2l(long double x) {
+  union ldshape u = {x};
+  int e = u.i.se & 0x7fff;
+  long double r, z;
+  uint32_t i0;
+  union {
+    uint32_t u;
+    int32_t i;
+  } k;
 
-	/* Filter out exceptional cases. */
-	if (e >= 0x3fff + 13) {  /* |x| >= 8192 or x is NaN */
-		if (u.i.se >= 0x3fff + 14 && u.i.se >> 15 == 0)
-			/* overflow */
-			return x * 0x1p16383L;
-		if (e == 0x7fff)  /* -inf or -nan */
-			return -1/x;
-		if (x < -16382) {
-			if (x <= -16446 || x - 0x1p63 + 0x1p63 != x)
-				/* underflow */
-				FORCE_EVAL((float)(-0x1p-149/x));
-			if (x <= -16446)
-				return 0;
-		}
-	} else if (e < 0x3fff - 64) {
-		return 1 + x;
-	}
+  /* Filter out exceptional cases. */
+  if (e >= 0x3fff + 13) { /* |x| >= 8192 or x is NaN */
+    if (u.i.se >= 0x3fff + 14 && u.i.se >> 15 == 0)
+      /* overflow */
+      return x * 0x1p16383L;
+    if (e == 0x7fff) /* -inf or -nan */
+      return -1 / x;
+    if (x < -16382) {
+      if (x <= -16446 || x - 0x1p63 + 0x1p63 != x)
+        /* underflow */
+        FORCE_EVAL((float)(-0x1p-149 / x));
+      if (x <= -16446)
+        return 0;
+    }
+  } else if (e < 0x3fff - 64) {
+    return 1 + x;
+  }
 
-	/*
-	 * Reduce x, computing z, i0, and k. The low bits of x + redux
-	 * contain the 16-bit integer part of the exponent (k) followed by
-	 * TBLBITS fractional bits (i0). We use bit tricks to extract these
-	 * as integers, then set z to the remainder.
-	 *
-	 * Example: Suppose x is 0xabc.123456p0 and TBLBITS is 8.
-	 * Then the low-order word of x + redux is 0x000abc12,
-	 * We split this into k = 0xabc and i0 = 0x12 (adjusted to
-	 * index into the table), then we compute z = 0x0.003456p0.
-	 */
-	u.f = x + redux;
-	i0 = u.i.m + TBLSIZE / 2;
-	k.u = i0 / TBLSIZE * TBLSIZE;
-	k.i /= TBLSIZE;
-	i0 %= TBLSIZE;
-	u.f -= redux;
-	z = x - u.f;
+  /*
+   * Reduce x, computing z, i0, and k. The low bits of x + redux
+   * contain the 16-bit integer part of the exponent (k) followed by
+   * TBLBITS fractional bits (i0). We use bit tricks to extract these
+   * as integers, then set z to the remainder.
+   *
+   * Example: Suppose x is 0xabc.123456p0 and TBLBITS is 8.
+   * Then the low-order word of x + redux is 0x000abc12,
+   * We split this into k = 0xabc and i0 = 0x12 (adjusted to
+   * index into the table), then we compute z = 0x0.003456p0.
+   */
+  u.f = x + redux;
+  i0 = u.i.m + TBLSIZE / 2;
+  k.u = i0 / TBLSIZE * TBLSIZE;
+  k.i /= TBLSIZE;
+  i0 %= TBLSIZE;
+  u.f -= redux;
+  z = x - u.f;
 
-	/* Compute r = exp2l(y) = exp2lt[i0] * p(z). */
-	long double t_hi = tbl[2*i0];
-	long double t_lo = tbl[2*i0 + 1];
-	/* XXX This gives > 1 ulp errors outside of FE_TONEAREST mode */
-	r = t_lo + (t_hi + t_lo) * z * (P1 + z * (P2 + z * (P3 + z * (P4
-	     + z * (P5 + z * P6))))) + t_hi;
+  /* Compute r = exp2l(y) = exp2lt[i0] * p(z). */
+  long double t_hi = tbl[2 * i0];
+  long double t_lo = tbl[2 * i0 + 1];
+  /* XXX This gives > 1 ulp errors outside of FE_TONEAREST mode */
+  r = t_lo +
+      (t_hi + t_lo) * z *
+          (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 + z * P6))))) +
+      t_hi;
 
-	return scalbnl(r, k.i);
+  return scalbnl(r, k.i);
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 #define TBLBITS 7
 #define TBLSIZE (1 << TBLBITS)
 
-static const long double
-    P1        = 0x1.62e42fefa39ef35793c7673007e6p-1L,
-    P2        = 0x1.ebfbdff82c58ea86f16b06ec9736p-3L,
-    P3        = 0x1.c6b08d704a0bf8b33a762bad3459p-5L,
-    P4        = 0x1.3b2ab6fba4e7729ccbbe0b4f3fc2p-7L,
-    P5        = 0x1.5d87fe78a67311071dee13fd11d9p-10L,
-    P6        = 0x1.430912f86c7876f4b663b23c5fe5p-13L;
+static const long double P1 = 0x1.62e42fefa39ef35793c7673007e6p-1L,
+                         P2 = 0x1.ebfbdff82c58ea86f16b06ec9736p-3L,
+                         P3 = 0x1.c6b08d704a0bf8b33a762bad3459p-5L,
+                         P4 = 0x1.3b2ab6fba4e7729ccbbe0b4f3fc2p-7L,
+                         P5 = 0x1.5d87fe78a67311071dee13fd11d9p-10L,
+                         P6 = 0x1.430912f86c7876f4b663b23c5fe5p-13L;
 
-static const double
-    P7        = 0x1.ffcbfc588b041p-17,
-    P8        = 0x1.62c0223a5c7c7p-20,
-    P9        = 0x1.b52541ff59713p-24,
-    P10       = 0x1.e4cf56a391e22p-28,
-    redux     = 0x1.8p112 / TBLSIZE;
+static const double P7 = 0x1.ffcbfc588b041p-17, P8 = 0x1.62c0223a5c7c7p-20,
+                    P9 = 0x1.b52541ff59713p-24, P10 = 0x1.e4cf56a391e22p-28,
+                    redux = 0x1.8p112 / TBLSIZE;
 
 static const long double tbl[TBLSIZE] = {
-	0x1.6a09e667f3bcc908b2fb1366dfeap-1L,
-	0x1.6c012750bdabeed76a99800f4edep-1L,
-	0x1.6dfb23c651a2ef220e2cbe1bc0d4p-1L,
-	0x1.6ff7df9519483cf87e1b4f3e1e98p-1L,
-	0x1.71f75e8ec5f73dd2370f2ef0b148p-1L,
-	0x1.73f9a48a58173bd5c9a4e68ab074p-1L,
-	0x1.75feb564267c8bf6e9aa33a489a8p-1L,
-	0x1.780694fde5d3f619ae02808592a4p-1L,
-	0x1.7a11473eb0186d7d51023f6ccb1ap-1L,
-	0x1.7c1ed0130c1327c49334459378dep-1L,
-	0x1.7e2f336cf4e62105d02ba1579756p-1L,
-	0x1.80427543e1a11b60de67649a3842p-1L,
-	0x1.82589994cce128acf88afab34928p-1L,
-	0x1.8471a4623c7acce52f6b97c6444cp-1L,
-	0x1.868d99b4492ec80e41d90ac2556ap-1L,
-	0x1.88ac7d98a669966530bcdf2d4cc0p-1L,
-	0x1.8ace5422aa0db5ba7c55a192c648p-1L,
-	0x1.8cf3216b5448bef2aa1cd161c57ap-1L,
-	0x1.8f1ae991577362b982745c72eddap-1L,
-	0x1.9145b0b91ffc588a61b469f6b6a0p-1L,
-	0x1.93737b0cdc5e4f4501c3f2540ae8p-1L,
-	0x1.95a44cbc8520ee9b483695a0e7fep-1L,
-	0x1.97d829fde4e4f8b9e920f91e8eb6p-1L,
-	0x1.9a0f170ca07b9ba3109b8c467844p-1L,
-	0x1.9c49182a3f0901c7c46b071f28dep-1L,
-	0x1.9e86319e323231824ca78e64c462p-1L,
-	0x1.a0c667b5de564b29ada8b8cabbacp-1L,
-	0x1.a309bec4a2d3358c171f770db1f4p-1L,
-	0x1.a5503b23e255c8b424491caf88ccp-1L,
-	0x1.a799e1330b3586f2dfb2b158f31ep-1L,
-	0x1.a9e6b5579fdbf43eb243bdff53a2p-1L,
-	0x1.ac36bbfd3f379c0db966a3126988p-1L,
-	0x1.ae89f995ad3ad5e8734d17731c80p-1L,
-	0x1.b0e07298db66590842acdfc6fb4ep-1L,
-	0x1.b33a2b84f15faf6bfd0e7bd941b0p-1L,
-	0x1.b59728de559398e3881111648738p-1L,
-	0x1.b7f76f2fb5e46eaa7b081ab53ff6p-1L,
-	0x1.ba5b030a10649840cb3c6af5b74cp-1L,
-	0x1.bcc1e904bc1d2247ba0f45b3d06cp-1L,
-	0x1.bf2c25bd71e088408d7025190cd0p-1L,
-	0x1.c199bdd85529c2220cb12a0916bap-1L,
-	0x1.c40ab5fffd07a6d14df820f17deap-1L,
-	0x1.c67f12e57d14b4a2137fd20f2a26p-1L,
-	0x1.c8f6d9406e7b511acbc48805c3f6p-1L,
-	0x1.cb720dcef90691503cbd1e949d0ap-1L,
-	0x1.cdf0b555dc3f9c44f8958fac4f12p-1L,
-	0x1.d072d4a07897b8d0f22f21a13792p-1L,
-	0x1.d2f87080d89f18ade123989ea50ep-1L,
-	0x1.d5818dcfba48725da05aeb66dff8p-1L,
-	0x1.d80e316c98397bb84f9d048807a0p-1L,
-	0x1.da9e603db3285708c01a5b6d480cp-1L,
-	0x1.dd321f301b4604b695de3c0630c0p-1L,
-	0x1.dfc97337b9b5eb968cac39ed284cp-1L,
-	0x1.e264614f5a128a12761fa17adc74p-1L,
-	0x1.e502ee78b3ff6273d130153992d0p-1L,
-	0x1.e7a51fbc74c834b548b2832378a4p-1L,
-	0x1.ea4afa2a490d9858f73a18f5dab4p-1L,
-	0x1.ecf482d8e67f08db0312fb949d50p-1L,
-	0x1.efa1bee615a27771fd21a92dabb6p-1L,
-	0x1.f252b376bba974e8696fc3638f24p-1L,
-	0x1.f50765b6e4540674f84b762861a6p-1L,
-	0x1.f7bfdad9cbe138913b4bfe72bd78p-1L,
-	0x1.fa7c1819e90d82e90a7e74b26360p-1L,
-	0x1.fd3c22b8f71f10975ba4b32bd006p-1L,
-	0x1.0000000000000000000000000000p+0L,
-	0x1.0163da9fb33356d84a66ae336e98p+0L,
-	0x1.02c9a3e778060ee6f7caca4f7a18p+0L,
-	0x1.04315e86e7f84bd738f9a20da442p+0L,
-	0x1.059b0d31585743ae7c548eb68c6ap+0L,
-	0x1.0706b29ddf6ddc6dc403a9d87b1ep+0L,
-	0x1.0874518759bc808c35f25d942856p+0L,
-	0x1.09e3ecac6f3834521e060c584d5cp+0L,
-	0x1.0b5586cf9890f6298b92b7184200p+0L,
-	0x1.0cc922b7247f7407b705b893dbdep+0L,
-	0x1.0e3ec32d3d1a2020742e4f8af794p+0L,
-	0x1.0fb66affed31af232091dd8a169ep+0L,
-	0x1.11301d0125b50a4ebbf1aed9321cp+0L,
-	0x1.12abdc06c31cbfb92bad324d6f84p+0L,
-	0x1.1429aaea92ddfb34101943b2588ep+0L,
-	0x1.15a98c8a58e512480d573dd562aep+0L,
-	0x1.172b83c7d517adcdf7c8c50eb162p+0L,
-	0x1.18af9388c8de9bbbf70b9a3c269cp+0L,
-	0x1.1a35beb6fcb753cb698f692d2038p+0L,
-	0x1.1bbe084045cd39ab1e72b442810ep+0L,
-	0x1.1d4873168b9aa7805b8028990be8p+0L,
-	0x1.1ed5022fcd91cb8819ff61121fbep+0L,
-	0x1.2063b88628cd63b8eeb0295093f6p+0L,
-	0x1.21f49917ddc962552fd29294bc20p+0L,
-	0x1.2387a6e75623866c1fadb1c159c0p+0L,
-	0x1.251ce4fb2a63f3582ab7de9e9562p+0L,
-	0x1.26b4565e27cdd257a673281d3068p+0L,
-	0x1.284dfe1f5638096cf15cf03c9fa0p+0L,
-	0x1.29e9df51fdee12c25d15f5a25022p+0L,
-	0x1.2b87fd0dad98ffddea46538fca24p+0L,
-	0x1.2d285a6e4030b40091d536d0733ep+0L,
-	0x1.2ecafa93e2f5611ca0f45d5239a4p+0L,
-	0x1.306fe0a31b7152de8d5a463063bep+0L,
-	0x1.32170fc4cd8313539cf1c3009330p+0L,
-	0x1.33c08b26416ff4c9c8610d96680ep+0L,
-	0x1.356c55f929ff0c94623476373be4p+0L,
-	0x1.371a7373aa9caa7145502f45452ap+0L,
-	0x1.38cae6d05d86585a9cb0d9bed530p+0L,
-	0x1.3a7db34e59ff6ea1bc9299e0a1fep+0L,
-	0x1.3c32dc313a8e484001f228b58cf0p+0L,
-	0x1.3dea64c12342235b41223e13d7eep+0L,
-	0x1.3fa4504ac801ba0bf701aa417b9cp+0L,
-	0x1.4160a21f72e29f84325b8f3dbacap+0L,
-	0x1.431f5d950a896dc704439410b628p+0L,
-	0x1.44e086061892d03136f409df0724p+0L,
-	0x1.46a41ed1d005772512f459229f0ap+0L,
-	0x1.486a2b5c13cd013c1a3b69062f26p+0L,
-	0x1.4a32af0d7d3de672d8bcf46f99b4p+0L,
-	0x1.4bfdad5362a271d4397afec42e36p+0L,
-	0x1.4dcb299fddd0d63b36ef1a9e19dep+0L,
-	0x1.4f9b2769d2ca6ad33d8b69aa0b8cp+0L,
-	0x1.516daa2cf6641c112f52c84d6066p+0L,
-	0x1.5342b569d4f81df0a83c49d86bf4p+0L,
-	0x1.551a4ca5d920ec52ec620243540cp+0L,
-	0x1.56f4736b527da66ecb004764e61ep+0L,
-	0x1.58d12d497c7fd252bc2b7343d554p+0L,
-	0x1.5ab07dd48542958c93015191e9a8p+0L,
-	0x1.5c9268a5946b701c4b1b81697ed4p+0L,
-	0x1.5e76f15ad21486e9be4c20399d12p+0L,
-	0x1.605e1b976dc08b076f592a487066p+0L,
-	0x1.6247eb03a5584b1f0fa06fd2d9eap+0L,
-	0x1.6434634ccc31fc76f8714c4ee122p+0L,
-	0x1.66238825522249127d9e29b92ea2p+0L,
-	0x1.68155d44ca973081c57227b9f69ep+0L,
+    0x1.6a09e667f3bcc908b2fb1366dfeap-1L, 0x1.6c012750bdabeed76a99800f4edep-1L,
+    0x1.6dfb23c651a2ef220e2cbe1bc0d4p-1L, 0x1.6ff7df9519483cf87e1b4f3e1e98p-1L,
+    0x1.71f75e8ec5f73dd2370f2ef0b148p-1L, 0x1.73f9a48a58173bd5c9a4e68ab074p-1L,
+    0x1.75feb564267c8bf6e9aa33a489a8p-1L, 0x1.780694fde5d3f619ae02808592a4p-1L,
+    0x1.7a11473eb0186d7d51023f6ccb1ap-1L, 0x1.7c1ed0130c1327c49334459378dep-1L,
+    0x1.7e2f336cf4e62105d02ba1579756p-1L, 0x1.80427543e1a11b60de67649a3842p-1L,
+    0x1.82589994cce128acf88afab34928p-1L, 0x1.8471a4623c7acce52f6b97c6444cp-1L,
+    0x1.868d99b4492ec80e41d90ac2556ap-1L, 0x1.88ac7d98a669966530bcdf2d4cc0p-1L,
+    0x1.8ace5422aa0db5ba7c55a192c648p-1L, 0x1.8cf3216b5448bef2aa1cd161c57ap-1L,
+    0x1.8f1ae991577362b982745c72eddap-1L, 0x1.9145b0b91ffc588a61b469f6b6a0p-1L,
+    0x1.93737b0cdc5e4f4501c3f2540ae8p-1L, 0x1.95a44cbc8520ee9b483695a0e7fep-1L,
+    0x1.97d829fde4e4f8b9e920f91e8eb6p-1L, 0x1.9a0f170ca07b9ba3109b8c467844p-1L,
+    0x1.9c49182a3f0901c7c46b071f28dep-1L, 0x1.9e86319e323231824ca78e64c462p-1L,
+    0x1.a0c667b5de564b29ada8b8cabbacp-1L, 0x1.a309bec4a2d3358c171f770db1f4p-1L,
+    0x1.a5503b23e255c8b424491caf88ccp-1L, 0x1.a799e1330b3586f2dfb2b158f31ep-1L,
+    0x1.a9e6b5579fdbf43eb243bdff53a2p-1L, 0x1.ac36bbfd3f379c0db966a3126988p-1L,
+    0x1.ae89f995ad3ad5e8734d17731c80p-1L, 0x1.b0e07298db66590842acdfc6fb4ep-1L,
+    0x1.b33a2b84f15faf6bfd0e7bd941b0p-1L, 0x1.b59728de559398e3881111648738p-1L,
+    0x1.b7f76f2fb5e46eaa7b081ab53ff6p-1L, 0x1.ba5b030a10649840cb3c6af5b74cp-1L,
+    0x1.bcc1e904bc1d2247ba0f45b3d06cp-1L, 0x1.bf2c25bd71e088408d7025190cd0p-1L,
+    0x1.c199bdd85529c2220cb12a0916bap-1L, 0x1.c40ab5fffd07a6d14df820f17deap-1L,
+    0x1.c67f12e57d14b4a2137fd20f2a26p-1L, 0x1.c8f6d9406e7b511acbc48805c3f6p-1L,
+    0x1.cb720dcef90691503cbd1e949d0ap-1L, 0x1.cdf0b555dc3f9c44f8958fac4f12p-1L,
+    0x1.d072d4a07897b8d0f22f21a13792p-1L, 0x1.d2f87080d89f18ade123989ea50ep-1L,
+    0x1.d5818dcfba48725da05aeb66dff8p-1L, 0x1.d80e316c98397bb84f9d048807a0p-1L,
+    0x1.da9e603db3285708c01a5b6d480cp-1L, 0x1.dd321f301b4604b695de3c0630c0p-1L,
+    0x1.dfc97337b9b5eb968cac39ed284cp-1L, 0x1.e264614f5a128a12761fa17adc74p-1L,
+    0x1.e502ee78b3ff6273d130153992d0p-1L, 0x1.e7a51fbc74c834b548b2832378a4p-1L,
+    0x1.ea4afa2a490d9858f73a18f5dab4p-1L, 0x1.ecf482d8e67f08db0312fb949d50p-1L,
+    0x1.efa1bee615a27771fd21a92dabb6p-1L, 0x1.f252b376bba974e8696fc3638f24p-1L,
+    0x1.f50765b6e4540674f84b762861a6p-1L, 0x1.f7bfdad9cbe138913b4bfe72bd78p-1L,
+    0x1.fa7c1819e90d82e90a7e74b26360p-1L, 0x1.fd3c22b8f71f10975ba4b32bd006p-1L,
+    0x1.0000000000000000000000000000p+0L, 0x1.0163da9fb33356d84a66ae336e98p+0L,
+    0x1.02c9a3e778060ee6f7caca4f7a18p+0L, 0x1.04315e86e7f84bd738f9a20da442p+0L,
+    0x1.059b0d31585743ae7c548eb68c6ap+0L, 0x1.0706b29ddf6ddc6dc403a9d87b1ep+0L,
+    0x1.0874518759bc808c35f25d942856p+0L, 0x1.09e3ecac6f3834521e060c584d5cp+0L,
+    0x1.0b5586cf9890f6298b92b7184200p+0L, 0x1.0cc922b7247f7407b705b893dbdep+0L,
+    0x1.0e3ec32d3d1a2020742e4f8af794p+0L, 0x1.0fb66affed31af232091dd8a169ep+0L,
+    0x1.11301d0125b50a4ebbf1aed9321cp+0L, 0x1.12abdc06c31cbfb92bad324d6f84p+0L,
+    0x1.1429aaea92ddfb34101943b2588ep+0L, 0x1.15a98c8a58e512480d573dd562aep+0L,
+    0x1.172b83c7d517adcdf7c8c50eb162p+0L, 0x1.18af9388c8de9bbbf70b9a3c269cp+0L,
+    0x1.1a35beb6fcb753cb698f692d2038p+0L, 0x1.1bbe084045cd39ab1e72b442810ep+0L,
+    0x1.1d4873168b9aa7805b8028990be8p+0L, 0x1.1ed5022fcd91cb8819ff61121fbep+0L,
+    0x1.2063b88628cd63b8eeb0295093f6p+0L, 0x1.21f49917ddc962552fd29294bc20p+0L,
+    0x1.2387a6e75623866c1fadb1c159c0p+0L, 0x1.251ce4fb2a63f3582ab7de9e9562p+0L,
+    0x1.26b4565e27cdd257a673281d3068p+0L, 0x1.284dfe1f5638096cf15cf03c9fa0p+0L,
+    0x1.29e9df51fdee12c25d15f5a25022p+0L, 0x1.2b87fd0dad98ffddea46538fca24p+0L,
+    0x1.2d285a6e4030b40091d536d0733ep+0L, 0x1.2ecafa93e2f5611ca0f45d5239a4p+0L,
+    0x1.306fe0a31b7152de8d5a463063bep+0L, 0x1.32170fc4cd8313539cf1c3009330p+0L,
+    0x1.33c08b26416ff4c9c8610d96680ep+0L, 0x1.356c55f929ff0c94623476373be4p+0L,
+    0x1.371a7373aa9caa7145502f45452ap+0L, 0x1.38cae6d05d86585a9cb0d9bed530p+0L,
+    0x1.3a7db34e59ff6ea1bc9299e0a1fep+0L, 0x1.3c32dc313a8e484001f228b58cf0p+0L,
+    0x1.3dea64c12342235b41223e13d7eep+0L, 0x1.3fa4504ac801ba0bf701aa417b9cp+0L,
+    0x1.4160a21f72e29f84325b8f3dbacap+0L, 0x1.431f5d950a896dc704439410b628p+0L,
+    0x1.44e086061892d03136f409df0724p+0L, 0x1.46a41ed1d005772512f459229f0ap+0L,
+    0x1.486a2b5c13cd013c1a3b69062f26p+0L, 0x1.4a32af0d7d3de672d8bcf46f99b4p+0L,
+    0x1.4bfdad5362a271d4397afec42e36p+0L, 0x1.4dcb299fddd0d63b36ef1a9e19dep+0L,
+    0x1.4f9b2769d2ca6ad33d8b69aa0b8cp+0L, 0x1.516daa2cf6641c112f52c84d6066p+0L,
+    0x1.5342b569d4f81df0a83c49d86bf4p+0L, 0x1.551a4ca5d920ec52ec620243540cp+0L,
+    0x1.56f4736b527da66ecb004764e61ep+0L, 0x1.58d12d497c7fd252bc2b7343d554p+0L,
+    0x1.5ab07dd48542958c93015191e9a8p+0L, 0x1.5c9268a5946b701c4b1b81697ed4p+0L,
+    0x1.5e76f15ad21486e9be4c20399d12p+0L, 0x1.605e1b976dc08b076f592a487066p+0L,
+    0x1.6247eb03a5584b1f0fa06fd2d9eap+0L, 0x1.6434634ccc31fc76f8714c4ee122p+0L,
+    0x1.66238825522249127d9e29b92ea2p+0L, 0x1.68155d44ca973081c57227b9f69ep+0L,
 };
 
 static const float eps[TBLSIZE] = {
-	-0x1.5c50p-101,
-	-0x1.5d00p-106,
-	 0x1.8e90p-102,
-	-0x1.5340p-103,
-	 0x1.1bd0p-102,
-	-0x1.4600p-105,
-	-0x1.7a40p-104,
-	 0x1.d590p-102,
-	-0x1.d590p-101,
-	 0x1.b100p-103,
-	-0x1.0d80p-105,
-	 0x1.6b00p-103,
-	-0x1.9f00p-105,
-	 0x1.c400p-103,
-	 0x1.e120p-103,
-	-0x1.c100p-104,
-	-0x1.9d20p-103,
-	 0x1.a800p-108,
-	 0x1.4c00p-106,
-	-0x1.9500p-106,
-	 0x1.6900p-105,
-	-0x1.29d0p-100,
-	 0x1.4c60p-103,
-	 0x1.13a0p-102,
-	-0x1.5b60p-103,
-	-0x1.1c40p-103,
-	 0x1.db80p-102,
-	 0x1.91a0p-102,
-	 0x1.dc00p-105,
-	 0x1.44c0p-104,
-	 0x1.9710p-102,
-	 0x1.8760p-103,
-	-0x1.a720p-103,
-	 0x1.ed20p-103,
-	-0x1.49c0p-102,
-	-0x1.e000p-111,
-	 0x1.86a0p-103,
-	 0x1.2b40p-103,
-	-0x1.b400p-108,
-	 0x1.1280p-99,
-	-0x1.02d8p-102,
-	-0x1.e3d0p-103,
-	-0x1.b080p-105,
-	-0x1.f100p-107,
-	-0x1.16c0p-105,
-	-0x1.1190p-103,
-	-0x1.a7d2p-100,
-	 0x1.3450p-103,
-	-0x1.67c0p-105,
-	 0x1.4b80p-104,
-	-0x1.c4e0p-103,
-	 0x1.6000p-108,
-	-0x1.3f60p-105,
-	 0x1.93f0p-104,
-	 0x1.5fe0p-105,
-	 0x1.6f80p-107,
-	-0x1.7600p-106,
-	 0x1.21e0p-106,
-	-0x1.3a40p-106,
-	-0x1.40c0p-104,
-	-0x1.9860p-105,
-	-0x1.5d40p-108,
-	-0x1.1d70p-106,
-	 0x1.2760p-105,
-	 0x0.0000p+0,
-	 0x1.21e2p-104,
-	-0x1.9520p-108,
-	-0x1.5720p-106,
-	-0x1.4810p-106,
-	-0x1.be00p-109,
-	 0x1.0080p-105,
-	-0x1.5780p-108,
-	-0x1.d460p-105,
-	-0x1.6140p-105,
-	 0x1.4630p-104,
-	 0x1.ad50p-103,
-	 0x1.82e0p-105,
-	 0x1.1d3cp-101,
-	 0x1.6100p-107,
-	 0x1.ec30p-104,
-	 0x1.f200p-108,
-	 0x1.0b40p-103,
-	 0x1.3660p-102,
-	 0x1.d9d0p-103,
-	-0x1.02d0p-102,
-	 0x1.b070p-103,
-	 0x1.b9c0p-104,
-	-0x1.01c0p-103,
-	-0x1.dfe0p-103,
-	 0x1.1b60p-104,
-	-0x1.ae94p-101,
-	-0x1.3340p-104,
-	 0x1.b3d8p-102,
-	-0x1.6e40p-105,
-	-0x1.3670p-103,
-	 0x1.c140p-104,
-	 0x1.1840p-101,
-	 0x1.1ab0p-102,
-	-0x1.a400p-104,
-	 0x1.1f00p-104,
-	-0x1.7180p-103,
-	 0x1.4ce0p-102,
-	 0x1.9200p-107,
-	-0x1.54c0p-103,
-	 0x1.1b80p-105,
-	-0x1.1828p-101,
-	 0x1.5720p-102,
-	-0x1.a060p-100,
-	 0x1.9160p-102,
-	 0x1.a280p-104,
-	 0x1.3400p-107,
-	 0x1.2b20p-102,
-	 0x1.7800p-108,
-	 0x1.cfd0p-101,
-	 0x1.2ef0p-102,
-	-0x1.2760p-99,
-	 0x1.b380p-104,
-	 0x1.0048p-101,
-	-0x1.60b0p-102,
-	 0x1.a1ccp-100,
-	-0x1.a640p-104,
-	-0x1.08a0p-101,
-	 0x1.7e60p-102,
-	 0x1.22c0p-103,
-	-0x1.7200p-106,
-	 0x1.f0f0p-102,
-	 0x1.eb4ep-99,
-	 0x1.c6e0p-103,
+    -0x1.5c50p-101, -0x1.5d00p-106, 0x1.8e90p-102,  -0x1.5340p-103,
+    0x1.1bd0p-102,  -0x1.4600p-105, -0x1.7a40p-104, 0x1.d590p-102,
+    -0x1.d590p-101, 0x1.b100p-103,  -0x1.0d80p-105, 0x1.6b00p-103,
+    -0x1.9f00p-105, 0x1.c400p-103,  0x1.e120p-103,  -0x1.c100p-104,
+    -0x1.9d20p-103, 0x1.a800p-108,  0x1.4c00p-106,  -0x1.9500p-106,
+    0x1.6900p-105,  -0x1.29d0p-100, 0x1.4c60p-103,  0x1.13a0p-102,
+    -0x1.5b60p-103, -0x1.1c40p-103, 0x1.db80p-102,  0x1.91a0p-102,
+    0x1.dc00p-105,  0x1.44c0p-104,  0x1.9710p-102,  0x1.8760p-103,
+    -0x1.a720p-103, 0x1.ed20p-103,  -0x1.49c0p-102, -0x1.e000p-111,
+    0x1.86a0p-103,  0x1.2b40p-103,  -0x1.b400p-108, 0x1.1280p-99,
+    -0x1.02d8p-102, -0x1.e3d0p-103, -0x1.b080p-105, -0x1.f100p-107,
+    -0x1.16c0p-105, -0x1.1190p-103, -0x1.a7d2p-100, 0x1.3450p-103,
+    -0x1.67c0p-105, 0x1.4b80p-104,  -0x1.c4e0p-103, 0x1.6000p-108,
+    -0x1.3f60p-105, 0x1.93f0p-104,  0x1.5fe0p-105,  0x1.6f80p-107,
+    -0x1.7600p-106, 0x1.21e0p-106,  -0x1.3a40p-106, -0x1.40c0p-104,
+    -0x1.9860p-105, -0x1.5d40p-108, -0x1.1d70p-106, 0x1.2760p-105,
+    0x0.0000p+0,    0x1.21e2p-104,  -0x1.9520p-108, -0x1.5720p-106,
+    -0x1.4810p-106, -0x1.be00p-109, 0x1.0080p-105,  -0x1.5780p-108,
+    -0x1.d460p-105, -0x1.6140p-105, 0x1.4630p-104,  0x1.ad50p-103,
+    0x1.82e0p-105,  0x1.1d3cp-101,  0x1.6100p-107,  0x1.ec30p-104,
+    0x1.f200p-108,  0x1.0b40p-103,  0x1.3660p-102,  0x1.d9d0p-103,
+    -0x1.02d0p-102, 0x1.b070p-103,  0x1.b9c0p-104,  -0x1.01c0p-103,
+    -0x1.dfe0p-103, 0x1.1b60p-104,  -0x1.ae94p-101, -0x1.3340p-104,
+    0x1.b3d8p-102,  -0x1.6e40p-105, -0x1.3670p-103, 0x1.c140p-104,
+    0x1.1840p-101,  0x1.1ab0p-102,  -0x1.a400p-104, 0x1.1f00p-104,
+    -0x1.7180p-103, 0x1.4ce0p-102,  0x1.9200p-107,  -0x1.54c0p-103,
+    0x1.1b80p-105,  -0x1.1828p-101, 0x1.5720p-102,  -0x1.a060p-100,
+    0x1.9160p-102,  0x1.a280p-104,  0x1.3400p-107,  0x1.2b20p-102,
+    0x1.7800p-108,  0x1.cfd0p-101,  0x1.2ef0p-102,  -0x1.2760p-99,
+    0x1.b380p-104,  0x1.0048p-101,  -0x1.60b0p-102, 0x1.a1ccp-100,
+    -0x1.a640p-104, -0x1.08a0p-101, 0x1.7e60p-102,  0x1.22c0p-103,
+    -0x1.7200p-106, 0x1.f0f0p-102,  0x1.eb4ep-99,   0x1.c6e0p-103,
 };
 
 /*
@@ -562,58 +526,67 @@
  *	Gal, S. and Bachelis, B.  An Accurate Elementary Mathematical Library
  *	for the IEEE Floating Point Standard.  TOMS 17(1), 26-46 (1991).
  */
-long double
-exp2l(long double x)
-{
-	union ldshape u = {x};
-	int e = u.i.se & 0x7fff;
-	long double r, z, t;
-	uint32_t i0;
-	union {uint32_t u; int32_t i;} k;
+long double exp2l(long double x) {
+  union ldshape u = {x};
+  int e = u.i.se & 0x7fff;
+  long double r, z, t;
+  uint32_t i0;
+  union {
+    uint32_t u;
+    int32_t i;
+  } k;
 
-	/* Filter out exceptional cases. */
-	if (e >= 0x3fff + 14) {  /* |x| >= 16384 or x is NaN */
-		if (u.i.se >= 0x3fff + 15 && u.i.se >> 15 == 0)
-			/* overflow */
-			return x * 0x1p16383L;
-		if (e == 0x7fff)  /* -inf or -nan */
-			return -1/x;
-		if (x < -16382) {
-			if (x <= -16495 || x - 0x1p112 + 0x1p112 != x)
-				/* underflow */
-				FORCE_EVAL((float)(-0x1p-149/x));
-			if (x <= -16446)
-				return 0;
-		}
-	} else if (e < 0x3fff - 114) {
-		return 1 + x;
-	}
+  /* Filter out exceptional cases. */
+  if (e >= 0x3fff + 14) { /* |x| >= 16384 or x is NaN */
+    if (u.i.se >= 0x3fff + 15 && u.i.se >> 15 == 0)
+      /* overflow */
+      return x * 0x1p16383L;
+    if (e == 0x7fff) /* -inf or -nan */
+      return -1 / x;
+    if (x < -16382) {
+      if (x <= -16495 || x - 0x1p112 + 0x1p112 != x)
+        /* underflow */
+        FORCE_EVAL((float)(-0x1p-149 / x));
+      if (x <= -16446)
+        return 0;
+    }
+  } else if (e < 0x3fff - 114) {
+    return 1 + x;
+  }
 
-	/*
-	 * Reduce x, computing z, i0, and k. The low bits of x + redux
-	 * contain the 16-bit integer part of the exponent (k) followed by
-	 * TBLBITS fractional bits (i0). We use bit tricks to extract these
-	 * as integers, then set z to the remainder.
-	 *
-	 * Example: Suppose x is 0xabc.123456p0 and TBLBITS is 8.
-	 * Then the low-order word of x + redux is 0x000abc12,
-	 * We split this into k = 0xabc and i0 = 0x12 (adjusted to
-	 * index into the table), then we compute z = 0x0.003456p0.
-	 */
-	u.f = x + redux;
-	i0 = u.i2.lo + TBLSIZE / 2;
-	k.u = i0 / TBLSIZE * TBLSIZE;
-	k.i /= TBLSIZE;
-	i0 %= TBLSIZE;
-	u.f -= redux;
-	z = x - u.f;
+  /*
+   * Reduce x, computing z, i0, and k. The low bits of x + redux
+   * contain the 16-bit integer part of the exponent (k) followed by
+   * TBLBITS fractional bits (i0). We use bit tricks to extract these
+   * as integers, then set z to the remainder.
+   *
+   * Example: Suppose x is 0xabc.123456p0 and TBLBITS is 8.
+   * Then the low-order word of x + redux is 0x000abc12,
+   * We split this into k = 0xabc and i0 = 0x12 (adjusted to
+   * index into the table), then we compute z = 0x0.003456p0.
+   */
+  u.f = x + redux;
+  i0 = u.i2.lo + TBLSIZE / 2;
+  k.u = i0 / TBLSIZE * TBLSIZE;
+  k.i /= TBLSIZE;
+  i0 %= TBLSIZE;
+  u.f -= redux;
+  z = x - u.f;
 
-	/* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
-	t = tbl[i0];
-	z -= eps[i0];
-	r = t + t * z * (P1 + z * (P2 + z * (P3 + z * (P4 + z * (P5 + z * (P6
-	    + z * (P7 + z * (P8 + z * (P9 + z * P10)))))))));
+  /* Compute r = exp2(y) = exp2t[i0] * p(z - eps[i]). */
+  t = tbl[i0];
+  z -= eps[i0];
+  r = t +
+      t * z *
+          (P1 +
+           z * (P2 +
+                z * (P3 +
+                     z * (P4 +
+                          z * (P5 +
+                               z * (P6 +
+                                    z * (P7 +
+                                         z * (P8 + z * (P9 + z * P10)))))))));
 
-	return scalbnl(r, k.i);
+  return scalbnl(r, k.i);
 }
 #endif
diff --git a/fusl/src/math/expf.c b/fusl/src/math/expf.c
index 16e9afe..34ccafa 100644
--- a/fusl/src/math/expf.c
+++ b/fusl/src/math/expf.c
@@ -15,67 +15,65 @@
 
 #include "libm.h"
 
-static const float
-half[2] = {0.5,-0.5},
-ln2hi   = 6.9314575195e-1f,  /* 0x3f317200 */
-ln2lo   = 1.4286067653e-6f,  /* 0x35bfbe8e */
-invln2  = 1.4426950216e+0f,  /* 0x3fb8aa3b */
-/*
- * Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]:
- * |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74
- */
-P1 =  1.6666625440e-1f, /*  0xaaaa8f.0p-26 */
-P2 = -2.7667332906e-3f; /* -0xb55215.0p-32 */
+static const float half[2] = {0.5, -0.5},
+                   ln2hi = 6.9314575195e-1f, /* 0x3f317200 */
+    ln2lo = 1.4286067653e-6f,                /* 0x35bfbe8e */
+    invln2 = 1.4426950216e+0f,               /* 0x3fb8aa3b */
+                                             /*
+                                              * Domain [-0.34568, 0.34568], range ~[-4.278e-9, 4.447e-9]:
+                                              * |x*(exp(x)+1)/(exp(x)-1) - p(x)| < 2**-27.74
+                                              */
+    P1 = 1.6666625440e-1f,                   /*  0xaaaa8f.0p-26 */
+    P2 = -2.7667332906e-3f;                  /* -0xb55215.0p-32 */
 
-float expf(float x)
-{
-	float_t hi, lo, c, xx, y;
-	int k, sign;
-	uint32_t hx;
+float expf(float x) {
+  float_t hi, lo, c, xx, y;
+  int k, sign;
+  uint32_t hx;
 
-	GET_FLOAT_WORD(hx, x);
-	sign = hx >> 31;   /* sign bit of x */
-	hx &= 0x7fffffff;  /* high word of |x| */
+  GET_FLOAT_WORD(hx, x);
+  sign = hx >> 31;  /* sign bit of x */
+  hx &= 0x7fffffff; /* high word of |x| */
 
-	/* special cases */
-	if (hx >= 0x42aeac50) {  /* if |x| >= -87.33655f or NaN */
-		if (hx >= 0x42b17218 && !sign) {  /* x >= 88.722839f */
-			/* overflow */
-			x *= 0x1p127f;
-			return x;
-		}
-		if (sign) {
-			/* underflow */
-			FORCE_EVAL(-0x1p-149f/x);
-			if (hx >= 0x42cff1b5)  /* x <= -103.972084f */
-				return 0;
-		}
-	}
+  /* special cases */
+  if (hx >= 0x42aeac50) {            /* if |x| >= -87.33655f or NaN */
+    if (hx >= 0x42b17218 && !sign) { /* x >= 88.722839f */
+      /* overflow */
+      x *= 0x1p127f;
+      return x;
+    }
+    if (sign) {
+      /* underflow */
+      FORCE_EVAL(-0x1p-149f / x);
+      if (hx >= 0x42cff1b5) /* x <= -103.972084f */
+        return 0;
+    }
+  }
 
-	/* argument reduction */
-	if (hx > 0x3eb17218) {  /* if |x| > 0.5 ln2 */
-		if (hx > 0x3f851592)  /* if |x| > 1.5 ln2 */
-			k = invln2*x + half[sign];
-		else
-			k = 1 - sign - sign;
-		hi = x - k*ln2hi;  /* k*ln2hi is exact here */
-		lo = k*ln2lo;
-		x = hi - lo;
-	} else if (hx > 0x39000000) {  /* |x| > 2**-14 */
-		k = 0;
-		hi = x;
-		lo = 0;
-	} else {
-		/* raise inexact */
-		FORCE_EVAL(0x1p127f + x);
-		return 1 + x;
-	}
+  /* argument reduction */
+  if (hx > 0x3eb17218) { /* if |x| > 0.5 ln2 */
+    if (hx > 0x3f851592) /* if |x| > 1.5 ln2 */
+      k = invln2 * x + half[sign];
+    else
+      k = 1 - sign - sign;
+    hi = x - k * ln2hi; /* k*ln2hi is exact here */
+    lo = k * ln2lo;
+    x = hi - lo;
+  } else if (hx > 0x39000000) { /* |x| > 2**-14 */
+    k = 0;
+    hi = x;
+    lo = 0;
+  } else {
+    /* raise inexact */
+    FORCE_EVAL(0x1p127f + x);
+    return 1 + x;
+  }
 
-	/* x is now in primary range */
-	xx = x*x;
-	c = x - xx*(P1+xx*P2);
-	y = 1 + (x*c/(2-c) - lo + hi);
-	if (k == 0)
-		return y;
-	return scalbnf(y, k);
+  /* x is now in primary range */
+  xx = x * x;
+  c = x - xx * (P1 + xx * P2);
+  y = 1 + (x * c / (2 - c) - lo + hi);
+  if (k == 0)
+    return y;
+  return scalbnf(y, k);
 }
diff --git a/fusl/src/math/expl.c b/fusl/src/math/expl.c
index 0a7f44f..c677267 100644
--- a/fusl/src/math/expl.c
+++ b/fusl/src/math/expl.c
@@ -68,61 +68,54 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double expl(long double x)
-{
-	return exp(x);
+long double expl(long double x) {
+  return exp(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 
 static const long double P[3] = {
- 1.2617719307481059087798E-4L,
- 3.0299440770744196129956E-2L,
- 9.9999999999999999991025E-1L,
+    1.2617719307481059087798E-4L, 3.0299440770744196129956E-2L,
+    9.9999999999999999991025E-1L,
 };
 static const long double Q[4] = {
- 3.0019850513866445504159E-6L,
- 2.5244834034968410419224E-3L,
- 2.2726554820815502876593E-1L,
- 2.0000000000000000000897E0L,
+    3.0019850513866445504159E-6L, 2.5244834034968410419224E-3L,
+    2.2726554820815502876593E-1L, 2.0000000000000000000897E0L,
 };
-static const long double
-LN2HI = 6.9314575195312500000000E-1L,
-LN2LO = 1.4286068203094172321215E-6L,
-LOG2E = 1.4426950408889634073599E0L;
+static const long double LN2HI = 6.9314575195312500000000E-1L,
+                         LN2LO = 1.4286068203094172321215E-6L,
+                         LOG2E = 1.4426950408889634073599E0L;
 
-long double expl(long double x)
-{
-	long double px, xx;
-	int k;
+long double expl(long double x) {
+  long double px, xx;
+  int k;
 
-	if (isnan(x))
-		return x;
-	if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */
-		return x * 0x1p16383L;
-	if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */
-		return -0x1p-16445L/x;
+  if (isnan(x))
+    return x;
+  if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */
+    return x * 0x1p16383L;
+  if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */
+    return -0x1p-16445L / x;
 
-	/* Express e**x = e**f 2**k
-	 *   = e**(f + k ln(2))
-	 */
-	px = floorl(LOG2E * x + 0.5);
-	k = px;
-	x -= px * LN2HI;
-	x -= px * LN2LO;
+  /* Express e**x = e**f 2**k
+   *   = e**(f + k ln(2))
+   */
+  px = floorl(LOG2E * x + 0.5);
+  k = px;
+  x -= px * LN2HI;
+  x -= px * LN2LO;
 
-	/* rational approximation of the fractional part:
-	 * e**x =  1 + 2x P(x**2)/(Q(x**2) - x P(x**2))
-	 */
-	xx = x * x;
-	px = x * __polevll(xx, P, 2);
-	x = px/(__polevll(xx, Q, 3) - px);
-	x = 1.0 + 2.0 * x;
-	return scalbnl(x, k);
+  /* rational approximation of the fractional part:
+   * e**x =  1 + 2x P(x**2)/(Q(x**2) - x P(x**2))
+   */
+  xx = x * x;
+  px = x * __polevll(xx, P, 2);
+  x = px / (__polevll(xx, Q, 3) - px);
+  x = 1.0 + 2.0 * x;
+  return scalbnl(x, k);
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double expl(long double x)
-{
-	return exp(x);
+long double expl(long double x) {
+  return exp(x);
 }
 #endif
diff --git a/fusl/src/math/expm1.c b/fusl/src/math/expm1.c
index ac1e61e..52cfc25 100644
--- a/fusl/src/math/expm1.c
+++ b/fusl/src/math/expm1.c
@@ -106,96 +106,99 @@
 
 #include "libm.h"
 
-static const double
-o_threshold = 7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
-ln2_hi      = 6.93147180369123816490e-01, /* 0x3fe62e42, 0xfee00000 */
-ln2_lo      = 1.90821492927058770002e-10, /* 0x3dea39ef, 0x35793c76 */
-invln2      = 1.44269504088896338700e+00, /* 0x3ff71547, 0x652b82fe */
-/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
-Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
-Q2 =  1.58730158725481460165e-03, /* 3F5A01A0 19FE5585 */
-Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
-Q4 =  4.00821782732936239552e-06, /* 3ED0CFCA 86E65239 */
-Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
+static const double o_threshold =
+                        7.09782712893383973096e+02, /* 0x40862E42, 0xFEFA39EF */
+    ln2_hi = 6.93147180369123816490e-01,            /* 0x3fe62e42, 0xfee00000 */
+    ln2_lo = 1.90821492927058770002e-10,            /* 0x3dea39ef, 0x35793c76 */
+    invln2 = 1.44269504088896338700e+00,            /* 0x3ff71547, 0x652b82fe */
+    /* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2:
+       */
+    Q1 = -3.33333333333331316428e-02, /* BFA11111 111110F4 */
+    Q2 = 1.58730158725481460165e-03,  /* 3F5A01A0 19FE5585 */
+    Q3 = -7.93650757867487942473e-05, /* BF14CE19 9EAADBB7 */
+    Q4 = 4.00821782732936239552e-06,  /* 3ED0CFCA 86E65239 */
+    Q5 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
 
-double expm1(double x)
-{
-	double_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
-	union {double f; uint64_t i;} u = {x};
-	uint32_t hx = u.i>>32 & 0x7fffffff;
-	int k, sign = u.i>>63;
+double expm1(double x) {
+  double_t y, hi, lo, c, t, e, hxs, hfx, r1, twopk;
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  uint32_t hx = u.i >> 32 & 0x7fffffff;
+  int k, sign = u.i >> 63;
 
-	/* filter out huge and non-finite argument */
-	if (hx >= 0x4043687A) {  /* if |x|>=56*ln2 */
-		if (isnan(x))
-			return x;
-		if (sign)
-			return -1;
-		if (x > o_threshold) {
-			x *= 0x1p1023;
-			return x;
-		}
-	}
+  /* filter out huge and non-finite argument */
+  if (hx >= 0x4043687A) { /* if |x|>=56*ln2 */
+    if (isnan(x))
+      return x;
+    if (sign)
+      return -1;
+    if (x > o_threshold) {
+      x *= 0x1p1023;
+      return x;
+    }
+  }
 
-	/* argument reduction */
-	if (hx > 0x3fd62e42) {  /* if  |x| > 0.5 ln2 */
-		if (hx < 0x3FF0A2B2) {  /* and |x| < 1.5 ln2 */
-			if (!sign) {
-				hi = x - ln2_hi;
-				lo = ln2_lo;
-				k =  1;
-			} else {
-				hi = x + ln2_hi;
-				lo = -ln2_lo;
-				k = -1;
-			}
-		} else {
-			k  = invln2*x + (sign ? -0.5 : 0.5);
-			t  = k;
-			hi = x - t*ln2_hi;  /* t*ln2_hi is exact here */
-			lo = t*ln2_lo;
-		}
-		x = hi-lo;
-		c = (hi-x)-lo;
-	} else if (hx < 0x3c900000) {  /* |x| < 2**-54, return x */
-		if (hx < 0x00100000)
-			FORCE_EVAL((float)x);
-		return x;
-	} else
-		k = 0;
+  /* argument reduction */
+  if (hx > 0x3fd62e42) {   /* if  |x| > 0.5 ln2 */
+    if (hx < 0x3FF0A2B2) { /* and |x| < 1.5 ln2 */
+      if (!sign) {
+        hi = x - ln2_hi;
+        lo = ln2_lo;
+        k = 1;
+      } else {
+        hi = x + ln2_hi;
+        lo = -ln2_lo;
+        k = -1;
+      }
+    } else {
+      k = invln2 * x + (sign ? -0.5 : 0.5);
+      t = k;
+      hi = x - t * ln2_hi; /* t*ln2_hi is exact here */
+      lo = t * ln2_lo;
+    }
+    x = hi - lo;
+    c = (hi - x) - lo;
+  } else if (hx < 0x3c900000) { /* |x| < 2**-54, return x */
+    if (hx < 0x00100000)
+      FORCE_EVAL((float)x);
+    return x;
+  } else
+    k = 0;
 
-	/* x is now in primary range */
-	hfx = 0.5*x;
-	hxs = x*hfx;
-	r1 = 1.0+hxs*(Q1+hxs*(Q2+hxs*(Q3+hxs*(Q4+hxs*Q5))));
-	t  = 3.0-r1*hfx;
-	e  = hxs*((r1-t)/(6.0 - x*t));
-	if (k == 0)   /* c is 0 */
-		return x - (x*e-hxs);
-	e  = x*(e-c) - c;
-	e -= hxs;
-	/* exp(x) ~ 2^k (x_reduced - e + 1) */
-	if (k == -1)
-		return 0.5*(x-e) - 0.5;
-	if (k == 1) {
-		if (x < -0.25)
-			return -2.0*(e-(x+0.5));
-		return 1.0+2.0*(x-e);
-	}
-	u.i = (uint64_t)(0x3ff + k)<<52;  /* 2^k */
-	twopk = u.f;
-	if (k < 0 || k > 56) {  /* suffice to return exp(x)-1 */
-		y = x - e + 1.0;
-		if (k == 1024)
-			y = y*2.0*0x1p1023;
-		else
-			y = y*twopk;
-		return y - 1.0;
-	}
-	u.i = (uint64_t)(0x3ff - k)<<52;  /* 2^-k */
-	if (k < 20)
-		y = (x-e+(1-u.f))*twopk;
-	else
-		y = (x-(e+u.f)+1)*twopk;
-	return y;
+  /* x is now in primary range */
+  hfx = 0.5 * x;
+  hxs = x * hfx;
+  r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
+  t = 3.0 - r1 * hfx;
+  e = hxs * ((r1 - t) / (6.0 - x * t));
+  if (k == 0) /* c is 0 */
+    return x - (x * e - hxs);
+  e = x * (e - c) - c;
+  e -= hxs;
+  /* exp(x) ~ 2^k (x_reduced - e + 1) */
+  if (k == -1)
+    return 0.5 * (x - e) - 0.5;
+  if (k == 1) {
+    if (x < -0.25)
+      return -2.0 * (e - (x + 0.5));
+    return 1.0 + 2.0 * (x - e);
+  }
+  u.i = (uint64_t)(0x3ff + k) << 52; /* 2^k */
+  twopk = u.f;
+  if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */
+    y = x - e + 1.0;
+    if (k == 1024)
+      y = y * 2.0 * 0x1p1023;
+    else
+      y = y * twopk;
+    return y - 1.0;
+  }
+  u.i = (uint64_t)(0x3ff - k) << 52; /* 2^-k */
+  if (k < 20)
+    y = (x - e + (1 - u.f)) * twopk;
+  else
+    y = (x - (e + u.f) + 1) * twopk;
+  return y;
 }
diff --git a/fusl/src/math/expm1f.c b/fusl/src/math/expm1f.c
index 297e0b4..3ea476e 100644
--- a/fusl/src/math/expm1f.c
+++ b/fusl/src/math/expm1f.c
@@ -15,97 +15,98 @@
 
 #include "libm.h"
 
-static const float
-o_threshold = 8.8721679688e+01, /* 0x42b17180 */
-ln2_hi      = 6.9313812256e-01, /* 0x3f317180 */
-ln2_lo      = 9.0580006145e-06, /* 0x3717f7d1 */
-invln2      = 1.4426950216e+00, /* 0x3fb8aa3b */
-/*
- * Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]:
- * |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04
- * Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c):
- */
-Q1 = -3.3333212137e-2, /* -0x888868.0p-28 */
-Q2 =  1.5807170421e-3; /*  0xcf3010.0p-33 */
+static const float o_threshold = 8.8721679688e+01, /* 0x42b17180 */
+    ln2_hi = 6.9313812256e-01,                     /* 0x3f317180 */
+    ln2_lo = 9.0580006145e-06,                     /* 0x3717f7d1 */
+    invln2 = 1.4426950216e+00,                     /* 0x3fb8aa3b */
+                                                   /*
+                                                    * Domain [-0.34568, 0.34568], range ~[-6.694e-10, 6.696e-10]:
+                                                    * |6 / x * (1 + 2 * (1 / (exp(x) - 1) - 1 / x)) - q(x)| < 2**-30.04
+                                                    * Scaled coefficients: Qn_here = 2**n * Qn_for_q (see s_expm1.c):
+                                                    */
+    Q1 = -3.3333212137e-2,                         /* -0x888868.0p-28 */
+    Q2 = 1.5807170421e-3;                          /*  0xcf3010.0p-33 */
 
-float expm1f(float x)
-{
-	float_t y,hi,lo,c,t,e,hxs,hfx,r1,twopk;
-	union {float f; uint32_t i;} u = {x};
-	uint32_t hx = u.i & 0x7fffffff;
-	int k, sign = u.i >> 31;
+float expm1f(float x) {
+  float_t y, hi, lo, c, t, e, hxs, hfx, r1, twopk;
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  uint32_t hx = u.i & 0x7fffffff;
+  int k, sign = u.i >> 31;
 
-	/* filter out huge and non-finite argument */
-	if (hx >= 0x4195b844) {  /* if |x|>=27*ln2 */
-		if (hx > 0x7f800000)  /* NaN */
-			return x;
-		if (sign)
-			return -1;
-		if (x > o_threshold) {
-			x *= 0x1p127f;
-			return x;
-		}
-	}
+  /* filter out huge and non-finite argument */
+  if (hx >= 0x4195b844) { /* if |x|>=27*ln2 */
+    if (hx > 0x7f800000)  /* NaN */
+      return x;
+    if (sign)
+      return -1;
+    if (x > o_threshold) {
+      x *= 0x1p127f;
+      return x;
+    }
+  }
 
-	/* argument reduction */
-	if (hx > 0x3eb17218) {           /* if  |x| > 0.5 ln2 */
-		if (hx < 0x3F851592) {       /* and |x| < 1.5 ln2 */
-			if (!sign) {
-				hi = x - ln2_hi;
-				lo = ln2_lo;
-				k =  1;
-			} else {
-				hi = x + ln2_hi;
-				lo = -ln2_lo;
-				k = -1;
-			}
-		} else {
-			k  = invln2*x + (sign ? -0.5f : 0.5f);
-			t  = k;
-			hi = x - t*ln2_hi;      /* t*ln2_hi is exact here */
-			lo = t*ln2_lo;
-		}
-		x = hi-lo;
-		c = (hi-x)-lo;
-	} else if (hx < 0x33000000) {  /* when |x|<2**-25, return x */
-		if (hx < 0x00800000)
-			FORCE_EVAL(x*x);
-		return x;
-	} else
-		k = 0;
+  /* argument reduction */
+  if (hx > 0x3eb17218) {   /* if  |x| > 0.5 ln2 */
+    if (hx < 0x3F851592) { /* and |x| < 1.5 ln2 */
+      if (!sign) {
+        hi = x - ln2_hi;
+        lo = ln2_lo;
+        k = 1;
+      } else {
+        hi = x + ln2_hi;
+        lo = -ln2_lo;
+        k = -1;
+      }
+    } else {
+      k = invln2 * x + (sign ? -0.5f : 0.5f);
+      t = k;
+      hi = x - t * ln2_hi; /* t*ln2_hi is exact here */
+      lo = t * ln2_lo;
+    }
+    x = hi - lo;
+    c = (hi - x) - lo;
+  } else if (hx < 0x33000000) { /* when |x|<2**-25, return x */
+    if (hx < 0x00800000)
+      FORCE_EVAL(x * x);
+    return x;
+  } else
+    k = 0;
 
-	/* x is now in primary range */
-	hfx = 0.5f*x;
-	hxs = x*hfx;
-	r1 = 1.0f+hxs*(Q1+hxs*Q2);
-	t  = 3.0f - r1*hfx;
-	e  = hxs*((r1-t)/(6.0f - x*t));
-	if (k == 0)  /* c is 0 */
-		return x - (x*e-hxs);
-	e  = x*(e-c) - c;
-	e -= hxs;
-	/* exp(x) ~ 2^k (x_reduced - e + 1) */
-	if (k == -1)
-		return 0.5f*(x-e) - 0.5f;
-	if (k == 1) {
-		if (x < -0.25f)
-			return -2.0f*(e-(x+0.5f));
-		return 1.0f + 2.0f*(x-e);
-	}
-	u.i = (0x7f+k)<<23;  /* 2^k */
-	twopk = u.f;
-	if (k < 0 || k > 56) {   /* suffice to return exp(x)-1 */
-		y = x - e + 1.0f;
-		if (k == 128)
-			y = y*2.0f*0x1p127f;
-		else
-			y = y*twopk;
-		return y - 1.0f;
-	}
-	u.i = (0x7f-k)<<23;  /* 2^-k */
-	if (k < 23)
-		y = (x-e+(1-u.f))*twopk;
-	else
-		y = (x-(e+u.f)+1)*twopk;
-	return y;
+  /* x is now in primary range */
+  hfx = 0.5f * x;
+  hxs = x * hfx;
+  r1 = 1.0f + hxs * (Q1 + hxs * Q2);
+  t = 3.0f - r1 * hfx;
+  e = hxs * ((r1 - t) / (6.0f - x * t));
+  if (k == 0) /* c is 0 */
+    return x - (x * e - hxs);
+  e = x * (e - c) - c;
+  e -= hxs;
+  /* exp(x) ~ 2^k (x_reduced - e + 1) */
+  if (k == -1)
+    return 0.5f * (x - e) - 0.5f;
+  if (k == 1) {
+    if (x < -0.25f)
+      return -2.0f * (e - (x + 0.5f));
+    return 1.0f + 2.0f * (x - e);
+  }
+  u.i = (0x7f + k) << 23; /* 2^k */
+  twopk = u.f;
+  if (k < 0 || k > 56) { /* suffice to return exp(x)-1 */
+    y = x - e + 1.0f;
+    if (k == 128)
+      y = y * 2.0f * 0x1p127f;
+    else
+      y = y * twopk;
+    return y - 1.0f;
+  }
+  u.i = (0x7f - k) << 23; /* 2^-k */
+  if (k < 23)
+    y = (x - e + (1 - u.f)) * twopk;
+  else
+    y = (x - (e + u.f) + 1) * twopk;
+  return y;
 }
diff --git a/fusl/src/math/expm1l.c b/fusl/src/math/expm1l.c
index d171507..c7149a8 100644
--- a/fusl/src/math/expm1l.c
+++ b/fusl/src/math/expm1l.c
@@ -50,74 +50,70 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double expm1l(long double x)
-{
-	return expm1(x);
+long double expm1l(long double x) {
+  return expm1(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 
 /* exp(x) - 1 = x + 0.5 x^2 + x^3 P(x)/Q(x)
    -.5 ln 2  <  x  <  .5 ln 2
    Theoretical peak relative error = 3.4e-22  */
-static const long double
-P0 = -1.586135578666346600772998894928250240826E4L,
-P1 =  2.642771505685952966904660652518429479531E3L,
-P2 = -3.423199068835684263987132888286791620673E2L,
-P3 =  1.800826371455042224581246202420972737840E1L,
-P4 = -5.238523121205561042771939008061958820811E-1L,
-Q0 = -9.516813471998079611319047060563358064497E4L,
-Q1 =  3.964866271411091674556850458227710004570E4L,
-Q2 = -7.207678383830091850230366618190187434796E3L,
-Q3 =  7.206038318724600171970199625081491823079E2L,
-Q4 = -4.002027679107076077238836622982900945173E1L,
-/* Q5 = 1.000000000000000000000000000000000000000E0 */
-/* C1 + C2 = ln 2 */
-C1 = 6.93145751953125E-1L,
-C2 = 1.428606820309417232121458176568075500134E-6L,
-/* ln 2^-65 */
-minarg = -4.5054566736396445112120088E1L,
-/* ln 2^16384 */
-maxarg = 1.1356523406294143949492E4L;
+static const long double P0 = -1.586135578666346600772998894928250240826E4L,
+                         P1 = 2.642771505685952966904660652518429479531E3L,
+                         P2 = -3.423199068835684263987132888286791620673E2L,
+                         P3 = 1.800826371455042224581246202420972737840E1L,
+                         P4 = -5.238523121205561042771939008061958820811E-1L,
+                         Q0 = -9.516813471998079611319047060563358064497E4L,
+                         Q1 = 3.964866271411091674556850458227710004570E4L,
+                         Q2 = -7.207678383830091850230366618190187434796E3L,
+                         Q3 = 7.206038318724600171970199625081491823079E2L,
+                         Q4 = -4.002027679107076077238836622982900945173E1L,
+                         /* Q5 = 1.000000000000000000000000000000000000000E0 */
+    /* C1 + C2 = ln 2 */
+    C1 = 6.93145751953125E-1L,
+                         C2 = 1.428606820309417232121458176568075500134E-6L,
+                         /* ln 2^-65 */
+    minarg = -4.5054566736396445112120088E1L,
+                         /* ln 2^16384 */
+    maxarg = 1.1356523406294143949492E4L;
 
-long double expm1l(long double x)
-{
-	long double px, qx, xx;
-	int k;
+long double expm1l(long double x) {
+  long double px, qx, xx;
+  int k;
 
-	if (isnan(x))
-		return x;
-	if (x > maxarg)
-		return x*0x1p16383L; /* overflow, unless x==inf */
-	if (x == 0.0)
-		return x;
-	if (x < minarg)
-		return -1.0;
+  if (isnan(x))
+    return x;
+  if (x > maxarg)
+    return x * 0x1p16383L; /* overflow, unless x==inf */
+  if (x == 0.0)
+    return x;
+  if (x < minarg)
+    return -1.0;
 
-	xx = C1 + C2;
-	/* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
-	px = floorl(0.5 + x / xx);
-	k = px;
-	/* remainder times ln 2 */
-	x -= px * C1;
-	x -= px * C2;
+  xx = C1 + C2;
+  /* Express x = ln 2 (k + remainder), remainder not exceeding 1/2. */
+  px = floorl(0.5 + x / xx);
+  k = px;
+  /* remainder times ln 2 */
+  x -= px * C1;
+  x -= px * C2;
 
-	/* Approximate exp(remainder ln 2).*/
-	px = (((( P4 * x + P3) * x + P2) * x + P1) * x + P0) * x;
-	qx = (((( x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
-	xx = x * x;
-	qx = x + (0.5 * xx + xx * px / qx);
+  /* Approximate exp(remainder ln 2).*/
+  px = ((((P4 * x + P3) * x + P2) * x + P1) * x + P0) * x;
+  qx = ((((x + Q4) * x + Q3) * x + Q2) * x + Q1) * x + Q0;
+  xx = x * x;
+  qx = x + (0.5 * xx + xx * px / qx);
 
-	/* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
-	 We have qx = exp(remainder ln 2) - 1, so
-	 exp(x) - 1  =  2^k (qx + 1) - 1  =  2^k qx + 2^k - 1.  */
-	px = scalbnl(1.0, k);
-	x = px * qx + (px - 1.0);
-	return x;
+  /* exp(x) = exp(k ln 2) exp(remainder ln 2) = 2^k exp(remainder ln 2).
+   We have qx = exp(remainder ln 2) - 1, so
+   exp(x) - 1  =  2^k (qx + 1) - 1  =  2^k qx + 2^k - 1.  */
+  px = scalbnl(1.0, k);
+  x = px * qx + (px - 1.0);
+  return x;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double expm1l(long double x)
-{
-	return expm1(x);
+long double expm1l(long double x) {
+  return expm1(x);
 }
 #endif
diff --git a/fusl/src/math/fabs.c b/fusl/src/math/fabs.c
index e8258cf..0e1a570 100644
--- a/fusl/src/math/fabs.c
+++ b/fusl/src/math/fabs.c
@@ -1,9 +1,11 @@
 #include <math.h>
 #include <stdint.h>
 
-double fabs(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	u.i &= -1ULL/2;
-	return u.f;
+double fabs(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  u.i &= -1ULL / 2;
+  return u.f;
 }
diff --git a/fusl/src/math/fabsf.c b/fusl/src/math/fabsf.c
index 4efc8d6..55c8b29 100644
--- a/fusl/src/math/fabsf.c
+++ b/fusl/src/math/fabsf.c
@@ -1,9 +1,11 @@
 #include <math.h>
 #include <stdint.h>
 
-float fabsf(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	u.i &= 0x7fffffff;
-	return u.f;
+float fabsf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  u.i &= 0x7fffffff;
+  return u.f;
 }
diff --git a/fusl/src/math/fabsl.c b/fusl/src/math/fabsl.c
index c4f36ec..2af6eb9 100644
--- a/fusl/src/math/fabsl.c
+++ b/fusl/src/math/fabsl.c
@@ -1,15 +1,13 @@
 #include "libm.h"
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double fabsl(long double x)
-{
-	return fabs(x);
+long double fabsl(long double x) {
+  return fabs(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-long double fabsl(long double x)
-{
-	union ldshape u = {x};
+long double fabsl(long double x) {
+  union ldshape u = {x};
 
-	u.i.se &= 0x7fff;
-	return u.f;
+  u.i.se &= 0x7fff;
+  return u.f;
 }
 #endif
diff --git a/fusl/src/math/fdim.c b/fusl/src/math/fdim.c
index 9585460..1eb169e 100644
--- a/fusl/src/math/fdim.c
+++ b/fusl/src/math/fdim.c
@@ -1,10 +1,9 @@
 #include <math.h>
 
-double fdim(double x, double y)
-{
-	if (isnan(x))
-		return x;
-	if (isnan(y))
-		return y;
-	return x > y ? x - y : 0;
+double fdim(double x, double y) {
+  if (isnan(x))
+    return x;
+  if (isnan(y))
+    return y;
+  return x > y ? x - y : 0;
 }
diff --git a/fusl/src/math/fdimf.c b/fusl/src/math/fdimf.c
index 543c364..454768b 100644
--- a/fusl/src/math/fdimf.c
+++ b/fusl/src/math/fdimf.c
@@ -1,10 +1,9 @@
 #include <math.h>
 
-float fdimf(float x, float y)
-{
-	if (isnan(x))
-		return x;
-	if (isnan(y))
-		return y;
-	return x > y ? x - y : 0;
+float fdimf(float x, float y) {
+  if (isnan(x))
+    return x;
+  if (isnan(y))
+    return y;
+  return x > y ? x - y : 0;
 }
diff --git a/fusl/src/math/fdiml.c b/fusl/src/math/fdiml.c
index 62e29b7..c77ec63 100644
--- a/fusl/src/math/fdiml.c
+++ b/fusl/src/math/fdiml.c
@@ -2,17 +2,15 @@
 #include <float.h>
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double fdiml(long double x, long double y)
-{
-	return fdim(x, y);
+long double fdiml(long double x, long double y) {
+  return fdim(x, y);
 }
 #else
-long double fdiml(long double x, long double y)
-{
-	if (isnan(x))
-		return x;
-	if (isnan(y))
-		return y;
-	return x > y ? x - y : 0;
+long double fdiml(long double x, long double y) {
+  if (isnan(x))
+    return x;
+  if (isnan(y))
+    return y;
+  return x > y ? x - y : 0;
 }
 #endif
diff --git a/fusl/src/math/finite.c b/fusl/src/math/finite.c
index 25a0575..98d3bd9 100644
--- a/fusl/src/math/finite.c
+++ b/fusl/src/math/finite.c
@@ -1,7 +1,6 @@
 #define _GNU_SOURCE
 #include <math.h>
 
-int finite(double x)
-{
-	return isfinite(x);
+int finite(double x) {
+  return isfinite(x);
 }
diff --git a/fusl/src/math/finitef.c b/fusl/src/math/finitef.c
index 2c4c771..9c6da62 100644
--- a/fusl/src/math/finitef.c
+++ b/fusl/src/math/finitef.c
@@ -1,7 +1,6 @@
 #define _GNU_SOURCE
 #include <math.h>
 
-int finitef(float x)
-{
-	return isfinite(x);
+int finitef(float x) {
+  return isfinite(x);
 }
diff --git a/fusl/src/math/floor.c b/fusl/src/math/floor.c
index 14a31cd..53d0ace 100644
--- a/fusl/src/math/floor.c
+++ b/fusl/src/math/floor.c
@@ -1,31 +1,33 @@
 #include "libm.h"
 
-#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#if FLT_EVAL_METHOD == 0 || FLT_EVAL_METHOD == 1
 #define EPS DBL_EPSILON
-#elif FLT_EVAL_METHOD==2
+#elif FLT_EVAL_METHOD == 2
 #define EPS LDBL_EPSILON
 #endif
-static const double_t toint = 1/EPS;
+static const double_t toint = 1 / EPS;
 
-double floor(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	int e = u.i >> 52 & 0x7ff;
-	double_t y;
+double floor(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  int e = u.i >> 52 & 0x7ff;
+  double_t y;
 
-	if (e >= 0x3ff+52 || x == 0)
-		return x;
-	/* y = int(x) - x, where int(x) is an integer neighbor of x */
-	if (u.i >> 63)
-		y = x - toint + toint - x;
-	else
-		y = x + toint - toint - x;
-	/* special case because of non-nearest rounding modes */
-	if (e <= 0x3ff-1) {
-		FORCE_EVAL(y);
-		return u.i >> 63 ? -1 : 0;
-	}
-	if (y > 0)
-		return x + y - 1;
-	return x + y;
+  if (e >= 0x3ff + 52 || x == 0)
+    return x;
+  /* y = int(x) - x, where int(x) is an integer neighbor of x */
+  if (u.i >> 63)
+    y = x - toint + toint - x;
+  else
+    y = x + toint - toint - x;
+  /* special case because of non-nearest rounding modes */
+  if (e <= 0x3ff - 1) {
+    FORCE_EVAL(y);
+    return u.i >> 63 ? -1 : 0;
+  }
+  if (y > 0)
+    return x + y - 1;
+  return x + y;
 }
diff --git a/fusl/src/math/floorf.c b/fusl/src/math/floorf.c
index dceec73..fd40863 100644
--- a/fusl/src/math/floorf.c
+++ b/fusl/src/math/floorf.c
@@ -1,27 +1,29 @@
 #include "libm.h"
 
-float floorf(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	int e = (int)(u.i >> 23 & 0xff) - 0x7f;
-	uint32_t m;
+float floorf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  int e = (int)(u.i >> 23 & 0xff) - 0x7f;
+  uint32_t m;
 
-	if (e >= 23)
-		return x;
-	if (e >= 0) {
-		m = 0x007fffff >> e;
-		if ((u.i & m) == 0)
-			return x;
-		FORCE_EVAL(x + 0x1p120f);
-		if (u.i >> 31)
-			u.i += m;
-		u.i &= ~m;
-	} else {
-		FORCE_EVAL(x + 0x1p120f);
-		if (u.i >> 31 == 0)
-			u.i = 0;
-		else if (u.i << 1)
-			u.f = -1.0;
-	}
-	return u.f;
+  if (e >= 23)
+    return x;
+  if (e >= 0) {
+    m = 0x007fffff >> e;
+    if ((u.i & m) == 0)
+      return x;
+    FORCE_EVAL(x + 0x1p120f);
+    if (u.i >> 31)
+      u.i += m;
+    u.i &= ~m;
+  } else {
+    FORCE_EVAL(x + 0x1p120f);
+    if (u.i >> 31 == 0)
+      u.i = 0;
+    else if (u.i << 1)
+      u.f = -1.0;
+  }
+  return u.f;
 }
diff --git a/fusl/src/math/floorl.c b/fusl/src/math/floorl.c
index 16aaec4..9a7703c 100644
--- a/fusl/src/math/floorl.c
+++ b/fusl/src/math/floorl.c
@@ -1,34 +1,32 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double floorl(long double x)
-{
-	return floor(x);
+long double floorl(long double x) {
+  return floor(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 
-static const long double toint = 1/LDBL_EPSILON;
+static const long double toint = 1 / LDBL_EPSILON;
 
-long double floorl(long double x)
-{
-	union ldshape u = {x};
-	int e = u.i.se & 0x7fff;
-	long double y;
+long double floorl(long double x) {
+  union ldshape u = {x};
+  int e = u.i.se & 0x7fff;
+  long double y;
 
-	if (e >= 0x3fff+LDBL_MANT_DIG-1 || x == 0)
-		return x;
-	/* y = int(x) - x, where int(x) is an integer neighbor of x */
-	if (u.i.se >> 15)
-		y = x - toint + toint - x;
-	else
-		y = x + toint - toint - x;
-	/* special case because of non-nearest rounding modes */
-	if (e <= 0x3fff-1) {
-		FORCE_EVAL(y);
-		return u.i.se >> 15 ? -1 : 0;
-	}
-	if (y > 0)
-		return x + y - 1;
-	return x + y;
+  if (e >= 0x3fff + LDBL_MANT_DIG - 1 || x == 0)
+    return x;
+  /* y = int(x) - x, where int(x) is an integer neighbor of x */
+  if (u.i.se >> 15)
+    y = x - toint + toint - x;
+  else
+    y = x + toint - toint - x;
+  /* special case because of non-nearest rounding modes */
+  if (e <= 0x3fff - 1) {
+    FORCE_EVAL(y);
+    return u.i.se >> 15 ? -1 : 0;
+  }
+  if (y > 0)
+    return x + y - 1;
+  return x + y;
 }
 #endif
diff --git a/fusl/src/math/fma.c b/fusl/src/math/fma.c
index b4e685b..cec9e3b 100644
--- a/fusl/src/math/fma.c
+++ b/fusl/src/math/fma.c
@@ -1,168 +1,170 @@
 #include <fenv.h>
 #include "libm.h"
 
-#if LDBL_MANT_DIG==64 && LDBL_MAX_EXP==16384
+#if LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 /* exact add, assumes exponent_x >= exponent_y */
-static void add(long double *hi, long double *lo, long double x, long double y)
-{
-	long double r;
+static void add(long double* hi,
+                long double* lo,
+                long double x,
+                long double y) {
+  long double r;
 
-	r = x + y;
-	*hi = r;
-	r -= x;
-	*lo = y - r;
+  r = x + y;
+  *hi = r;
+  r -= x;
+  *lo = y - r;
 }
 
 /* exact mul, assumes no over/underflow */
-static void mul(long double *hi, long double *lo, long double x, long double y)
-{
-	static const long double c = 1.0 + 0x1p32L;
-	long double cx, xh, xl, cy, yh, yl;
+static void mul(long double* hi,
+                long double* lo,
+                long double x,
+                long double y) {
+  static const long double c = 1.0 + 0x1p32L;
+  long double cx, xh, xl, cy, yh, yl;
 
-	cx = c*x;
-	xh = (x - cx) + cx;
-	xl = x - xh;
-	cy = c*y;
-	yh = (y - cy) + cy;
-	yl = y - yh;
-	*hi = x*y;
-	*lo = (xh*yh - *hi) + xh*yl + xl*yh + xl*yl;
+  cx = c * x;
+  xh = (x - cx) + cx;
+  xl = x - xh;
+  cy = c * y;
+  yh = (y - cy) + cy;
+  yl = y - yh;
+  *hi = x * y;
+  *lo = (xh * yh - *hi) + xh * yl + xl * yh + xl * yl;
 }
 
 /*
 assume (long double)(hi+lo) == hi
-return an adjusted hi so that rounding it to double (or less) precision is correct
+return an adjusted hi so that rounding it to double (or less) precision is
+correct
 */
-static long double adjust(long double hi, long double lo)
-{
-	union ldshape uhi, ulo;
+static long double adjust(long double hi, long double lo) {
+  union ldshape uhi, ulo;
 
-	if (lo == 0)
-		return hi;
-	uhi.f = hi;
-	if (uhi.i.m & 0x3ff)
-		return hi;
-	ulo.f = lo;
-	if ((uhi.i.se & 0x8000) == (ulo.i.se & 0x8000))
-		uhi.i.m++;
-	else {
-		/* handle underflow and take care of ld80 implicit msb */
-		if (uhi.i.m << 1 == 0) {
-			uhi.i.m = 0;
-			uhi.i.se--;
-		}
-		uhi.i.m--;
-	}
-	return uhi.f;
+  if (lo == 0)
+    return hi;
+  uhi.f = hi;
+  if (uhi.i.m & 0x3ff)
+    return hi;
+  ulo.f = lo;
+  if ((uhi.i.se & 0x8000) == (ulo.i.se & 0x8000))
+    uhi.i.m++;
+  else {
+    /* handle underflow and take care of ld80 implicit msb */
+    if (uhi.i.m << 1 == 0) {
+      uhi.i.m = 0;
+      uhi.i.se--;
+    }
+    uhi.i.m--;
+  }
+  return uhi.f;
 }
 
-/* adjusted add so the result is correct when rounded to double (or less) precision */
-static long double dadd(long double x, long double y)
-{
-	add(&x, &y, x, y);
-	return adjust(x, y);
+/* adjusted add so the result is correct when rounded to double (or less)
+ * precision */
+static long double dadd(long double x, long double y) {
+  add(&x, &y, x, y);
+  return adjust(x, y);
 }
 
-/* adjusted mul so the result is correct when rounded to double (or less) precision */
-static long double dmul(long double x, long double y)
-{
-	mul(&x, &y, x, y);
-	return adjust(x, y);
+/* adjusted mul so the result is correct when rounded to double (or less)
+ * precision */
+static long double dmul(long double x, long double y) {
+  mul(&x, &y, x, y);
+  return adjust(x, y);
 }
 
-static int getexp(long double x)
-{
-	union ldshape u;
-	u.f = x;
-	return u.i.se & 0x7fff;
+static int getexp(long double x) {
+  union ldshape u;
+  u.f = x;
+  return u.i.se & 0x7fff;
 }
 
-double fma(double x, double y, double z)
-{
-	PRAGMA_STDC_FENV_ACCESS_ON
-	long double hi, lo1, lo2, xy;
-	int round, ez, exy;
+double fma(double x, double y, double z) {
+  PRAGMA_STDC_FENV_ACCESS_ON
+  long double hi, lo1, lo2, xy;
+  int round, ez, exy;
 
-	/* handle +-inf,nan */
-	if (!isfinite(x) || !isfinite(y))
-		return x*y + z;
-	if (!isfinite(z))
-		return z;
-	/* handle +-0 */
-	if (x == 0.0 || y == 0.0)
-		return x*y + z;
-	round = fegetround();
-	if (z == 0.0) {
-		if (round == FE_TONEAREST)
-			return dmul(x, y);
-		return x*y;
-	}
+  /* handle +-inf,nan */
+  if (!isfinite(x) || !isfinite(y))
+    return x * y + z;
+  if (!isfinite(z))
+    return z;
+  /* handle +-0 */
+  if (x == 0.0 || y == 0.0)
+    return x * y + z;
+  round = fegetround();
+  if (z == 0.0) {
+    if (round == FE_TONEAREST)
+      return dmul(x, y);
+    return x * y;
+  }
 
-	/* exact mul and add require nearest rounding */
-	/* spurious inexact exceptions may be raised */
-	fesetround(FE_TONEAREST);
-	mul(&xy, &lo1, x, y);
-	exy = getexp(xy);
-	ez = getexp(z);
-	if (ez > exy) {
-		add(&hi, &lo2, z, xy);
-	} else if (ez > exy - 12) {
-		add(&hi, &lo2, xy, z);
-		if (hi == 0) {
-			/*
-			xy + z is 0, but it should be calculated with the
-			original rounding mode so the sign is correct, if the
-			compiler does not support FENV_ACCESS ON it does not
-			know about the changed rounding mode and eliminates
-			the xy + z below without the volatile memory access
-			*/
-			volatile double z_;
-			fesetround(round);
-			z_ = z;
-			return (xy + z_) + lo1;
-		}
-	} else {
-		/*
-		ez <= exy - 12
-		the 12 extra bits (1guard, 11round+sticky) are needed so with
-			lo = dadd(lo1, lo2)
-		elo <= ehi - 11, and we use the last 10 bits in adjust so
-			dadd(hi, lo)
-		gives correct result when rounded to double
-		*/
-		hi = xy;
-		lo2 = z;
-	}
-	/*
-	the result is stored before return for correct precision and exceptions
+  /* exact mul and add require nearest rounding */
+  /* spurious inexact exceptions may be raised */
+  fesetround(FE_TONEAREST);
+  mul(&xy, &lo1, x, y);
+  exy = getexp(xy);
+  ez = getexp(z);
+  if (ez > exy) {
+    add(&hi, &lo2, z, xy);
+  } else if (ez > exy - 12) {
+    add(&hi, &lo2, xy, z);
+    if (hi == 0) {
+      /*
+      xy + z is 0, but it should be calculated with the
+      original rounding mode so the sign is correct, if the
+      compiler does not support FENV_ACCESS ON it does not
+      know about the changed rounding mode and eliminates
+      the xy + z below without the volatile memory access
+      */
+      volatile double z_;
+      fesetround(round);
+      z_ = z;
+      return (xy + z_) + lo1;
+    }
+  } else {
+    /*
+    ez <= exy - 12
+    the 12 extra bits (1guard, 11round+sticky) are needed so with
+            lo = dadd(lo1, lo2)
+    elo <= ehi - 11, and we use the last 10 bits in adjust so
+            dadd(hi, lo)
+    gives correct result when rounded to double
+    */
+    hi = xy;
+    lo2 = z;
+  }
+  /*
+  the result is stored before return for correct precision and exceptions
 
-	one corner case is when the underflow flag should be raised because
-	the precise result is an inexact subnormal double, but the calculated
-	long double result is an exact subnormal double
-	(so rounding to double does not raise exceptions)
+  one corner case is when the underflow flag should be raised because
+  the precise result is an inexact subnormal double, but the calculated
+  long double result is an exact subnormal double
+  (so rounding to double does not raise exceptions)
 
-	in nearest rounding mode dadd takes care of this: the last bit of the
-	result is adjusted so rounding sees an inexact value when it should
+  in nearest rounding mode dadd takes care of this: the last bit of the
+  result is adjusted so rounding sees an inexact value when it should
 
-	in non-nearest rounding mode fenv is used for the workaround
-	*/
-	fesetround(round);
-	if (round == FE_TONEAREST)
-		z = dadd(hi, dadd(lo1, lo2));
-	else {
+  in non-nearest rounding mode fenv is used for the workaround
+  */
+  fesetround(round);
+  if (round == FE_TONEAREST)
+    z = dadd(hi, dadd(lo1, lo2));
+  else {
 #if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
-		int e = fetestexcept(FE_INEXACT);
-		feclearexcept(FE_INEXACT);
+    int e = fetestexcept(FE_INEXACT);
+    feclearexcept(FE_INEXACT);
 #endif
-		z = hi + (lo1 + lo2);
+    z = hi + (lo1 + lo2);
 #if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
-		if (getexp(z) < 0x3fff-1022 && fetestexcept(FE_INEXACT))
-			feraiseexcept(FE_UNDERFLOW);
-		else if (e)
-			feraiseexcept(FE_INEXACT);
+    if (getexp(z) < 0x3fff - 1022 && fetestexcept(FE_INEXACT))
+      feraiseexcept(FE_UNDERFLOW);
+    else if (e)
+      feraiseexcept(FE_INEXACT);
 #endif
-	}
-	return z;
+  }
+  return z;
 }
 #else
 /* origin: FreeBSD /usr/src/lib/msun/src/s_fma.c */
@@ -198,8 +200,8 @@
  * bits of the result.
  */
 struct dd {
-	double hi;
-	double lo;
+  double hi;
+  double lo;
 };
 
 /*
@@ -207,15 +209,14 @@
  * that both a and b are finite, but make no assumptions about their relative
  * magnitudes.
  */
-static inline struct dd dd_add(double a, double b)
-{
-	struct dd ret;
-	double s;
+static inline struct dd dd_add(double a, double b) {
+  struct dd ret;
+  double s;
 
-	ret.hi = a + b;
-	s = ret.hi - a;
-	ret.lo = (a - (ret.hi - s)) + (b - s);
-	return (ret);
+  ret.hi = a + b;
+  s = ret.hi - a;
+  ret.lo = (a - (ret.hi - s)) + (b - s);
+  return (ret);
 }
 
 /*
@@ -229,22 +230,24 @@
  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
  */
-static inline double add_adjusted(double a, double b)
-{
-	struct dd sum;
-	union {double f; uint64_t i;} uhi, ulo;
+static inline double add_adjusted(double a, double b) {
+  struct dd sum;
+  union {
+    double f;
+    uint64_t i;
+  } uhi, ulo;
 
-	sum = dd_add(a, b);
-	if (sum.lo != 0) {
-		uhi.f = sum.hi;
-		if ((uhi.i & 1) == 0) {
-			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
-			ulo.f = sum.lo;
-			uhi.i += 1 - ((uhi.i ^ ulo.i) >> 62);
-			sum.hi = uhi.f;
-		}
-	}
-	return (sum.hi);
+  sum = dd_add(a, b);
+  if (sum.lo != 0) {
+    uhi.f = sum.hi;
+    if ((uhi.i & 1) == 0) {
+      /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
+      ulo.f = sum.lo;
+      uhi.i += 1 - ((uhi.i ^ ulo.i) >> 62);
+      sum.hi = uhi.f;
+    }
+  }
+  return (sum.hi);
 }
 
 /*
@@ -252,35 +255,37 @@
  * that the result will be subnormal, and care is taken to ensure that
  * double rounding does not occur.
  */
-static inline double add_and_denormalize(double a, double b, int scale)
-{
-	struct dd sum;
-	union {double f; uint64_t i;} uhi, ulo;
-	int bits_lost;
+static inline double add_and_denormalize(double a, double b, int scale) {
+  struct dd sum;
+  union {
+    double f;
+    uint64_t i;
+  } uhi, ulo;
+  int bits_lost;
 
-	sum = dd_add(a, b);
+  sum = dd_add(a, b);
 
-	/*
-	 * If we are losing at least two bits of accuracy to denormalization,
-	 * then the first lost bit becomes a round bit, and we adjust the
-	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
-	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
-	 * break any ties in the correct direction.
-	 *
-	 * If we are losing only one bit to denormalization, however, we must
-	 * break the ties manually.
-	 */
-	if (sum.lo != 0) {
-		uhi.f = sum.hi;
-		bits_lost = -((int)(uhi.i >> 52) & 0x7ff) - scale + 1;
-		if ((bits_lost != 1) ^ (int)(uhi.i & 1)) {
-			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
-			ulo.f = sum.lo;
-			uhi.i += 1 - (((uhi.i ^ ulo.i) >> 62) & 2);
-			sum.hi = uhi.f;
-		}
-	}
-	return scalbn(sum.hi, scale);
+  /*
+   * If we are losing at least two bits of accuracy to denormalization,
+   * then the first lost bit becomes a round bit, and we adjust the
+   * lowest bit of sum.hi to make it a sticky bit summarizing all the
+   * bits in sum.lo. With the sticky bit adjusted, the hardware will
+   * break any ties in the correct direction.
+   *
+   * If we are losing only one bit to denormalization, however, we must
+   * break the ties manually.
+   */
+  if (sum.lo != 0) {
+    uhi.f = sum.hi;
+    bits_lost = -((int)(uhi.i >> 52) & 0x7ff) - scale + 1;
+    if ((bits_lost != 1) ^ (int)(uhi.i & 1)) {
+      /* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
+      ulo.f = sum.lo;
+      uhi.i += 1 - (((uhi.i ^ ulo.i) >> 62) & 2);
+      sum.hi = uhi.f;
+    }
+  }
+  return scalbn(sum.hi, scale);
 }
 
 /*
@@ -288,28 +293,27 @@
  * that both a and b are normalized, so no underflow or overflow will occur.
  * The current rounding mode must be round-to-nearest.
  */
-static inline struct dd dd_mul(double a, double b)
-{
-	static const double split = 0x1p27 + 1.0;
-	struct dd ret;
-	double ha, hb, la, lb, p, q;
+static inline struct dd dd_mul(double a, double b) {
+  static const double split = 0x1p27 + 1.0;
+  struct dd ret;
+  double ha, hb, la, lb, p, q;
 
-	p = a * split;
-	ha = a - p;
-	ha += p;
-	la = a - ha;
+  p = a * split;
+  ha = a - p;
+  ha += p;
+  la = a - ha;
 
-	p = b * split;
-	hb = b - p;
-	hb += p;
-	lb = b - hb;
+  p = b * split;
+  hb = b - p;
+  hb += p;
+  lb = b - hb;
 
-	p = ha * hb;
-	q = ha * lb + la * hb;
+  p = ha * hb;
+  q = ha * lb + la * hb;
 
-	ret.hi = p + q;
-	ret.lo = p - ret.hi + q + la * lb;
-	return (ret);
+  ret.hi = p + q;
+  ret.lo = p - ret.hi + q + la * lb;
+  return (ret);
 }
 
 /*
@@ -329,132 +333,131 @@
  * Hardware instructions should be used on architectures that support it,
  * since this implementation will likely be several times slower.
  */
-double fma(double x, double y, double z)
-{
-	#pragma STDC FENV_ACCESS ON
-	double xs, ys, zs, adj;
-	struct dd xy, r;
-	int oround;
-	int ex, ey, ez;
-	int spread;
+double fma(double x, double y, double z) {
+#pragma STDC FENV_ACCESS ON
+  double xs, ys, zs, adj;
+  struct dd xy, r;
+  int oround;
+  int ex, ey, ez;
+  int spread;
 
-	/*
-	 * Handle special cases. The order of operations and the particular
-	 * return values here are crucial in handling special cases involving
-	 * infinities, NaNs, overflows, and signed zeroes correctly.
-	 */
-	if (!isfinite(x) || !isfinite(y))
-		return (x * y + z);
-	if (!isfinite(z))
-		return (z);
-	if (x == 0.0 || y == 0.0)
-		return (x * y + z);
-	if (z == 0.0)
-		return (x * y);
+  /*
+   * Handle special cases. The order of operations and the particular
+   * return values here are crucial in handling special cases involving
+   * infinities, NaNs, overflows, and signed zeroes correctly.
+   */
+  if (!isfinite(x) || !isfinite(y))
+    return (x * y + z);
+  if (!isfinite(z))
+    return (z);
+  if (x == 0.0 || y == 0.0)
+    return (x * y + z);
+  if (z == 0.0)
+    return (x * y);
 
-	xs = frexp(x, &ex);
-	ys = frexp(y, &ey);
-	zs = frexp(z, &ez);
-	oround = fegetround();
-	spread = ex + ey - ez;
+  xs = frexp(x, &ex);
+  ys = frexp(y, &ey);
+  zs = frexp(z, &ez);
+  oround = fegetround();
+  spread = ex + ey - ez;
 
-	/*
-	 * If x * y and z are many orders of magnitude apart, the scaling
-	 * will overflow, so we handle these cases specially.  Rounding
-	 * modes other than FE_TONEAREST are painful.
-	 */
-	if (spread < -DBL_MANT_DIG) {
+  /*
+   * If x * y and z are many orders of magnitude apart, the scaling
+   * will overflow, so we handle these cases specially.  Rounding
+   * modes other than FE_TONEAREST are painful.
+   */
+  if (spread < -DBL_MANT_DIG) {
 #ifdef FE_INEXACT
-		feraiseexcept(FE_INEXACT);
+    feraiseexcept(FE_INEXACT);
 #endif
 #ifdef FE_UNDERFLOW
-		if (!isnormal(z))
-			feraiseexcept(FE_UNDERFLOW);
+    if (!isnormal(z))
+      feraiseexcept(FE_UNDERFLOW);
 #endif
-		switch (oround) {
-		default: /* FE_TONEAREST */
-			return (z);
+    switch (oround) {
+      default: /* FE_TONEAREST */
+        return (z);
 #ifdef FE_TOWARDZERO
-		case FE_TOWARDZERO:
-			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
-				return (z);
-			else
-				return (nextafter(z, 0));
+      case FE_TOWARDZERO:
+        if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
+          return (z);
+        else
+          return (nextafter(z, 0));
 #endif
 #ifdef FE_DOWNWARD
-		case FE_DOWNWARD:
-			if (x > 0.0 ^ y < 0.0)
-				return (z);
-			else
-				return (nextafter(z, -INFINITY));
+      case FE_DOWNWARD:
+        if (x > 0.0 ^ y < 0.0)
+          return (z);
+        else
+          return (nextafter(z, -INFINITY));
 #endif
 #ifdef FE_UPWARD
-		case FE_UPWARD:
-			if (x > 0.0 ^ y < 0.0)
-				return (nextafter(z, INFINITY));
-			else
-				return (z);
+      case FE_UPWARD:
+        if (x > 0.0 ^ y < 0.0)
+          return (nextafter(z, INFINITY));
+        else
+          return (z);
 #endif
-		}
-	}
-	if (spread <= DBL_MANT_DIG * 2)
-		zs = scalbn(zs, -spread);
-	else
-		zs = copysign(DBL_MIN, zs);
+    }
+  }
+  if (spread <= DBL_MANT_DIG * 2)
+    zs = scalbn(zs, -spread);
+  else
+    zs = copysign(DBL_MIN, zs);
 
-	fesetround(FE_TONEAREST);
+  fesetround(FE_TONEAREST);
 
-	/*
-	 * Basic approach for round-to-nearest:
-	 *
-	 *     (xy.hi, xy.lo) = x * y           (exact)
-	 *     (r.hi, r.lo)   = xy.hi + z       (exact)
-	 *     adj = xy.lo + r.lo               (inexact; low bit is sticky)
-	 *     result = r.hi + adj              (correctly rounded)
-	 */
-	xy = dd_mul(xs, ys);
-	r = dd_add(xy.hi, zs);
+  /*
+   * Basic approach for round-to-nearest:
+   *
+   *     (xy.hi, xy.lo) = x * y           (exact)
+   *     (r.hi, r.lo)   = xy.hi + z       (exact)
+   *     adj = xy.lo + r.lo               (inexact; low bit is sticky)
+   *     result = r.hi + adj              (correctly rounded)
+   */
+  xy = dd_mul(xs, ys);
+  r = dd_add(xy.hi, zs);
 
-	spread = ex + ey;
+  spread = ex + ey;
 
-	if (r.hi == 0.0) {
-		/*
-		 * When the addends cancel to 0, ensure that the result has
-		 * the correct sign.
-		 */
-		fesetround(oround);
-		volatile double vzs = zs; /* XXX gcc CSE bug workaround */
-		return xy.hi + vzs + scalbn(xy.lo, spread);
-	}
+  if (r.hi == 0.0) {
+    /*
+     * When the addends cancel to 0, ensure that the result has
+     * the correct sign.
+     */
+    fesetround(oround);
+    volatile double vzs = zs; /* XXX gcc CSE bug workaround */
+    return xy.hi + vzs + scalbn(xy.lo, spread);
+  }
 
-	if (oround != FE_TONEAREST) {
-		/*
-		 * There is no need to worry about double rounding in directed
-		 * rounding modes.
-		 * But underflow may not be raised properly, example in downward rounding:
-		 * fma(0x1.000000001p-1000, 0x1.000000001p-30, -0x1p-1066)
-		 */
-		double ret;
+  if (oround != FE_TONEAREST) {
+    /*
+     * There is no need to worry about double rounding in directed
+     * rounding modes.
+     * But underflow may not be raised properly, example in downward rounding:
+     * fma(0x1.000000001p-1000, 0x1.000000001p-30, -0x1p-1066)
+     */
+    double ret;
 #if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
-		int e = fetestexcept(FE_INEXACT);
-		feclearexcept(FE_INEXACT);
+    int e = fetestexcept(FE_INEXACT);
+    feclearexcept(FE_INEXACT);
 #endif
-		fesetround(oround);
-		adj = r.lo + xy.lo;
-		ret = scalbn(r.hi + adj, spread);
+    fesetround(oround);
+    adj = r.lo + xy.lo;
+    ret = scalbn(r.hi + adj, spread);
 #if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
-		if (ilogb(ret) < -1022 && fetestexcept(FE_INEXACT))
-			feraiseexcept(FE_UNDERFLOW);
-		else if (e)
-			feraiseexcept(FE_INEXACT);
+    if (ilogb(ret) < -1022 && fetestexcept(FE_INEXACT))
+      feraiseexcept(FE_UNDERFLOW);
+    else if (e)
+      feraiseexcept(FE_INEXACT);
 #endif
-		return ret;
-	}
+    return ret;
+  }
 
-	adj = add_adjusted(r.lo, xy.lo);
-	if (spread + ilogb(r.hi) > -1023)
-		return scalbn(r.hi + adj, spread);
-	else
-		return add_and_denormalize(r.hi, adj, spread);
+  adj = add_adjusted(r.lo, xy.lo);
+  if (spread + ilogb(r.hi) > -1023)
+    return scalbn(r.hi + adj, spread);
+  else
+    return add_and_denormalize(r.hi, adj, spread);
 }
 #endif
diff --git a/fusl/src/math/fmaf.c b/fusl/src/math/fmaf.c
index 4ebe855..b3ecd37 100644
--- a/fusl/src/math/fmaf.c
+++ b/fusl/src/math/fmaf.c
@@ -37,58 +37,60 @@
  * direct double-precision arithmetic suffices, except where double
  * rounding occurs.
  */
-float fmaf(float x, float y, float z)
-{
-	PRAGMA_STDC_FENV_ACCESS_ON
-	double xy, result;
-	union {double f; uint64_t i;} u;
-	int e;
+float fmaf(float x, float y, float z) {
+  PRAGMA_STDC_FENV_ACCESS_ON
+  double xy, result;
+  union {
+    double f;
+    uint64_t i;
+  } u;
+  int e;
 
-	xy = (double)x * y;
-	result = xy + z;
-	u.f = result;
-	e = u.i>>52 & 0x7ff;
-	/* Common case: The double precision result is fine. */
-	if ((u.i & 0x1fffffff) != 0x10000000 || /* not a halfway case */
-		e == 0x7ff ||                   /* NaN */
-		result - xy == z ||                 /* exact */
-		fegetround() != FE_TONEAREST)       /* not round-to-nearest */
-	{
-		/*
-		underflow may not be raised correctly, example:
-		fmaf(0x1p-120f, 0x1p-120f, 0x1p-149f)
-		*/
+  xy = (double)x * y;
+  result = xy + z;
+  u.f = result;
+  e = u.i >> 52 & 0x7ff;
+  /* Common case: The double precision result is fine. */
+  if ((u.i & 0x1fffffff) != 0x10000000 || /* not a halfway case */
+      e == 0x7ff ||                       /* NaN */
+      result - xy == z ||                 /* exact */
+      fegetround() != FE_TONEAREST)       /* not round-to-nearest */
+  {
+/*
+underflow may not be raised correctly, example:
+fmaf(0x1p-120f, 0x1p-120f, 0x1p-149f)
+*/
 #if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
-		if (e < 0x3ff-126 && e >= 0x3ff-149 && fetestexcept(FE_INEXACT)) {
-			feclearexcept(FE_INEXACT);
-			/* TODO: gcc and clang bug workaround */
-			volatile float vz = z;
-			result = xy + vz;
-			if (fetestexcept(FE_INEXACT))
-				feraiseexcept(FE_UNDERFLOW);
-			else
-				feraiseexcept(FE_INEXACT);
-		}
+    if (e < 0x3ff - 126 && e >= 0x3ff - 149 && fetestexcept(FE_INEXACT)) {
+      feclearexcept(FE_INEXACT);
+      /* TODO: gcc and clang bug workaround */
+      volatile float vz = z;
+      result = xy + vz;
+      if (fetestexcept(FE_INEXACT))
+        feraiseexcept(FE_UNDERFLOW);
+      else
+        feraiseexcept(FE_INEXACT);
+    }
 #endif
-		z = result;
-		return z;
-	}
+    z = result;
+    return z;
+  }
 
-	/*
-	 * If result is inexact, and exactly halfway between two float values,
-	 * we need to adjust the low-order bit in the direction of the error.
-	 */
+/*
+ * If result is inexact, and exactly halfway between two float values,
+ * we need to adjust the low-order bit in the direction of the error.
+ */
 #ifdef FE_TOWARDZERO
-	fesetround(FE_TOWARDZERO);
+  fesetround(FE_TOWARDZERO);
 #endif
-	volatile double vxy = xy;  /* XXX work around gcc CSE bug */
-	double adjusted_result = vxy + z;
-	fesetround(FE_TONEAREST);
-	if (result == adjusted_result) {
-		u.f = adjusted_result;
-		u.i++;
-		adjusted_result = u.f;
-	}
-	z = adjusted_result;
-	return z;
+  volatile double vxy = xy; /* XXX work around gcc CSE bug */
+  double adjusted_result = vxy + z;
+  fesetround(FE_TONEAREST);
+  if (result == adjusted_result) {
+    u.f = adjusted_result;
+    u.i++;
+    adjusted_result = u.f;
+  }
+  z = adjusted_result;
+  return z;
 }
diff --git a/fusl/src/math/fmal.c b/fusl/src/math/fmal.c
index 41cf4c1..f82f43f 100644
--- a/fusl/src/math/fmal.c
+++ b/fusl/src/math/fmal.c
@@ -25,12 +25,10 @@
  * SUCH DAMAGE.
  */
 
-
 #include "libm.h"
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double fmal(long double x, long double y, long double z)
-{
-	return fma(x, y, z);
+long double fmal(long double x, long double y, long double z) {
+  return fma(x, y, z);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 #include <fenv.h>
@@ -48,8 +46,8 @@
  * bits of the result.
  */
 struct dd {
-	long double hi;
-	long double lo;
+  long double hi;
+  long double lo;
 };
 
 /*
@@ -57,15 +55,14 @@
  * that both a and b are finite, but make no assumptions about their relative
  * magnitudes.
  */
-static inline struct dd dd_add(long double a, long double b)
-{
-	struct dd ret;
-	long double s;
+static inline struct dd dd_add(long double a, long double b) {
+  struct dd ret;
+  long double s;
 
-	ret.hi = a + b;
-	s = ret.hi - a;
-	ret.lo = (a - (ret.hi - s)) + (b - s);
-	return (ret);
+  ret.hi = a + b;
+  s = ret.hi - a;
+  ret.lo = (a - (ret.hi - s)) + (b - s);
+  return (ret);
 }
 
 /*
@@ -79,18 +76,17 @@
  *     J. Coonen.  An Implementation Guide to a Proposed Standard for
  *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
  */
-static inline long double add_adjusted(long double a, long double b)
-{
-	struct dd sum;
-	union ldshape u;
+static inline long double add_adjusted(long double a, long double b) {
+  struct dd sum;
+  union ldshape u;
 
-	sum = dd_add(a, b);
-	if (sum.lo != 0) {
-		u.f = sum.hi;
-		if (!LASTBIT(u))
-			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
-	}
-	return (sum.hi);
+  sum = dd_add(a, b);
+  if (sum.lo != 0) {
+    u.f = sum.hi;
+    if (!LASTBIT(u))
+      sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
+  }
+  return (sum.hi);
 }
 
 /*
@@ -98,31 +94,32 @@
  * that the result will be subnormal, and care is taken to ensure that
  * double rounding does not occur.
  */
-static inline long double add_and_denormalize(long double a, long double b, int scale)
-{
-	struct dd sum;
-	int bits_lost;
-	union ldshape u;
+static inline long double add_and_denormalize(long double a,
+                                              long double b,
+                                              int scale) {
+  struct dd sum;
+  int bits_lost;
+  union ldshape u;
 
-	sum = dd_add(a, b);
+  sum = dd_add(a, b);
 
-	/*
-	 * If we are losing at least two bits of accuracy to denormalization,
-	 * then the first lost bit becomes a round bit, and we adjust the
-	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
-	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
-	 * break any ties in the correct direction.
-	 *
-	 * If we are losing only one bit to denormalization, however, we must
-	 * break the ties manually.
-	 */
-	if (sum.lo != 0) {
-		u.f = sum.hi;
-		bits_lost = -u.i.se - scale + 1;
-		if ((bits_lost != 1) ^ LASTBIT(u))
-			sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
-	}
-	return scalbnl(sum.hi, scale);
+  /*
+   * If we are losing at least two bits of accuracy to denormalization,
+   * then the first lost bit becomes a round bit, and we adjust the
+   * lowest bit of sum.hi to make it a sticky bit summarizing all the
+   * bits in sum.lo. With the sticky bit adjusted, the hardware will
+   * break any ties in the correct direction.
+   *
+   * If we are losing only one bit to denormalization, however, we must
+   * break the ties manually.
+   */
+  if (sum.lo != 0) {
+    u.f = sum.hi;
+    bits_lost = -u.i.se - scale + 1;
+    if ((bits_lost != 1) ^ LASTBIT(u))
+      sum.hi = nextafterl(sum.hi, INFINITY * sum.lo);
+  }
+  return scalbnl(sum.hi, scale);
 }
 
 /*
@@ -130,27 +127,26 @@
  * that both a and b are normalized, so no underflow or overflow will occur.
  * The current rounding mode must be round-to-nearest.
  */
-static inline struct dd dd_mul(long double a, long double b)
-{
-	struct dd ret;
-	long double ha, hb, la, lb, p, q;
+static inline struct dd dd_mul(long double a, long double b) {
+  struct dd ret;
+  long double ha, hb, la, lb, p, q;
 
-	p = a * SPLIT;
-	ha = a - p;
-	ha += p;
-	la = a - ha;
+  p = a * SPLIT;
+  ha = a - p;
+  ha += p;
+  la = a - ha;
 
-	p = b * SPLIT;
-	hb = b - p;
-	hb += p;
-	lb = b - hb;
+  p = b * SPLIT;
+  hb = b - p;
+  hb += p;
+  lb = b - hb;
 
-	p = ha * hb;
-	q = ha * lb + la * hb;
+  p = ha * hb;
+  q = ha * lb + la * hb;
 
-	ret.hi = p + q;
-	ret.lo = p - ret.hi + q + la * lb;
-	return (ret);
+  ret.hi = p + q;
+  ret.lo = p - ret.hi + q + la * lb;
+  return (ret);
 }
 
 /*
@@ -162,132 +158,131 @@
  *      Dekker, T.  A Floating-Point Technique for Extending the
  *      Available Precision.  Numer. Math. 18, 224-242 (1971).
  */
-long double fmal(long double x, long double y, long double z)
-{
-	PRAGMA_STDC_FENV_ACCESS_ON
-	long double xs, ys, zs, adj;
-	struct dd xy, r;
-	int oround;
-	int ex, ey, ez;
-	int spread;
+long double fmal(long double x, long double y, long double z) {
+  PRAGMA_STDC_FENV_ACCESS_ON
+  long double xs, ys, zs, adj;
+  struct dd xy, r;
+  int oround;
+  int ex, ey, ez;
+  int spread;
 
-	/*
-	 * Handle special cases. The order of operations and the particular
-	 * return values here are crucial in handling special cases involving
-	 * infinities, NaNs, overflows, and signed zeroes correctly.
-	 */
-	if (!isfinite(x) || !isfinite(y))
-		return (x * y + z);
-	if (!isfinite(z))
-		return (z);
-	if (x == 0.0 || y == 0.0)
-		return (x * y + z);
-	if (z == 0.0)
-		return (x * y);
+  /*
+   * Handle special cases. The order of operations and the particular
+   * return values here are crucial in handling special cases involving
+   * infinities, NaNs, overflows, and signed zeroes correctly.
+   */
+  if (!isfinite(x) || !isfinite(y))
+    return (x * y + z);
+  if (!isfinite(z))
+    return (z);
+  if (x == 0.0 || y == 0.0)
+    return (x * y + z);
+  if (z == 0.0)
+    return (x * y);
 
-	xs = frexpl(x, &ex);
-	ys = frexpl(y, &ey);
-	zs = frexpl(z, &ez);
-	oround = fegetround();
-	spread = ex + ey - ez;
+  xs = frexpl(x, &ex);
+  ys = frexpl(y, &ey);
+  zs = frexpl(z, &ez);
+  oround = fegetround();
+  spread = ex + ey - ez;
 
-	/*
-	 * If x * y and z are many orders of magnitude apart, the scaling
-	 * will overflow, so we handle these cases specially.  Rounding
-	 * modes other than FE_TONEAREST are painful.
-	 */
-	if (spread < -LDBL_MANT_DIG) {
+  /*
+   * If x * y and z are many orders of magnitude apart, the scaling
+   * will overflow, so we handle these cases specially.  Rounding
+   * modes other than FE_TONEAREST are painful.
+   */
+  if (spread < -LDBL_MANT_DIG) {
 #ifdef FE_INEXACT
-		feraiseexcept(FE_INEXACT);
+    feraiseexcept(FE_INEXACT);
 #endif
 #ifdef FE_UNDERFLOW
-		if (!isnormal(z))
-			feraiseexcept(FE_UNDERFLOW);
+    if (!isnormal(z))
+      feraiseexcept(FE_UNDERFLOW);
 #endif
-		switch (oround) {
-		default: /* FE_TONEAREST */
-			return (z);
+    switch (oround) {
+      default: /* FE_TONEAREST */
+        return (z);
 #ifdef FE_TOWARDZERO
-		case FE_TOWARDZERO:
-			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
-				return (z);
-			else
-				return (nextafterl(z, 0));
+      case FE_TOWARDZERO:
+        if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
+          return (z);
+        else
+          return (nextafterl(z, 0));
 #endif
 #ifdef FE_DOWNWARD
-		case FE_DOWNWARD:
-			if (x > 0.0 ^ y < 0.0)
-				return (z);
-			else
-				return (nextafterl(z, -INFINITY));
+      case FE_DOWNWARD:
+        if (x > 0.0 ^ y < 0.0)
+          return (z);
+        else
+          return (nextafterl(z, -INFINITY));
 #endif
 #ifdef FE_UPWARD
-		case FE_UPWARD:
-			if (x > 0.0 ^ y < 0.0)
-				return (nextafterl(z, INFINITY));
-			else
-				return (z);
+      case FE_UPWARD:
+        if (x > 0.0 ^ y < 0.0)
+          return (nextafterl(z, INFINITY));
+        else
+          return (z);
 #endif
-		}
-	}
-	if (spread <= LDBL_MANT_DIG * 2)
-		zs = scalbnl(zs, -spread);
-	else
-		zs = copysignl(LDBL_MIN, zs);
+    }
+  }
+  if (spread <= LDBL_MANT_DIG * 2)
+    zs = scalbnl(zs, -spread);
+  else
+    zs = copysignl(LDBL_MIN, zs);
 
-	fesetround(FE_TONEAREST);
+  fesetround(FE_TONEAREST);
 
-	/*
-	 * Basic approach for round-to-nearest:
-	 *
-	 *     (xy.hi, xy.lo) = x * y           (exact)
-	 *     (r.hi, r.lo)   = xy.hi + z       (exact)
-	 *     adj = xy.lo + r.lo               (inexact; low bit is sticky)
-	 *     result = r.hi + adj              (correctly rounded)
-	 */
-	xy = dd_mul(xs, ys);
-	r = dd_add(xy.hi, zs);
+  /*
+   * Basic approach for round-to-nearest:
+   *
+   *     (xy.hi, xy.lo) = x * y           (exact)
+   *     (r.hi, r.lo)   = xy.hi + z       (exact)
+   *     adj = xy.lo + r.lo               (inexact; low bit is sticky)
+   *     result = r.hi + adj              (correctly rounded)
+   */
+  xy = dd_mul(xs, ys);
+  r = dd_add(xy.hi, zs);
 
-	spread = ex + ey;
+  spread = ex + ey;
 
-	if (r.hi == 0.0) {
-		/*
-		 * When the addends cancel to 0, ensure that the result has
-		 * the correct sign.
-		 */
-		fesetround(oround);
-		volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
-		return xy.hi + vzs + scalbnl(xy.lo, spread);
-	}
+  if (r.hi == 0.0) {
+    /*
+     * When the addends cancel to 0, ensure that the result has
+     * the correct sign.
+     */
+    fesetround(oround);
+    volatile long double vzs = zs; /* XXX gcc CSE bug workaround */
+    return xy.hi + vzs + scalbnl(xy.lo, spread);
+  }
 
-	if (oround != FE_TONEAREST) {
-		/*
-		 * There is no need to worry about double rounding in directed
-		 * rounding modes.
-		 * But underflow may not be raised correctly, example in downward rounding:
-		 * fmal(0x1.0000000001p-16000L, 0x1.0000000001p-400L, -0x1p-16440L)
-		 */
-		long double ret;
+  if (oround != FE_TONEAREST) {
+    /*
+     * There is no need to worry about double rounding in directed
+     * rounding modes.
+     * But underflow may not be raised correctly, example in downward rounding:
+     * fmal(0x1.0000000001p-16000L, 0x1.0000000001p-400L, -0x1p-16440L)
+     */
+    long double ret;
 #if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
-		int e = fetestexcept(FE_INEXACT);
-		feclearexcept(FE_INEXACT);
+    int e = fetestexcept(FE_INEXACT);
+    feclearexcept(FE_INEXACT);
 #endif
-		fesetround(oround);
-		adj = r.lo + xy.lo;
-		ret = scalbnl(r.hi + adj, spread);
+    fesetround(oround);
+    adj = r.lo + xy.lo;
+    ret = scalbnl(r.hi + adj, spread);
 #if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
-		if (ilogbl(ret) < -16382 && fetestexcept(FE_INEXACT))
-			feraiseexcept(FE_UNDERFLOW);
-		else if (e)
-			feraiseexcept(FE_INEXACT);
+    if (ilogbl(ret) < -16382 && fetestexcept(FE_INEXACT))
+      feraiseexcept(FE_UNDERFLOW);
+    else if (e)
+      feraiseexcept(FE_INEXACT);
 #endif
-		return ret;
-	}
+    return ret;
+  }
 
-	adj = add_adjusted(r.lo, xy.lo);
-	if (spread + ilogbl(r.hi) > -16383)
-		return scalbnl(r.hi + adj, spread);
-	else
-		return add_and_denormalize(r.hi, adj, spread);
+  adj = add_adjusted(r.lo, xy.lo);
+  if (spread + ilogbl(r.hi) > -16383)
+    return scalbnl(r.hi + adj, spread);
+  else
+    return add_and_denormalize(r.hi, adj, spread);
 }
 #endif
diff --git a/fusl/src/math/fmax.c b/fusl/src/math/fmax.c
index 94f0caa..ff7a232 100644
--- a/fusl/src/math/fmax.c
+++ b/fusl/src/math/fmax.c
@@ -1,13 +1,12 @@
 #include <math.h>
 
-double fmax(double x, double y)
-{
-	if (isnan(x))
-		return y;
-	if (isnan(y))
-		return x;
-	/* handle signed zeros, see C99 Annex F.9.9.2 */
-	if (signbit(x) != signbit(y))
-		return signbit(x) ? y : x;
-	return x < y ? y : x;
+double fmax(double x, double y) {
+  if (isnan(x))
+    return y;
+  if (isnan(y))
+    return x;
+  /* handle signed zeros, see C99 Annex F.9.9.2 */
+  if (signbit(x) != signbit(y))
+    return signbit(x) ? y : x;
+  return x < y ? y : x;
 }
diff --git a/fusl/src/math/fmaxf.c b/fusl/src/math/fmaxf.c
index 695d817..f7abc0b 100644
--- a/fusl/src/math/fmaxf.c
+++ b/fusl/src/math/fmaxf.c
@@ -1,13 +1,12 @@
 #include <math.h>
 
-float fmaxf(float x, float y)
-{
-	if (isnan(x))
-		return y;
-	if (isnan(y))
-		return x;
-	/* handle signed zeroes, see C99 Annex F.9.9.2 */
-	if (signbit(x) != signbit(y))
-		return signbit(x) ? y : x;
-	return x < y ? y : x;
+float fmaxf(float x, float y) {
+  if (isnan(x))
+    return y;
+  if (isnan(y))
+    return x;
+  /* handle signed zeroes, see C99 Annex F.9.9.2 */
+  if (signbit(x) != signbit(y))
+    return signbit(x) ? y : x;
+  return x < y ? y : x;
 }
diff --git a/fusl/src/math/fmaxl.c b/fusl/src/math/fmaxl.c
index 4b03158..b4d672e 100644
--- a/fusl/src/math/fmaxl.c
+++ b/fusl/src/math/fmaxl.c
@@ -2,20 +2,18 @@
 #include <float.h>
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double fmaxl(long double x, long double y)
-{
-	return fmax(x, y);
+long double fmaxl(long double x, long double y) {
+  return fmax(x, y);
 }
 #else
-long double fmaxl(long double x, long double y)
-{
-	if (isnan(x))
-		return y;
-	if (isnan(y))
-		return x;
-	/* handle signed zeros, see C99 Annex F.9.9.2 */
-	if (signbit(x) != signbit(y))
-		return signbit(x) ? y : x;
-	return x < y ? y : x;
+long double fmaxl(long double x, long double y) {
+  if (isnan(x))
+    return y;
+  if (isnan(y))
+    return x;
+  /* handle signed zeros, see C99 Annex F.9.9.2 */
+  if (signbit(x) != signbit(y))
+    return signbit(x) ? y : x;
+  return x < y ? y : x;
 }
 #endif
diff --git a/fusl/src/math/fmin.c b/fusl/src/math/fmin.c
index 08a8fd1..3d40d3d 100644
--- a/fusl/src/math/fmin.c
+++ b/fusl/src/math/fmin.c
@@ -1,13 +1,12 @@
 #include <math.h>
 
-double fmin(double x, double y)
-{
-	if (isnan(x))
-		return y;
-	if (isnan(y))
-		return x;
-	/* handle signed zeros, see C99 Annex F.9.9.2 */
-	if (signbit(x) != signbit(y))
-		return signbit(x) ? x : y;
-	return x < y ? x : y;
+double fmin(double x, double y) {
+  if (isnan(x))
+    return y;
+  if (isnan(y))
+    return x;
+  /* handle signed zeros, see C99 Annex F.9.9.2 */
+  if (signbit(x) != signbit(y))
+    return signbit(x) ? x : y;
+  return x < y ? x : y;
 }
diff --git a/fusl/src/math/fminf.c b/fusl/src/math/fminf.c
index 3573c7d..7f0eceb 100644
--- a/fusl/src/math/fminf.c
+++ b/fusl/src/math/fminf.c
@@ -1,13 +1,12 @@
 #include <math.h>
 
-float fminf(float x, float y)
-{
-	if (isnan(x))
-		return y;
-	if (isnan(y))
-		return x;
-	/* handle signed zeros, see C99 Annex F.9.9.2 */
-	if (signbit(x) != signbit(y))
-		return signbit(x) ? x : y;
-	return x < y ? x : y;
+float fminf(float x, float y) {
+  if (isnan(x))
+    return y;
+  if (isnan(y))
+    return x;
+  /* handle signed zeros, see C99 Annex F.9.9.2 */
+  if (signbit(x) != signbit(y))
+    return signbit(x) ? x : y;
+  return x < y ? x : y;
 }
diff --git a/fusl/src/math/fminl.c b/fusl/src/math/fminl.c
index 69bc24a..7b89397 100644
--- a/fusl/src/math/fminl.c
+++ b/fusl/src/math/fminl.c
@@ -2,20 +2,18 @@
 #include <float.h>
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double fminl(long double x, long double y)
-{
-	return fmin(x, y);
+long double fminl(long double x, long double y) {
+  return fmin(x, y);
 }
 #else
-long double fminl(long double x, long double y)
-{
-	if (isnan(x))
-		return y;
-	if (isnan(y))
-		return x;
-	/* handle signed zeros, see C99 Annex F.9.9.2 */
-	if (signbit(x) != signbit(y))
-		return signbit(x) ? x : y;
-	return x < y ? x : y;
+long double fminl(long double x, long double y) {
+  if (isnan(x))
+    return y;
+  if (isnan(y))
+    return x;
+  /* handle signed zeros, see C99 Annex F.9.9.2 */
+  if (signbit(x) != signbit(y))
+    return signbit(x) ? x : y;
+  return x < y ? x : y;
 }
 #endif
diff --git a/fusl/src/math/fmod.c b/fusl/src/math/fmod.c
index 6849722..7caea97 100644
--- a/fusl/src/math/fmod.c
+++ b/fusl/src/math/fmod.c
@@ -1,68 +1,73 @@
 #include <math.h>
 #include <stdint.h>
 
-double fmod(double x, double y)
-{
-	union {double f; uint64_t i;} ux = {x}, uy = {y};
-	int ex = ux.i>>52 & 0x7ff;
-	int ey = uy.i>>52 & 0x7ff;
-	int sx = ux.i>>63;
-	uint64_t i;
+double fmod(double x, double y) {
+  union {
+    double f;
+    uint64_t i;
+  } ux = {x}, uy = {y};
+  int ex = ux.i >> 52 & 0x7ff;
+  int ey = uy.i >> 52 & 0x7ff;
+  int sx = ux.i >> 63;
+  uint64_t i;
 
-	/* in the followings uxi should be ux.i, but then gcc wrongly adds */
-	/* float load/store to inner loops ruining performance and code size */
-	uint64_t uxi = ux.i;
+  /* in the followings uxi should be ux.i, but then gcc wrongly adds */
+  /* float load/store to inner loops ruining performance and code size */
+  uint64_t uxi = ux.i;
 
-	if (uy.i<<1 == 0 || isnan(y) || ex == 0x7ff)
-		return (x*y)/(x*y);
-	if (uxi<<1 <= uy.i<<1) {
-		if (uxi<<1 == uy.i<<1)
-			return 0*x;
-		return x;
-	}
+  if (uy.i << 1 == 0 || isnan(y) || ex == 0x7ff)
+    return (x * y) / (x * y);
+  if (uxi << 1 <= uy.i << 1) {
+    if (uxi << 1 == uy.i << 1)
+      return 0 * x;
+    return x;
+  }
 
-	/* normalize x and y */
-	if (!ex) {
-		for (i = uxi<<12; i>>63 == 0; ex--, i <<= 1);
-		uxi <<= -ex + 1;
-	} else {
-		uxi &= -1ULL >> 12;
-		uxi |= 1ULL << 52;
-	}
-	if (!ey) {
-		for (i = uy.i<<12; i>>63 == 0; ey--, i <<= 1);
-		uy.i <<= -ey + 1;
-	} else {
-		uy.i &= -1ULL >> 12;
-		uy.i |= 1ULL << 52;
-	}
+  /* normalize x and y */
+  if (!ex) {
+    for (i = uxi << 12; i >> 63 == 0; ex--, i <<= 1)
+      ;
+    uxi <<= -ex + 1;
+  } else {
+    uxi &= -1ULL >> 12;
+    uxi |= 1ULL << 52;
+  }
+  if (!ey) {
+    for (i = uy.i << 12; i >> 63 == 0; ey--, i <<= 1)
+      ;
+    uy.i <<= -ey + 1;
+  } else {
+    uy.i &= -1ULL >> 12;
+    uy.i |= 1ULL << 52;
+  }
 
-	/* x mod y */
-	for (; ex > ey; ex--) {
-		i = uxi - uy.i;
-		if (i >> 63 == 0) {
-			if (i == 0)
-				return 0*x;
-			uxi = i;
-		}
-		uxi <<= 1;
-	}
-	i = uxi - uy.i;
-	if (i >> 63 == 0) {
-		if (i == 0)
-			return 0*x;
-		uxi = i;
-	}
-	for (; uxi>>52 == 0; uxi <<= 1, ex--);
+  /* x mod y */
+  for (; ex > ey; ex--) {
+    i = uxi - uy.i;
+    if (i >> 63 == 0) {
+      if (i == 0)
+        return 0 * x;
+      uxi = i;
+    }
+    uxi <<= 1;
+  }
+  i = uxi - uy.i;
+  if (i >> 63 == 0) {
+    if (i == 0)
+      return 0 * x;
+    uxi = i;
+  }
+  for (; uxi >> 52 == 0; uxi <<= 1, ex--)
+    ;
 
-	/* scale result */
-	if (ex > 0) {
-		uxi -= 1ULL << 52;
-		uxi |= (uint64_t)ex << 52;
-	} else {
-		uxi >>= -ex + 1;
-	}
-	uxi |= (uint64_t)sx << 63;
-	ux.i = uxi;
-	return ux.f;
+  /* scale result */
+  if (ex > 0) {
+    uxi -= 1ULL << 52;
+    uxi |= (uint64_t)ex << 52;
+  } else {
+    uxi >>= -ex + 1;
+  }
+  uxi |= (uint64_t)sx << 63;
+  ux.i = uxi;
+  return ux.f;
 }
diff --git a/fusl/src/math/fmodf.c b/fusl/src/math/fmodf.c
index ff58f93..4fe65af 100644
--- a/fusl/src/math/fmodf.c
+++ b/fusl/src/math/fmodf.c
@@ -1,65 +1,70 @@
 #include <math.h>
 #include <stdint.h>
 
-float fmodf(float x, float y)
-{
-	union {float f; uint32_t i;} ux = {x}, uy = {y};
-	int ex = ux.i>>23 & 0xff;
-	int ey = uy.i>>23 & 0xff;
-	uint32_t sx = ux.i & 0x80000000;
-	uint32_t i;
-	uint32_t uxi = ux.i;
+float fmodf(float x, float y) {
+  union {
+    float f;
+    uint32_t i;
+  } ux = {x}, uy = {y};
+  int ex = ux.i >> 23 & 0xff;
+  int ey = uy.i >> 23 & 0xff;
+  uint32_t sx = ux.i & 0x80000000;
+  uint32_t i;
+  uint32_t uxi = ux.i;
 
-	if (uy.i<<1 == 0 || isnan(y) || ex == 0xff)
-		return (x*y)/(x*y);
-	if (uxi<<1 <= uy.i<<1) {
-		if (uxi<<1 == uy.i<<1)
-			return 0*x;
-		return x;
-	}
+  if (uy.i << 1 == 0 || isnan(y) || ex == 0xff)
+    return (x * y) / (x * y);
+  if (uxi << 1 <= uy.i << 1) {
+    if (uxi << 1 == uy.i << 1)
+      return 0 * x;
+    return x;
+  }
 
-	/* normalize x and y */
-	if (!ex) {
-		for (i = uxi<<9; i>>31 == 0; ex--, i <<= 1);
-		uxi <<= -ex + 1;
-	} else {
-		uxi &= -1U >> 9;
-		uxi |= 1U << 23;
-	}
-	if (!ey) {
-		for (i = uy.i<<9; i>>31 == 0; ey--, i <<= 1);
-		uy.i <<= -ey + 1;
-	} else {
-		uy.i &= -1U >> 9;
-		uy.i |= 1U << 23;
-	}
+  /* normalize x and y */
+  if (!ex) {
+    for (i = uxi << 9; i >> 31 == 0; ex--, i <<= 1)
+      ;
+    uxi <<= -ex + 1;
+  } else {
+    uxi &= -1U >> 9;
+    uxi |= 1U << 23;
+  }
+  if (!ey) {
+    for (i = uy.i << 9; i >> 31 == 0; ey--, i <<= 1)
+      ;
+    uy.i <<= -ey + 1;
+  } else {
+    uy.i &= -1U >> 9;
+    uy.i |= 1U << 23;
+  }
 
-	/* x mod y */
-	for (; ex > ey; ex--) {
-		i = uxi - uy.i;
-		if (i >> 31 == 0) {
-			if (i == 0)
-				return 0*x;
-			uxi = i;
-		}
-		uxi <<= 1;
-	}
-	i = uxi - uy.i;
-	if (i >> 31 == 0) {
-		if (i == 0)
-			return 0*x;
-		uxi = i;
-	}
-	for (; uxi>>23 == 0; uxi <<= 1, ex--);
+  /* x mod y */
+  for (; ex > ey; ex--) {
+    i = uxi - uy.i;
+    if (i >> 31 == 0) {
+      if (i == 0)
+        return 0 * x;
+      uxi = i;
+    }
+    uxi <<= 1;
+  }
+  i = uxi - uy.i;
+  if (i >> 31 == 0) {
+    if (i == 0)
+      return 0 * x;
+    uxi = i;
+  }
+  for (; uxi >> 23 == 0; uxi <<= 1, ex--)
+    ;
 
-	/* scale result up */
-	if (ex > 0) {
-		uxi -= 1U << 23;
-		uxi |= (uint32_t)ex << 23;
-	} else {
-		uxi >>= -ex + 1;
-	}
-	uxi |= sx;
-	ux.i = uxi;
-	return ux.f;
+  /* scale result up */
+  if (ex > 0) {
+    uxi -= 1U << 23;
+    uxi |= (uint32_t)ex << 23;
+  } else {
+    uxi >>= -ex + 1;
+  }
+  uxi |= sx;
+  ux.i = uxi;
+  return ux.f;
 }
diff --git a/fusl/src/math/fmodl.c b/fusl/src/math/fmodl.c
index 9f5b873..8c8b420 100644
--- a/fusl/src/math/fmodl.c
+++ b/fusl/src/math/fmodl.c
@@ -1,105 +1,105 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double fmodl(long double x, long double y)
-{
-	return fmod(x, y);
+long double fmodl(long double x, long double y) {
+  return fmod(x, y);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-long double fmodl(long double x, long double y)
-{
-	union ldshape ux = {x}, uy = {y};
-	int ex = ux.i.se & 0x7fff;
-	int ey = uy.i.se & 0x7fff;
-	int sx = ux.i.se & 0x8000;
+long double fmodl(long double x, long double y) {
+  union ldshape ux = {x}, uy = {y};
+  int ex = ux.i.se & 0x7fff;
+  int ey = uy.i.se & 0x7fff;
+  int sx = ux.i.se & 0x8000;
 
-	if (y == 0 || isnan(y) || ex == 0x7fff)
-		return (x*y)/(x*y);
-	ux.i.se = ex;
-	uy.i.se = ey;
-	if (ux.f <= uy.f) {
-		if (ux.f == uy.f)
-			return 0*x;
-		return x;
-	}
+  if (y == 0 || isnan(y) || ex == 0x7fff)
+    return (x * y) / (x * y);
+  ux.i.se = ex;
+  uy.i.se = ey;
+  if (ux.f <= uy.f) {
+    if (ux.f == uy.f)
+      return 0 * x;
+    return x;
+  }
 
-	/* normalize x and y */
-	if (!ex) {
-		ux.f *= 0x1p120f;
-		ex = ux.i.se - 120;
-	}
-	if (!ey) {
-		uy.f *= 0x1p120f;
-		ey = uy.i.se - 120;
-	}
+  /* normalize x and y */
+  if (!ex) {
+    ux.f *= 0x1p120f;
+    ex = ux.i.se - 120;
+  }
+  if (!ey) {
+    uy.f *= 0x1p120f;
+    ey = uy.i.se - 120;
+  }
 
-	/* x mod y */
+/* x mod y */
 #if LDBL_MANT_DIG == 64
-	uint64_t i, mx, my;
-	mx = ux.i.m;
-	my = uy.i.m;
-	for (; ex > ey; ex--) {
-		i = mx - my;
-		if (mx >= my) {
-			if (i == 0)
-				return 0*x;
-			mx = 2*i;
-		} else if (2*mx < mx) {
-			mx = 2*mx - my;
-		} else {
-			mx = 2*mx;
-		}
-	}
-	i = mx - my;
-	if (mx >= my) {
-		if (i == 0)
-			return 0*x;
-		mx = i;
-	}
-	for (; mx >> 63 == 0; mx *= 2, ex--);
-	ux.i.m = mx;
+  uint64_t i, mx, my;
+  mx = ux.i.m;
+  my = uy.i.m;
+  for (; ex > ey; ex--) {
+    i = mx - my;
+    if (mx >= my) {
+      if (i == 0)
+        return 0 * x;
+      mx = 2 * i;
+    } else if (2 * mx < mx) {
+      mx = 2 * mx - my;
+    } else {
+      mx = 2 * mx;
+    }
+  }
+  i = mx - my;
+  if (mx >= my) {
+    if (i == 0)
+      return 0 * x;
+    mx = i;
+  }
+  for (; mx >> 63 == 0; mx *= 2, ex--)
+    ;
+  ux.i.m = mx;
 #elif LDBL_MANT_DIG == 113
-	uint64_t hi, lo, xhi, xlo, yhi, ylo;
-	xhi = (ux.i2.hi & -1ULL>>16) | 1ULL<<48;
-	yhi = (uy.i2.hi & -1ULL>>16) | 1ULL<<48;
-	xlo = ux.i2.lo;
-	ylo = uy.i2.lo;
-	for (; ex > ey; ex--) {
-		hi = xhi - yhi;
-		lo = xlo - ylo;
-		if (xlo < ylo)
-			hi -= 1;
-		if (hi >> 63 == 0) {
-			if ((hi|lo) == 0)
-				return 0*x;
-			xhi = 2*hi + (lo>>63);
-			xlo = 2*lo;
-		} else {
-			xhi = 2*xhi + (xlo>>63);
-			xlo = 2*xlo;
-		}
-	}
-	hi = xhi - yhi;
-	lo = xlo - ylo;
-	if (xlo < ylo)
-		hi -= 1;
-	if (hi >> 63 == 0) {
-		if ((hi|lo) == 0)
-			return 0*x;
-		xhi = hi;
-		xlo = lo;
-	}
-	for (; xhi >> 48 == 0; xhi = 2*xhi + (xlo>>63), xlo = 2*xlo, ex--);
-	ux.i2.hi = xhi;
-	ux.i2.lo = xlo;
+  uint64_t hi, lo, xhi, xlo, yhi, ylo;
+  xhi = (ux.i2.hi & -1ULL >> 16) | 1ULL << 48;
+  yhi = (uy.i2.hi & -1ULL >> 16) | 1ULL << 48;
+  xlo = ux.i2.lo;
+  ylo = uy.i2.lo;
+  for (; ex > ey; ex--) {
+    hi = xhi - yhi;
+    lo = xlo - ylo;
+    if (xlo < ylo)
+      hi -= 1;
+    if (hi >> 63 == 0) {
+      if ((hi | lo) == 0)
+        return 0 * x;
+      xhi = 2 * hi + (lo >> 63);
+      xlo = 2 * lo;
+    } else {
+      xhi = 2 * xhi + (xlo >> 63);
+      xlo = 2 * xlo;
+    }
+  }
+  hi = xhi - yhi;
+  lo = xlo - ylo;
+  if (xlo < ylo)
+    hi -= 1;
+  if (hi >> 63 == 0) {
+    if ((hi | lo) == 0)
+      return 0 * x;
+    xhi = hi;
+    xlo = lo;
+  }
+  for (; xhi >> 48 == 0; xhi = 2 * xhi + (xlo >> 63), xlo = 2 * xlo, ex--)
+    ;
+  ux.i2.hi = xhi;
+  ux.i2.lo = xlo;
 #endif
 
-	/* scale result */
-	if (ex <= 0) {
-		ux.i.se = (ex+120)|sx;
-		ux.f *= 0x1p-120f;
-	} else
-		ux.i.se = ex|sx;
-	return ux.f;
+  /* scale result */
+  if (ex <= 0) {
+    ux.i.se = (ex + 120) | sx;
+    ux.f *= 0x1p-120f;
+  } else
+    ux.i.se = ex | sx;
+  return ux.f;
 }
 #endif
diff --git a/fusl/src/math/frexp.c b/fusl/src/math/frexp.c
index 27b6266..594c37b 100644
--- a/fusl/src/math/frexp.c
+++ b/fusl/src/math/frexp.c
@@ -1,23 +1,26 @@
 #include <math.h>
 #include <stdint.h>
 
-double frexp(double x, int *e)
-{
-	union { double d; uint64_t i; } y = { x };
-	int ee = y.i>>52 & 0x7ff;
+double frexp(double x, int* e) {
+  union {
+    double d;
+    uint64_t i;
+  } y = {x};
+  int ee = y.i >> 52 & 0x7ff;
 
-	if (!ee) {
-		if (x) {
-			x = frexp(x*0x1p64, e);
-			*e -= 64;
-		} else *e = 0;
-		return x;
-	} else if (ee == 0x7ff) {
-		return x;
-	}
+  if (!ee) {
+    if (x) {
+      x = frexp(x * 0x1p64, e);
+      *e -= 64;
+    } else
+      *e = 0;
+    return x;
+  } else if (ee == 0x7ff) {
+    return x;
+  }
 
-	*e = ee - 0x3fe;
-	y.i &= 0x800fffffffffffffull;
-	y.i |= 0x3fe0000000000000ull;
-	return y.d;
+  *e = ee - 0x3fe;
+  y.i &= 0x800fffffffffffffull;
+  y.i |= 0x3fe0000000000000ull;
+  return y.d;
 }
diff --git a/fusl/src/math/frexpf.c b/fusl/src/math/frexpf.c
index 0787097..63ac662 100644
--- a/fusl/src/math/frexpf.c
+++ b/fusl/src/math/frexpf.c
@@ -1,23 +1,26 @@
 #include <math.h>
 #include <stdint.h>
 
-float frexpf(float x, int *e)
-{
-	union { float f; uint32_t i; } y = { x };
-	int ee = y.i>>23 & 0xff;
+float frexpf(float x, int* e) {
+  union {
+    float f;
+    uint32_t i;
+  } y = {x};
+  int ee = y.i >> 23 & 0xff;
 
-	if (!ee) {
-		if (x) {
-			x = frexpf(x*0x1p64, e);
-			*e -= 64;
-		} else *e = 0;
-		return x;
-	} else if (ee == 0xff) {
-		return x;
-	}
+  if (!ee) {
+    if (x) {
+      x = frexpf(x * 0x1p64, e);
+      *e -= 64;
+    } else
+      *e = 0;
+    return x;
+  } else if (ee == 0xff) {
+    return x;
+  }
 
-	*e = ee - 0x7e;
-	y.i &= 0x807ffffful;
-	y.i |= 0x3f000000ul;
-	return y.f;
+  *e = ee - 0x7e;
+  y.i &= 0x807ffffful;
+  y.i |= 0x3f000000ul;
+  return y.f;
 }
diff --git a/fusl/src/math/frexpl.c b/fusl/src/math/frexpl.c
index 3c1b553..869e962 100644
--- a/fusl/src/math/frexpl.c
+++ b/fusl/src/math/frexpl.c
@@ -1,29 +1,28 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double frexpl(long double x, int *e)
-{
-	return frexp(x, e);
+long double frexpl(long double x, int* e) {
+  return frexp(x, e);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-long double frexpl(long double x, int *e)
-{
-	union ldshape u = {x};
-	int ee = u.i.se & 0x7fff;
+long double frexpl(long double x, int* e) {
+  union ldshape u = {x};
+  int ee = u.i.se & 0x7fff;
 
-	if (!ee) {
-		if (x) {
-			x = frexpl(x*0x1p120, e);
-			*e -= 120;
-		} else *e = 0;
-		return x;
-	} else if (ee == 0x7fff) {
-		return x;
-	}
+  if (!ee) {
+    if (x) {
+      x = frexpl(x * 0x1p120, e);
+      *e -= 120;
+    } else
+      *e = 0;
+    return x;
+  } else if (ee == 0x7fff) {
+    return x;
+  }
 
-	*e = ee - 0x3ffe;
-	u.i.se &= 0x8000;
-	u.i.se |= 0x3ffe;
-	return u.f;
+  *e = ee - 0x3ffe;
+  u.i.se &= 0x8000;
+  u.i.se |= 0x3ffe;
+  return u.f;
 }
 #endif
diff --git a/fusl/src/math/hypot.c b/fusl/src/math/hypot.c
index 6071bf1..5f9888d 100644
--- a/fusl/src/math/hypot.c
+++ b/fusl/src/math/hypot.c
@@ -8,60 +8,61 @@
 #define SPLIT (0x1p27 + 1)
 #endif
 
-static void sq(double_t *hi, double_t *lo, double x)
-{
-	double_t xh, xl, xc;
+static void sq(double_t* hi, double_t* lo, double x) {
+  double_t xh, xl, xc;
 
-	xc = (double_t)x*SPLIT;
-	xh = x - xc + xc;
-	xl = x - xh;
-	*hi = (double_t)x*x;
-	*lo = xh*xh - *hi + 2*xh*xl + xl*xl;
+  xc = (double_t)x * SPLIT;
+  xh = x - xc + xc;
+  xl = x - xh;
+  *hi = (double_t)x * x;
+  *lo = xh * xh - *hi + 2 * xh * xl + xl * xl;
 }
 
-double hypot(double x, double y)
-{
-	union {double f; uint64_t i;} ux = {x}, uy = {y}, ut;
-	int ex, ey;
-	double_t hx, lx, hy, ly, z;
+double hypot(double x, double y) {
+  union {
+    double f;
+    uint64_t i;
+  } ux = {x}, uy = {y}, ut;
+  int ex, ey;
+  double_t hx, lx, hy, ly, z;
 
-	/* arrange |x| >= |y| */
-	ux.i &= -1ULL>>1;
-	uy.i &= -1ULL>>1;
-	if (ux.i < uy.i) {
-		ut = ux;
-		ux = uy;
-		uy = ut;
-	}
+  /* arrange |x| >= |y| */
+  ux.i &= -1ULL >> 1;
+  uy.i &= -1ULL >> 1;
+  if (ux.i < uy.i) {
+    ut = ux;
+    ux = uy;
+    uy = ut;
+  }
 
-	/* special cases */
-	ex = ux.i>>52;
-	ey = uy.i>>52;
-	x = ux.f;
-	y = uy.f;
-	/* note: hypot(inf,nan) == inf */
-	if (ey == 0x7ff)
-		return y;
-	if (ex == 0x7ff || uy.i == 0)
-		return x;
-	/* note: hypot(x,y) ~= x + y*y/x/2 with inexact for small y/x */
-	/* 64 difference is enough for ld80 double_t */
-	if (ex - ey > 64)
-		return x + y;
+  /* special cases */
+  ex = ux.i >> 52;
+  ey = uy.i >> 52;
+  x = ux.f;
+  y = uy.f;
+  /* note: hypot(inf,nan) == inf */
+  if (ey == 0x7ff)
+    return y;
+  if (ex == 0x7ff || uy.i == 0)
+    return x;
+  /* note: hypot(x,y) ~= x + y*y/x/2 with inexact for small y/x */
+  /* 64 difference is enough for ld80 double_t */
+  if (ex - ey > 64)
+    return x + y;
 
-	/* precise sqrt argument in nearest rounding mode without overflow */
-	/* xh*xh must not overflow and xl*xl must not underflow in sq */
-	z = 1;
-	if (ex > 0x3ff+510) {
-		z = 0x1p700;
-		x *= 0x1p-700;
-		y *= 0x1p-700;
-	} else if (ey < 0x3ff-450) {
-		z = 0x1p-700;
-		x *= 0x1p700;
-		y *= 0x1p700;
-	}
-	sq(&hx, &lx, x);
-	sq(&hy, &ly, y);
-	return z*sqrt(ly+lx+hy+hx);
+  /* precise sqrt argument in nearest rounding mode without overflow */
+  /* xh*xh must not overflow and xl*xl must not underflow in sq */
+  z = 1;
+  if (ex > 0x3ff + 510) {
+    z = 0x1p700;
+    x *= 0x1p-700;
+    y *= 0x1p-700;
+  } else if (ey < 0x3ff - 450) {
+    z = 0x1p-700;
+    x *= 0x1p700;
+    y *= 0x1p700;
+  }
+  sq(&hx, &lx, x);
+  sq(&hy, &ly, y);
+  return z * sqrt(ly + lx + hy + hx);
 }
diff --git a/fusl/src/math/hypotf.c b/fusl/src/math/hypotf.c
index 2fc214b..6f4ad03 100644
--- a/fusl/src/math/hypotf.c
+++ b/fusl/src/math/hypotf.c
@@ -1,35 +1,37 @@
 #include <math.h>
 #include <stdint.h>
 
-float hypotf(float x, float y)
-{
-	union {float f; uint32_t i;} ux = {x}, uy = {y}, ut;
-	float_t z;
+float hypotf(float x, float y) {
+  union {
+    float f;
+    uint32_t i;
+  } ux = {x}, uy = {y}, ut;
+  float_t z;
 
-	ux.i &= -1U>>1;
-	uy.i &= -1U>>1;
-	if (ux.i < uy.i) {
-		ut = ux;
-		ux = uy;
-		uy = ut;
-	}
+  ux.i &= -1U >> 1;
+  uy.i &= -1U >> 1;
+  if (ux.i < uy.i) {
+    ut = ux;
+    ux = uy;
+    uy = ut;
+  }
 
-	x = ux.f;
-	y = uy.f;
-	if (uy.i == 0xff<<23)
-		return y;
-	if (ux.i >= 0xff<<23 || uy.i == 0 || ux.i - uy.i >= 25<<23)
-		return x + y;
+  x = ux.f;
+  y = uy.f;
+  if (uy.i == 0xff << 23)
+    return y;
+  if (ux.i >= 0xff << 23 || uy.i == 0 || ux.i - uy.i >= 25 << 23)
+    return x + y;
 
-	z = 1;
-	if (ux.i >= (0x7f+60)<<23) {
-		z = 0x1p90f;
-		x *= 0x1p-90f;
-		y *= 0x1p-90f;
-	} else if (uy.i < (0x7f-60)<<23) {
-		z = 0x1p-90f;
-		x *= 0x1p90f;
-		y *= 0x1p90f;
-	}
-	return z*sqrtf((double)x*x + (double)y*y);
+  z = 1;
+  if (ux.i >= (0x7f + 60) << 23) {
+    z = 0x1p90f;
+    x *= 0x1p-90f;
+    y *= 0x1p-90f;
+  } else if (uy.i < (0x7f - 60) << 23) {
+    z = 0x1p-90f;
+    x *= 0x1p90f;
+    y *= 0x1p90f;
+  }
+  return z * sqrtf((double)x * x + (double)y * y);
 }
diff --git a/fusl/src/math/hypotl.c b/fusl/src/math/hypotl.c
index 479aa92..543e1c2 100644
--- a/fusl/src/math/hypotl.c
+++ b/fusl/src/math/hypotl.c
@@ -1,66 +1,63 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double hypotl(long double x, long double y)
-{
-	return hypot(x, y);
+long double hypotl(long double x, long double y) {
+  return hypot(x, y);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 #if LDBL_MANT_DIG == 64
-#define SPLIT (0x1p32L+1)
+#define SPLIT (0x1p32L + 1)
 #elif LDBL_MANT_DIG == 113
-#define SPLIT (0x1p57L+1)
+#define SPLIT (0x1p57L + 1)
 #endif
 
-static void sq(long double *hi, long double *lo, long double x)
-{
-	long double xh, xl, xc;
-	xc = x*SPLIT;
-	xh = x - xc + xc;
-	xl = x - xh;
-	*hi = x*x;
-	*lo = xh*xh - *hi + 2*xh*xl + xl*xl;
+static void sq(long double* hi, long double* lo, long double x) {
+  long double xh, xl, xc;
+  xc = x * SPLIT;
+  xh = x - xc + xc;
+  xl = x - xh;
+  *hi = x * x;
+  *lo = xh * xh - *hi + 2 * xh * xl + xl * xl;
 }
 
-long double hypotl(long double x, long double y)
-{
-	union ldshape ux = {x}, uy = {y};
-	int ex, ey;
-	long double hx, lx, hy, ly, z;
+long double hypotl(long double x, long double y) {
+  union ldshape ux = {x}, uy = {y};
+  int ex, ey;
+  long double hx, lx, hy, ly, z;
 
-	ux.i.se &= 0x7fff;
-	uy.i.se &= 0x7fff;
-	if (ux.i.se < uy.i.se) {
-		ex = uy.i.se;
-		ey = ux.i.se;
-		x = uy.f;
-		y = ux.f;
-	} else {
-		ex = ux.i.se;
-		ey = uy.i.se;
-		x = ux.f;
-		y = uy.f;
-	}
+  ux.i.se &= 0x7fff;
+  uy.i.se &= 0x7fff;
+  if (ux.i.se < uy.i.se) {
+    ex = uy.i.se;
+    ey = ux.i.se;
+    x = uy.f;
+    y = ux.f;
+  } else {
+    ex = ux.i.se;
+    ey = uy.i.se;
+    x = ux.f;
+    y = uy.f;
+  }
 
-	if (ex == 0x7fff && isinf(y))
-		return y;
-	if (ex == 0x7fff || y == 0)
-		return x;
-	if (ex - ey > LDBL_MANT_DIG)
-		return x + y;
+  if (ex == 0x7fff && isinf(y))
+    return y;
+  if (ex == 0x7fff || y == 0)
+    return x;
+  if (ex - ey > LDBL_MANT_DIG)
+    return x + y;
 
-	z = 1;
-	if (ex > 0x3fff+8000) {
-		z = 0x1p10000L;
-		x *= 0x1p-10000L;
-		y *= 0x1p-10000L;
-	} else if (ey < 0x3fff-8000) {
-		z = 0x1p-10000L;
-		x *= 0x1p10000L;
-		y *= 0x1p10000L;
-	}
-	sq(&hx, &lx, x);
-	sq(&hy, &ly, y);
-	return z*sqrtl(ly+lx+hy+hx);
+  z = 1;
+  if (ex > 0x3fff + 8000) {
+    z = 0x1p10000L;
+    x *= 0x1p-10000L;
+    y *= 0x1p-10000L;
+  } else if (ey < 0x3fff - 8000) {
+    z = 0x1p-10000L;
+    x *= 0x1p10000L;
+    y *= 0x1p10000L;
+  }
+  sq(&hx, &lx, x);
+  sq(&hy, &ly, y);
+  return z * sqrtl(ly + lx + hy + hx);
 }
 #endif
diff --git a/fusl/src/math/ilogb.c b/fusl/src/math/ilogb.c
index cd7c89e..de9d8cc 100644
--- a/fusl/src/math/ilogb.c
+++ b/fusl/src/math/ilogb.c
@@ -1,26 +1,29 @@
 #include <limits.h>
 #include "libm.h"
 
-int ilogb(double x)
-{
-	PRAGMA_STDC_FENV_ACCESS_ON
-	union {double f; uint64_t i;} u = {x};
-	uint64_t i = u.i;
-	int e = i>>52 & 0x7ff;
+int ilogb(double x) {
+  PRAGMA_STDC_FENV_ACCESS_ON
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  uint64_t i = u.i;
+  int e = i >> 52 & 0x7ff;
 
-	if (!e) {
-		i <<= 12;
-		if (i == 0) {
-			FORCE_EVAL(0/0.0f);
-			return FP_ILOGB0;
-		}
-		/* subnormal x */
-		for (e = -0x3ff; i>>63 == 0; e--, i<<=1);
-		return e;
-	}
-	if (e == 0x7ff) {
-		FORCE_EVAL(0/0.0f);
-		return i<<12 ? FP_ILOGBNAN : INT_MAX;
-	}
-	return e - 0x3ff;
+  if (!e) {
+    i <<= 12;
+    if (i == 0) {
+      FORCE_EVAL(0 / 0.0f);
+      return FP_ILOGB0;
+    }
+    /* subnormal x */
+    for (e = -0x3ff; i >> 63 == 0; e--, i <<= 1)
+      ;
+    return e;
+  }
+  if (e == 0x7ff) {
+    FORCE_EVAL(0 / 0.0f);
+    return i << 12 ? FP_ILOGBNAN : INT_MAX;
+  }
+  return e - 0x3ff;
 }
diff --git a/fusl/src/math/ilogbf.c b/fusl/src/math/ilogbf.c
index c15d29d..ff76d6f 100644
--- a/fusl/src/math/ilogbf.c
+++ b/fusl/src/math/ilogbf.c
@@ -1,26 +1,29 @@
 #include <limits.h>
 #include "libm.h"
 
-int ilogbf(float x)
-{
-	PRAGMA_STDC_FENV_ACCESS_ON
-	union {float f; uint32_t i;} u = {x};
-	uint32_t i = u.i;
-	int e = i>>23 & 0xff;
+int ilogbf(float x) {
+  PRAGMA_STDC_FENV_ACCESS_ON
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  uint32_t i = u.i;
+  int e = i >> 23 & 0xff;
 
-	if (!e) {
-		i <<= 9;
-		if (i == 0) {
-			FORCE_EVAL(0/0.0f);
-			return FP_ILOGB0;
-		}
-		/* subnormal x */
-		for (e = -0x7f; i>>31 == 0; e--, i<<=1);
-		return e;
-	}
-	if (e == 0xff) {
-		FORCE_EVAL(0/0.0f);
-		return i<<9 ? FP_ILOGBNAN : INT_MAX;
-	}
-	return e - 0x7f;
+  if (!e) {
+    i <<= 9;
+    if (i == 0) {
+      FORCE_EVAL(0 / 0.0f);
+      return FP_ILOGB0;
+    }
+    /* subnormal x */
+    for (e = -0x7f; i >> 31 == 0; e--, i <<= 1)
+      ;
+    return e;
+  }
+  if (e == 0xff) {
+    FORCE_EVAL(0 / 0.0f);
+    return i << 9 ? FP_ILOGBNAN : INT_MAX;
+  }
+  return e - 0x7f;
 }
diff --git a/fusl/src/math/ilogbl.c b/fusl/src/math/ilogbl.c
index 467929c..b01a087 100644
--- a/fusl/src/math/ilogbl.c
+++ b/fusl/src/math/ilogbl.c
@@ -2,54 +2,52 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-int ilogbl(long double x)
-{
-	return ilogb(x);
+int ilogbl(long double x) {
+  return ilogb(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-int ilogbl(long double x)
-{
-	PRAGMA_STDC_FENV_ACCESS_ON
-	union ldshape u = {x};
-	uint64_t m = u.i.m;
-	int e = u.i.se & 0x7fff;
+int ilogbl(long double x) {
+  PRAGMA_STDC_FENV_ACCESS_ON
+  union ldshape u = {x};
+  uint64_t m = u.i.m;
+  int e = u.i.se & 0x7fff;
 
-	if (!e) {
-		if (m == 0) {
-			FORCE_EVAL(0/0.0f);
-			return FP_ILOGB0;
-		}
-		/* subnormal x */
-		for (e = -0x3fff+1; m>>63 == 0; e--, m<<=1);
-		return e;
-	}
-	if (e == 0x7fff) {
-		FORCE_EVAL(0/0.0f);
-		return m<<1 ? FP_ILOGBNAN : INT_MAX;
-	}
-	return e - 0x3fff;
+  if (!e) {
+    if (m == 0) {
+      FORCE_EVAL(0 / 0.0f);
+      return FP_ILOGB0;
+    }
+    /* subnormal x */
+    for (e = -0x3fff + 1; m >> 63 == 0; e--, m <<= 1)
+      ;
+    return e;
+  }
+  if (e == 0x7fff) {
+    FORCE_EVAL(0 / 0.0f);
+    return m << 1 ? FP_ILOGBNAN : INT_MAX;
+  }
+  return e - 0x3fff;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
-int ilogbl(long double x)
-{
-	#pragma STDC FENV_ACCESS ON
-	union ldshape u = {x};
-	int e = u.i.se & 0x7fff;
+int ilogbl(long double x) {
+#pragma STDC FENV_ACCESS ON
+  union ldshape u = {x};
+  int e = u.i.se & 0x7fff;
 
-	if (!e) {
-		if (x == 0) {
-			FORCE_EVAL(0/0.0f);
-			return FP_ILOGB0;
-		}
-		/* subnormal x */
-		x *= 0x1p120;
-		return ilogbl(x) - 120;
-	}
-	if (e == 0x7fff) {
-		FORCE_EVAL(0/0.0f);
-		u.i.se = 0;
-		return u.f ? FP_ILOGBNAN : INT_MAX;
-	}
-	return e - 0x3fff;
+  if (!e) {
+    if (x == 0) {
+      FORCE_EVAL(0 / 0.0f);
+      return FP_ILOGB0;
+    }
+    /* subnormal x */
+    x *= 0x1p120;
+    return ilogbl(x) - 120;
+  }
+  if (e == 0x7fff) {
+    FORCE_EVAL(0 / 0.0f);
+    u.i.se = 0;
+    return u.f ? FP_ILOGBNAN : INT_MAX;
+  }
+  return e - 0x3fff;
 }
 #endif
diff --git a/fusl/src/math/j0.c b/fusl/src/math/j0.c
index d722d94..ea4ad13 100644
--- a/fusl/src/math/j0.c
+++ b/fusl/src/math/j0.c
@@ -58,133 +58,131 @@
 
 static double pzero(double), qzero(double);
 
-static const double
-invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
-tpi       = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+static const double invsqrtpi =
+                        5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
+    tpi = 6.36619772367581382433e-01;               /* 0x3FE45F30, 0x6DC9C883 */
 
 /* common method when |x|>=2 */
-static double common(uint32_t ix, double x, int y0)
-{
-	double s,c,ss,cc,z;
+static double common(uint32_t ix, double x, int y0) {
+  double s, c, ss, cc, z;
 
-	/*
-	 * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4))
-	 * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4))
-	 *
-	 * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2)
-	 * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2)
-	 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
-	 */
-	s = sin(x);
-	c = cos(x);
-	if (y0)
-		c = -c;
-	cc = s+c;
-	/* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
-	if (ix < 0x7fe00000) {
-		ss = s-c;
-		z = -cos(2*x);
-		if (s*c < 0)
-			cc = z/ss;
-		else
-			ss = z/cc;
-		if (ix < 0x48000000) {
-			if (y0)
-				ss = -ss;
-			cc = pzero(x)*cc-qzero(x)*ss;
-		}
-	}
-	return invsqrtpi*cc/sqrt(x);
+  /*
+   * j0(x) = sqrt(2/(pi*x))*(p0(x)*cos(x-pi/4)-q0(x)*sin(x-pi/4))
+   * y0(x) = sqrt(2/(pi*x))*(p0(x)*sin(x-pi/4)+q0(x)*cos(x-pi/4))
+   *
+   * sin(x-pi/4) = (sin(x) - cos(x))/sqrt(2)
+   * cos(x-pi/4) = (sin(x) + cos(x))/sqrt(2)
+   * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+   */
+  s = sin(x);
+  c = cos(x);
+  if (y0)
+    c = -c;
+  cc = s + c;
+  /* avoid overflow in 2*x, big ulp error when x>=0x1p1023 */
+  if (ix < 0x7fe00000) {
+    ss = s - c;
+    z = -cos(2 * x);
+    if (s * c < 0)
+      cc = z / ss;
+    else
+      ss = z / cc;
+    if (ix < 0x48000000) {
+      if (y0)
+        ss = -ss;
+      cc = pzero(x) * cc - qzero(x) * ss;
+    }
+  }
+  return invsqrtpi * cc / sqrt(x);
 }
 
 /* R0/S0 on [0, 2.00] */
-static const double
-R02 =  1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
-R03 = -1.89979294238854721751e-04, /* 0xBF28E6A5, 0xB61AC6E9 */
-R04 =  1.82954049532700665670e-06, /* 0x3EBEB1D1, 0x0C503919 */
-R05 = -4.61832688532103189199e-09, /* 0xBE33D5E7, 0x73D63FCE */
-S01 =  1.56191029464890010492e-02, /* 0x3F8FFCE8, 0x82C8C2A4 */
-S02 =  1.16926784663337450260e-04, /* 0x3F1EA6D2, 0xDD57DBF4 */
-S03 =  5.13546550207318111446e-07, /* 0x3EA13B54, 0xCE84D5A9 */
-S04 =  1.16614003333790000205e-09; /* 0x3E1408BC, 0xF4745D8F */
+static const double R02 =
+                        1.56249999999999947958e-02, /* 0x3F8FFFFF, 0xFFFFFFFD */
+    R03 = -1.89979294238854721751e-04,              /* 0xBF28E6A5, 0xB61AC6E9 */
+    R04 = 1.82954049532700665670e-06,               /* 0x3EBEB1D1, 0x0C503919 */
+    R05 = -4.61832688532103189199e-09,              /* 0xBE33D5E7, 0x73D63FCE */
+    S01 = 1.56191029464890010492e-02,               /* 0x3F8FFCE8, 0x82C8C2A4 */
+    S02 = 1.16926784663337450260e-04,               /* 0x3F1EA6D2, 0xDD57DBF4 */
+    S03 = 5.13546550207318111446e-07,               /* 0x3EA13B54, 0xCE84D5A9 */
+    S04 = 1.16614003333790000205e-09;               /* 0x3E1408BC, 0xF4745D8F */
 
-double j0(double x)
-{
-	double z,r,s;
-	uint32_t ix;
+double j0(double x) {
+  double z, r, s;
+  uint32_t ix;
 
-	GET_HIGH_WORD(ix, x);
-	ix &= 0x7fffffff;
+  GET_HIGH_WORD(ix, x);
+  ix &= 0x7fffffff;
 
-	/* j0(+-inf)=0, j0(nan)=nan */
-	if (ix >= 0x7ff00000)
-		return 1/(x*x);
-	x = fabs(x);
+  /* j0(+-inf)=0, j0(nan)=nan */
+  if (ix >= 0x7ff00000)
+    return 1 / (x * x);
+  x = fabs(x);
 
-	if (ix >= 0x40000000) {  /* |x| >= 2 */
-		/* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
-		return common(ix,x,0);
-	}
+  if (ix >= 0x40000000) { /* |x| >= 2 */
+    /* large ulp error near zeros: 2.4, 5.52, 8.6537,.. */
+    return common(ix, x, 0);
+  }
 
-	/* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */
-	if (ix >= 0x3f200000) {  /* |x| >= 2**-13 */
-		/* up to 4ulp error close to 2 */
-		z = x*x;
-		r = z*(R02+z*(R03+z*(R04+z*R05)));
-		s = 1+z*(S01+z*(S02+z*(S03+z*S04)));
-		return (1+x/2)*(1-x/2) + z*(r/s);
-	}
+  /* 1 - x*x/4 + x*x*R(x^2)/S(x^2) */
+  if (ix >= 0x3f200000) { /* |x| >= 2**-13 */
+    /* up to 4ulp error close to 2 */
+    z = x * x;
+    r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
+    s = 1 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
+    return (1 + x / 2) * (1 - x / 2) + z * (r / s);
+  }
 
-	/* 1 - x*x/4 */
-	/* prevent underflow */
-	/* inexact should be raised when x!=0, this is not done correctly */
-	if (ix >= 0x38000000)  /* |x| >= 2**-127 */
-		x = 0.25*x*x;
-	return 1 - x;
+  /* 1 - x*x/4 */
+  /* prevent underflow */
+  /* inexact should be raised when x!=0, this is not done correctly */
+  if (ix >= 0x38000000) /* |x| >= 2**-127 */
+    x = 0.25 * x * x;
+  return 1 - x;
 }
 
 static const double
-u00  = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
-u01  =  1.76666452509181115538e-01, /* 0x3FC69D01, 0x9DE9E3FC */
-u02  = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
-u03  =  3.47453432093683650238e-04, /* 0x3F36C54D, 0x20B29B6B */
-u04  = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
-u05  =  1.95590137035022920206e-08, /* 0x3E550057, 0x3B4EABD4 */
-u06  = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
-v01  =  1.27304834834123699328e-02, /* 0x3F8A1270, 0x91C9C71A */
-v02  =  7.60068627350353253702e-05, /* 0x3F13ECBB, 0xF578C6C1 */
-v03  =  2.59150851840457805467e-07, /* 0x3E91642D, 0x7FF202FD */
-v04  =  4.41110311332675467403e-10; /* 0x3DFE5018, 0x3BD6D9EF */
+    u00 = -7.38042951086872317523e-02, /* 0xBFB2E4D6, 0x99CBD01F */
+    u01 = 1.76666452509181115538e-01,  /* 0x3FC69D01, 0x9DE9E3FC */
+    u02 = -1.38185671945596898896e-02, /* 0xBF8C4CE8, 0xB16CFA97 */
+    u03 = 3.47453432093683650238e-04,  /* 0x3F36C54D, 0x20B29B6B */
+    u04 = -3.81407053724364161125e-06, /* 0xBECFFEA7, 0x73D25CAD */
+    u05 = 1.95590137035022920206e-08,  /* 0x3E550057, 0x3B4EABD4 */
+    u06 = -3.98205194132103398453e-11, /* 0xBDC5E43D, 0x693FB3C8 */
+    v01 = 1.27304834834123699328e-02,  /* 0x3F8A1270, 0x91C9C71A */
+    v02 = 7.60068627350353253702e-05,  /* 0x3F13ECBB, 0xF578C6C1 */
+    v03 = 2.59150851840457805467e-07,  /* 0x3E91642D, 0x7FF202FD */
+    v04 = 4.41110311332675467403e-10;  /* 0x3DFE5018, 0x3BD6D9EF */
 
-double y0(double x)
-{
-	double z,u,v;
-	uint32_t ix,lx;
+double y0(double x) {
+  double z, u, v;
+  uint32_t ix, lx;
 
-	EXTRACT_WORDS(ix, lx, x);
+  EXTRACT_WORDS(ix, lx, x);
 
-	/* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
-	if ((ix<<1 | lx) == 0)
-		return -1/0.0;
-	if (ix>>31)
-		return 0/0.0;
-	if (ix >= 0x7ff00000)
-		return 1/x;
+  /* y0(nan)=nan, y0(<0)=nan, y0(0)=-inf, y0(inf)=0 */
+  if ((ix << 1 | lx) == 0)
+    return -1 / 0.0;
+  if (ix >> 31)
+    return 0 / 0.0;
+  if (ix >= 0x7ff00000)
+    return 1 / x;
 
-	if (ix >= 0x40000000) {  /* x >= 2 */
-		/* large ulp errors near zeros: 3.958, 7.086,.. */
-		return common(ix,x,1);
-	}
+  if (ix >= 0x40000000) { /* x >= 2 */
+    /* large ulp errors near zeros: 3.958, 7.086,.. */
+    return common(ix, x, 1);
+  }
 
-	/* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */
-	if (ix >= 0x3e400000) {  /* x >= 2**-27 */
-		/* large ulp error near the first zero, x ~= 0.89 */
-		z = x*x;
-		u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
-		v = 1.0+z*(v01+z*(v02+z*(v03+z*v04)));
-		return u/v + tpi*(j0(x)*log(x));
-	}
-	return u00 + tpi*log(x);
+  /* U(x^2)/V(x^2) + (2/pi)*j0(x)*log(x) */
+  if (ix >= 0x3e400000) { /* x >= 2**-27 */
+    /* large ulp error near the first zero, x ~= 0.89 */
+    z = x * x;
+    u = u00 +
+        z * (u01 + z * (u02 + z * (u03 + z * (u04 + z * (u05 + z * u06)))));
+    v = 1.0 + z * (v01 + z * (v02 + z * (v03 + z * v04)));
+    return u / v + tpi * (j0(x) * log(x));
+  }
+  return u00 + tpi * log(x);
 }
 
 /* The asymptotic expansions of pzero is
@@ -196,89 +194,100 @@
  * and
  *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
  */
-static const double pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
- -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
- -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
- -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
- -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
- -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
+static const double pR8[6] = {
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.00000000000000000000e+00,  /* 0x00000000, 0x00000000 */
+    -7.03124999999900357484e-02, /* 0xBFB1FFFF, 0xFFFFFD32 */
+    -8.08167041275349795626e+00, /* 0xC02029D0, 0xB44FA779 */
+    -2.57063105679704847262e+02, /* 0xC0701102, 0x7B19E863 */
+    -2.48521641009428822144e+03, /* 0xC0A36A6E, 0xCD4DCAFC */
+    -5.25304380490729545272e+03, /* 0xC0B4850B, 0x36CC643D */
 };
 static const double pS8[5] = {
-  1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
-  3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
-  4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
-  1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
-  4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
+    1.16534364619668181717e+02, /* 0x405D2233, 0x07A96751 */
+    3.83374475364121826715e+03, /* 0x40ADF37D, 0x50596938 */
+    4.05978572648472545552e+04, /* 0x40E3D2BB, 0x6EB6B05F */
+    1.16752972564375915681e+05, /* 0x40FC810F, 0x8F9FA9BD */
+    4.76277284146730962675e+04, /* 0x40E74177, 0x4F2C49DC */
 };
 
-static const double pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
- -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
- -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
- -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
- -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
- -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
- -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
+static const double pR5[6] = {
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    -1.14125464691894502584e-11, /* 0xBDA918B1, 0x47E495CC */
+    -7.03124940873599280078e-02, /* 0xBFB1FFFF, 0xE69AFBC6 */
+    -4.15961064470587782438e+00, /* 0xC010A370, 0xF90C6BBF */
+    -6.76747652265167261021e+01, /* 0xC050EB2F, 0x5A7D1783 */
+    -3.31231299649172967747e+02, /* 0xC074B3B3, 0x6742CC63 */
+    -3.46433388365604912451e+02, /* 0xC075A6EF, 0x28A38BD7 */
 };
 static const double pS5[5] = {
-  6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
-  1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
-  5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
-  9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
-  2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
+    6.07539382692300335975e+01, /* 0x404E6081, 0x0C98C5DE */
+    1.05125230595704579173e+03, /* 0x40906D02, 0x5C7E2864 */
+    5.97897094333855784498e+03, /* 0x40B75AF8, 0x8FBE1D60 */
+    9.62544514357774460223e+03, /* 0x40C2CCB8, 0xFA76FA38 */
+    2.40605815922939109441e+03, /* 0x40A2CC1D, 0xC70BE864 */
 };
 
-static const double pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
- -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
- -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
- -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
- -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
- -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
- -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
+static const double pR3[6] = {
+    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+    -2.54704601771951915620e-09, /* 0xBE25E103, 0x6FE1AA86 */
+    -7.03119616381481654654e-02, /* 0xBFB1FFF6, 0xF7C0E24B */
+    -2.40903221549529611423e+00, /* 0xC00345B2, 0xAEA48074 */
+    -2.19659774734883086467e+01, /* 0xC035F74A, 0x4CB94E14 */
+    -5.80791704701737572236e+01, /* 0xC04D0A22, 0x420A1A45 */
+    -3.14479470594888503854e+01, /* 0xC03F72AC, 0xA892D80F */
 };
 static const double pS3[5] = {
-  3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
-  3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
-  1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
-  1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
-  1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
+    3.58560338055209726349e+01, /* 0x4041ED92, 0x84077DD3 */
+    3.61513983050303863820e+02, /* 0x40769839, 0x464A7C0E */
+    1.19360783792111533330e+03, /* 0x4092A66E, 0x6D1061D6 */
+    1.12799679856907414432e+03, /* 0x40919FFC, 0xB8C39B7E */
+    1.73580930813335754692e+02, /* 0x4065B296, 0xFC379081 */
 };
 
-static const double pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
- -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
- -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
- -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
- -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
- -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
- -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
+static const double pR2[6] = {
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    -8.87534333032526411254e-08, /* 0xBE77D316, 0xE927026D */
+    -7.03030995483624743247e-02, /* 0xBFB1FF62, 0x495E1E42 */
+    -1.45073846780952986357e+00, /* 0xBFF73639, 0x8A24A843 */
+    -7.63569613823527770791e+00, /* 0xC01E8AF3, 0xEDAFA7F3 */
+    -1.11931668860356747786e+01, /* 0xC02662E6, 0xC5246303 */
+    -3.23364579351335335033e+00, /* 0xC009DE81, 0xAF8FE70F */
 };
 static const double pS2[5] = {
-  2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
-  1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
-  2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
-  1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
-  1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
+    2.22202997532088808441e+01, /* 0x40363865, 0x908B5959 */
+    1.36206794218215208048e+02, /* 0x4061069E, 0x0EE8878F */
+    2.70470278658083486789e+02, /* 0x4070E786, 0x42EA079B */
+    1.53875394208320329881e+02, /* 0x40633C03, 0x3AB6FAFF */
+    1.46576176948256193810e+01, /* 0x402D50B3, 0x44391809 */
 };
 
-static double pzero(double x)
-{
-	const double *p,*q;
-	double_t z,r,s;
-	uint32_t ix;
+static double pzero(double x) {
+  const double *p, *q;
+  double_t z, r, s;
+  uint32_t ix;
 
-	GET_HIGH_WORD(ix, x);
-	ix &= 0x7fffffff;
-	if      (ix >= 0x40200000){p = pR8; q = pS8;}
-	else if (ix >= 0x40122E8B){p = pR5; q = pS5;}
-	else if (ix >= 0x4006DB6D){p = pR3; q = pS3;}
-	else /*ix >= 0x40000000*/ {p = pR2; q = pS2;}
-	z = 1.0/(x*x);
-	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-	s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
-	return 1.0 + r/s;
+  GET_HIGH_WORD(ix, x);
+  ix &= 0x7fffffff;
+  if (ix >= 0x40200000) {
+    p = pR8;
+    q = pS8;
+  } else if (ix >= 0x40122E8B) {
+    p = pR5;
+    q = pS5;
+  } else if (ix >= 0x4006DB6D) {
+    p = pR3;
+    q = pS3;
+  } else /*ix >= 0x40000000*/ {
+    p = pR2;
+    q = pS2;
+  }
+  z = 1.0 / (x * x);
+  r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+  s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+  return 1.0 + r / s;
 }
 
-
 /* For x >= 8, the asymptotic expansions of qzero is
  *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
  * We approximate pzero by
@@ -288,88 +297,101 @@
  * and
  *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
  */
-static const double qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-  7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
-  1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
-  5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
-  8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
-  3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
+static const double qR8[6] = {
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+    7.32421874999935051953e-02, /* 0x3FB2BFFF, 0xFFFFFE2C */
+    1.17682064682252693899e+01, /* 0x40278952, 0x5BB334D6 */
+    5.57673380256401856059e+02, /* 0x40816D63, 0x15301825 */
+    8.85919720756468632317e+03, /* 0x40C14D99, 0x3E18F46D */
+    3.70146267776887834771e+04, /* 0x40E212D4, 0x0E901566 */
 };
 static const double qS8[6] = {
-  1.63776026895689824414e+02, /* 0x406478D5, 0x365B39BC */
-  8.09834494656449805916e+03, /* 0x40BFA258, 0x4E6B0563 */
-  1.42538291419120476348e+05, /* 0x41016652, 0x54D38C3F */
-  8.03309257119514397345e+05, /* 0x412883DA, 0x83A52B43 */
-  8.40501579819060512818e+05, /* 0x4129A66B, 0x28DE0B3D */
- -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
+    1.63776026895689824414e+02,  /* 0x406478D5, 0x365B39BC */
+    8.09834494656449805916e+03,  /* 0x40BFA258, 0x4E6B0563 */
+    1.42538291419120476348e+05,  /* 0x41016652, 0x54D38C3F */
+    8.03309257119514397345e+05,  /* 0x412883DA, 0x83A52B43 */
+    8.40501579819060512818e+05,  /* 0x4129A66B, 0x28DE0B3D */
+    -3.43899293537866615225e+05, /* 0xC114FD6D, 0x2C9530C5 */
 };
 
-static const double qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-  1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
-  7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
-  5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
-  1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
-  1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
-  1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
+static const double qR5[6] = {
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    1.84085963594515531381e-11, /* 0x3DB43D8F, 0x29CC8CD9 */
+    7.32421766612684765896e-02, /* 0x3FB2BFFF, 0xD172B04C */
+    5.83563508962056953777e+00, /* 0x401757B0, 0xB9953DD3 */
+    1.35111577286449829671e+02, /* 0x4060E392, 0x0A8788E9 */
+    1.02724376596164097464e+03, /* 0x40900CF9, 0x9DC8C481 */
+    1.98997785864605384631e+03, /* 0x409F17E9, 0x53C6E3A6 */
 };
 static const double qS5[6] = {
-  8.27766102236537761883e+01, /* 0x4054B1B3, 0xFB5E1543 */
-  2.07781416421392987104e+03, /* 0x40A03BA0, 0xDA21C0CE */
-  1.88472887785718085070e+04, /* 0x40D267D2, 0x7B591E6D */
-  5.67511122894947329769e+04, /* 0x40EBB5E3, 0x97E02372 */
-  3.59767538425114471465e+04, /* 0x40E19118, 0x1F7A54A0 */
- -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
+    8.27766102236537761883e+01,  /* 0x4054B1B3, 0xFB5E1543 */
+    2.07781416421392987104e+03,  /* 0x40A03BA0, 0xDA21C0CE */
+    1.88472887785718085070e+04,  /* 0x40D267D2, 0x7B591E6D */
+    5.67511122894947329769e+04,  /* 0x40EBB5E3, 0x97E02372 */
+    3.59767538425114471465e+04,  /* 0x40E19118, 0x1F7A54A0 */
+    -5.35434275601944773371e+03, /* 0xC0B4EA57, 0xBEDBC609 */
 };
 
-static const double qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-  4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
-  7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
-  3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
-  4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
-  1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
-  1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
+static const double qR3[6] = {
+    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+    4.37741014089738620906e-09, /* 0x3E32CD03, 0x6ADECB82 */
+    7.32411180042911447163e-02, /* 0x3FB2BFEE, 0x0E8D0842 */
+    3.34423137516170720929e+00, /* 0x400AC0FC, 0x61149CF5 */
+    4.26218440745412650017e+01, /* 0x40454F98, 0x962DAEDD */
+    1.70808091340565596283e+02, /* 0x406559DB, 0xE25EFD1F */
+    1.66733948696651168575e+02, /* 0x4064D77C, 0x81FA21E0 */
 };
 static const double qS3[6] = {
-  4.87588729724587182091e+01, /* 0x40486122, 0xBFE343A6 */
-  7.09689221056606015736e+02, /* 0x40862D83, 0x86544EB3 */
-  3.70414822620111362994e+03, /* 0x40ACF04B, 0xE44DFC63 */
-  6.46042516752568917582e+03, /* 0x40B93C6C, 0xD7C76A28 */
-  2.51633368920368957333e+03, /* 0x40A3A8AA, 0xD94FB1C0 */
- -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
+    4.87588729724587182091e+01,  /* 0x40486122, 0xBFE343A6 */
+    7.09689221056606015736e+02,  /* 0x40862D83, 0x86544EB3 */
+    3.70414822620111362994e+03,  /* 0x40ACF04B, 0xE44DFC63 */
+    6.46042516752568917582e+03,  /* 0x40B93C6C, 0xD7C76A28 */
+    2.51633368920368957333e+03,  /* 0x40A3A8AA, 0xD94FB1C0 */
+    -1.49247451836156386662e+02, /* 0xC062A7EB, 0x201CF40F */
 };
 
-static const double qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-  1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
-  7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
-  1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
-  1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
-  3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
-  1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
+static const double qR2[6] = {
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    1.50444444886983272379e-07, /* 0x3E84313B, 0x54F76BDB */
+    7.32234265963079278272e-02, /* 0x3FB2BEC5, 0x3E883E34 */
+    1.99819174093815998816e+00, /* 0x3FFFF897, 0xE727779C */
+    1.44956029347885735348e+01, /* 0x402CFDBF, 0xAAF96FE5 */
+    3.16662317504781540833e+01, /* 0x403FAA8E, 0x29FBDC4A */
+    1.62527075710929267416e+01, /* 0x403040B1, 0x71814BB4 */
 };
 static const double qS2[6] = {
-  3.03655848355219184498e+01, /* 0x403E5D96, 0xF7C07AED */
-  2.69348118608049844624e+02, /* 0x4070D591, 0xE4D14B40 */
-  8.44783757595320139444e+02, /* 0x408A6645, 0x22B3BF22 */
-  8.82935845112488550512e+02, /* 0x408B977C, 0x9C5CC214 */
-  2.12666388511798828631e+02, /* 0x406A9553, 0x0E001365 */
- -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
+    3.03655848355219184498e+01,  /* 0x403E5D96, 0xF7C07AED */
+    2.69348118608049844624e+02,  /* 0x4070D591, 0xE4D14B40 */
+    8.44783757595320139444e+02,  /* 0x408A6645, 0x22B3BF22 */
+    8.82935845112488550512e+02,  /* 0x408B977C, 0x9C5CC214 */
+    2.12666388511798828631e+02,  /* 0x406A9553, 0x0E001365 */
+    -5.31095493882666946917e+00, /* 0xC0153E6A, 0xF8B32931 */
 };
 
-static double qzero(double x)
-{
-	const double *p,*q;
-	double_t s,r,z;
-	uint32_t ix;
+static double qzero(double x) {
+  const double *p, *q;
+  double_t s, r, z;
+  uint32_t ix;
 
-	GET_HIGH_WORD(ix, x);
-	ix &= 0x7fffffff;
-	if      (ix >= 0x40200000){p = qR8; q = qS8;}
-	else if (ix >= 0x40122E8B){p = qR5; q = qS5;}
-	else if (ix >= 0x4006DB6D){p = qR3; q = qS3;}
-	else /*ix >= 0x40000000*/ {p = qR2; q = qS2;}
-	z = 1.0/(x*x);
-	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-	s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
-	return (-.125 + r/s)/x;
+  GET_HIGH_WORD(ix, x);
+  ix &= 0x7fffffff;
+  if (ix >= 0x40200000) {
+    p = qR8;
+    q = qS8;
+  } else if (ix >= 0x40122E8B) {
+    p = qR5;
+    q = qS5;
+  } else if (ix >= 0x4006DB6D) {
+    p = qR3;
+    q = qS3;
+  } else /*ix >= 0x40000000*/ {
+    p = qR2;
+    q = qS2;
+  }
+  z = 1.0 / (x * x);
+  r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+  s = 1.0 +
+      z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+  return (-.125 + r / s) / x;
 }
diff --git a/fusl/src/math/j0f.c b/fusl/src/math/j0f.c
index 45883dc..6d926d3 100644
--- a/fusl/src/math/j0f.c
+++ b/fusl/src/math/j0f.c
@@ -18,113 +18,108 @@
 
 static float pzerof(float), qzerof(float);
 
-static const float
-invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
-tpi       = 6.3661974669e-01; /* 0x3f22f983 */
+static const float invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
+    tpi = 6.3661974669e-01;                      /* 0x3f22f983 */
 
-static float common(uint32_t ix, float x, int y0)
-{
-	float z,s,c,ss,cc;
-	/*
-	 * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
-	 * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
-	 */
-	s = sinf(x);
-	c = cosf(x);
-	if (y0)
-		c = -c;
-	cc = s+c;
-	if (ix < 0x7f000000) {
-		ss = s-c;
-		z = -cosf(2*x);
-		if (s*c < 0)
-			cc = z/ss;
-		else
-			ss = z/cc;
-		if (ix < 0x58800000) {
-			if (y0)
-				ss = -ss;
-			cc = pzerof(x)*cc-qzerof(x)*ss;
-		}
-	}
-	return invsqrtpi*cc/sqrtf(x);
+static float common(uint32_t ix, float x, int y0) {
+  float z, s, c, ss, cc;
+  /*
+   * j0(x) = 1/sqrt(pi) * (P(0,x)*cc - Q(0,x)*ss) / sqrt(x)
+   * y0(x) = 1/sqrt(pi) * (P(0,x)*ss + Q(0,x)*cc) / sqrt(x)
+   */
+  s = sinf(x);
+  c = cosf(x);
+  if (y0)
+    c = -c;
+  cc = s + c;
+  if (ix < 0x7f000000) {
+    ss = s - c;
+    z = -cosf(2 * x);
+    if (s * c < 0)
+      cc = z / ss;
+    else
+      ss = z / cc;
+    if (ix < 0x58800000) {
+      if (y0)
+        ss = -ss;
+      cc = pzerof(x) * cc - qzerof(x) * ss;
+    }
+  }
+  return invsqrtpi * cc / sqrtf(x);
 }
 
 /* R0/S0 on [0, 2.00] */
-static const float
-R02 =  1.5625000000e-02, /* 0x3c800000 */
-R03 = -1.8997929874e-04, /* 0xb947352e */
-R04 =  1.8295404516e-06, /* 0x35f58e88 */
-R05 = -4.6183270541e-09, /* 0xb19eaf3c */
-S01 =  1.5619102865e-02, /* 0x3c7fe744 */
-S02 =  1.1692678527e-04, /* 0x38f53697 */
-S03 =  5.1354652442e-07, /* 0x3509daa6 */
-S04 =  1.1661400734e-09; /* 0x30a045e8 */
+static const float R02 = 1.5625000000e-02, /* 0x3c800000 */
+    R03 = -1.8997929874e-04,               /* 0xb947352e */
+    R04 = 1.8295404516e-06,                /* 0x35f58e88 */
+    R05 = -4.6183270541e-09,               /* 0xb19eaf3c */
+    S01 = 1.5619102865e-02,                /* 0x3c7fe744 */
+    S02 = 1.1692678527e-04,                /* 0x38f53697 */
+    S03 = 5.1354652442e-07,                /* 0x3509daa6 */
+    S04 = 1.1661400734e-09;                /* 0x30a045e8 */
 
-float j0f(float x)
-{
-	float z,r,s;
-	uint32_t ix;
+float j0f(float x) {
+  float z, r, s;
+  uint32_t ix;
 
-	GET_FLOAT_WORD(ix, x);
-	ix &= 0x7fffffff;
-	if (ix >= 0x7f800000)
-		return 1/(x*x);
-	x = fabsf(x);
+  GET_FLOAT_WORD(ix, x);
+  ix &= 0x7fffffff;
+  if (ix >= 0x7f800000)
+    return 1 / (x * x);
+  x = fabsf(x);
 
-	if (ix >= 0x40000000) {  /* |x| >= 2 */
-		/* large ulp error near zeros */
-		return common(ix, x, 0);
-	}
-	if (ix >= 0x3a000000) {  /* |x| >= 2**-11 */
-		/* up to 4ulp error near 2 */
-		z = x*x;
-		r = z*(R02+z*(R03+z*(R04+z*R05)));
-		s = 1+z*(S01+z*(S02+z*(S03+z*S04)));
-		return (1+x/2)*(1-x/2) + z*(r/s);
-	}
-	if (ix >= 0x21800000)  /* |x| >= 2**-60 */
-		x = 0.25f*x*x;
-	return 1 - x;
+  if (ix >= 0x40000000) { /* |x| >= 2 */
+    /* large ulp error near zeros */
+    return common(ix, x, 0);
+  }
+  if (ix >= 0x3a000000) { /* |x| >= 2**-11 */
+    /* up to 4ulp error near 2 */
+    z = x * x;
+    r = z * (R02 + z * (R03 + z * (R04 + z * R05)));
+    s = 1 + z * (S01 + z * (S02 + z * (S03 + z * S04)));
+    return (1 + x / 2) * (1 - x / 2) + z * (r / s);
+  }
+  if (ix >= 0x21800000) /* |x| >= 2**-60 */
+    x = 0.25f * x * x;
+  return 1 - x;
 }
 
-static const float
-u00  = -7.3804296553e-02, /* 0xbd9726b5 */
-u01  =  1.7666645348e-01, /* 0x3e34e80d */
-u02  = -1.3818567619e-02, /* 0xbc626746 */
-u03  =  3.4745343146e-04, /* 0x39b62a69 */
-u04  = -3.8140706238e-06, /* 0xb67ff53c */
-u05  =  1.9559013964e-08, /* 0x32a802ba */
-u06  = -3.9820518410e-11, /* 0xae2f21eb */
-v01  =  1.2730483897e-02, /* 0x3c509385 */
-v02  =  7.6006865129e-05, /* 0x389f65e0 */
-v03  =  2.5915085189e-07, /* 0x348b216c */
-v04  =  4.4111031494e-10; /* 0x2ff280c2 */
+static const float u00 = -7.3804296553e-02, /* 0xbd9726b5 */
+    u01 = 1.7666645348e-01,                 /* 0x3e34e80d */
+    u02 = -1.3818567619e-02,                /* 0xbc626746 */
+    u03 = 3.4745343146e-04,                 /* 0x39b62a69 */
+    u04 = -3.8140706238e-06,                /* 0xb67ff53c */
+    u05 = 1.9559013964e-08,                 /* 0x32a802ba */
+    u06 = -3.9820518410e-11,                /* 0xae2f21eb */
+    v01 = 1.2730483897e-02,                 /* 0x3c509385 */
+    v02 = 7.6006865129e-05,                 /* 0x389f65e0 */
+    v03 = 2.5915085189e-07,                 /* 0x348b216c */
+    v04 = 4.4111031494e-10;                 /* 0x2ff280c2 */
 
-float y0f(float x)
-{
-	float z,u,v;
-	uint32_t ix;
+float y0f(float x) {
+  float z, u, v;
+  uint32_t ix;
 
-	GET_FLOAT_WORD(ix, x);
-	if ((ix & 0x7fffffff) == 0)
-		return -1/0.0f;
-	if (ix>>31)
-		return 0/0.0f;
-	if (ix >= 0x7f800000)
-		return 1/x;
-	if (ix >= 0x40000000) {  /* |x| >= 2.0 */
-		/* large ulp error near zeros */
-		return common(ix,x,1);
-	}
-	if (ix >= 0x39000000) {  /* x >= 2**-13 */
-		/* large ulp error at x ~= 0.89 */
-		z = x*x;
-		u = u00+z*(u01+z*(u02+z*(u03+z*(u04+z*(u05+z*u06)))));
-		v = 1+z*(v01+z*(v02+z*(v03+z*v04)));
-		return u/v + tpi*(j0f(x)*logf(x));
-	}
-	return u00 + tpi*logf(x);
+  GET_FLOAT_WORD(ix, x);
+  if ((ix & 0x7fffffff) == 0)
+    return -1 / 0.0f;
+  if (ix >> 31)
+    return 0 / 0.0f;
+  if (ix >= 0x7f800000)
+    return 1 / x;
+  if (ix >= 0x40000000) { /* |x| >= 2.0 */
+    /* large ulp error near zeros */
+    return common(ix, x, 1);
+  }
+  if (ix >= 0x39000000) { /* x >= 2**-13 */
+    /* large ulp error at x ~= 0.89 */
+    z = x * x;
+    u = u00 +
+        z * (u01 + z * (u02 + z * (u03 + z * (u04 + z * (u05 + z * u06)))));
+    v = 1 + z * (v01 + z * (v02 + z * (v03 + z * v04)));
+    return u / v + tpi * (j0f(x) * logf(x));
+  }
+  return u00 + tpi * logf(x);
 }
 
 /* The asymptotic expansions of pzero is
@@ -136,88 +131,99 @@
  * and
  *      | pzero(x)-1-R/S | <= 2  ** ( -60.26)
  */
-static const float pR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-  0.0000000000e+00, /* 0x00000000 */
- -7.0312500000e-02, /* 0xbd900000 */
- -8.0816707611e+00, /* 0xc1014e86 */
- -2.5706311035e+02, /* 0xc3808814 */
- -2.4852163086e+03, /* 0xc51b5376 */
- -5.2530439453e+03, /* 0xc5a4285a */
+static const float pR8[6] = {
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.0000000000e+00,  /* 0x00000000 */
+    -7.0312500000e-02, /* 0xbd900000 */
+    -8.0816707611e+00, /* 0xc1014e86 */
+    -2.5706311035e+02, /* 0xc3808814 */
+    -2.4852163086e+03, /* 0xc51b5376 */
+    -5.2530439453e+03, /* 0xc5a4285a */
 };
 static const float pS8[5] = {
-  1.1653436279e+02, /* 0x42e91198 */
-  3.8337448730e+03, /* 0x456f9beb */
-  4.0597855469e+04, /* 0x471e95db */
-  1.1675296875e+05, /* 0x47e4087c */
-  4.7627726562e+04, /* 0x473a0bba */
+    1.1653436279e+02, /* 0x42e91198 */
+    3.8337448730e+03, /* 0x456f9beb */
+    4.0597855469e+04, /* 0x471e95db */
+    1.1675296875e+05, /* 0x47e4087c */
+    4.7627726562e+04, /* 0x473a0bba */
 };
-static const float pR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
- -1.1412546255e-11, /* 0xad48c58a */
- -7.0312492549e-02, /* 0xbd8fffff */
- -4.1596107483e+00, /* 0xc0851b88 */
- -6.7674766541e+01, /* 0xc287597b */
- -3.3123129272e+02, /* 0xc3a59d9b */
- -3.4643338013e+02, /* 0xc3ad3779 */
+static const float pR5[6] = {
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    -1.1412546255e-11, /* 0xad48c58a */
+    -7.0312492549e-02, /* 0xbd8fffff */
+    -4.1596107483e+00, /* 0xc0851b88 */
+    -6.7674766541e+01, /* 0xc287597b */
+    -3.3123129272e+02, /* 0xc3a59d9b */
+    -3.4643338013e+02, /* 0xc3ad3779 */
 };
 static const float pS5[5] = {
-  6.0753936768e+01, /* 0x42730408 */
-  1.0512523193e+03, /* 0x44836813 */
-  5.9789707031e+03, /* 0x45bad7c4 */
-  9.6254453125e+03, /* 0x461665c8 */
-  2.4060581055e+03, /* 0x451660ee */
+    6.0753936768e+01, /* 0x42730408 */
+    1.0512523193e+03, /* 0x44836813 */
+    5.9789707031e+03, /* 0x45bad7c4 */
+    9.6254453125e+03, /* 0x461665c8 */
+    2.4060581055e+03, /* 0x451660ee */
 };
 
-static const float pR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
- -2.5470459075e-09, /* 0xb12f081b */
- -7.0311963558e-02, /* 0xbd8fffb8 */
- -2.4090321064e+00, /* 0xc01a2d95 */
- -2.1965976715e+01, /* 0xc1afba52 */
- -5.8079170227e+01, /* 0xc2685112 */
- -3.1447946548e+01, /* 0xc1fb9565 */
+static const float pR3[6] = {
+    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+    -2.5470459075e-09, /* 0xb12f081b */
+    -7.0311963558e-02, /* 0xbd8fffb8 */
+    -2.4090321064e+00, /* 0xc01a2d95 */
+    -2.1965976715e+01, /* 0xc1afba52 */
+    -5.8079170227e+01, /* 0xc2685112 */
+    -3.1447946548e+01, /* 0xc1fb9565 */
 };
 static const float pS3[5] = {
-  3.5856033325e+01, /* 0x420f6c94 */
-  3.6151397705e+02, /* 0x43b4c1ca */
-  1.1936077881e+03, /* 0x44953373 */
-  1.1279968262e+03, /* 0x448cffe6 */
-  1.7358093262e+02, /* 0x432d94b8 */
+    3.5856033325e+01, /* 0x420f6c94 */
+    3.6151397705e+02, /* 0x43b4c1ca */
+    1.1936077881e+03, /* 0x44953373 */
+    1.1279968262e+03, /* 0x448cffe6 */
+    1.7358093262e+02, /* 0x432d94b8 */
 };
 
-static const float pR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
- -8.8753431271e-08, /* 0xb3be98b7 */
- -7.0303097367e-02, /* 0xbd8ffb12 */
- -1.4507384300e+00, /* 0xbfb9b1cc */
- -7.6356959343e+00, /* 0xc0f4579f */
- -1.1193166733e+01, /* 0xc1331736 */
- -3.2336456776e+00, /* 0xc04ef40d */
+static const float pR2[6] = {
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    -8.8753431271e-08, /* 0xb3be98b7 */
+    -7.0303097367e-02, /* 0xbd8ffb12 */
+    -1.4507384300e+00, /* 0xbfb9b1cc */
+    -7.6356959343e+00, /* 0xc0f4579f */
+    -1.1193166733e+01, /* 0xc1331736 */
+    -3.2336456776e+00, /* 0xc04ef40d */
 };
 static const float pS2[5] = {
-  2.2220300674e+01, /* 0x41b1c32d */
-  1.3620678711e+02, /* 0x430834f0 */
-  2.7047027588e+02, /* 0x43873c32 */
-  1.5387539673e+02, /* 0x4319e01a */
-  1.4657617569e+01, /* 0x416a859a */
+    2.2220300674e+01, /* 0x41b1c32d */
+    1.3620678711e+02, /* 0x430834f0 */
+    2.7047027588e+02, /* 0x43873c32 */
+    1.5387539673e+02, /* 0x4319e01a */
+    1.4657617569e+01, /* 0x416a859a */
 };
 
-static float pzerof(float x)
-{
-	const float *p,*q;
-	float_t z,r,s;
-	uint32_t ix;
+static float pzerof(float x) {
+  const float *p, *q;
+  float_t z, r, s;
+  uint32_t ix;
 
-	GET_FLOAT_WORD(ix, x);
-	ix &= 0x7fffffff;
-	if      (ix >= 0x41000000){p = pR8; q = pS8;}
-	else if (ix >= 0x40f71c58){p = pR5; q = pS5;}
-	else if (ix >= 0x4036db68){p = pR3; q = pS3;}
-	else /*ix >= 0x40000000*/ {p = pR2; q = pS2;}
-	z = 1.0f/(x*x);
-	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-	s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
-	return 1.0f + r/s;
+  GET_FLOAT_WORD(ix, x);
+  ix &= 0x7fffffff;
+  if (ix >= 0x41000000) {
+    p = pR8;
+    q = pS8;
+  } else if (ix >= 0x40f71c58) {
+    p = pR5;
+    q = pS5;
+  } else if (ix >= 0x4036db68) {
+    p = pR3;
+    q = pS3;
+  } else /*ix >= 0x40000000*/ {
+    p = pR2;
+    q = pS2;
+  }
+  z = 1.0f / (x * x);
+  r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+  s = 1.0f + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+  return 1.0f + r / s;
 }
 
-
 /* For x >= 8, the asymptotic expansions of qzero is
  *      -1/8 s + 75/1024 s^3 - ..., where s = 1/x.
  * We approximate pzero by
@@ -227,88 +233,101 @@
  * and
  *      | qzero(x)/s +1.25-R/S | <= 2  ** ( -61.22)
  */
-static const float qR8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-  0.0000000000e+00, /* 0x00000000 */
-  7.3242187500e-02, /* 0x3d960000 */
-  1.1768206596e+01, /* 0x413c4a93 */
-  5.5767340088e+02, /* 0x440b6b19 */
-  8.8591972656e+03, /* 0x460a6cca */
-  3.7014625000e+04, /* 0x471096a0 */
+static const float qR8[6] = {
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.0000000000e+00, /* 0x00000000 */
+    7.3242187500e-02, /* 0x3d960000 */
+    1.1768206596e+01, /* 0x413c4a93 */
+    5.5767340088e+02, /* 0x440b6b19 */
+    8.8591972656e+03, /* 0x460a6cca */
+    3.7014625000e+04, /* 0x471096a0 */
 };
 static const float qS8[6] = {
-  1.6377603149e+02, /* 0x4323c6aa */
-  8.0983447266e+03, /* 0x45fd12c2 */
-  1.4253829688e+05, /* 0x480b3293 */
-  8.0330925000e+05, /* 0x49441ed4 */
-  8.4050156250e+05, /* 0x494d3359 */
- -3.4389928125e+05, /* 0xc8a7eb69 */
+    1.6377603149e+02,  /* 0x4323c6aa */
+    8.0983447266e+03,  /* 0x45fd12c2 */
+    1.4253829688e+05,  /* 0x480b3293 */
+    8.0330925000e+05,  /* 0x49441ed4 */
+    8.4050156250e+05,  /* 0x494d3359 */
+    -3.4389928125e+05, /* 0xc8a7eb69 */
 };
 
-static const float qR5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-  1.8408595828e-11, /* 0x2da1ec79 */
-  7.3242180049e-02, /* 0x3d95ffff */
-  5.8356351852e+00, /* 0x40babd86 */
-  1.3511157227e+02, /* 0x43071c90 */
-  1.0272437744e+03, /* 0x448067cd */
-  1.9899779053e+03, /* 0x44f8bf4b */
+static const float qR5[6] = {
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    1.8408595828e-11, /* 0x2da1ec79 */
+    7.3242180049e-02, /* 0x3d95ffff */
+    5.8356351852e+00, /* 0x40babd86 */
+    1.3511157227e+02, /* 0x43071c90 */
+    1.0272437744e+03, /* 0x448067cd */
+    1.9899779053e+03, /* 0x44f8bf4b */
 };
 static const float qS5[6] = {
-  8.2776611328e+01, /* 0x42a58da0 */
-  2.0778142090e+03, /* 0x4501dd07 */
-  1.8847289062e+04, /* 0x46933e94 */
-  5.6751113281e+04, /* 0x475daf1d */
-  3.5976753906e+04, /* 0x470c88c1 */
- -5.3543427734e+03, /* 0xc5a752be */
+    8.2776611328e+01,  /* 0x42a58da0 */
+    2.0778142090e+03,  /* 0x4501dd07 */
+    1.8847289062e+04,  /* 0x46933e94 */
+    5.6751113281e+04,  /* 0x475daf1d */
+    3.5976753906e+04,  /* 0x470c88c1 */
+    -5.3543427734e+03, /* 0xc5a752be */
 };
 
-static const float qR3[6] = {/* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
-  4.3774099900e-09, /* 0x3196681b */
-  7.3241114616e-02, /* 0x3d95ff70 */
-  3.3442313671e+00, /* 0x405607e3 */
-  4.2621845245e+01, /* 0x422a7cc5 */
-  1.7080809021e+02, /* 0x432acedf */
-  1.6673394775e+02, /* 0x4326bbe4 */
+static const float qR3[6] = {
+    /* for x in [4.547,2.8571]=1/[0.2199,0.35001] */
+    4.3774099900e-09, /* 0x3196681b */
+    7.3241114616e-02, /* 0x3d95ff70 */
+    3.3442313671e+00, /* 0x405607e3 */
+    4.2621845245e+01, /* 0x422a7cc5 */
+    1.7080809021e+02, /* 0x432acedf */
+    1.6673394775e+02, /* 0x4326bbe4 */
 };
 static const float qS3[6] = {
-  4.8758872986e+01, /* 0x42430916 */
-  7.0968920898e+02, /* 0x44316c1c */
-  3.7041481934e+03, /* 0x4567825f */
-  6.4604252930e+03, /* 0x45c9e367 */
-  2.5163337402e+03, /* 0x451d4557 */
- -1.4924745178e+02, /* 0xc3153f59 */
+    4.8758872986e+01,  /* 0x42430916 */
+    7.0968920898e+02,  /* 0x44316c1c */
+    3.7041481934e+03,  /* 0x4567825f */
+    6.4604252930e+03,  /* 0x45c9e367 */
+    2.5163337402e+03,  /* 0x451d4557 */
+    -1.4924745178e+02, /* 0xc3153f59 */
 };
 
-static const float qR2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-  1.5044444979e-07, /* 0x342189db */
-  7.3223426938e-02, /* 0x3d95f62a */
-  1.9981917143e+00, /* 0x3fffc4bf */
-  1.4495602608e+01, /* 0x4167edfd */
-  3.1666231155e+01, /* 0x41fd5471 */
-  1.6252708435e+01, /* 0x4182058c */
+static const float qR2[6] = {
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    1.5044444979e-07, /* 0x342189db */
+    7.3223426938e-02, /* 0x3d95f62a */
+    1.9981917143e+00, /* 0x3fffc4bf */
+    1.4495602608e+01, /* 0x4167edfd */
+    3.1666231155e+01, /* 0x41fd5471 */
+    1.6252708435e+01, /* 0x4182058c */
 };
 static const float qS2[6] = {
-  3.0365585327e+01, /* 0x41f2ecb8 */
-  2.6934811401e+02, /* 0x4386ac8f */
-  8.4478375244e+02, /* 0x44533229 */
-  8.8293585205e+02, /* 0x445cbbe5 */
-  2.1266638184e+02, /* 0x4354aa98 */
- -5.3109550476e+00, /* 0xc0a9f358 */
+    3.0365585327e+01,  /* 0x41f2ecb8 */
+    2.6934811401e+02,  /* 0x4386ac8f */
+    8.4478375244e+02,  /* 0x44533229 */
+    8.8293585205e+02,  /* 0x445cbbe5 */
+    2.1266638184e+02,  /* 0x4354aa98 */
+    -5.3109550476e+00, /* 0xc0a9f358 */
 };
 
-static float qzerof(float x)
-{
-	const float *p,*q;
-	float_t s,r,z;
-	uint32_t ix;
+static float qzerof(float x) {
+  const float *p, *q;
+  float_t s, r, z;
+  uint32_t ix;
 
-	GET_FLOAT_WORD(ix, x);
-	ix &= 0x7fffffff;
-	if      (ix >= 0x41000000){p = qR8; q = qS8;}
-	else if (ix >= 0x40f71c58){p = qR5; q = qS5;}
-	else if (ix >= 0x4036db68){p = qR3; q = qS3;}
-	else /*ix >= 0x40000000*/ {p = qR2; q = qS2;}
-	z = 1.0f/(x*x);
-	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-	s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
-	return (-.125f + r/s)/x;
+  GET_FLOAT_WORD(ix, x);
+  ix &= 0x7fffffff;
+  if (ix >= 0x41000000) {
+    p = qR8;
+    q = qS8;
+  } else if (ix >= 0x40f71c58) {
+    p = qR5;
+    q = qS5;
+  } else if (ix >= 0x4036db68) {
+    p = qR3;
+    q = qS3;
+  } else /*ix >= 0x40000000*/ {
+    p = qR2;
+    q = qS2;
+  }
+  z = 1.0f / (x * x);
+  r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+  s = 1.0f +
+      z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+  return (-.125f + r / s) / x;
 }
diff --git a/fusl/src/math/j1.c b/fusl/src/math/j1.c
index df724d1..d0715a2 100644
--- a/fusl/src/math/j1.c
+++ b/fusl/src/math/j1.c
@@ -58,119 +58,116 @@
 
 static double pone(double), qone(double);
 
-static const double
-invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
-tpi       = 6.36619772367581382433e-01; /* 0x3FE45F30, 0x6DC9C883 */
+static const double invsqrtpi =
+                        5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */
+    tpi = 6.36619772367581382433e-01;               /* 0x3FE45F30, 0x6DC9C883 */
 
-static double common(uint32_t ix, double x, int y1, int sign)
-{
-	double z,s,c,ss,cc;
+static double common(uint32_t ix, double x, int y1, int sign) {
+  double z, s, c, ss, cc;
 
-	/*
-	 * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4))
-	 * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4))
-	 *
-	 * sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2)
-	 * cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2)
-	 * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
-	 */
-	s = sin(x);
-	if (y1)
-		s = -s;
-	c = cos(x);
-	cc = s-c;
-	if (ix < 0x7fe00000) {
-		/* avoid overflow in 2*x */
-		ss = -s-c;
-		z = cos(2*x);
-		if (s*c > 0)
-			cc = z/ss;
-		else
-			ss = z/cc;
-		if (ix < 0x48000000) {
-			if (y1)
-				ss = -ss;
-			cc = pone(x)*cc-qone(x)*ss;
-		}
-	}
-	if (sign)
-		cc = -cc;
-	return invsqrtpi*cc/sqrt(x);
+  /*
+   * j1(x) = sqrt(2/(pi*x))*(p1(x)*cos(x-3pi/4)-q1(x)*sin(x-3pi/4))
+   * y1(x) = sqrt(2/(pi*x))*(p1(x)*sin(x-3pi/4)+q1(x)*cos(x-3pi/4))
+   *
+   * sin(x-3pi/4) = -(sin(x) + cos(x))/sqrt(2)
+   * cos(x-3pi/4) = (sin(x) - cos(x))/sqrt(2)
+   * sin(x) +- cos(x) = -cos(2x)/(sin(x) -+ cos(x))
+   */
+  s = sin(x);
+  if (y1)
+    s = -s;
+  c = cos(x);
+  cc = s - c;
+  if (ix < 0x7fe00000) {
+    /* avoid overflow in 2*x */
+    ss = -s - c;
+    z = cos(2 * x);
+    if (s * c > 0)
+      cc = z / ss;
+    else
+      ss = z / cc;
+    if (ix < 0x48000000) {
+      if (y1)
+        ss = -ss;
+      cc = pone(x) * cc - qone(x) * ss;
+    }
+  }
+  if (sign)
+    cc = -cc;
+  return invsqrtpi * cc / sqrt(x);
 }
 
 /* R0/S0 on [0,2] */
 static const double
-r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
-r01 =  1.40705666955189706048e-03, /* 0x3F570D9F, 0x98472C61 */
-r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
-r03 =  4.96727999609584448412e-08, /* 0x3E6AAAFA, 0x46CA0BD9 */
-s01 =  1.91537599538363460805e-02, /* 0x3F939D0B, 0x12637E53 */
-s02 =  1.85946785588630915560e-04, /* 0x3F285F56, 0xB9CDF664 */
-s03 =  1.17718464042623683263e-06, /* 0x3EB3BFF8, 0x333F8498 */
-s04 =  5.04636257076217042715e-09, /* 0x3E35AC88, 0xC97DFF2C */
-s05 =  1.23542274426137913908e-11; /* 0x3DAB2ACF, 0xCFB97ED8 */
+    r00 = -6.25000000000000000000e-02, /* 0xBFB00000, 0x00000000 */
+    r01 = 1.40705666955189706048e-03,  /* 0x3F570D9F, 0x98472C61 */
+    r02 = -1.59955631084035597520e-05, /* 0xBEF0C5C6, 0xBA169668 */
+    r03 = 4.96727999609584448412e-08,  /* 0x3E6AAAFA, 0x46CA0BD9 */
+    s01 = 1.91537599538363460805e-02,  /* 0x3F939D0B, 0x12637E53 */
+    s02 = 1.85946785588630915560e-04,  /* 0x3F285F56, 0xB9CDF664 */
+    s03 = 1.17718464042623683263e-06,  /* 0x3EB3BFF8, 0x333F8498 */
+    s04 = 5.04636257076217042715e-09,  /* 0x3E35AC88, 0xC97DFF2C */
+    s05 = 1.23542274426137913908e-11;  /* 0x3DAB2ACF, 0xCFB97ED8 */
 
-double j1(double x)
-{
-	double z,r,s;
-	uint32_t ix;
-	int sign;
+double j1(double x) {
+  double z, r, s;
+  uint32_t ix;
+  int sign;
 
-	GET_HIGH_WORD(ix, x);
-	sign = ix>>31;
-	ix &= 0x7fffffff;
-	if (ix >= 0x7ff00000)
-		return 1/(x*x);
-	if (ix >= 0x40000000)  /* |x| >= 2 */
-		return common(ix, fabs(x), 0, sign);
-	if (ix >= 0x38000000) {  /* |x| >= 2**-127 */
-		z = x*x;
-		r = z*(r00+z*(r01+z*(r02+z*r03)));
-		s = 1+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
-		z = r/s;
-	} else
-		/* avoid underflow, raise inexact if x!=0 */
-		z = x;
-	return (0.5 + z)*x;
+  GET_HIGH_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
+  if (ix >= 0x7ff00000)
+    return 1 / (x * x);
+  if (ix >= 0x40000000) /* |x| >= 2 */
+    return common(ix, fabs(x), 0, sign);
+  if (ix >= 0x38000000) { /* |x| >= 2**-127 */
+    z = x * x;
+    r = z * (r00 + z * (r01 + z * (r02 + z * r03)));
+    s = 1 + z * (s01 + z * (s02 + z * (s03 + z * (s04 + z * s05))));
+    z = r / s;
+  } else
+    /* avoid underflow, raise inexact if x!=0 */
+    z = x;
+  return (0.5 + z) * x;
 }
 
 static const double U0[5] = {
- -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
-  5.04438716639811282616e-02, /* 0x3FA9D3C7, 0x76292CD1 */
- -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
-  2.35252600561610495928e-05, /* 0x3EF8AB03, 0x8FA6B88E */
- -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
+    -1.96057090646238940668e-01, /* 0xBFC91866, 0x143CBC8A */
+    5.04438716639811282616e-02,  /* 0x3FA9D3C7, 0x76292CD1 */
+    -1.91256895875763547298e-03, /* 0xBF5F55E5, 0x4844F50F */
+    2.35252600561610495928e-05,  /* 0x3EF8AB03, 0x8FA6B88E */
+    -9.19099158039878874504e-08, /* 0xBE78AC00, 0x569105B8 */
 };
 static const double V0[5] = {
-  1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
-  2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
-  1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
-  6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
-  1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
+    1.99167318236649903973e-02, /* 0x3F94650D, 0x3F4DA9F0 */
+    2.02552581025135171496e-04, /* 0x3F2A8C89, 0x6C257764 */
+    1.35608801097516229404e-06, /* 0x3EB6C05A, 0x894E8CA6 */
+    6.22741452364621501295e-09, /* 0x3E3ABF1D, 0x5BA69A86 */
+    1.66559246207992079114e-11, /* 0x3DB25039, 0xDACA772A */
 };
 
-double y1(double x)
-{
-	double z,u,v;
-	uint32_t ix,lx;
+double y1(double x) {
+  double z, u, v;
+  uint32_t ix, lx;
 
-	EXTRACT_WORDS(ix, lx, x);
-	/* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */
-	if ((ix<<1 | lx) == 0)
-		return -1/0.0;
-	if (ix>>31)
-		return 0/0.0;
-	if (ix >= 0x7ff00000)
-		return 1/x;
+  EXTRACT_WORDS(ix, lx, x);
+  /* y1(nan)=nan, y1(<0)=nan, y1(0)=-inf, y1(inf)=0 */
+  if ((ix << 1 | lx) == 0)
+    return -1 / 0.0;
+  if (ix >> 31)
+    return 0 / 0.0;
+  if (ix >= 0x7ff00000)
+    return 1 / x;
 
-	if (ix >= 0x40000000)  /* x >= 2 */
-		return common(ix, x, 1, 0);
-	if (ix < 0x3c900000)  /* x < 2**-54 */
-		return -tpi/x;
-	z = x*x;
-	u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
-	v = 1+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
-	return x*(u/v) + tpi*(j1(x)*log(x)-1/x);
+  if (ix >= 0x40000000) /* x >= 2 */
+    return common(ix, x, 1, 0);
+  if (ix < 0x3c900000) /* x < 2**-54 */
+    return -tpi / x;
+  z = x * x;
+  u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
+  v = 1 + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
+  return x * (u / v) + tpi * (j1(x) * log(x) - 1 / x);
 }
 
 /* For x >= 8, the asymptotic expansions of pone is
@@ -183,86 +180,97 @@
  *      | pone(x)-1-R/S | <= 2  ** ( -60.06)
  */
 
-static const double pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
-  1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
-  1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
-  4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
-  3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
-  7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
+static const double pr8[6] = {
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
+    1.17187499999988647970e-01, /* 0x3FBDFFFF, 0xFFFFFCCE */
+    1.32394806593073575129e+01, /* 0x402A7A9D, 0x357F7FCE */
+    4.12051854307378562225e+02, /* 0x4079C0D4, 0x652EA590 */
+    3.87474538913960532227e+03, /* 0x40AE457D, 0xA3A532CC */
+    7.91447954031891731574e+03, /* 0x40BEEA7A, 0xC32782DD */
 };
 static const double ps8[5] = {
-  1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
-  3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
-  3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
-  9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
-  3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
+    1.14207370375678408436e+02, /* 0x405C8D45, 0x8E656CAC */
+    3.65093083420853463394e+03, /* 0x40AC85DC, 0x964D274F */
+    3.69562060269033463555e+04, /* 0x40E20B86, 0x97C5BB7F */
+    9.76027935934950801311e+04, /* 0x40F7D42C, 0xB28F17BB */
+    3.08042720627888811578e+04, /* 0x40DE1511, 0x697A0B2D */
 };
 
-static const double pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-  1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
-  1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
-  6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
-  1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
-  5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
-  5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
+static const double pr5[6] = {
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    1.31990519556243522749e-11, /* 0x3DAD0667, 0xDAE1CA7D */
+    1.17187493190614097638e-01, /* 0x3FBDFFFF, 0xE2C10043 */
+    6.80275127868432871736e+00, /* 0x401B3604, 0x6E6315E3 */
+    1.08308182990189109773e+02, /* 0x405B13B9, 0x452602ED */
+    5.17636139533199752805e+02, /* 0x40802D16, 0xD052D649 */
+    5.28715201363337541807e+02, /* 0x408085B8, 0xBB7E0CB7 */
 };
 static const double ps5[5] = {
-  5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
-  9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
-  5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
-  7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
-  1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
+    5.92805987221131331921e+01, /* 0x404DA3EA, 0xA8AF633D */
+    9.91401418733614377743e+02, /* 0x408EFB36, 0x1B066701 */
+    5.35326695291487976647e+03, /* 0x40B4E944, 0x5706B6FB */
+    7.84469031749551231769e+03, /* 0x40BEA4B0, 0xB8A5BB15 */
+    1.50404688810361062679e+03, /* 0x40978030, 0x036F5E51 */
 };
 
 static const double pr3[6] = {
-  3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
-  1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
-  3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
-  3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
-  9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
-  4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
+    3.02503916137373618024e-09, /* 0x3E29FC21, 0xA7AD9EDD */
+    1.17186865567253592491e-01, /* 0x3FBDFFF5, 0x5B21D17B */
+    3.93297750033315640650e+00, /* 0x400F76BC, 0xE85EAD8A */
+    3.51194035591636932736e+01, /* 0x40418F48, 0x9DA6D129 */
+    9.10550110750781271918e+01, /* 0x4056C385, 0x4D2C1837 */
+    4.85590685197364919645e+01, /* 0x4048478F, 0x8EA83EE5 */
 };
 static const double ps3[5] = {
-  3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
-  3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
-  1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
-  8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
-  1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
+    3.47913095001251519989e+01, /* 0x40416549, 0xA134069C */
+    3.36762458747825746741e+02, /* 0x40750C33, 0x07F1A75F */
+    1.04687139975775130551e+03, /* 0x40905B7C, 0x5037D523 */
+    8.90811346398256432622e+02, /* 0x408BD67D, 0xA32E31E9 */
+    1.03787932439639277504e+02, /* 0x4059F26D, 0x7C2EED53 */
 };
 
-static const double pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-  1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
-  1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
-  2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
-  1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
-  1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
-  5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
+static const double pr2[6] = {
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    1.07710830106873743082e-07, /* 0x3E7CE9D4, 0xF65544F4 */
+    1.17176219462683348094e-01, /* 0x3FBDFF42, 0xBE760D83 */
+    2.36851496667608785174e+00, /* 0x4002F2B7, 0xF98FAEC0 */
+    1.22426109148261232917e+01, /* 0x40287C37, 0x7F71A964 */
+    1.76939711271687727390e+01, /* 0x4031B1A8, 0x177F8EE2 */
+    5.07352312588818499250e+00, /* 0x40144B49, 0xA574C1FE */
 };
 static const double ps2[5] = {
-  2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
-  1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
-  2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
-  1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
-  8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
+    2.14364859363821409488e+01, /* 0x40356FBD, 0x8AD5ECDC */
+    1.25290227168402751090e+02, /* 0x405F5293, 0x14F92CD5 */
+    2.32276469057162813669e+02, /* 0x406D08D8, 0xD5A2DBD9 */
+    1.17679373287147100768e+02, /* 0x405D6B7A, 0xDA1884A9 */
+    8.36463893371618283368e+00, /* 0x4020BAB1, 0xF44E5192 */
 };
 
-static double pone(double x)
-{
-	const double *p,*q;
-	double_t z,r,s;
-	uint32_t ix;
+static double pone(double x) {
+  const double *p, *q;
+  double_t z, r, s;
+  uint32_t ix;
 
-	GET_HIGH_WORD(ix, x);
-	ix &= 0x7fffffff;
-	if      (ix >= 0x40200000){p = pr8; q = ps8;}
-	else if (ix >= 0x40122E8B){p = pr5; q = ps5;}
-	else if (ix >= 0x4006DB6D){p = pr3; q = ps3;}
-	else /*ix >= 0x40000000*/ {p = pr2; q = ps2;}
-	z = 1.0/(x*x);
-	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-	s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
-	return 1.0+ r/s;
+  GET_HIGH_WORD(ix, x);
+  ix &= 0x7fffffff;
+  if (ix >= 0x40200000) {
+    p = pr8;
+    q = ps8;
+  } else if (ix >= 0x40122E8B) {
+    p = pr5;
+    q = ps5;
+  } else if (ix >= 0x4006DB6D) {
+    p = pr3;
+    q = ps3;
+  } else /*ix >= 0x40000000*/ {
+    p = pr2;
+    q = ps2;
+  }
+  z = 1.0 / (x * x);
+  r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+  s = 1.0 + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+  return 1.0 + r / s;
 }
 
 /* For x >= 8, the asymptotic expansions of qone is
@@ -275,88 +283,100 @@
  *      | qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
  */
 
-static const double qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-  0.00000000000000000000e+00, /* 0x00000000, 0x00000000 */
- -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
- -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
- -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
- -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
- -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
+static const double qr8[6] = {
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.00000000000000000000e+00,  /* 0x00000000, 0x00000000 */
+    -1.02539062499992714161e-01, /* 0xBFBA3FFF, 0xFFFFFDF3 */
+    -1.62717534544589987888e+01, /* 0xC0304591, 0xA26779F7 */
+    -7.59601722513950107896e+02, /* 0xC087BCD0, 0x53E4B576 */
+    -1.18498066702429587167e+04, /* 0xC0C724E7, 0x40F87415 */
+    -4.84385124285750353010e+04, /* 0xC0E7A6D0, 0x65D09C6A */
 };
 static const double qs8[6] = {
-  1.61395369700722909556e+02, /* 0x40642CA6, 0xDE5BCDE5 */
-  7.82538599923348465381e+03, /* 0x40BE9162, 0xD0D88419 */
-  1.33875336287249578163e+05, /* 0x4100579A, 0xB0B75E98 */
-  7.19657723683240939863e+05, /* 0x4125F653, 0x72869C19 */
-  6.66601232617776375264e+05, /* 0x412457D2, 0x7719AD5C */
- -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
+    1.61395369700722909556e+02,  /* 0x40642CA6, 0xDE5BCDE5 */
+    7.82538599923348465381e+03,  /* 0x40BE9162, 0xD0D88419 */
+    1.33875336287249578163e+05,  /* 0x4100579A, 0xB0B75E98 */
+    7.19657723683240939863e+05,  /* 0x4125F653, 0x72869C19 */
+    6.66601232617776375264e+05,  /* 0x412457D2, 0x7719AD5C */
+    -2.94490264303834643215e+05, /* 0xC111F969, 0x0EA5AA18 */
 };
 
-static const double qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
- -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
- -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
- -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
- -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
- -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
- -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
+static const double qr5[6] = {
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    -2.08979931141764104297e-11, /* 0xBDB6FA43, 0x1AA1A098 */
+    -1.02539050241375426231e-01, /* 0xBFBA3FFF, 0xCB597FEF */
+    -8.05644828123936029840e+00, /* 0xC0201CE6, 0xCA03AD4B */
+    -1.83669607474888380239e+02, /* 0xC066F56D, 0x6CA7B9B0 */
+    -1.37319376065508163265e+03, /* 0xC09574C6, 0x6931734F */
+    -2.61244440453215656817e+03, /* 0xC0A468E3, 0x88FDA79D */
 };
 static const double qs5[6] = {
-  8.12765501384335777857e+01, /* 0x405451B2, 0xFF5A11B2 */
-  1.99179873460485964642e+03, /* 0x409F1F31, 0xE77BF839 */
-  1.74684851924908907677e+04, /* 0x40D10F1F, 0x0D64CE29 */
-  4.98514270910352279316e+04, /* 0x40E8576D, 0xAABAD197 */
-  2.79480751638918118260e+04, /* 0x40DB4B04, 0xCF7C364B */
- -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
+    8.12765501384335777857e+01,  /* 0x405451B2, 0xFF5A11B2 */
+    1.99179873460485964642e+03,  /* 0x409F1F31, 0xE77BF839 */
+    1.74684851924908907677e+04,  /* 0x40D10F1F, 0x0D64CE29 */
+    4.98514270910352279316e+04,  /* 0x40E8576D, 0xAABAD197 */
+    2.79480751638918118260e+04,  /* 0x40DB4B04, 0xCF7C364B */
+    -4.71918354795128470869e+03, /* 0xC0B26F2E, 0xFCFFA004 */
 };
 
 static const double qr3[6] = {
- -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
- -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
- -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
- -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
- -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
- -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
+    -5.07831226461766561369e-09, /* 0xBE35CFA9, 0xD38FC84F */
+    -1.02537829820837089745e-01, /* 0xBFBA3FEB, 0x51AEED54 */
+    -4.61011581139473403113e+00, /* 0xC01270C2, 0x3302D9FF */
+    -5.78472216562783643212e+01, /* 0xC04CEC71, 0xC25D16DA */
+    -2.28244540737631695038e+02, /* 0xC06C87D3, 0x4718D55F */
+    -2.19210128478909325622e+02, /* 0xC06B66B9, 0x5F5C1BF6 */
 };
 static const double qs3[6] = {
-  4.76651550323729509273e+01, /* 0x4047D523, 0xCCD367E4 */
-  6.73865112676699709482e+02, /* 0x40850EEB, 0xC031EE3E */
-  3.38015286679526343505e+03, /* 0x40AA684E, 0x448E7C9A */
-  5.54772909720722782367e+03, /* 0x40B5ABBA, 0xA61D54A6 */
-  1.90311919338810798763e+03, /* 0x409DBC7A, 0x0DD4DF4B */
- -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
+    4.76651550323729509273e+01,  /* 0x4047D523, 0xCCD367E4 */
+    6.73865112676699709482e+02,  /* 0x40850EEB, 0xC031EE3E */
+    3.38015286679526343505e+03,  /* 0x40AA684E, 0x448E7C9A */
+    5.54772909720722782367e+03,  /* 0x40B5ABBA, 0xA61D54A6 */
+    1.90311919338810798763e+03,  /* 0x409DBC7A, 0x0DD4DF4B */
+    -1.35201191444307340817e+02, /* 0xC060E670, 0x290A311F */
 };
 
-static const double qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
- -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
- -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
- -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
- -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
- -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
- -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
+static const double qr2[6] = {
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    -1.78381727510958865572e-07, /* 0xBE87F126, 0x44C626D2 */
+    -1.02517042607985553460e-01, /* 0xBFBA3E8E, 0x9148B010 */
+    -2.75220568278187460720e+00, /* 0xC0060484, 0x69BB4EDA */
+    -1.96636162643703720221e+01, /* 0xC033A9E2, 0xC168907F */
+    -4.23253133372830490089e+01, /* 0xC04529A3, 0xDE104AAA */
+    -2.13719211703704061733e+01, /* 0xC0355F36, 0x39CF6E52 */
 };
 static const double qs2[6] = {
-  2.95333629060523854548e+01, /* 0x403D888A, 0x78AE64FF */
-  2.52981549982190529136e+02, /* 0x406F9F68, 0xDB821CBA */
-  7.57502834868645436472e+02, /* 0x4087AC05, 0xCE49A0F7 */
-  7.39393205320467245656e+02, /* 0x40871B25, 0x48D4C029 */
-  1.55949003336666123687e+02, /* 0x40637E5E, 0x3C3ED8D4 */
- -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
+    2.95333629060523854548e+01,  /* 0x403D888A, 0x78AE64FF */
+    2.52981549982190529136e+02,  /* 0x406F9F68, 0xDB821CBA */
+    7.57502834868645436472e+02,  /* 0x4087AC05, 0xCE49A0F7 */
+    7.39393205320467245656e+02,  /* 0x40871B25, 0x48D4C029 */
+    1.55949003336666123687e+02,  /* 0x40637E5E, 0x3C3ED8D4 */
+    -4.95949898822628210127e+00, /* 0xC013D686, 0xE71BE86B */
 };
 
-static double qone(double x)
-{
-	const double *p,*q;
-	double_t s,r,z;
-	uint32_t ix;
+static double qone(double x) {
+  const double *p, *q;
+  double_t s, r, z;
+  uint32_t ix;
 
-	GET_HIGH_WORD(ix, x);
-	ix &= 0x7fffffff;
-	if      (ix >= 0x40200000){p = qr8; q = qs8;}
-	else if (ix >= 0x40122E8B){p = qr5; q = qs5;}
-	else if (ix >= 0x4006DB6D){p = qr3; q = qs3;}
-	else /*ix >= 0x40000000*/ {p = qr2; q = qs2;}
-	z = 1.0/(x*x);
-	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-	s = 1.0+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
-	return (.375 + r/s)/x;
+  GET_HIGH_WORD(ix, x);
+  ix &= 0x7fffffff;
+  if (ix >= 0x40200000) {
+    p = qr8;
+    q = qs8;
+  } else if (ix >= 0x40122E8B) {
+    p = qr5;
+    q = qs5;
+  } else if (ix >= 0x4006DB6D) {
+    p = qr3;
+    q = qs3;
+  } else /*ix >= 0x40000000*/ {
+    p = qr2;
+    q = qs2;
+  }
+  z = 1.0 / (x * x);
+  r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+  s = 1.0 +
+      z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+  return (.375 + r / s) / x;
 }
diff --git a/fusl/src/math/j1f.c b/fusl/src/math/j1f.c
index 58875af..2001017 100644
--- a/fusl/src/math/j1f.c
+++ b/fusl/src/math/j1f.c
@@ -18,108 +18,103 @@
 
 static float ponef(float), qonef(float);
 
-static const float
-invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
-tpi       = 6.3661974669e-01; /* 0x3f22f983 */
+static const float invsqrtpi = 5.6418961287e-01, /* 0x3f106ebb */
+    tpi = 6.3661974669e-01;                      /* 0x3f22f983 */
 
-static float common(uint32_t ix, float x, int y1, int sign)
-{
-	double z,s,c,ss,cc;
+static float common(uint32_t ix, float x, int y1, int sign) {
+  double z, s, c, ss, cc;
 
-	s = sinf(x);
-	if (y1)
-		s = -s;
-	c = cosf(x);
-	cc = s-c;
-	if (ix < 0x7f000000) {
-		ss = -s-c;
-		z = cosf(2*x);
-		if (s*c > 0)
-			cc = z/ss;
-		else
-			ss = z/cc;
-		if (ix < 0x58800000) {
-			if (y1)
-				ss = -ss;
-			cc = ponef(x)*cc-qonef(x)*ss;
-		}
-	}
-	if (sign)
-		cc = -cc;
-	return invsqrtpi*cc/sqrtf(x);
+  s = sinf(x);
+  if (y1)
+    s = -s;
+  c = cosf(x);
+  cc = s - c;
+  if (ix < 0x7f000000) {
+    ss = -s - c;
+    z = cosf(2 * x);
+    if (s * c > 0)
+      cc = z / ss;
+    else
+      ss = z / cc;
+    if (ix < 0x58800000) {
+      if (y1)
+        ss = -ss;
+      cc = ponef(x) * cc - qonef(x) * ss;
+    }
+  }
+  if (sign)
+    cc = -cc;
+  return invsqrtpi * cc / sqrtf(x);
 }
 
 /* R0/S0 on [0,2] */
-static const float
-r00 = -6.2500000000e-02, /* 0xbd800000 */
-r01 =  1.4070566976e-03, /* 0x3ab86cfd */
-r02 = -1.5995563444e-05, /* 0xb7862e36 */
-r03 =  4.9672799207e-08, /* 0x335557d2 */
-s01 =  1.9153760746e-02, /* 0x3c9ce859 */
-s02 =  1.8594678841e-04, /* 0x3942fab6 */
-s03 =  1.1771846857e-06, /* 0x359dffc2 */
-s04 =  5.0463624390e-09, /* 0x31ad6446 */
-s05 =  1.2354227016e-11; /* 0x2d59567e */
+static const float r00 = -6.2500000000e-02, /* 0xbd800000 */
+    r01 = 1.4070566976e-03,                 /* 0x3ab86cfd */
+    r02 = -1.5995563444e-05,                /* 0xb7862e36 */
+    r03 = 4.9672799207e-08,                 /* 0x335557d2 */
+    s01 = 1.9153760746e-02,                 /* 0x3c9ce859 */
+    s02 = 1.8594678841e-04,                 /* 0x3942fab6 */
+    s03 = 1.1771846857e-06,                 /* 0x359dffc2 */
+    s04 = 5.0463624390e-09,                 /* 0x31ad6446 */
+    s05 = 1.2354227016e-11;                 /* 0x2d59567e */
 
-float j1f(float x)
-{
-	float z,r,s;
-	uint32_t ix;
-	int sign;
+float j1f(float x) {
+  float z, r, s;
+  uint32_t ix;
+  int sign;
 
-	GET_FLOAT_WORD(ix, x);
-	sign = ix>>31;
-	ix &= 0x7fffffff;
-	if (ix >= 0x7f800000)
-		return 1/(x*x);
-	if (ix >= 0x40000000)  /* |x| >= 2 */
-		return common(ix, fabsf(x), 0, sign);
-	if (ix >= 0x32000000) {  /* |x| >= 2**-27 */
-		z = x*x;
-		r = z*(r00+z*(r01+z*(r02+z*r03)));
-		s = 1+z*(s01+z*(s02+z*(s03+z*(s04+z*s05))));
-		z = 0.5f + r/s;
-	} else
-		/* raise inexact if x!=0 */
-		z = 0.5f + x;
-	return z*x;
+  GET_FLOAT_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
+  if (ix >= 0x7f800000)
+    return 1 / (x * x);
+  if (ix >= 0x40000000) /* |x| >= 2 */
+    return common(ix, fabsf(x), 0, sign);
+  if (ix >= 0x32000000) { /* |x| >= 2**-27 */
+    z = x * x;
+    r = z * (r00 + z * (r01 + z * (r02 + z * r03)));
+    s = 1 + z * (s01 + z * (s02 + z * (s03 + z * (s04 + z * s05))));
+    z = 0.5f + r / s;
+  } else
+    /* raise inexact if x!=0 */
+    z = 0.5f + x;
+  return z * x;
 }
 
 static const float U0[5] = {
- -1.9605709612e-01, /* 0xbe48c331 */
-  5.0443872809e-02, /* 0x3d4e9e3c */
- -1.9125689287e-03, /* 0xbafaaf2a */
-  2.3525259166e-05, /* 0x37c5581c */
- -9.1909917899e-08, /* 0xb3c56003 */
+    -1.9605709612e-01, /* 0xbe48c331 */
+    5.0443872809e-02,  /* 0x3d4e9e3c */
+    -1.9125689287e-03, /* 0xbafaaf2a */
+    2.3525259166e-05,  /* 0x37c5581c */
+    -9.1909917899e-08, /* 0xb3c56003 */
 };
 static const float V0[5] = {
-  1.9916731864e-02, /* 0x3ca3286a */
-  2.0255257550e-04, /* 0x3954644b */
-  1.3560879779e-06, /* 0x35b602d4 */
-  6.2274145840e-09, /* 0x31d5f8eb */
-  1.6655924903e-11, /* 0x2d9281cf */
+    1.9916731864e-02, /* 0x3ca3286a */
+    2.0255257550e-04, /* 0x3954644b */
+    1.3560879779e-06, /* 0x35b602d4 */
+    6.2274145840e-09, /* 0x31d5f8eb */
+    1.6655924903e-11, /* 0x2d9281cf */
 };
 
-float y1f(float x)
-{
-	float z,u,v;
-	uint32_t ix;
+float y1f(float x) {
+  float z, u, v;
+  uint32_t ix;
 
-	GET_FLOAT_WORD(ix, x);
-	if ((ix & 0x7fffffff) == 0)
-		return -1/0.0f;
-	if (ix>>31)
-		return 0/0.0f;
-	if (ix >= 0x7f800000)
-		return 1/x;
-	if (ix >= 0x40000000)  /* |x| >= 2.0 */
-		return common(ix,x,1,0);
-	if (ix < 0x32000000)  /* x < 2**-27 */
-		return -tpi/x;
-	z = x*x;
-	u = U0[0]+z*(U0[1]+z*(U0[2]+z*(U0[3]+z*U0[4])));
-	v = 1.0f+z*(V0[0]+z*(V0[1]+z*(V0[2]+z*(V0[3]+z*V0[4]))));
-	return x*(u/v) + tpi*(j1f(x)*logf(x)-1.0f/x);
+  GET_FLOAT_WORD(ix, x);
+  if ((ix & 0x7fffffff) == 0)
+    return -1 / 0.0f;
+  if (ix >> 31)
+    return 0 / 0.0f;
+  if (ix >= 0x7f800000)
+    return 1 / x;
+  if (ix >= 0x40000000) /* |x| >= 2.0 */
+    return common(ix, x, 1, 0);
+  if (ix < 0x32000000) /* x < 2**-27 */
+    return -tpi / x;
+  z = x * x;
+  u = U0[0] + z * (U0[1] + z * (U0[2] + z * (U0[3] + z * U0[4])));
+  v = 1.0f + z * (V0[0] + z * (V0[1] + z * (V0[2] + z * (V0[3] + z * V0[4]))));
+  return x * (u / v) + tpi * (j1f(x) * logf(x) - 1.0f / x);
 }
 
 /* For x >= 8, the asymptotic expansions of pone is
@@ -132,86 +127,97 @@
  *      | pone(x)-1-R/S | <= 2  ** ( -60.06)
  */
 
-static const float pr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-  0.0000000000e+00, /* 0x00000000 */
-  1.1718750000e-01, /* 0x3df00000 */
-  1.3239480972e+01, /* 0x4153d4ea */
-  4.1205184937e+02, /* 0x43ce06a3 */
-  3.8747453613e+03, /* 0x45722bed */
-  7.9144794922e+03, /* 0x45f753d6 */
+static const float pr8[6] = {
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.0000000000e+00, /* 0x00000000 */
+    1.1718750000e-01, /* 0x3df00000 */
+    1.3239480972e+01, /* 0x4153d4ea */
+    4.1205184937e+02, /* 0x43ce06a3 */
+    3.8747453613e+03, /* 0x45722bed */
+    7.9144794922e+03, /* 0x45f753d6 */
 };
 static const float ps8[5] = {
-  1.1420736694e+02, /* 0x42e46a2c */
-  3.6509309082e+03, /* 0x45642ee5 */
-  3.6956207031e+04, /* 0x47105c35 */
-  9.7602796875e+04, /* 0x47bea166 */
-  3.0804271484e+04, /* 0x46f0a88b */
+    1.1420736694e+02, /* 0x42e46a2c */
+    3.6509309082e+03, /* 0x45642ee5 */
+    3.6956207031e+04, /* 0x47105c35 */
+    9.7602796875e+04, /* 0x47bea166 */
+    3.0804271484e+04, /* 0x46f0a88b */
 };
 
-static const float pr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
-  1.3199052094e-11, /* 0x2d68333f */
-  1.1718749255e-01, /* 0x3defffff */
-  6.8027510643e+00, /* 0x40d9b023 */
-  1.0830818176e+02, /* 0x42d89dca */
-  5.1763616943e+02, /* 0x440168b7 */
-  5.2871520996e+02, /* 0x44042dc6 */
+static const float pr5[6] = {
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    1.3199052094e-11, /* 0x2d68333f */
+    1.1718749255e-01, /* 0x3defffff */
+    6.8027510643e+00, /* 0x40d9b023 */
+    1.0830818176e+02, /* 0x42d89dca */
+    5.1763616943e+02, /* 0x440168b7 */
+    5.2871520996e+02, /* 0x44042dc6 */
 };
 static const float ps5[5] = {
-  5.9280597687e+01, /* 0x426d1f55 */
-  9.9140142822e+02, /* 0x4477d9b1 */
-  5.3532670898e+03, /* 0x45a74a23 */
-  7.8446904297e+03, /* 0x45f52586 */
-  1.5040468750e+03, /* 0x44bc0180 */
+    5.9280597687e+01, /* 0x426d1f55 */
+    9.9140142822e+02, /* 0x4477d9b1 */
+    5.3532670898e+03, /* 0x45a74a23 */
+    7.8446904297e+03, /* 0x45f52586 */
+    1.5040468750e+03, /* 0x44bc0180 */
 };
 
 static const float pr3[6] = {
-  3.0250391081e-09, /* 0x314fe10d */
-  1.1718686670e-01, /* 0x3defffab */
-  3.9329774380e+00, /* 0x407bb5e7 */
-  3.5119403839e+01, /* 0x420c7a45 */
-  9.1055007935e+01, /* 0x42b61c2a */
-  4.8559066772e+01, /* 0x42423c7c */
+    3.0250391081e-09, /* 0x314fe10d */
+    1.1718686670e-01, /* 0x3defffab */
+    3.9329774380e+00, /* 0x407bb5e7 */
+    3.5119403839e+01, /* 0x420c7a45 */
+    9.1055007935e+01, /* 0x42b61c2a */
+    4.8559066772e+01, /* 0x42423c7c */
 };
 static const float ps3[5] = {
-  3.4791309357e+01, /* 0x420b2a4d */
-  3.3676245117e+02, /* 0x43a86198 */
-  1.0468714600e+03, /* 0x4482dbe3 */
-  8.9081134033e+02, /* 0x445eb3ed */
-  1.0378793335e+02, /* 0x42cf936c */
+    3.4791309357e+01, /* 0x420b2a4d */
+    3.3676245117e+02, /* 0x43a86198 */
+    1.0468714600e+03, /* 0x4482dbe3 */
+    8.9081134033e+02, /* 0x445eb3ed */
+    1.0378793335e+02, /* 0x42cf936c */
 };
 
-static const float pr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
-  1.0771083225e-07, /* 0x33e74ea8 */
-  1.1717621982e-01, /* 0x3deffa16 */
-  2.3685150146e+00, /* 0x401795c0 */
-  1.2242610931e+01, /* 0x4143e1bc */
-  1.7693971634e+01, /* 0x418d8d41 */
-  5.0735230446e+00, /* 0x40a25a4d */
+static const float pr2[6] = {
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    1.0771083225e-07, /* 0x33e74ea8 */
+    1.1717621982e-01, /* 0x3deffa16 */
+    2.3685150146e+00, /* 0x401795c0 */
+    1.2242610931e+01, /* 0x4143e1bc */
+    1.7693971634e+01, /* 0x418d8d41 */
+    5.0735230446e+00, /* 0x40a25a4d */
 };
 static const float ps2[5] = {
-  2.1436485291e+01, /* 0x41ab7dec */
-  1.2529022980e+02, /* 0x42fa9499 */
-  2.3227647400e+02, /* 0x436846c7 */
-  1.1767937469e+02, /* 0x42eb5bd7 */
-  8.3646392822e+00, /* 0x4105d590 */
+    2.1436485291e+01, /* 0x41ab7dec */
+    1.2529022980e+02, /* 0x42fa9499 */
+    2.3227647400e+02, /* 0x436846c7 */
+    1.1767937469e+02, /* 0x42eb5bd7 */
+    8.3646392822e+00, /* 0x4105d590 */
 };
 
-static float ponef(float x)
-{
-	const float *p,*q;
-	float_t z,r,s;
-	uint32_t ix;
+static float ponef(float x) {
+  const float *p, *q;
+  float_t z, r, s;
+  uint32_t ix;
 
-	GET_FLOAT_WORD(ix, x);
-	ix &= 0x7fffffff;
-	if      (ix >= 0x41000000){p = pr8; q = ps8;}
-	else if (ix >= 0x40f71c58){p = pr5; q = ps5;}
-	else if (ix >= 0x4036db68){p = pr3; q = ps3;}
-	else /*ix >= 0x40000000*/ {p = pr2; q = ps2;}
-	z = 1.0f/(x*x);
-	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-	s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*q[4]))));
-	return 1.0f + r/s;
+  GET_FLOAT_WORD(ix, x);
+  ix &= 0x7fffffff;
+  if (ix >= 0x41000000) {
+    p = pr8;
+    q = ps8;
+  } else if (ix >= 0x40f71c58) {
+    p = pr5;
+    q = ps5;
+  } else if (ix >= 0x4036db68) {
+    p = pr3;
+    q = ps3;
+  } else /*ix >= 0x40000000*/ {
+    p = pr2;
+    q = ps2;
+  }
+  z = 1.0f / (x * x);
+  r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+  s = 1.0f + z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * q[4]))));
+  return 1.0f + r / s;
 }
 
 /* For x >= 8, the asymptotic expansions of qone is
@@ -224,88 +230,100 @@
  *      | qone(x)/s -0.375-R/S | <= 2  ** ( -61.13)
  */
 
-static const float qr8[6] = { /* for x in [inf, 8]=1/[0,0.125] */
-  0.0000000000e+00, /* 0x00000000 */
- -1.0253906250e-01, /* 0xbdd20000 */
- -1.6271753311e+01, /* 0xc1822c8d */
- -7.5960174561e+02, /* 0xc43de683 */
- -1.1849806641e+04, /* 0xc639273a */
- -4.8438511719e+04, /* 0xc73d3683 */
+static const float qr8[6] = {
+    /* for x in [inf, 8]=1/[0,0.125] */
+    0.0000000000e+00,  /* 0x00000000 */
+    -1.0253906250e-01, /* 0xbdd20000 */
+    -1.6271753311e+01, /* 0xc1822c8d */
+    -7.5960174561e+02, /* 0xc43de683 */
+    -1.1849806641e+04, /* 0xc639273a */
+    -4.8438511719e+04, /* 0xc73d3683 */
 };
 static const float qs8[6] = {
-  1.6139537048e+02, /* 0x43216537 */
-  7.8253862305e+03, /* 0x45f48b17 */
-  1.3387534375e+05, /* 0x4802bcd6 */
-  7.1965775000e+05, /* 0x492fb29c */
-  6.6660125000e+05, /* 0x4922be94 */
- -2.9449025000e+05, /* 0xc88fcb48 */
+    1.6139537048e+02,  /* 0x43216537 */
+    7.8253862305e+03,  /* 0x45f48b17 */
+    1.3387534375e+05,  /* 0x4802bcd6 */
+    7.1965775000e+05,  /* 0x492fb29c */
+    6.6660125000e+05,  /* 0x4922be94 */
+    -2.9449025000e+05, /* 0xc88fcb48 */
 };
 
-static const float qr5[6] = { /* for x in [8,4.5454]=1/[0.125,0.22001] */
- -2.0897993405e-11, /* 0xadb7d219 */
- -1.0253904760e-01, /* 0xbdd1fffe */
- -8.0564479828e+00, /* 0xc100e736 */
- -1.8366960144e+02, /* 0xc337ab6b */
- -1.3731937256e+03, /* 0xc4aba633 */
- -2.6124443359e+03, /* 0xc523471c */
+static const float qr5[6] = {
+    /* for x in [8,4.5454]=1/[0.125,0.22001] */
+    -2.0897993405e-11, /* 0xadb7d219 */
+    -1.0253904760e-01, /* 0xbdd1fffe */
+    -8.0564479828e+00, /* 0xc100e736 */
+    -1.8366960144e+02, /* 0xc337ab6b */
+    -1.3731937256e+03, /* 0xc4aba633 */
+    -2.6124443359e+03, /* 0xc523471c */
 };
 static const float qs5[6] = {
-  8.1276550293e+01, /* 0x42a28d98 */
-  1.9917987061e+03, /* 0x44f8f98f */
-  1.7468484375e+04, /* 0x468878f8 */
-  4.9851425781e+04, /* 0x4742bb6d */
-  2.7948074219e+04, /* 0x46da5826 */
- -4.7191835938e+03, /* 0xc5937978 */
+    8.1276550293e+01,  /* 0x42a28d98 */
+    1.9917987061e+03,  /* 0x44f8f98f */
+    1.7468484375e+04,  /* 0x468878f8 */
+    4.9851425781e+04,  /* 0x4742bb6d */
+    2.7948074219e+04,  /* 0x46da5826 */
+    -4.7191835938e+03, /* 0xc5937978 */
 };
 
 static const float qr3[6] = {
- -5.0783124372e-09, /* 0xb1ae7d4f */
- -1.0253783315e-01, /* 0xbdd1ff5b */
- -4.6101160049e+00, /* 0xc0938612 */
- -5.7847221375e+01, /* 0xc267638e */
- -2.2824453735e+02, /* 0xc3643e9a */
- -2.1921012878e+02, /* 0xc35b35cb */
+    -5.0783124372e-09, /* 0xb1ae7d4f */
+    -1.0253783315e-01, /* 0xbdd1ff5b */
+    -4.6101160049e+00, /* 0xc0938612 */
+    -5.7847221375e+01, /* 0xc267638e */
+    -2.2824453735e+02, /* 0xc3643e9a */
+    -2.1921012878e+02, /* 0xc35b35cb */
 };
 static const float qs3[6] = {
-  4.7665153503e+01, /* 0x423ea91e */
-  6.7386511230e+02, /* 0x4428775e */
-  3.3801528320e+03, /* 0x45534272 */
-  5.5477290039e+03, /* 0x45ad5dd5 */
-  1.9031191406e+03, /* 0x44ede3d0 */
- -1.3520118713e+02, /* 0xc3073381 */
+    4.7665153503e+01,  /* 0x423ea91e */
+    6.7386511230e+02,  /* 0x4428775e */
+    3.3801528320e+03,  /* 0x45534272 */
+    5.5477290039e+03,  /* 0x45ad5dd5 */
+    1.9031191406e+03,  /* 0x44ede3d0 */
+    -1.3520118713e+02, /* 0xc3073381 */
 };
 
-static const float qr2[6] = {/* for x in [2.8570,2]=1/[0.3499,0.5] */
- -1.7838172539e-07, /* 0xb43f8932 */
- -1.0251704603e-01, /* 0xbdd1f475 */
- -2.7522056103e+00, /* 0xc0302423 */
- -1.9663616180e+01, /* 0xc19d4f16 */
- -4.2325313568e+01, /* 0xc2294d1f */
- -2.1371921539e+01, /* 0xc1aaf9b2 */
+static const float qr2[6] = {
+    /* for x in [2.8570,2]=1/[0.3499,0.5] */
+    -1.7838172539e-07, /* 0xb43f8932 */
+    -1.0251704603e-01, /* 0xbdd1f475 */
+    -2.7522056103e+00, /* 0xc0302423 */
+    -1.9663616180e+01, /* 0xc19d4f16 */
+    -4.2325313568e+01, /* 0xc2294d1f */
+    -2.1371921539e+01, /* 0xc1aaf9b2 */
 };
 static const float qs2[6] = {
-  2.9533363342e+01, /* 0x41ec4454 */
-  2.5298155212e+02, /* 0x437cfb47 */
-  7.5750280762e+02, /* 0x443d602e */
-  7.3939318848e+02, /* 0x4438d92a */
-  1.5594900513e+02, /* 0x431bf2f2 */
- -4.9594988823e+00, /* 0xc09eb437 */
+    2.9533363342e+01,  /* 0x41ec4454 */
+    2.5298155212e+02,  /* 0x437cfb47 */
+    7.5750280762e+02,  /* 0x443d602e */
+    7.3939318848e+02,  /* 0x4438d92a */
+    1.5594900513e+02,  /* 0x431bf2f2 */
+    -4.9594988823e+00, /* 0xc09eb437 */
 };
 
-static float qonef(float x)
-{
-	const float *p,*q;
-	float_t s,r,z;
-	uint32_t ix;
+static float qonef(float x) {
+  const float *p, *q;
+  float_t s, r, z;
+  uint32_t ix;
 
-	GET_FLOAT_WORD(ix, x);
-	ix &= 0x7fffffff;
-	if      (ix >= 0x40200000){p = qr8; q = qs8;}
-	else if (ix >= 0x40f71c58){p = qr5; q = qs5;}
-	else if (ix >= 0x4036db68){p = qr3; q = qs3;}
-	else /*ix >= 0x40000000*/ {p = qr2; q = qs2;}
-	z = 1.0f/(x*x);
-	r = p[0]+z*(p[1]+z*(p[2]+z*(p[3]+z*(p[4]+z*p[5]))));
-	s = 1.0f+z*(q[0]+z*(q[1]+z*(q[2]+z*(q[3]+z*(q[4]+z*q[5])))));
-	return (.375f + r/s)/x;
+  GET_FLOAT_WORD(ix, x);
+  ix &= 0x7fffffff;
+  if (ix >= 0x40200000) {
+    p = qr8;
+    q = qs8;
+  } else if (ix >= 0x40f71c58) {
+    p = qr5;
+    q = qs5;
+  } else if (ix >= 0x4036db68) {
+    p = qr3;
+    q = qs3;
+  } else /*ix >= 0x40000000*/ {
+    p = qr2;
+    q = qs2;
+  }
+  z = 1.0f / (x * x);
+  r = p[0] + z * (p[1] + z * (p[2] + z * (p[3] + z * (p[4] + z * p[5]))));
+  s = 1.0f +
+      z * (q[0] + z * (q[1] + z * (q[2] + z * (q[3] + z * (q[4] + z * q[5])))));
+  return (.375f + r / s) / x;
 }
diff --git a/fusl/src/math/jn.c b/fusl/src/math/jn.c
index 4878a54..a0dcbaf 100644
--- a/fusl/src/math/jn.c
+++ b/fusl/src/math/jn.c
@@ -36,245 +36,259 @@
 
 #include "libm.h"
 
-static const double invsqrtpi = 5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
+static const double invsqrtpi =
+    5.64189583547756279280e-01; /* 0x3FE20DD7, 0x50429B6D */
 
-double jn(int n, double x)
-{
-	uint32_t ix, lx;
-	int nm1, i, sign;
-	double a, b, temp;
+double jn(int n, double x) {
+  uint32_t ix, lx;
+  int nm1, i, sign;
+  double a, b, temp;
 
-	EXTRACT_WORDS(ix, lx, x);
-	sign = ix>>31;
-	ix &= 0x7fffffff;
+  EXTRACT_WORDS(ix, lx, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
 
-	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
-		return x;
+  if ((ix | (lx | -lx) >> 31) > 0x7ff00000) /* nan */
+    return x;
 
-	/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
-	 * Thus, J(-n,x) = J(n,-x)
-	 */
-	/* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
-	if (n == 0)
-		return j0(x);
-	if (n < 0) {
-		nm1 = -(n+1);
-		x = -x;
-		sign ^= 1;
-	} else
-		nm1 = n-1;
-	if (nm1 == 0)
-		return j1(x);
+  /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+   * Thus, J(-n,x) = J(n,-x)
+   */
+  /* nm1 = |n|-1 is used instead of |n| to handle n==INT_MIN */
+  if (n == 0)
+    return j0(x);
+  if (n < 0) {
+    nm1 = -(n + 1);
+    x = -x;
+    sign ^= 1;
+  } else
+    nm1 = n - 1;
+  if (nm1 == 0)
+    return j1(x);
 
-	sign &= n;  /* even n: 0, odd n: signbit(x) */
-	x = fabs(x);
-	if ((ix|lx) == 0 || ix == 0x7ff00000)  /* if x is 0 or inf */
-		b = 0.0;
-	else if (nm1 < x) {
-		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
-		if (ix >= 0x52d00000) { /* x > 2**302 */
-			/* (x >> n**2)
-			 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-			 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-			 *      Let s=sin(x), c=cos(x),
-			 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
-			 *
-			 *             n    sin(xn)*sqt2    cos(xn)*sqt2
-			 *          ----------------------------------
-			 *             0     s-c             c+s
-			 *             1    -s-c            -c+s
-			 *             2    -s+c            -c-s
-			 *             3     s+c             c-s
-			 */
-			switch(nm1&3) {
-			case 0: temp = -cos(x)+sin(x); break;
-			case 1: temp = -cos(x)-sin(x); break;
-			case 2: temp =  cos(x)-sin(x); break;
-			default:
-			case 3: temp =  cos(x)+sin(x); break;
-			}
-			b = invsqrtpi*temp/sqrt(x);
-		} else {
-			a = j0(x);
-			b = j1(x);
-			for (i=0; i<nm1; ) {
-				i++;
-				temp = b;
-				b = b*(2.0*i/x) - a; /* avoid underflow */
-				a = temp;
-			}
-		}
-	} else {
-		if (ix < 0x3e100000) { /* x < 2**-29 */
-			/* x is tiny, return the first Taylor expansion of J(n,x)
-			 * J(n,x) = 1/n!*(x/2)^n  - ...
-			 */
-			if (nm1 > 32)  /* underflow */
-				b = 0.0;
-			else {
-				temp = x*0.5;
-				b = temp;
-				a = 1.0;
-				for (i=2; i<=nm1+1; i++) {
-					a *= (double)i; /* a = n! */
-					b *= temp;      /* b = (x/2)^n */
-				}
-				b = b/a;
-			}
-		} else {
-			/* use backward recurrence */
-			/*                      x      x^2      x^2
-			 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
-			 *                      2n  - 2(n+1) - 2(n+2)
-			 *
-			 *                      1      1        1
-			 *  (for large x)   =  ----  ------   ------   .....
-			 *                      2n   2(n+1)   2(n+2)
-			 *                      -- - ------ - ------ -
-			 *                       x     x         x
-			 *
-			 * Let w = 2n/x and h=2/x, then the above quotient
-			 * is equal to the continued fraction:
-			 *                  1
-			 *      = -----------------------
-			 *                     1
-			 *         w - -----------------
-			 *                        1
-			 *              w+h - ---------
-			 *                     w+2h - ...
-			 *
-			 * To determine how many terms needed, let
-			 * Q(0) = w, Q(1) = w(w+h) - 1,
-			 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
-			 * When Q(k) > 1e4      good for single
-			 * When Q(k) > 1e9      good for double
-			 * When Q(k) > 1e17     good for quadruple
-			 */
-			/* determine k */
-			double t,q0,q1,w,h,z,tmp,nf;
-			int k;
+  sign &= n; /* even n: 0, odd n: signbit(x) */
+  x = fabs(x);
+  if ((ix | lx) == 0 || ix == 0x7ff00000) /* if x is 0 or inf */
+    b = 0.0;
+  else if (nm1 < x) {
+    /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+    if (ix >= 0x52d00000) { /* x > 2**302 */
+                            /* (x >> n**2)
+                             *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+                             *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+                             *      Let s=sin(x), c=cos(x),
+                             *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+                             *
+                             *             n    sin(xn)*sqt2    cos(xn)*sqt2
+                             *          ----------------------------------
+                             *             0     s-c             c+s
+                             *             1    -s-c            -c+s
+                             *             2    -s+c            -c-s
+                             *             3     s+c             c-s
+                             */
+      switch (nm1 & 3) {
+        case 0:
+          temp = -cos(x) + sin(x);
+          break;
+        case 1:
+          temp = -cos(x) - sin(x);
+          break;
+        case 2:
+          temp = cos(x) - sin(x);
+          break;
+        default:
+        case 3:
+          temp = cos(x) + sin(x);
+          break;
+      }
+      b = invsqrtpi * temp / sqrt(x);
+    } else {
+      a = j0(x);
+      b = j1(x);
+      for (i = 0; i < nm1;) {
+        i++;
+        temp = b;
+        b = b * (2.0 * i / x) - a; /* avoid underflow */
+        a = temp;
+      }
+    }
+  } else {
+    if (ix < 0x3e100000) { /* x < 2**-29 */
+      /* x is tiny, return the first Taylor expansion of J(n,x)
+       * J(n,x) = 1/n!*(x/2)^n  - ...
+       */
+      if (nm1 > 32) /* underflow */
+        b = 0.0;
+      else {
+        temp = x * 0.5;
+        b = temp;
+        a = 1.0;
+        for (i = 2; i <= nm1 + 1; i++) {
+          a *= (double)i; /* a = n! */
+          b *= temp;      /* b = (x/2)^n */
+        }
+        b = b / a;
+      }
+    } else {
+      /* use backward recurrence */
+      /*                      x      x^2      x^2
+       *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
+       *                      2n  - 2(n+1) - 2(n+2)
+       *
+       *                      1      1        1
+       *  (for large x)   =  ----  ------   ------   .....
+       *                      2n   2(n+1)   2(n+2)
+       *                      -- - ------ - ------ -
+       *                       x     x         x
+       *
+       * Let w = 2n/x and h=2/x, then the above quotient
+       * is equal to the continued fraction:
+       *                  1
+       *      = -----------------------
+       *                     1
+       *         w - -----------------
+       *                        1
+       *              w+h - ---------
+       *                     w+2h - ...
+       *
+       * To determine how many terms needed, let
+       * Q(0) = w, Q(1) = w(w+h) - 1,
+       * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+       * When Q(k) > 1e4      good for single
+       * When Q(k) > 1e9      good for double
+       * When Q(k) > 1e17     good for quadruple
+       */
+      /* determine k */
+      double t, q0, q1, w, h, z, tmp, nf;
+      int k;
 
-			nf = nm1 + 1.0;
-			w = 2*nf/x;
-			h = 2/x;
-			z = w+h;
-			q0 = w;
-			q1 = w*z - 1.0;
-			k = 1;
-			while (q1 < 1.0e9) {
-				k += 1;
-				z += h;
-				tmp = z*q1 - q0;
-				q0 = q1;
-				q1 = tmp;
-			}
-			for (t=0.0, i=k; i>=0; i--)
-				t = 1/(2*(i+nf)/x - t);
-			a = t;
-			b = 1.0;
-			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
-			 *  Hence, if n*(log(2n/x)) > ...
-			 *  single 8.8722839355e+01
-			 *  double 7.09782712893383973096e+02
-			 *  long double 1.1356523406294143949491931077970765006170e+04
-			 *  then recurrent value may overflow and the result is
-			 *  likely underflow to zero
-			 */
-			tmp = nf*log(fabs(w));
-			if (tmp < 7.09782712893383973096e+02) {
-				for (i=nm1; i>0; i--) {
-					temp = b;
-					b = b*(2.0*i)/x - a;
-					a = temp;
-				}
-			} else {
-				for (i=nm1; i>0; i--) {
-					temp = b;
-					b = b*(2.0*i)/x - a;
-					a = temp;
-					/* scale b to avoid spurious overflow */
-					if (b > 0x1p500) {
-						a /= b;
-						t /= b;
-						b  = 1.0;
-					}
-				}
-			}
-			z = j0(x);
-			w = j1(x);
-			if (fabs(z) >= fabs(w))
-				b = t*z/b;
-			else
-				b = t*w/a;
-		}
-	}
-	return sign ? -b : b;
+      nf = nm1 + 1.0;
+      w = 2 * nf / x;
+      h = 2 / x;
+      z = w + h;
+      q0 = w;
+      q1 = w * z - 1.0;
+      k = 1;
+      while (q1 < 1.0e9) {
+        k += 1;
+        z += h;
+        tmp = z * q1 - q0;
+        q0 = q1;
+        q1 = tmp;
+      }
+      for (t = 0.0, i = k; i >= 0; i--)
+        t = 1 / (2 * (i + nf) / x - t);
+      a = t;
+      b = 1.0;
+      /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+       *  Hence, if n*(log(2n/x)) > ...
+       *  single 8.8722839355e+01
+       *  double 7.09782712893383973096e+02
+       *  long double 1.1356523406294143949491931077970765006170e+04
+       *  then recurrent value may overflow and the result is
+       *  likely underflow to zero
+       */
+      tmp = nf * log(fabs(w));
+      if (tmp < 7.09782712893383973096e+02) {
+        for (i = nm1; i > 0; i--) {
+          temp = b;
+          b = b * (2.0 * i) / x - a;
+          a = temp;
+        }
+      } else {
+        for (i = nm1; i > 0; i--) {
+          temp = b;
+          b = b * (2.0 * i) / x - a;
+          a = temp;
+          /* scale b to avoid spurious overflow */
+          if (b > 0x1p500) {
+            a /= b;
+            t /= b;
+            b = 1.0;
+          }
+        }
+      }
+      z = j0(x);
+      w = j1(x);
+      if (fabs(z) >= fabs(w))
+        b = t * z / b;
+      else
+        b = t * w / a;
+    }
+  }
+  return sign ? -b : b;
 }
 
+double yn(int n, double x) {
+  uint32_t ix, lx, ib;
+  int nm1, sign, i;
+  double a, b, temp;
 
-double yn(int n, double x)
-{
-	uint32_t ix, lx, ib;
-	int nm1, sign, i;
-	double a, b, temp;
+  EXTRACT_WORDS(ix, lx, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
 
-	EXTRACT_WORDS(ix, lx, x);
-	sign = ix>>31;
-	ix &= 0x7fffffff;
+  if ((ix | (lx | -lx) >> 31) > 0x7ff00000) /* nan */
+    return x;
+  if (sign && (ix | lx) != 0) /* x < 0 */
+    return 0 / 0.0;
+  if (ix == 0x7ff00000)
+    return 0.0;
 
-	if ((ix | (lx|-lx)>>31) > 0x7ff00000) /* nan */
-		return x;
-	if (sign && (ix|lx)!=0) /* x < 0 */
-		return 0/0.0;
-	if (ix == 0x7ff00000)
-		return 0.0;
+  if (n == 0)
+    return y0(x);
+  if (n < 0) {
+    nm1 = -(n + 1);
+    sign = n & 1;
+  } else {
+    nm1 = n - 1;
+    sign = 0;
+  }
+  if (nm1 == 0)
+    return sign ? -y1(x) : y1(x);
 
-	if (n == 0)
-		return y0(x);
-	if (n < 0) {
-		nm1 = -(n+1);
-		sign = n&1;
-	} else {
-		nm1 = n-1;
-		sign = 0;
-	}
-	if (nm1 == 0)
-		return sign ? -y1(x) : y1(x);
-
-	if (ix >= 0x52d00000) { /* x > 2**302 */
-		/* (x >> n**2)
-		 *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-		 *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
-		 *      Let s=sin(x), c=cos(x),
-		 *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
-		 *
-		 *             n    sin(xn)*sqt2    cos(xn)*sqt2
-		 *          ----------------------------------
-		 *             0     s-c             c+s
-		 *             1    -s-c            -c+s
-		 *             2    -s+c            -c-s
-		 *             3     s+c             c-s
-		 */
-		switch(nm1&3) {
-		case 0: temp = -sin(x)-cos(x); break;
-		case 1: temp = -sin(x)+cos(x); break;
-		case 2: temp =  sin(x)+cos(x); break;
-		default:
-		case 3: temp =  sin(x)-cos(x); break;
-		}
-		b = invsqrtpi*temp/sqrt(x);
-	} else {
-		a = y0(x);
-		b = y1(x);
-		/* quit if b is -inf */
-		GET_HIGH_WORD(ib, b);
-		for (i=0; i<nm1 && ib!=0xfff00000; ){
-			i++;
-			temp = b;
-			b = (2.0*i/x)*b - a;
-			GET_HIGH_WORD(ib, b);
-			a = temp;
-		}
-	}
-	return sign ? -b : b;
+  if (ix >= 0x52d00000) { /* x > 2**302 */
+                          /* (x >> n**2)
+                           *      Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+                           *      Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi)
+                           *      Let s=sin(x), c=cos(x),
+                           *          xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then
+                           *
+                           *             n    sin(xn)*sqt2    cos(xn)*sqt2
+                           *          ----------------------------------
+                           *             0     s-c             c+s
+                           *             1    -s-c            -c+s
+                           *             2    -s+c            -c-s
+                           *             3     s+c             c-s
+                           */
+    switch (nm1 & 3) {
+      case 0:
+        temp = -sin(x) - cos(x);
+        break;
+      case 1:
+        temp = -sin(x) + cos(x);
+        break;
+      case 2:
+        temp = sin(x) + cos(x);
+        break;
+      default:
+      case 3:
+        temp = sin(x) - cos(x);
+        break;
+    }
+    b = invsqrtpi * temp / sqrt(x);
+  } else {
+    a = y0(x);
+    b = y1(x);
+    /* quit if b is -inf */
+    GET_HIGH_WORD(ib, b);
+    for (i = 0; i < nm1 && ib != 0xfff00000;) {
+      i++;
+      temp = b;
+      b = (2.0 * i / x) * b - a;
+      GET_HIGH_WORD(ib, b);
+      a = temp;
+    }
+  }
+  return sign ? -b : b;
 }
diff --git a/fusl/src/math/jnf.c b/fusl/src/math/jnf.c
index f63c062..6ee472a 100644
--- a/fusl/src/math/jnf.c
+++ b/fusl/src/math/jnf.c
@@ -16,187 +16,185 @@
 #define _GNU_SOURCE
 #include "libm.h"
 
-float jnf(int n, float x)
-{
-	uint32_t ix;
-	int nm1, sign, i;
-	float a, b, temp;
+float jnf(int n, float x) {
+  uint32_t ix;
+  int nm1, sign, i;
+  float a, b, temp;
 
-	GET_FLOAT_WORD(ix, x);
-	sign = ix>>31;
-	ix &= 0x7fffffff;
-	if (ix > 0x7f800000) /* nan */
-		return x;
+  GET_FLOAT_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
+  if (ix > 0x7f800000) /* nan */
+    return x;
 
-	/* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
-	if (n == 0)
-		return j0f(x);
-	if (n < 0) {
-		nm1 = -(n+1);
-		x = -x;
-		sign ^= 1;
-	} else
-		nm1 = n-1;
-	if (nm1 == 0)
-		return j1f(x);
+  /* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
+  if (n == 0)
+    return j0f(x);
+  if (n < 0) {
+    nm1 = -(n + 1);
+    x = -x;
+    sign ^= 1;
+  } else
+    nm1 = n - 1;
+  if (nm1 == 0)
+    return j1f(x);
 
-	sign &= n;  /* even n: 0, odd n: signbit(x) */
-	x = fabsf(x);
-	if (ix == 0 || ix == 0x7f800000)  /* if x is 0 or inf */
-		b = 0.0f;
-	else if (nm1 < x) {
-		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
-		a = j0f(x);
-		b = j1f(x);
-		for (i=0; i<nm1; ){
-			i++;
-			temp = b;
-			b = b*(2.0f*i/x) - a;
-			a = temp;
-		}
-	} else {
-		if (ix < 0x35800000) { /* x < 2**-20 */
-			/* x is tiny, return the first Taylor expansion of J(n,x)
-			 * J(n,x) = 1/n!*(x/2)^n  - ...
-			 */
-			if (nm1 > 8)  /* underflow */
-				nm1 = 8;
-			temp = 0.5f * x;
-			b = temp;
-			a = 1.0f;
-			for (i=2; i<=nm1+1; i++) {
-				a *= (float)i;    /* a = n! */
-				b *= temp;        /* b = (x/2)^n */
-			}
-			b = b/a;
-		} else {
-			/* use backward recurrence */
-			/*                      x      x^2      x^2
-			 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
-			 *                      2n  - 2(n+1) - 2(n+2)
-			 *
-			 *                      1      1        1
-			 *  (for large x)   =  ----  ------   ------   .....
-			 *                      2n   2(n+1)   2(n+2)
-			 *                      -- - ------ - ------ -
-			 *                       x     x         x
-			 *
-			 * Let w = 2n/x and h=2/x, then the above quotient
-			 * is equal to the continued fraction:
-			 *                  1
-			 *      = -----------------------
-			 *                     1
-			 *         w - -----------------
-			 *                        1
-			 *              w+h - ---------
-			 *                     w+2h - ...
-			 *
-			 * To determine how many terms needed, let
-			 * Q(0) = w, Q(1) = w(w+h) - 1,
-			 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
-			 * When Q(k) > 1e4      good for single
-			 * When Q(k) > 1e9      good for double
-			 * When Q(k) > 1e17     good for quadruple
-			 */
-			/* determine k */
-			float t,q0,q1,w,h,z,tmp,nf;
-			int k;
+  sign &= n; /* even n: 0, odd n: signbit(x) */
+  x = fabsf(x);
+  if (ix == 0 || ix == 0x7f800000) /* if x is 0 or inf */
+    b = 0.0f;
+  else if (nm1 < x) {
+    /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+    a = j0f(x);
+    b = j1f(x);
+    for (i = 0; i < nm1;) {
+      i++;
+      temp = b;
+      b = b * (2.0f * i / x) - a;
+      a = temp;
+    }
+  } else {
+    if (ix < 0x35800000) { /* x < 2**-20 */
+      /* x is tiny, return the first Taylor expansion of J(n,x)
+       * J(n,x) = 1/n!*(x/2)^n  - ...
+       */
+      if (nm1 > 8) /* underflow */
+        nm1 = 8;
+      temp = 0.5f * x;
+      b = temp;
+      a = 1.0f;
+      for (i = 2; i <= nm1 + 1; i++) {
+        a *= (float)i; /* a = n! */
+        b *= temp;     /* b = (x/2)^n */
+      }
+      b = b / a;
+    } else {
+      /* use backward recurrence */
+      /*                      x      x^2      x^2
+       *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
+       *                      2n  - 2(n+1) - 2(n+2)
+       *
+       *                      1      1        1
+       *  (for large x)   =  ----  ------   ------   .....
+       *                      2n   2(n+1)   2(n+2)
+       *                      -- - ------ - ------ -
+       *                       x     x         x
+       *
+       * Let w = 2n/x and h=2/x, then the above quotient
+       * is equal to the continued fraction:
+       *                  1
+       *      = -----------------------
+       *                     1
+       *         w - -----------------
+       *                        1
+       *              w+h - ---------
+       *                     w+2h - ...
+       *
+       * To determine how many terms needed, let
+       * Q(0) = w, Q(1) = w(w+h) - 1,
+       * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+       * When Q(k) > 1e4      good for single
+       * When Q(k) > 1e9      good for double
+       * When Q(k) > 1e17     good for quadruple
+       */
+      /* determine k */
+      float t, q0, q1, w, h, z, tmp, nf;
+      int k;
 
-			nf = nm1+1.0f;
-			w = 2*nf/x;
-			h = 2/x;
-			z = w+h;
-			q0 = w;
-			q1 = w*z - 1.0f;
-			k = 1;
-			while (q1 < 1.0e4f) {
-				k += 1;
-				z += h;
-				tmp = z*q1 - q0;
-				q0 = q1;
-				q1 = tmp;
-			}
-			for (t=0.0f, i=k; i>=0; i--)
-				t = 1.0f/(2*(i+nf)/x-t);
-			a = t;
-			b = 1.0f;
-			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
-			 *  Hence, if n*(log(2n/x)) > ...
-			 *  single 8.8722839355e+01
-			 *  double 7.09782712893383973096e+02
-			 *  long double 1.1356523406294143949491931077970765006170e+04
-			 *  then recurrent value may overflow and the result is
-			 *  likely underflow to zero
-			 */
-			tmp = nf*logf(fabsf(w));
-			if (tmp < 88.721679688f) {
-				for (i=nm1; i>0; i--) {
-					temp = b;
-					b = 2.0f*i*b/x - a;
-					a = temp;
-				}
-			} else {
-				for (i=nm1; i>0; i--){
-					temp = b;
-					b = 2.0f*i*b/x - a;
-					a = temp;
-					/* scale b to avoid spurious overflow */
-					if (b > 0x1p60f) {
-						a /= b;
-						t /= b;
-						b = 1.0f;
-					}
-				}
-			}
-			z = j0f(x);
-			w = j1f(x);
-			if (fabsf(z) >= fabsf(w))
-				b = t*z/b;
-			else
-				b = t*w/a;
-		}
-	}
-	return sign ? -b : b;
+      nf = nm1 + 1.0f;
+      w = 2 * nf / x;
+      h = 2 / x;
+      z = w + h;
+      q0 = w;
+      q1 = w * z - 1.0f;
+      k = 1;
+      while (q1 < 1.0e4f) {
+        k += 1;
+        z += h;
+        tmp = z * q1 - q0;
+        q0 = q1;
+        q1 = tmp;
+      }
+      for (t = 0.0f, i = k; i >= 0; i--)
+        t = 1.0f / (2 * (i + nf) / x - t);
+      a = t;
+      b = 1.0f;
+      /*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+       *  Hence, if n*(log(2n/x)) > ...
+       *  single 8.8722839355e+01
+       *  double 7.09782712893383973096e+02
+       *  long double 1.1356523406294143949491931077970765006170e+04
+       *  then recurrent value may overflow and the result is
+       *  likely underflow to zero
+       */
+      tmp = nf * logf(fabsf(w));
+      if (tmp < 88.721679688f) {
+        for (i = nm1; i > 0; i--) {
+          temp = b;
+          b = 2.0f * i * b / x - a;
+          a = temp;
+        }
+      } else {
+        for (i = nm1; i > 0; i--) {
+          temp = b;
+          b = 2.0f * i * b / x - a;
+          a = temp;
+          /* scale b to avoid spurious overflow */
+          if (b > 0x1p60f) {
+            a /= b;
+            t /= b;
+            b = 1.0f;
+          }
+        }
+      }
+      z = j0f(x);
+      w = j1f(x);
+      if (fabsf(z) >= fabsf(w))
+        b = t * z / b;
+      else
+        b = t * w / a;
+    }
+  }
+  return sign ? -b : b;
 }
 
-float ynf(int n, float x)
-{
-	uint32_t ix, ib;
-	int nm1, sign, i;
-	float a, b, temp;
+float ynf(int n, float x) {
+  uint32_t ix, ib;
+  int nm1, sign, i;
+  float a, b, temp;
 
-	GET_FLOAT_WORD(ix, x);
-	sign = ix>>31;
-	ix &= 0x7fffffff;
-	if (ix > 0x7f800000) /* nan */
-		return x;
-	if (sign && ix != 0) /* x < 0 */
-		return 0/0.0f;
-	if (ix == 0x7f800000)
-		return 0.0f;
+  GET_FLOAT_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
+  if (ix > 0x7f800000) /* nan */
+    return x;
+  if (sign && ix != 0) /* x < 0 */
+    return 0 / 0.0f;
+  if (ix == 0x7f800000)
+    return 0.0f;
 
-	if (n == 0)
-		return y0f(x);
-	if (n < 0) {
-		nm1 = -(n+1);
-		sign = n&1;
-	} else {
-		nm1 = n-1;
-		sign = 0;
-	}
-	if (nm1 == 0)
-		return sign ? -y1f(x) : y1f(x);
+  if (n == 0)
+    return y0f(x);
+  if (n < 0) {
+    nm1 = -(n + 1);
+    sign = n & 1;
+  } else {
+    nm1 = n - 1;
+    sign = 0;
+  }
+  if (nm1 == 0)
+    return sign ? -y1f(x) : y1f(x);
 
-	a = y0f(x);
-	b = y1f(x);
-	/* quit if b is -inf */
-	GET_FLOAT_WORD(ib,b);
-	for (i = 0; i < nm1 && ib != 0xff800000; ) {
-		i++;
-		temp = b;
-		b = (2.0f*i/x)*b - a;
-		GET_FLOAT_WORD(ib, b);
-		a = temp;
-	}
-	return sign ? -b : b;
+  a = y0f(x);
+  b = y1f(x);
+  /* quit if b is -inf */
+  GET_FLOAT_WORD(ib, b);
+  for (i = 0; i < nm1 && ib != 0xff800000;) {
+    i++;
+    temp = b;
+    b = (2.0f * i / x) * b - a;
+    GET_FLOAT_WORD(ib, b);
+    a = temp;
+  }
+  return sign ? -b : b;
 }
diff --git a/fusl/src/math/ldexp.c b/fusl/src/math/ldexp.c
index f4d1cd6..4a7424b 100644
--- a/fusl/src/math/ldexp.c
+++ b/fusl/src/math/ldexp.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-double ldexp(double x, int n)
-{
-	return scalbn(x, n);
+double ldexp(double x, int n) {
+  return scalbn(x, n);
 }
diff --git a/fusl/src/math/ldexpf.c b/fusl/src/math/ldexpf.c
index 3bad5f3..71ccf56 100644
--- a/fusl/src/math/ldexpf.c
+++ b/fusl/src/math/ldexpf.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-float ldexpf(float x, int n)
-{
-	return scalbnf(x, n);
+float ldexpf(float x, int n) {
+  return scalbnf(x, n);
 }
diff --git a/fusl/src/math/ldexpl.c b/fusl/src/math/ldexpl.c
index fd145cc..fb7d3c2 100644
--- a/fusl/src/math/ldexpl.c
+++ b/fusl/src/math/ldexpl.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-long double ldexpl(long double x, int n)
-{
-	return scalbnl(x, n);
+long double ldexpl(long double x, int n) {
+  return scalbnl(x, n);
 }
diff --git a/fusl/src/math/lgamma.c b/fusl/src/math/lgamma.c
index e25ec8e..cea2fc6 100644
--- a/fusl/src/math/lgamma.c
+++ b/fusl/src/math/lgamma.c
@@ -1,9 +1,8 @@
 #include <math.h>
 
 extern int __signgam;
-double __lgamma_r(double, int *);
+double __lgamma_r(double, int*);
 
-double lgamma(double x)
-{
-	return __lgamma_r(x, &__signgam);
+double lgamma(double x) {
+  return __lgamma_r(x, &__signgam);
 }
diff --git a/fusl/src/math/lgamma_r.c b/fusl/src/math/lgamma_r.c
index fff565d..7dd2851 100644
--- a/fusl/src/math/lgamma_r.c
+++ b/fusl/src/math/lgamma_r.c
@@ -81,204 +81,215 @@
 #include "libm.h"
 #include "libc.h"
 
-static const double
-pi  =  3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
-a0  =  7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */
-a1  =  3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */
-a2  =  6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */
-a3  =  2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */
-a4  =  7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */
-a5  =  2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */
-a6  =  1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */
-a7  =  5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */
-a8  =  2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */
-a9  =  1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */
-a10 =  2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */
-a11 =  4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */
-tc  =  1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */
-tf  = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */
-/* tt = -(tail of tf) */
-tt  = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */
-t0  =  4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */
-t1  = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */
-t2  =  6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */
-t3  = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */
-t4  =  1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */
-t5  = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */
-t6  =  6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */
-t7  = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */
-t8  =  2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */
-t9  = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */
-t10 =  8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */
-t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
-t12 =  3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */
-t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
-t14 =  3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */
-u0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
-u1  =  6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */
-u2  =  1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */
-u3  =  9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */
-u4  =  2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */
-u5  =  1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */
-v1  =  2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */
-v2  =  2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */
-v3  =  7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */
-v4  =  1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */
-v5  =  3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */
-s0  = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */
-s1  =  2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */
-s2  =  3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */
-s3  =  1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */
-s4  =  2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */
-s5  =  1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */
-s6  =  3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */
-r1  =  1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */
-r2  =  7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */
-r3  =  1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */
-r4  =  1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */
-r5  =  7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */
-r6  =  7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */
-w0  =  4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */
-w1  =  8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */
-w2  = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */
-w3  =  7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */
-w4  = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */
-w5  =  8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */
-w6  = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */
+static const double pi =
+                        3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */
+    a0 = 7.72156649015328655494e-02,                /* 0x3FB3C467, 0xE37DB0C8 */
+    a1 = 3.22467033424113591611e-01,                /* 0x3FD4A34C, 0xC4A60FAD */
+    a2 = 6.73523010531292681824e-02,                /* 0x3FB13E00, 0x1A5562A7 */
+    a3 = 2.05808084325167332806e-02,                /* 0x3F951322, 0xAC92547B */
+    a4 = 7.38555086081402883957e-03,                /* 0x3F7E404F, 0xB68FEFE8 */
+    a5 = 2.89051383673415629091e-03,                /* 0x3F67ADD8, 0xCCB7926B */
+    a6 = 1.19270763183362067845e-03,                /* 0x3F538A94, 0x116F3F5D */
+    a7 = 5.10069792153511336608e-04,                /* 0x3F40B6C6, 0x89B99C00 */
+    a8 = 2.20862790713908385557e-04,                /* 0x3F2CF2EC, 0xED10E54D */
+    a9 = 1.08011567247583939954e-04,                /* 0x3F1C5088, 0x987DFB07 */
+    a10 = 2.52144565451257326939e-05,               /* 0x3EFA7074, 0x428CFA52 */
+    a11 = 4.48640949618915160150e-05,               /* 0x3F07858E, 0x90A45837 */
+    tc = 1.46163214496836224576e+00,                /* 0x3FF762D8, 0x6356BE3F */
+    tf = -1.21486290535849611461e-01,               /* 0xBFBF19B9, 0xBCC38A42 */
+    /* tt = -(tail of tf) */
+    tt = -3.63867699703950536541e-18,  /* 0xBC50C7CA, 0xA48A971F */
+    t0 = 4.83836122723810047042e-01,   /* 0x3FDEF72B, 0xC8EE38A2 */
+    t1 = -1.47587722994593911752e-01,  /* 0xBFC2E427, 0x8DC6C509 */
+    t2 = 6.46249402391333854778e-02,   /* 0x3FB08B42, 0x94D5419B */
+    t3 = -3.27885410759859649565e-02,  /* 0xBFA0C9A8, 0xDF35B713 */
+    t4 = 1.79706750811820387126e-02,   /* 0x3F9266E7, 0x970AF9EC */
+    t5 = -1.03142241298341437450e-02,  /* 0xBF851F9F, 0xBA91EC6A */
+    t6 = 6.10053870246291332635e-03,   /* 0x3F78FCE0, 0xE370E344 */
+    t7 = -3.68452016781138256760e-03,  /* 0xBF6E2EFF, 0xB3E914D7 */
+    t8 = 2.25964780900612472250e-03,   /* 0x3F6282D3, 0x2E15C915 */
+    t9 = -1.40346469989232843813e-03,  /* 0xBF56FE8E, 0xBF2D1AF1 */
+    t10 = 8.81081882437654011382e-04,  /* 0x3F4CDF0C, 0xEF61A8E9 */
+    t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */
+    t12 = 3.15632070903625950361e-04,  /* 0x3F34AF6D, 0x6C0EBBF7 */
+    t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */
+    t14 = 3.35529192635519073543e-04,  /* 0x3F35FD3E, 0xE8C2D3F4 */
+    u0 = -7.72156649015328655494e-02,  /* 0xBFB3C467, 0xE37DB0C8 */
+    u1 = 6.32827064025093366517e-01,   /* 0x3FE4401E, 0x8B005DFF */
+    u2 = 1.45492250137234768737e+00,   /* 0x3FF7475C, 0xD119BD6F */
+    u3 = 9.77717527963372745603e-01,   /* 0x3FEF4976, 0x44EA8450 */
+    u4 = 2.28963728064692451092e-01,   /* 0x3FCD4EAE, 0xF6010924 */
+    u5 = 1.33810918536787660377e-02,   /* 0x3F8B678B, 0xBF2BAB09 */
+    v1 = 2.45597793713041134822e+00,   /* 0x4003A5D7, 0xC2BD619C */
+    v2 = 2.12848976379893395361e+00,   /* 0x40010725, 0xA42B18F5 */
+    v3 = 7.69285150456672783825e-01,   /* 0x3FE89DFB, 0xE45050AF */
+    v4 = 1.04222645593369134254e-01,   /* 0x3FBAAE55, 0xD6537C88 */
+    v5 = 3.21709242282423911810e-03,   /* 0x3F6A5ABB, 0x57D0CF61 */
+    s0 = -7.72156649015328655494e-02,  /* 0xBFB3C467, 0xE37DB0C8 */
+    s1 = 2.14982415960608852501e-01,   /* 0x3FCB848B, 0x36E20878 */
+    s2 = 3.25778796408930981787e-01,   /* 0x3FD4D98F, 0x4F139F59 */
+    s3 = 1.46350472652464452805e-01,   /* 0x3FC2BB9C, 0xBEE5F2F7 */
+    s4 = 2.66422703033638609560e-02,   /* 0x3F9B481C, 0x7E939961 */
+    s5 = 1.84028451407337715652e-03,   /* 0x3F5E26B6, 0x7368F239 */
+    s6 = 3.19475326584100867617e-05,   /* 0x3F00BFEC, 0xDD17E945 */
+    r1 = 1.39200533467621045958e+00,   /* 0x3FF645A7, 0x62C4AB74 */
+    r2 = 7.21935547567138069525e-01,   /* 0x3FE71A18, 0x93D3DCDC */
+    r3 = 1.71933865632803078993e-01,   /* 0x3FC601ED, 0xCCFBDF27 */
+    r4 = 1.86459191715652901344e-02,   /* 0x3F9317EA, 0x742ED475 */
+    r5 = 7.77942496381893596434e-04,   /* 0x3F497DDA, 0xCA41A95B */
+    r6 = 7.32668430744625636189e-06,   /* 0x3EDEBAF7, 0xA5B38140 */
+    w0 = 4.18938533204672725052e-01,   /* 0x3FDACFE3, 0x90C97D69 */
+    w1 = 8.33333333333329678849e-02,   /* 0x3FB55555, 0x5555553B */
+    w2 = -2.77777777728775536470e-03,  /* 0xBF66C16C, 0x16B02E5C */
+    w3 = 7.93650558643019558500e-04,   /* 0x3F4A019F, 0x98CF38B6 */
+    w4 = -5.95187557450339963135e-04,  /* 0xBF4380CB, 0x8C0FE741 */
+    w5 = 8.36339918996282139126e-04,   /* 0x3F4B67BA, 0x4CDAD5D1 */
+    w6 = -1.63092934096575273989e-03;  /* 0xBF5AB89D, 0x0B9E43E4 */
 
 /* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
-static double sin_pi(double x)
-{
-	int n;
+static double sin_pi(double x) {
+  int n;
 
-	/* spurious inexact if odd int */
-	x = 2.0*(x*0.5 - floor(x*0.5));  /* x mod 2.0 */
+  /* spurious inexact if odd int */
+  x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */
 
-	n = (int)(x*4.0);
-	n = (n+1)/2;
-	x -= n*0.5f;
-	x *= pi;
+  n = (int)(x * 4.0);
+  n = (n + 1) / 2;
+  x -= n * 0.5f;
+  x *= pi;
 
-	switch (n) {
-	default: /* case 4: */
-	case 0: return __sin(x, 0.0, 0);
-	case 1: return __cos(x, 0.0);
-	case 2: return __sin(-x, 0.0, 0);
-	case 3: return -__cos(x, 0.0);
-	}
+  switch (n) {
+    default: /* case 4: */
+    case 0:
+      return __sin(x, 0.0, 0);
+    case 1:
+      return __cos(x, 0.0);
+    case 2:
+      return __sin(-x, 0.0, 0);
+    case 3:
+      return -__cos(x, 0.0);
+  }
 }
 
-double __lgamma_r(double x, int *signgamp)
-{
-	union {double f; uint64_t i;} u = {x};
-	double_t t,y,z,nadj,p,p1,p2,p3,q,r,w;
-	uint32_t ix;
-	int sign,i;
+double __lgamma_r(double x, int* signgamp) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  double_t t, y, z, nadj, p, p1, p2, p3, q, r, w;
+  uint32_t ix;
+  int sign, i;
 
-	/* purge off +-inf, NaN, +-0, tiny and negative arguments */
-	*signgamp = 1;
-	sign = u.i>>63;
-	ix = u.i>>32 & 0x7fffffff;
-	if (ix >= 0x7ff00000)
-		return x*x;
-	if (ix < (0x3ff-70)<<20) {  /* |x|<2**-70, return -log(|x|) */
-		if(sign) {
-			x = -x;
-			*signgamp = -1;
-		}
-		return -log(x);
-	}
-	if (sign) {
-		x = -x;
-		t = sin_pi(x);
-		if (t == 0.0) /* -integer */
-			return 1.0/(x-x);
-		if (t > 0.0)
-			*signgamp = -1;
-		else
-			t = -t;
-		nadj = log(pi/(t*x));
-	}
+  /* purge off +-inf, NaN, +-0, tiny and negative arguments */
+  *signgamp = 1;
+  sign = u.i >> 63;
+  ix = u.i >> 32 & 0x7fffffff;
+  if (ix >= 0x7ff00000)
+    return x * x;
+  if (ix < (0x3ff - 70) << 20) { /* |x|<2**-70, return -log(|x|) */
+    if (sign) {
+      x = -x;
+      *signgamp = -1;
+    }
+    return -log(x);
+  }
+  if (sign) {
+    x = -x;
+    t = sin_pi(x);
+    if (t == 0.0) /* -integer */
+      return 1.0 / (x - x);
+    if (t > 0.0)
+      *signgamp = -1;
+    else
+      t = -t;
+    nadj = log(pi / (t * x));
+  }
 
-	/* purge off 1 and 2 */
-	if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0)
-		r = 0;
-	/* for x < 2.0 */
-	else if (ix < 0x40000000) {
-		if (ix <= 0x3feccccc) {   /* lgamma(x) = lgamma(x+1)-log(x) */
-			r = -log(x);
-			if (ix >= 0x3FE76944) {
-				y = 1.0 - x;
-				i = 0;
-			} else if (ix >= 0x3FCDA661) {
-				y = x - (tc-1.0);
-				i = 1;
-			} else {
-				y = x;
-				i = 2;
-			}
-		} else {
-			r = 0.0;
-			if (ix >= 0x3FFBB4C3) {  /* [1.7316,2] */
-				y = 2.0 - x;
-				i = 0;
-			} else if(ix >= 0x3FF3B4C4) {  /* [1.23,1.73] */
-				y = x - tc;
-				i = 1;
-			} else {
-				y = x - 1.0;
-				i = 2;
-			}
-		}
-		switch (i) {
-		case 0:
-			z = y*y;
-			p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
-			p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
-			p = y*p1+p2;
-			r += (p-0.5*y);
-			break;
-		case 1:
-			z = y*y;
-			w = z*y;
-			p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));    /* parallel comp */
-			p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
-			p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
-			p = z*p1-(tt-w*(p2+y*p3));
-			r += tf + p;
-			break;
-		case 2:
-			p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
-			p2 = 1.0+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
-			r += -0.5*y + p1/p2;
-		}
-	} else if (ix < 0x40200000) {  /* x < 8.0 */
-		i = (int)x;
-		y = x - (double)i;
-		p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
-		q = 1.0+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
-		r = 0.5*y+p/q;
-		z = 1.0;    /* lgamma(1+s) = log(s) + lgamma(s) */
-		switch (i) {
-		case 7: z *= y + 6.0;  /* FALLTHRU */
-		case 6: z *= y + 5.0;  /* FALLTHRU */
-		case 5: z *= y + 4.0;  /* FALLTHRU */
-		case 4: z *= y + 3.0;  /* FALLTHRU */
-		case 3: z *= y + 2.0;  /* FALLTHRU */
-			r += log(z);
-			break;
-		}
-	} else if (ix < 0x43900000) {  /* 8.0 <= x < 2**58 */
-		t = log(x);
-		z = 1.0/x;
-		y = z*z;
-		w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
-		r = (x-0.5)*(t-1.0)+w;
-	} else                         /* 2**58 <= x <= inf */
-		r =  x*(log(x)-1.0);
-	if (sign)
-		r = nadj - r;
-	return r;
+  /* purge off 1 and 2 */
+  if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0)
+    r = 0;
+  /* for x < 2.0 */
+  else if (ix < 0x40000000) {
+    if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */
+      r = -log(x);
+      if (ix >= 0x3FE76944) {
+        y = 1.0 - x;
+        i = 0;
+      } else if (ix >= 0x3FCDA661) {
+        y = x - (tc - 1.0);
+        i = 1;
+      } else {
+        y = x;
+        i = 2;
+      }
+    } else {
+      r = 0.0;
+      if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */
+        y = 2.0 - x;
+        i = 0;
+      } else if (ix >= 0x3FF3B4C4) { /* [1.23,1.73] */
+        y = x - tc;
+        i = 1;
+      } else {
+        y = x - 1.0;
+        i = 2;
+      }
+    }
+    switch (i) {
+      case 0:
+        z = y * y;
+        p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10))));
+        p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11)))));
+        p = y * p1 + p2;
+        r += (p - 0.5 * y);
+        break;
+      case 1:
+        z = y * y;
+        w = z * y;
+        p1 = t0 + w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */
+        p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13)));
+        p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14)));
+        p = z * p1 - (tt - w * (p2 + y * p3));
+        r += tf + p;
+        break;
+      case 2:
+        p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5)))));
+        p2 = 1.0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5))));
+        r += -0.5 * y + p1 / p2;
+    }
+  } else if (ix < 0x40200000) { /* x < 8.0 */
+    i = (int)x;
+    y = x - (double)i;
+    p = y *
+        (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
+    q = 1.0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6)))));
+    r = 0.5 * y + p / q;
+    z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */
+    switch (i) {
+      case 7:
+        z *= y + 6.0; /* FALLTHRU */
+      case 6:
+        z *= y + 5.0; /* FALLTHRU */
+      case 5:
+        z *= y + 4.0; /* FALLTHRU */
+      case 4:
+        z *= y + 3.0; /* FALLTHRU */
+      case 3:
+        z *= y + 2.0; /* FALLTHRU */
+        r += log(z);
+        break;
+    }
+  } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */
+    t = log(x);
+    z = 1.0 / x;
+    y = z * z;
+    w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6)))));
+    r = (x - 0.5) * (t - 1.0) + w;
+  } else /* 2**58 <= x <= inf */
+    r = x * (log(x) - 1.0);
+  if (sign)
+    r = nadj - r;
+  return r;
 }
 
 weak_alias(__lgamma_r, lgamma_r);
diff --git a/fusl/src/math/lgammaf.c b/fusl/src/math/lgammaf.c
index badb6df..a4786c5 100644
--- a/fusl/src/math/lgammaf.c
+++ b/fusl/src/math/lgammaf.c
@@ -1,9 +1,8 @@
 #include <math.h>
 
 extern int __signgam;
-float __lgammaf_r(float, int *);
+float __lgammaf_r(float, int*);
 
-float lgammaf(float x)
-{
-	return __lgammaf_r(x, &__signgam);
+float lgammaf(float x) {
+  return __lgammaf_r(x, &__signgam);
 }
diff --git a/fusl/src/math/lgammaf_r.c b/fusl/src/math/lgammaf_r.c
index c5b43db..f0c8f4a 100644
--- a/fusl/src/math/lgammaf_r.c
+++ b/fusl/src/math/lgammaf_r.c
@@ -16,204 +16,214 @@
 #include "libm.h"
 #include "libc.h"
 
-static const float
-pi  =  3.1415927410e+00, /* 0x40490fdb */
-a0  =  7.7215664089e-02, /* 0x3d9e233f */
-a1  =  3.2246702909e-01, /* 0x3ea51a66 */
-a2  =  6.7352302372e-02, /* 0x3d89f001 */
-a3  =  2.0580807701e-02, /* 0x3ca89915 */
-a4  =  7.3855509982e-03, /* 0x3bf2027e */
-a5  =  2.8905137442e-03, /* 0x3b3d6ec6 */
-a6  =  1.1927076848e-03, /* 0x3a9c54a1 */
-a7  =  5.1006977446e-04, /* 0x3a05b634 */
-a8  =  2.2086278477e-04, /* 0x39679767 */
-a9  =  1.0801156895e-04, /* 0x38e28445 */
-a10 =  2.5214456400e-05, /* 0x37d383a2 */
-a11 =  4.4864096708e-05, /* 0x383c2c75 */
-tc  =  1.4616321325e+00, /* 0x3fbb16c3 */
-tf  = -1.2148628384e-01, /* 0xbdf8cdcd */
-/* tt = -(tail of tf) */
-tt  =  6.6971006518e-09, /* 0x31e61c52 */
-t0  =  4.8383611441e-01, /* 0x3ef7b95e */
-t1  = -1.4758771658e-01, /* 0xbe17213c */
-t2  =  6.4624942839e-02, /* 0x3d845a15 */
-t3  = -3.2788541168e-02, /* 0xbd064d47 */
-t4  =  1.7970675603e-02, /* 0x3c93373d */
-t5  = -1.0314224288e-02, /* 0xbc28fcfe */
-t6  =  6.1005386524e-03, /* 0x3bc7e707 */
-t7  = -3.6845202558e-03, /* 0xbb7177fe */
-t8  =  2.2596477065e-03, /* 0x3b141699 */
-t9  = -1.4034647029e-03, /* 0xbab7f476 */
-t10 =  8.8108185446e-04, /* 0x3a66f867 */
-t11 = -5.3859531181e-04, /* 0xba0d3085 */
-t12 =  3.1563205994e-04, /* 0x39a57b6b */
-t13 = -3.1275415677e-04, /* 0xb9a3f927 */
-t14 =  3.3552918467e-04, /* 0x39afe9f7 */
-u0  = -7.7215664089e-02, /* 0xbd9e233f */
-u1  =  6.3282704353e-01, /* 0x3f2200f4 */
-u2  =  1.4549225569e+00, /* 0x3fba3ae7 */
-u3  =  9.7771751881e-01, /* 0x3f7a4bb2 */
-u4  =  2.2896373272e-01, /* 0x3e6a7578 */
-u5  =  1.3381091878e-02, /* 0x3c5b3c5e */
-v1  =  2.4559779167e+00, /* 0x401d2ebe */
-v2  =  2.1284897327e+00, /* 0x4008392d */
-v3  =  7.6928514242e-01, /* 0x3f44efdf */
-v4  =  1.0422264785e-01, /* 0x3dd572af */
-v5  =  3.2170924824e-03, /* 0x3b52d5db */
-s0  = -7.7215664089e-02, /* 0xbd9e233f */
-s1  =  2.1498242021e-01, /* 0x3e5c245a */
-s2  =  3.2577878237e-01, /* 0x3ea6cc7a */
-s3  =  1.4635047317e-01, /* 0x3e15dce6 */
-s4  =  2.6642270386e-02, /* 0x3cda40e4 */
-s5  =  1.8402845599e-03, /* 0x3af135b4 */
-s6  =  3.1947532989e-05, /* 0x3805ff67 */
-r1  =  1.3920053244e+00, /* 0x3fb22d3b */
-r2  =  7.2193557024e-01, /* 0x3f38d0c5 */
-r3  =  1.7193385959e-01, /* 0x3e300f6e */
-r4  =  1.8645919859e-02, /* 0x3c98bf54 */
-r5  =  7.7794247773e-04, /* 0x3a4beed6 */
-r6  =  7.3266842264e-06, /* 0x36f5d7bd */
-w0  =  4.1893854737e-01, /* 0x3ed67f1d */
-w1  =  8.3333335817e-02, /* 0x3daaaaab */
-w2  = -2.7777778450e-03, /* 0xbb360b61 */
-w3  =  7.9365057172e-04, /* 0x3a500cfd */
-w4  = -5.9518753551e-04, /* 0xba1c065c */
-w5  =  8.3633989561e-04, /* 0x3a5b3dd2 */
-w6  = -1.6309292987e-03; /* 0xbad5c4e8 */
+static const float pi = 3.1415927410e+00, /* 0x40490fdb */
+    a0 = 7.7215664089e-02,                /* 0x3d9e233f */
+    a1 = 3.2246702909e-01,                /* 0x3ea51a66 */
+    a2 = 6.7352302372e-02,                /* 0x3d89f001 */
+    a3 = 2.0580807701e-02,                /* 0x3ca89915 */
+    a4 = 7.3855509982e-03,                /* 0x3bf2027e */
+    a5 = 2.8905137442e-03,                /* 0x3b3d6ec6 */
+    a6 = 1.1927076848e-03,                /* 0x3a9c54a1 */
+    a7 = 5.1006977446e-04,                /* 0x3a05b634 */
+    a8 = 2.2086278477e-04,                /* 0x39679767 */
+    a9 = 1.0801156895e-04,                /* 0x38e28445 */
+    a10 = 2.5214456400e-05,               /* 0x37d383a2 */
+    a11 = 4.4864096708e-05,               /* 0x383c2c75 */
+    tc = 1.4616321325e+00,                /* 0x3fbb16c3 */
+    tf = -1.2148628384e-01,               /* 0xbdf8cdcd */
+    /* tt = -(tail of tf) */
+    tt = 6.6971006518e-09,   /* 0x31e61c52 */
+    t0 = 4.8383611441e-01,   /* 0x3ef7b95e */
+    t1 = -1.4758771658e-01,  /* 0xbe17213c */
+    t2 = 6.4624942839e-02,   /* 0x3d845a15 */
+    t3 = -3.2788541168e-02,  /* 0xbd064d47 */
+    t4 = 1.7970675603e-02,   /* 0x3c93373d */
+    t5 = -1.0314224288e-02,  /* 0xbc28fcfe */
+    t6 = 6.1005386524e-03,   /* 0x3bc7e707 */
+    t7 = -3.6845202558e-03,  /* 0xbb7177fe */
+    t8 = 2.2596477065e-03,   /* 0x3b141699 */
+    t9 = -1.4034647029e-03,  /* 0xbab7f476 */
+    t10 = 8.8108185446e-04,  /* 0x3a66f867 */
+    t11 = -5.3859531181e-04, /* 0xba0d3085 */
+    t12 = 3.1563205994e-04,  /* 0x39a57b6b */
+    t13 = -3.1275415677e-04, /* 0xb9a3f927 */
+    t14 = 3.3552918467e-04,  /* 0x39afe9f7 */
+    u0 = -7.7215664089e-02,  /* 0xbd9e233f */
+    u1 = 6.3282704353e-01,   /* 0x3f2200f4 */
+    u2 = 1.4549225569e+00,   /* 0x3fba3ae7 */
+    u3 = 9.7771751881e-01,   /* 0x3f7a4bb2 */
+    u4 = 2.2896373272e-01,   /* 0x3e6a7578 */
+    u5 = 1.3381091878e-02,   /* 0x3c5b3c5e */
+    v1 = 2.4559779167e+00,   /* 0x401d2ebe */
+    v2 = 2.1284897327e+00,   /* 0x4008392d */
+    v3 = 7.6928514242e-01,   /* 0x3f44efdf */
+    v4 = 1.0422264785e-01,   /* 0x3dd572af */
+    v5 = 3.2170924824e-03,   /* 0x3b52d5db */
+    s0 = -7.7215664089e-02,  /* 0xbd9e233f */
+    s1 = 2.1498242021e-01,   /* 0x3e5c245a */
+    s2 = 3.2577878237e-01,   /* 0x3ea6cc7a */
+    s3 = 1.4635047317e-01,   /* 0x3e15dce6 */
+    s4 = 2.6642270386e-02,   /* 0x3cda40e4 */
+    s5 = 1.8402845599e-03,   /* 0x3af135b4 */
+    s6 = 3.1947532989e-05,   /* 0x3805ff67 */
+    r1 = 1.3920053244e+00,   /* 0x3fb22d3b */
+    r2 = 7.2193557024e-01,   /* 0x3f38d0c5 */
+    r3 = 1.7193385959e-01,   /* 0x3e300f6e */
+    r4 = 1.8645919859e-02,   /* 0x3c98bf54 */
+    r5 = 7.7794247773e-04,   /* 0x3a4beed6 */
+    r6 = 7.3266842264e-06,   /* 0x36f5d7bd */
+    w0 = 4.1893854737e-01,   /* 0x3ed67f1d */
+    w1 = 8.3333335817e-02,   /* 0x3daaaaab */
+    w2 = -2.7777778450e-03,  /* 0xbb360b61 */
+    w3 = 7.9365057172e-04,   /* 0x3a500cfd */
+    w4 = -5.9518753551e-04,  /* 0xba1c065c */
+    w5 = 8.3633989561e-04,   /* 0x3a5b3dd2 */
+    w6 = -1.6309292987e-03;  /* 0xbad5c4e8 */
 
 /* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */
-static float sin_pi(float x)
-{
-	double_t y;
-	int n;
+static float sin_pi(float x) {
+  double_t y;
+  int n;
 
-	/* spurious inexact if odd int */
-	x = 2*(x*0.5f - floorf(x*0.5f));  /* x mod 2.0 */
+  /* spurious inexact if odd int */
+  x = 2 * (x * 0.5f - floorf(x * 0.5f)); /* x mod 2.0 */
 
-	n = (int)(x*4);
-	n = (n+1)/2;
-	y = x - n*0.5f;
-	y *= 3.14159265358979323846;
-	switch (n) {
-	default: /* case 4: */
-	case 0: return __sindf(y);
-	case 1: return __cosdf(y);
-	case 2: return __sindf(-y);
-	case 3: return -__cosdf(y);
-	}
+  n = (int)(x * 4);
+  n = (n + 1) / 2;
+  y = x - n * 0.5f;
+  y *= 3.14159265358979323846;
+  switch (n) {
+    default: /* case 4: */
+    case 0:
+      return __sindf(y);
+    case 1:
+      return __cosdf(y);
+    case 2:
+      return __sindf(-y);
+    case 3:
+      return -__cosdf(y);
+  }
 }
 
-float __lgammaf_r(float x, int *signgamp)
-{
-	union {float f; uint32_t i;} u = {x};
-	float t,y,z,nadj,p,p1,p2,p3,q,r,w;
-	uint32_t ix;
-	int i,sign;
+float __lgammaf_r(float x, int* signgamp) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  float t, y, z, nadj, p, p1, p2, p3, q, r, w;
+  uint32_t ix;
+  int i, sign;
 
-	/* purge off +-inf, NaN, +-0, tiny and negative arguments */
-	*signgamp = 1;
-	sign = u.i>>31;
-	ix = u.i & 0x7fffffff;
-	if (ix >= 0x7f800000)
-		return x*x;
-	if (ix < 0x35000000) {  /* |x| < 2**-21, return -log(|x|) */
-		if (sign) {
-			*signgamp = -1;
-			x = -x;
-		}
-		return -logf(x);
-	}
-	if (sign) {
-		x = -x;
-		t = sin_pi(x);
-		if (t == 0.0f) /* -integer */
-			return 1.0f/(x-x);
-		if (t > 0.0f)
-			*signgamp = -1;
-		else
-			t = -t;
-		nadj = logf(pi/(t*x));
-	}
+  /* purge off +-inf, NaN, +-0, tiny and negative arguments */
+  *signgamp = 1;
+  sign = u.i >> 31;
+  ix = u.i & 0x7fffffff;
+  if (ix >= 0x7f800000)
+    return x * x;
+  if (ix < 0x35000000) { /* |x| < 2**-21, return -log(|x|) */
+    if (sign) {
+      *signgamp = -1;
+      x = -x;
+    }
+    return -logf(x);
+  }
+  if (sign) {
+    x = -x;
+    t = sin_pi(x);
+    if (t == 0.0f) /* -integer */
+      return 1.0f / (x - x);
+    if (t > 0.0f)
+      *signgamp = -1;
+    else
+      t = -t;
+    nadj = logf(pi / (t * x));
+  }
 
-	/* purge off 1 and 2 */
-	if (ix == 0x3f800000 || ix == 0x40000000)
-		r = 0;
-	/* for x < 2.0 */
-	else if (ix < 0x40000000) {
-		if (ix <= 0x3f666666) {  /* lgamma(x) = lgamma(x+1)-log(x) */
-			r = -logf(x);
-			if (ix >= 0x3f3b4a20) {
-				y = 1.0f - x;
-				i = 0;
-			} else if (ix >= 0x3e6d3308) {
-				y = x - (tc-1.0f);
-				i = 1;
-			} else {
-				y = x;
-				i = 2;
-			}
-		} else {
-			r = 0.0f;
-			if (ix >= 0x3fdda618) {  /* [1.7316,2] */
-				y = 2.0f - x;
-				i = 0;
-			} else if (ix >= 0x3F9da620) {  /* [1.23,1.73] */
-				y = x - tc;
-				i = 1;
-			} else {
-				y = x - 1.0f;
-				i = 2;
-			}
-		}
-		switch(i) {
-		case 0:
-			z = y*y;
-			p1 = a0+z*(a2+z*(a4+z*(a6+z*(a8+z*a10))));
-			p2 = z*(a1+z*(a3+z*(a5+z*(a7+z*(a9+z*a11)))));
-			p = y*p1+p2;
-			r += p - 0.5f*y;
-			break;
-		case 1:
-			z = y*y;
-			w = z*y;
-			p1 = t0+w*(t3+w*(t6+w*(t9 +w*t12)));    /* parallel comp */
-			p2 = t1+w*(t4+w*(t7+w*(t10+w*t13)));
-			p3 = t2+w*(t5+w*(t8+w*(t11+w*t14)));
-			p = z*p1-(tt-w*(p2+y*p3));
-			r += (tf + p);
-			break;
-		case 2:
-			p1 = y*(u0+y*(u1+y*(u2+y*(u3+y*(u4+y*u5)))));
-			p2 = 1.0f+y*(v1+y*(v2+y*(v3+y*(v4+y*v5))));
-			r += -0.5f*y + p1/p2;
-		}
-	} else if (ix < 0x41000000) {  /* x < 8.0 */
-		i = (int)x;
-		y = x - (float)i;
-		p = y*(s0+y*(s1+y*(s2+y*(s3+y*(s4+y*(s5+y*s6))))));
-		q = 1.0f+y*(r1+y*(r2+y*(r3+y*(r4+y*(r5+y*r6)))));
-		r = 0.5f*y+p/q;
-		z = 1.0f;    /* lgamma(1+s) = log(s) + lgamma(s) */
-		switch (i) {
-		case 7: z *= y + 6.0f;  /* FALLTHRU */
-		case 6: z *= y + 5.0f;  /* FALLTHRU */
-		case 5: z *= y + 4.0f;  /* FALLTHRU */
-		case 4: z *= y + 3.0f;  /* FALLTHRU */
-		case 3: z *= y + 2.0f;  /* FALLTHRU */
-			r += logf(z);
-			break;
-		}
-	} else if (ix < 0x5c800000) {  /* 8.0 <= x < 2**58 */
-		t = logf(x);
-		z = 1.0f/x;
-		y = z*z;
-		w = w0+z*(w1+y*(w2+y*(w3+y*(w4+y*(w5+y*w6)))));
-		r = (x-0.5f)*(t-1.0f)+w;
-	} else                         /* 2**58 <= x <= inf */
-		r =  x*(logf(x)-1.0f);
-	if (sign)
-		r = nadj - r;
-	return r;
+  /* purge off 1 and 2 */
+  if (ix == 0x3f800000 || ix == 0x40000000)
+    r = 0;
+  /* for x < 2.0 */
+  else if (ix < 0x40000000) {
+    if (ix <= 0x3f666666) { /* lgamma(x) = lgamma(x+1)-log(x) */
+      r = -logf(x);
+      if (ix >= 0x3f3b4a20) {
+        y = 1.0f - x;
+        i = 0;
+      } else if (ix >= 0x3e6d3308) {
+        y = x - (tc - 1.0f);
+        i = 1;
+      } else {
+        y = x;
+        i = 2;
+      }
+    } else {
+      r = 0.0f;
+      if (ix >= 0x3fdda618) { /* [1.7316,2] */
+        y = 2.0f - x;
+        i = 0;
+      } else if (ix >= 0x3F9da620) { /* [1.23,1.73] */
+        y = x - tc;
+        i = 1;
+      } else {
+        y = x - 1.0f;
+        i = 2;
+      }
+    }
+    switch (i) {
+      case 0:
+        z = y * y;
+        p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10))));
+        p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11)))));
+        p = y * p1 + p2;
+        r += p - 0.5f * y;
+        break;
+      case 1:
+        z = y * y;
+        w = z * y;
+        p1 = t0 + w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */
+        p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13)));
+        p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14)));
+        p = z * p1 - (tt - w * (p2 + y * p3));
+        r += (tf + p);
+        break;
+      case 2:
+        p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5)))));
+        p2 = 1.0f + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5))));
+        r += -0.5f * y + p1 / p2;
+    }
+  } else if (ix < 0x41000000) { /* x < 8.0 */
+    i = (int)x;
+    y = x - (float)i;
+    p = y *
+        (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
+    q = 1.0f + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6)))));
+    r = 0.5f * y + p / q;
+    z = 1.0f; /* lgamma(1+s) = log(s) + lgamma(s) */
+    switch (i) {
+      case 7:
+        z *= y + 6.0f; /* FALLTHRU */
+      case 6:
+        z *= y + 5.0f; /* FALLTHRU */
+      case 5:
+        z *= y + 4.0f; /* FALLTHRU */
+      case 4:
+        z *= y + 3.0f; /* FALLTHRU */
+      case 3:
+        z *= y + 2.0f; /* FALLTHRU */
+        r += logf(z);
+        break;
+    }
+  } else if (ix < 0x5c800000) { /* 8.0 <= x < 2**58 */
+    t = logf(x);
+    z = 1.0f / x;
+    y = z * z;
+    w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6)))));
+    r = (x - 0.5f) * (t - 1.0f) + w;
+  } else /* 2**58 <= x <= inf */
+    r = x * (logf(x) - 1.0f);
+  if (sign)
+    r = nadj - r;
+  return r;
 }
 
 weak_alias(__lgammaf_r, lgammaf_r);
diff --git a/fusl/src/math/lgammal.c b/fusl/src/math/lgammal.c
index 2b354a7..dcac5e7 100644
--- a/fusl/src/math/lgammal.c
+++ b/fusl/src/math/lgammal.c
@@ -90,271 +90,270 @@
 #include "libc.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-double __lgamma_r(double x, int *sg);
+double __lgamma_r(double x, int* sg);
 
-long double __lgammal_r(long double x, int *sg)
-{
-	return __lgamma_r(x, sg);
+long double __lgammal_r(long double x, int* sg) {
+  return __lgamma_r(x, sg);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 static const long double
-pi = 3.14159265358979323846264L,
+    pi = 3.14159265358979323846264L,
 
-/* lgam(1+x) = 0.5 x + x a(x)/b(x)
-    -0.268402099609375 <= x <= 0
-    peak relative error 6.6e-22 */
-a0 = -6.343246574721079391729402781192128239938E2L,
-a1 =  1.856560238672465796768677717168371401378E3L,
-a2 =  2.404733102163746263689288466865843408429E3L,
-a3 =  8.804188795790383497379532868917517596322E2L,
-a4 =  1.135361354097447729740103745999661157426E2L,
-a5 =  3.766956539107615557608581581190400021285E0L,
+    /* lgam(1+x) = 0.5 x + x a(x)/b(x)
+        -0.268402099609375 <= x <= 0
+        peak relative error 6.6e-22 */
+    a0 = -6.343246574721079391729402781192128239938E2L,
+    a1 = 1.856560238672465796768677717168371401378E3L,
+    a2 = 2.404733102163746263689288466865843408429E3L,
+    a3 = 8.804188795790383497379532868917517596322E2L,
+    a4 = 1.135361354097447729740103745999661157426E2L,
+    a5 = 3.766956539107615557608581581190400021285E0L,
 
-b0 =  8.214973713960928795704317259806842490498E3L,
-b1 =  1.026343508841367384879065363925870888012E4L,
-b2 =  4.553337477045763320522762343132210919277E3L,
-b3 =  8.506975785032585797446253359230031874803E2L,
-b4 =  6.042447899703295436820744186992189445813E1L,
-/* b5 =  1.000000000000000000000000000000000000000E0 */
+    b0 = 8.214973713960928795704317259806842490498E3L,
+    b1 = 1.026343508841367384879065363925870888012E4L,
+    b2 = 4.553337477045763320522762343132210919277E3L,
+    b3 = 8.506975785032585797446253359230031874803E2L,
+    b4 = 6.042447899703295436820744186992189445813E1L,
+    /* b5 =  1.000000000000000000000000000000000000000E0 */
 
+    tc = 1.4616321449683623412626595423257213284682E0L,
+    tf = -1.2148629053584961146050602565082954242826E-1, /* double precision */
+    /* tt = (tail of tf), i.e. tf + tt has extended precision. */
+    tt = 3.3649914684731379602768989080467587736363E-18L,
+    /* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
+    -1.2148629053584960809551455717769158215135617312999903886372437313313530E-1
+    */
 
-tc =  1.4616321449683623412626595423257213284682E0L,
-tf = -1.2148629053584961146050602565082954242826E-1, /* double precision */
-/* tt = (tail of tf), i.e. tf + tt has extended precision. */
-tt = 3.3649914684731379602768989080467587736363E-18L,
-/* lgam ( 1.4616321449683623412626595423257213284682E0 ) =
--1.2148629053584960809551455717769158215135617312999903886372437313313530E-1 */
+    /* lgam (x + tc) = tf + tt + x g(x)/h(x)
+        -0.230003726999612341262659542325721328468 <= x
+           <= 0.2699962730003876587373404576742786715318
+         peak relative error 2.1e-21 */
+    g0 = 3.645529916721223331888305293534095553827E-18L,
+    g1 = 5.126654642791082497002594216163574795690E3L,
+    g2 = 8.828603575854624811911631336122070070327E3L,
+    g3 = 5.464186426932117031234820886525701595203E3L,
+    g4 = 1.455427403530884193180776558102868592293E3L,
+    g5 = 1.541735456969245924860307497029155838446E2L,
+    g6 = 4.335498275274822298341872707453445815118E0L,
 
-/* lgam (x + tc) = tf + tt + x g(x)/h(x)
-    -0.230003726999612341262659542325721328468 <= x
-       <= 0.2699962730003876587373404576742786715318
-     peak relative error 2.1e-21 */
-g0 = 3.645529916721223331888305293534095553827E-18L,
-g1 = 5.126654642791082497002594216163574795690E3L,
-g2 = 8.828603575854624811911631336122070070327E3L,
-g3 = 5.464186426932117031234820886525701595203E3L,
-g4 = 1.455427403530884193180776558102868592293E3L,
-g5 = 1.541735456969245924860307497029155838446E2L,
-g6 = 4.335498275274822298341872707453445815118E0L,
+    h0 = 1.059584930106085509696730443974495979641E4L,
+    h1 = 2.147921653490043010629481226937850618860E4L,
+    h2 = 1.643014770044524804175197151958100656728E4L,
+    h3 = 5.869021995186925517228323497501767586078E3L,
+    h4 = 9.764244777714344488787381271643502742293E2L,
+    h5 = 6.442485441570592541741092969581997002349E1L,
+    /* h6 = 1.000000000000000000000000000000000000000E0 */
 
-h0 = 1.059584930106085509696730443974495979641E4L,
-h1 = 2.147921653490043010629481226937850618860E4L,
-h2 = 1.643014770044524804175197151958100656728E4L,
-h3 = 5.869021995186925517228323497501767586078E3L,
-h4 = 9.764244777714344488787381271643502742293E2L,
-h5 = 6.442485441570592541741092969581997002349E1L,
-/* h6 = 1.000000000000000000000000000000000000000E0 */
+    /* lgam (x+1) = -0.5 x + x u(x)/v(x)
+        -0.100006103515625 <= x <= 0.231639862060546875
+        peak relative error 1.3e-21 */
+    u0 = -8.886217500092090678492242071879342025627E1L,
+    u1 = 6.840109978129177639438792958320783599310E2L,
+    u2 = 2.042626104514127267855588786511809932433E3L,
+    u3 = 1.911723903442667422201651063009856064275E3L,
+    u4 = 7.447065275665887457628865263491667767695E2L,
+    u5 = 1.132256494121790736268471016493103952637E2L,
+    u6 = 4.484398885516614191003094714505960972894E0L,
 
+    v0 = 1.150830924194461522996462401210374632929E3L,
+    v1 = 3.399692260848747447377972081399737098610E3L,
+    v2 = 3.786631705644460255229513563657226008015E3L,
+    v3 = 1.966450123004478374557778781564114347876E3L,
+    v4 = 4.741359068914069299837355438370682773122E2L,
+    v5 = 4.508989649747184050907206782117647852364E1L,
+    /* v6 =  1.000000000000000000000000000000000000000E0 */
 
-/* lgam (x+1) = -0.5 x + x u(x)/v(x)
-    -0.100006103515625 <= x <= 0.231639862060546875
-    peak relative error 1.3e-21 */
-u0 = -8.886217500092090678492242071879342025627E1L,
-u1 =  6.840109978129177639438792958320783599310E2L,
-u2 =  2.042626104514127267855588786511809932433E3L,
-u3 =  1.911723903442667422201651063009856064275E3L,
-u4 =  7.447065275665887457628865263491667767695E2L,
-u5 =  1.132256494121790736268471016493103952637E2L,
-u6 =  4.484398885516614191003094714505960972894E0L,
+    /* lgam (x+2) = .5 x + x s(x)/r(x)
+         0 <= x <= 1
+         peak relative error 7.2e-22 */
+    s0 = 1.454726263410661942989109455292824853344E6L,
+    s1 = -3.901428390086348447890408306153378922752E6L,
+    s2 = -6.573568698209374121847873064292963089438E6L,
+    s3 = -3.319055881485044417245964508099095984643E6L,
+    s4 = -7.094891568758439227560184618114707107977E5L,
+    s5 = -6.263426646464505837422314539808112478303E4L,
+    s6 = -1.684926520999477529949915657519454051529E3L,
 
-v0 =  1.150830924194461522996462401210374632929E3L,
-v1 =  3.399692260848747447377972081399737098610E3L,
-v2 =  3.786631705644460255229513563657226008015E3L,
-v3 =  1.966450123004478374557778781564114347876E3L,
-v4 =  4.741359068914069299837355438370682773122E2L,
-v5 =  4.508989649747184050907206782117647852364E1L,
-/* v6 =  1.000000000000000000000000000000000000000E0 */
+    r0 = -1.883978160734303518163008696712983134698E7L,
+    r1 = -2.815206082812062064902202753264922306830E7L,
+    r2 = -1.600245495251915899081846093343626358398E7L,
+    r3 = -4.310526301881305003489257052083370058799E6L,
+    r4 = -5.563807682263923279438235987186184968542E5L,
+    r5 = -3.027734654434169996032905158145259713083E4L,
+    r6 = -4.501995652861105629217250715790764371267E2L,
+    /* r6 =  1.000000000000000000000000000000000000000E0 */
 
-
-/* lgam (x+2) = .5 x + x s(x)/r(x)
-     0 <= x <= 1
-     peak relative error 7.2e-22 */
-s0 =  1.454726263410661942989109455292824853344E6L,
-s1 = -3.901428390086348447890408306153378922752E6L,
-s2 = -6.573568698209374121847873064292963089438E6L,
-s3 = -3.319055881485044417245964508099095984643E6L,
-s4 = -7.094891568758439227560184618114707107977E5L,
-s5 = -6.263426646464505837422314539808112478303E4L,
-s6 = -1.684926520999477529949915657519454051529E3L,
-
-r0 = -1.883978160734303518163008696712983134698E7L,
-r1 = -2.815206082812062064902202753264922306830E7L,
-r2 = -1.600245495251915899081846093343626358398E7L,
-r3 = -4.310526301881305003489257052083370058799E6L,
-r4 = -5.563807682263923279438235987186184968542E5L,
-r5 = -3.027734654434169996032905158145259713083E4L,
-r6 = -4.501995652861105629217250715790764371267E2L,
-/* r6 =  1.000000000000000000000000000000000000000E0 */
-
-
-/* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
-    x >= 8
-    Peak relative error 1.51e-21
-w0 = LS2PI - 0.5 */
-w0 =  4.189385332046727417803e-1L,
-w1 =  8.333333333333331447505E-2L,
-w2 = -2.777777777750349603440E-3L,
-w3 =  7.936507795855070755671E-4L,
-w4 = -5.952345851765688514613E-4L,
-w5 =  8.412723297322498080632E-4L,
-w6 = -1.880801938119376907179E-3L,
-w7 =  4.885026142432270781165E-3L;
+    /* lgam(x) = ( x - 0.5 ) * log(x) - x + LS2PI + 1/x w(1/x^2)
+        x >= 8
+        Peak relative error 1.51e-21
+    w0 = LS2PI - 0.5 */
+    w0 = 4.189385332046727417803e-1L, w1 = 8.333333333333331447505E-2L,
+    w2 = -2.777777777750349603440E-3L, w3 = 7.936507795855070755671E-4L,
+    w4 = -5.952345851765688514613E-4L, w5 = 8.412723297322498080632E-4L,
+    w6 = -1.880801938119376907179E-3L, w7 = 4.885026142432270781165E-3L;
 
 /* sin(pi*x) assuming x > 2^-1000, if sin(pi*x)==0 the sign is arbitrary */
-static long double sin_pi(long double x)
-{
-	int n;
+static long double sin_pi(long double x) {
+  int n;
 
-	/* spurious inexact if odd int */
-	x *= 0.5;
-	x = 2.0*(x - floorl(x));  /* x mod 2.0 */
+  /* spurious inexact if odd int */
+  x *= 0.5;
+  x = 2.0 * (x - floorl(x)); /* x mod 2.0 */
 
-	n = (int)(x*4.0);
-	n = (n+1)/2;
-	x -= n*0.5f;
-	x *= pi;
+  n = (int)(x * 4.0);
+  n = (n + 1) / 2;
+  x -= n * 0.5f;
+  x *= pi;
 
-	switch (n) {
-	default: /* case 4: */
-	case 0: return __sinl(x, 0.0, 0);
-	case 1: return __cosl(x, 0.0);
-	case 2: return __sinl(-x, 0.0, 0);
-	case 3: return -__cosl(x, 0.0);
-	}
+  switch (n) {
+    default: /* case 4: */
+    case 0:
+      return __sinl(x, 0.0, 0);
+    case 1:
+      return __cosl(x, 0.0);
+    case 2:
+      return __sinl(-x, 0.0, 0);
+    case 3:
+      return -__cosl(x, 0.0);
+  }
 }
 
-long double __lgammal_r(long double x, int *sg) {
-	long double t, y, z, nadj, p, p1, p2, q, r, w;
-	union ldshape u = {x};
-	uint32_t ix = (u.i.se & 0x7fffU)<<16 | u.i.m>>48;
-	int sign = u.i.se >> 15;
-	int i;
+long double __lgammal_r(long double x, int* sg) {
+  long double t, y, z, nadj, p, p1, p2, q, r, w;
+  union ldshape u = {x};
+  uint32_t ix = (u.i.se & 0x7fffU) << 16 | u.i.m >> 48;
+  int sign = u.i.se >> 15;
+  int i;
 
-	*sg = 1;
+  *sg = 1;
 
-	/* purge off +-inf, NaN, +-0, tiny and negative arguments */
-	if (ix >= 0x7fff0000)
-		return x * x;
-	if (ix < 0x3fc08000) {  /* |x|<2**-63, return -log(|x|) */
-		if (sign) {
-			*sg = -1;
-			x = -x;
-		}
-		return -logl(x);
-	}
-	if (sign) {
-		x = -x;
-		t = sin_pi(x);
-		if (t == 0.0)
-			return 1.0 / (x-x); /* -integer */
-		if (t > 0.0)
-			*sg = -1;
-		else
-			t = -t;
-		nadj = logl(pi / (t * x));
-	}
+  /* purge off +-inf, NaN, +-0, tiny and negative arguments */
+  if (ix >= 0x7fff0000)
+    return x * x;
+  if (ix < 0x3fc08000) { /* |x|<2**-63, return -log(|x|) */
+    if (sign) {
+      *sg = -1;
+      x = -x;
+    }
+    return -logl(x);
+  }
+  if (sign) {
+    x = -x;
+    t = sin_pi(x);
+    if (t == 0.0)
+      return 1.0 / (x - x); /* -integer */
+    if (t > 0.0)
+      *sg = -1;
+    else
+      t = -t;
+    nadj = logl(pi / (t * x));
+  }
 
-	/* purge off 1 and 2 (so the sign is ok with downward rounding) */
-	if ((ix == 0x3fff8000 || ix == 0x40008000) && u.i.m == 0) {
-		r = 0;
-	} else if (ix < 0x40008000) {  /* x < 2.0 */
-		if (ix <= 0x3ffee666) {  /* 8.99993896484375e-1 */
-			/* lgamma(x) = lgamma(x+1) - log(x) */
-			r = -logl(x);
-			if (ix >= 0x3ffebb4a) {  /* 7.31597900390625e-1 */
-				y = x - 1.0;
-				i = 0;
-			} else if (ix >= 0x3ffced33) {  /* 2.31639862060546875e-1 */
-				y = x - (tc - 1.0);
-				i = 1;
-			} else { /* x < 0.23 */
-				y = x;
-				i = 2;
-			}
-		} else {
-			r = 0.0;
-			if (ix >= 0x3fffdda6) {  /* 1.73162841796875 */
-				/* [1.7316,2] */
-				y = x - 2.0;
-				i = 0;
-			} else if (ix >= 0x3fff9da6) {  /* 1.23162841796875 */
-				/* [1.23,1.73] */
-				y = x - tc;
-				i = 1;
-			} else {
-				/* [0.9, 1.23] */
-				y = x - 1.0;
-				i = 2;
-			}
-		}
-		switch (i) {
-		case 0:
-			p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
-			p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
-			r += 0.5 * y + y * p1/p2;
-			break;
-		case 1:
-			p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
-			p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
-			p = tt + y * p1/p2;
-			r += (tf + p);
-			break;
-		case 2:
-			p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
-			p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
-			r += (-0.5 * y + p1 / p2);
-		}
-	} else if (ix < 0x40028000) {  /* 8.0 */
-		/* x < 8.0 */
-		i = (int)x;
-		y = x - (double)i;
-		p = y * (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
-		q = r0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
-		r = 0.5 * y + p / q;
-		z = 1.0;
-		/* lgamma(1+s) = log(s) + lgamma(s) */
-		switch (i) {
-		case 7:
-			z *= (y + 6.0); /* FALLTHRU */
-		case 6:
-			z *= (y + 5.0); /* FALLTHRU */
-		case 5:
-			z *= (y + 4.0); /* FALLTHRU */
-		case 4:
-			z *= (y + 3.0); /* FALLTHRU */
-		case 3:
-			z *= (y + 2.0); /* FALLTHRU */
-			r += logl(z);
-			break;
-		}
-	} else if (ix < 0x40418000) {  /* 2^66 */
-		/* 8.0 <= x < 2**66 */
-		t = logl(x);
-		z = 1.0 / x;
-		y = z * z;
-		w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
-		r = (x - 0.5) * (t - 1.0) + w;
-	} else /* 2**66 <= x <= inf */
-		r = x * (logl(x) - 1.0);
-	if (sign)
-		r = nadj - r;
-	return r;
+  /* purge off 1 and 2 (so the sign is ok with downward rounding) */
+  if ((ix == 0x3fff8000 || ix == 0x40008000) && u.i.m == 0) {
+    r = 0;
+  } else if (ix < 0x40008000) { /* x < 2.0 */
+    if (ix <= 0x3ffee666) {     /* 8.99993896484375e-1 */
+      /* lgamma(x) = lgamma(x+1) - log(x) */
+      r = -logl(x);
+      if (ix >= 0x3ffebb4a) { /* 7.31597900390625e-1 */
+        y = x - 1.0;
+        i = 0;
+      } else if (ix >= 0x3ffced33) { /* 2.31639862060546875e-1 */
+        y = x - (tc - 1.0);
+        i = 1;
+      } else { /* x < 0.23 */
+        y = x;
+        i = 2;
+      }
+    } else {
+      r = 0.0;
+      if (ix >= 0x3fffdda6) { /* 1.73162841796875 */
+        /* [1.7316,2] */
+        y = x - 2.0;
+        i = 0;
+      } else if (ix >= 0x3fff9da6) { /* 1.23162841796875 */
+        /* [1.23,1.73] */
+        y = x - tc;
+        i = 1;
+      } else {
+        /* [0.9, 1.23] */
+        y = x - 1.0;
+        i = 2;
+      }
+    }
+    switch (i) {
+      case 0:
+        p1 = a0 + y * (a1 + y * (a2 + y * (a3 + y * (a4 + y * a5))));
+        p2 = b0 + y * (b1 + y * (b2 + y * (b3 + y * (b4 + y))));
+        r += 0.5 * y + y * p1 / p2;
+        break;
+      case 1:
+        p1 = g0 + y * (g1 + y * (g2 + y * (g3 + y * (g4 + y * (g5 + y * g6)))));
+        p2 = h0 + y * (h1 + y * (h2 + y * (h3 + y * (h4 + y * (h5 + y)))));
+        p = tt + y * p1 / p2;
+        r += (tf + p);
+        break;
+      case 2:
+        p1 =
+            y * (u0 +
+                 y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * (u5 + y * u6))))));
+        p2 = v0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * (v5 + y)))));
+        r += (-0.5 * y + p1 / p2);
+    }
+  } else if (ix < 0x40028000) { /* 8.0 */
+    /* x < 8.0 */
+    i = (int)x;
+    y = x - (double)i;
+    p = y *
+        (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6))))));
+    q = r0 +
+        y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * (r6 + y))))));
+    r = 0.5 * y + p / q;
+    z = 1.0;
+    /* lgamma(1+s) = log(s) + lgamma(s) */
+    switch (i) {
+      case 7:
+        z *= (y + 6.0); /* FALLTHRU */
+      case 6:
+        z *= (y + 5.0); /* FALLTHRU */
+      case 5:
+        z *= (y + 4.0); /* FALLTHRU */
+      case 4:
+        z *= (y + 3.0); /* FALLTHRU */
+      case 3:
+        z *= (y + 2.0); /* FALLTHRU */
+        r += logl(z);
+        break;
+    }
+  } else if (ix < 0x40418000) { /* 2^66 */
+    /* 8.0 <= x < 2**66 */
+    t = logl(x);
+    z = 1.0 / x;
+    y = z * z;
+    w = w0 +
+        z * (w1 +
+             y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * (w6 + y * w7))))));
+    r = (x - 0.5) * (t - 1.0) + w;
+  } else /* 2**66 <= x <= inf */
+    r = x * (logl(x) - 1.0);
+  if (sign)
+    r = nadj - r;
+  return r;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-double __lgamma_r(double x, int *sg);
+double __lgamma_r(double x, int* sg);
 
-long double __lgammal_r(long double x, int *sg)
-{
-	return __lgamma_r(x, sg);
+long double __lgammal_r(long double x, int* sg) {
+  return __lgamma_r(x, sg);
 }
 #endif
 
 extern int __signgam;
 
-long double lgammal(long double x)
-{
-	return __lgammal_r(x, &__signgam);
+long double lgammal(long double x) {
+  return __lgammal_r(x, &__signgam);
 }
 
 weak_alias(__lgammal_r, lgammal_r);
diff --git a/fusl/src/math/llrint.c b/fusl/src/math/llrint.c
index 4f583ae..d778d1f 100644
--- a/fusl/src/math/llrint.c
+++ b/fusl/src/math/llrint.c
@@ -2,7 +2,6 @@
 
 /* uses LLONG_MAX > 2^53, see comments in lrint.c */
 
-long long llrint(double x)
-{
-	return rint(x);
+long long llrint(double x) {
+  return rint(x);
 }
diff --git a/fusl/src/math/llrintf.c b/fusl/src/math/llrintf.c
index 96949a0..d6ae6de 100644
--- a/fusl/src/math/llrintf.c
+++ b/fusl/src/math/llrintf.c
@@ -2,7 +2,6 @@
 
 /* uses LLONG_MAX > 2^24, see comments in lrint.c */
 
-long long llrintf(float x)
-{
-	return rintf(x);
+long long llrintf(float x) {
+  return rintf(x);
 }
diff --git a/fusl/src/math/llrintl.c b/fusl/src/math/llrintl.c
index 56150fb..15ab6a5 100644
--- a/fusl/src/math/llrintl.c
+++ b/fusl/src/math/llrintl.c
@@ -2,11 +2,9 @@
 #include <fenv.h>
 #include "libm.h"
 
-
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long long llrintl(long double x)
-{
-	return llrint(x);
+long long llrintl(long double x) {
+  return llrint(x);
 }
 #elif defined(FE_INEXACT)
 /*
@@ -16,21 +14,19 @@
 then x == 2**63 - 0.5 is the only input that overflows and
 raises inexact (with tonearest or upward rounding mode)
 */
-long long llrintl(long double x)
-{
-	PRAGMA_STDC_FENV_ACCESS_ON
-	int e;
+long long llrintl(long double x) {
+  PRAGMA_STDC_FENV_ACCESS_ON
+  int e;
 
-	e = fetestexcept(FE_INEXACT);
-	x = rintl(x);
-	if (!e && (x > LLONG_MAX || x < LLONG_MIN))
-		feclearexcept(FE_INEXACT);
-	/* conversion */
-	return x;
+  e = fetestexcept(FE_INEXACT);
+  x = rintl(x);
+  if (!e && (x > LLONG_MAX || x < LLONG_MIN))
+    feclearexcept(FE_INEXACT);
+  /* conversion */
+  return x;
 }
 #else
-long long llrintl(long double x)
-{
-	return rintl(x);
+long long llrintl(long double x) {
+  return rintl(x);
 }
 #endif
diff --git a/fusl/src/math/llround.c b/fusl/src/math/llround.c
index 4d94787..37c49a0 100644
--- a/fusl/src/math/llround.c
+++ b/fusl/src/math/llround.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-long long llround(double x)
-{
-	return round(x);
+long long llround(double x) {
+  return round(x);
 }
diff --git a/fusl/src/math/llroundf.c b/fusl/src/math/llroundf.c
index 19eb77e..b2fd7e0 100644
--- a/fusl/src/math/llroundf.c
+++ b/fusl/src/math/llroundf.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-long long llroundf(float x)
-{
-	return roundf(x);
+long long llroundf(float x) {
+  return roundf(x);
 }
diff --git a/fusl/src/math/llroundl.c b/fusl/src/math/llroundl.c
index 2c2ee5e..e22c907 100644
--- a/fusl/src/math/llroundl.c
+++ b/fusl/src/math/llroundl.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-long long llroundl(long double x)
-{
-	return roundl(x);
+long long llroundl(long double x) {
+  return roundl(x);
 }
diff --git a/fusl/src/math/log.c b/fusl/src/math/log.c
index e61e113..c7e85a9 100644
--- a/fusl/src/math/log.c
+++ b/fusl/src/math/log.c
@@ -63,56 +63,57 @@
 #include <math.h>
 #include <stdint.h>
 
-static const double
-ln2_hi = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
-ln2_lo = 1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
-Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
-Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
-Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
-Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
-Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
-Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
-Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
+static const double ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+    ln2_lo = 1.90821492927058770002e-10,                 /* 3dea39ef 35793c76 */
+    Lg1 = 6.666666666666735130e-01,                      /* 3FE55555 55555593 */
+    Lg2 = 3.999999999940941908e-01,                      /* 3FD99999 9997FA04 */
+    Lg3 = 2.857142874366239149e-01,                      /* 3FD24924 94229359 */
+    Lg4 = 2.222219843214978396e-01,                      /* 3FCC71C5 1D8E78AF */
+    Lg5 = 1.818357216161805012e-01,                      /* 3FC74664 96CB03DE */
+    Lg6 = 1.531383769920937332e-01,                      /* 3FC39A09 D078C69F */
+    Lg7 = 1.479819860511658591e-01;                      /* 3FC2F112 DF3E5244 */
 
-double log(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	double_t hfsq,f,s,z,R,w,t1,t2,dk;
-	uint32_t hx;
-	int k;
+double log(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  double_t hfsq, f, s, z, R, w, t1, t2, dk;
+  uint32_t hx;
+  int k;
 
-	hx = u.i>>32;
-	k = 0;
-	if (hx < 0x00100000 || hx>>31) {
-		if (u.i<<1 == 0)
-			return -1/(x*x);  /* log(+-0)=-inf */
-		if (hx>>31)
-			return (x-x)/0.0; /* log(-#) = NaN */
-		/* subnormal number, scale x up */
-		k -= 54;
-		x *= 0x1p54;
-		u.f = x;
-		hx = u.i>>32;
-	} else if (hx >= 0x7ff00000) {
-		return x;
-	} else if (hx == 0x3ff00000 && u.i<<32 == 0)
-		return 0;
+  hx = u.i >> 32;
+  k = 0;
+  if (hx < 0x00100000 || hx >> 31) {
+    if (u.i << 1 == 0)
+      return -1 / (x * x); /* log(+-0)=-inf */
+    if (hx >> 31)
+      return (x - x) / 0.0; /* log(-#) = NaN */
+    /* subnormal number, scale x up */
+    k -= 54;
+    x *= 0x1p54;
+    u.f = x;
+    hx = u.i >> 32;
+  } else if (hx >= 0x7ff00000) {
+    return x;
+  } else if (hx == 0x3ff00000 && u.i << 32 == 0)
+    return 0;
 
-	/* reduce x into [sqrt(2)/2, sqrt(2)] */
-	hx += 0x3ff00000 - 0x3fe6a09e;
-	k += (int)(hx>>20) - 0x3ff;
-	hx = (hx&0x000fffff) + 0x3fe6a09e;
-	u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
-	x = u.f;
+  /* reduce x into [sqrt(2)/2, sqrt(2)] */
+  hx += 0x3ff00000 - 0x3fe6a09e;
+  k += (int)(hx >> 20) - 0x3ff;
+  hx = (hx & 0x000fffff) + 0x3fe6a09e;
+  u.i = (uint64_t)hx << 32 | (u.i & 0xffffffff);
+  x = u.f;
 
-	f = x - 1.0;
-	hfsq = 0.5*f*f;
-	s = f/(2.0+f);
-	z = s*s;
-	w = z*z;
-	t1 = w*(Lg2+w*(Lg4+w*Lg6));
-	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
-	R = t2 + t1;
-	dk = k;
-	return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
+  f = x - 1.0;
+  hfsq = 0.5 * f * f;
+  s = f / (2.0 + f);
+  z = s * s;
+  w = z * z;
+  t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
+  t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
+  R = t2 + t1;
+  dk = k;
+  return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi;
 }
diff --git a/fusl/src/math/log10.c b/fusl/src/math/log10.c
index 8102687..621e15e 100644
--- a/fusl/src/math/log10.c
+++ b/fusl/src/math/log10.c
@@ -20,82 +20,84 @@
 #include <math.h>
 #include <stdint.h>
 
-static const double
-ivln10hi  = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */
-ivln10lo  = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */
-log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
-log10_2lo = 3.69423907715893078616e-13, /* 0x3D59FEF3, 0x11F12B36 */
-Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
-Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
-Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
-Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
-Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
-Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
-Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
+static const double ivln10hi =
+                        4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */
+    ivln10lo = 2.50829467116452752298e-11,          /* 0x3dbb9438, 0xca9aadd5 */
+    log10_2hi = 3.01029995663611771306e-01,         /* 0x3FD34413, 0x509F6000 */
+    log10_2lo = 3.69423907715893078616e-13,         /* 0x3D59FEF3, 0x11F12B36 */
+    Lg1 = 6.666666666666735130e-01,                 /* 3FE55555 55555593 */
+    Lg2 = 3.999999999940941908e-01,                 /* 3FD99999 9997FA04 */
+    Lg3 = 2.857142874366239149e-01,                 /* 3FD24924 94229359 */
+    Lg4 = 2.222219843214978396e-01,                 /* 3FCC71C5 1D8E78AF */
+    Lg5 = 1.818357216161805012e-01,                 /* 3FC74664 96CB03DE */
+    Lg6 = 1.531383769920937332e-01,                 /* 3FC39A09 D078C69F */
+    Lg7 = 1.479819860511658591e-01;                 /* 3FC2F112 DF3E5244 */
 
-double log10(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	double_t hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo;
-	uint32_t hx;
-	int k;
+double log10(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  double_t hfsq, f, s, z, R, w, t1, t2, dk, y, hi, lo, val_hi, val_lo;
+  uint32_t hx;
+  int k;
 
-	hx = u.i>>32;
-	k = 0;
-	if (hx < 0x00100000 || hx>>31) {
-		if (u.i<<1 == 0)
-			return -1/(x*x);  /* log(+-0)=-inf */
-		if (hx>>31)
-			return (x-x)/0.0; /* log(-#) = NaN */
-		/* subnormal number, scale x up */
-		k -= 54;
-		x *= 0x1p54;
-		u.f = x;
-		hx = u.i>>32;
-	} else if (hx >= 0x7ff00000) {
-		return x;
-	} else if (hx == 0x3ff00000 && u.i<<32 == 0)
-		return 0;
+  hx = u.i >> 32;
+  k = 0;
+  if (hx < 0x00100000 || hx >> 31) {
+    if (u.i << 1 == 0)
+      return -1 / (x * x); /* log(+-0)=-inf */
+    if (hx >> 31)
+      return (x - x) / 0.0; /* log(-#) = NaN */
+    /* subnormal number, scale x up */
+    k -= 54;
+    x *= 0x1p54;
+    u.f = x;
+    hx = u.i >> 32;
+  } else if (hx >= 0x7ff00000) {
+    return x;
+  } else if (hx == 0x3ff00000 && u.i << 32 == 0)
+    return 0;
 
-	/* reduce x into [sqrt(2)/2, sqrt(2)] */
-	hx += 0x3ff00000 - 0x3fe6a09e;
-	k += (int)(hx>>20) - 0x3ff;
-	hx = (hx&0x000fffff) + 0x3fe6a09e;
-	u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
-	x = u.f;
+  /* reduce x into [sqrt(2)/2, sqrt(2)] */
+  hx += 0x3ff00000 - 0x3fe6a09e;
+  k += (int)(hx >> 20) - 0x3ff;
+  hx = (hx & 0x000fffff) + 0x3fe6a09e;
+  u.i = (uint64_t)hx << 32 | (u.i & 0xffffffff);
+  x = u.f;
 
-	f = x - 1.0;
-	hfsq = 0.5*f*f;
-	s = f/(2.0+f);
-	z = s*s;
-	w = z*z;
-	t1 = w*(Lg2+w*(Lg4+w*Lg6));
-	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
-	R = t2 + t1;
+  f = x - 1.0;
+  hfsq = 0.5 * f * f;
+  s = f / (2.0 + f);
+  z = s * s;
+  w = z * z;
+  t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
+  t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
+  R = t2 + t1;
 
-	/* See log2.c for details. */
-	/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
-	hi = f - hfsq;
-	u.f = hi;
-	u.i &= (uint64_t)-1<<32;
-	hi = u.f;
-	lo = f - hi - hfsq + s*(hfsq+R);
+  /* See log2.c for details. */
+  /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
+  hi = f - hfsq;
+  u.f = hi;
+  u.i &= (uint64_t)-1 << 32;
+  hi = u.f;
+  lo = f - hi - hfsq + s * (hfsq + R);
 
-	/* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
-	val_hi = hi*ivln10hi;
-	dk = k;
-	y = dk*log10_2hi;
-	val_lo = dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;
+  /* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
+  val_hi = hi * ivln10hi;
+  dk = k;
+  y = dk * log10_2hi;
+  val_lo = dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi;
 
-	/*
-	 * Extra precision in for adding y is not strictly needed
-	 * since there is no very large cancellation near x = sqrt(2) or
-	 * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
-	 * with some parallelism and it reduces the error for many args.
-	 */
-	w = y + val_hi;
-	val_lo += (y - w) + val_hi;
-	val_hi = w;
+  /*
+   * Extra precision in for adding y is not strictly needed
+   * since there is no very large cancellation near x = sqrt(2) or
+   * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
+   * with some parallelism and it reduces the error for many args.
+   */
+  w = y + val_hi;
+  val_lo += (y - w) + val_hi;
+  val_hi = w;
 
-	return val_lo + val_hi;
+  return val_lo + val_hi;
 }
diff --git a/fusl/src/math/log10f.c b/fusl/src/math/log10f.c
index 9ca2f01..1958470 100644
--- a/fusl/src/math/log10f.c
+++ b/fusl/src/math/log10f.c
@@ -16,62 +16,64 @@
 #include <math.h>
 #include <stdint.h>
 
-static const float
-ivln10hi  =  4.3432617188e-01, /* 0x3ede6000 */
-ivln10lo  = -3.1689971365e-05, /* 0xb804ead9 */
-log10_2hi =  3.0102920532e-01, /* 0x3e9a2080 */
-log10_2lo =  7.9034151668e-07, /* 0x355427db */
-/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
-Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
-Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
-Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
-Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
+static const float ivln10hi = 4.3432617188e-01, /* 0x3ede6000 */
+    ivln10lo = -3.1689971365e-05,               /* 0xb804ead9 */
+    log10_2hi = 3.0102920532e-01,               /* 0x3e9a2080 */
+    log10_2lo = 7.9034151668e-07,               /* 0x355427db */
+    /* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+    Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
+    Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
+    Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
+    Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
 
-float log10f(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	float_t hfsq,f,s,z,R,w,t1,t2,dk,hi,lo;
-	uint32_t ix;
-	int k;
+float log10f(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  float_t hfsq, f, s, z, R, w, t1, t2, dk, hi, lo;
+  uint32_t ix;
+  int k;
 
-	ix = u.i;
-	k = 0;
-	if (ix < 0x00800000 || ix>>31) {  /* x < 2**-126  */
-		if (ix<<1 == 0)
-			return -1/(x*x);  /* log(+-0)=-inf */
-		if (ix>>31)
-			return (x-x)/0.0f; /* log(-#) = NaN */
-		/* subnormal number, scale up x */
-		k -= 25;
-		x *= 0x1p25f;
-		u.f = x;
-		ix = u.i;
-	} else if (ix >= 0x7f800000) {
-		return x;
-	} else if (ix == 0x3f800000)
-		return 0;
+  ix = u.i;
+  k = 0;
+  if (ix < 0x00800000 || ix >> 31) { /* x < 2**-126  */
+    if (ix << 1 == 0)
+      return -1 / (x * x); /* log(+-0)=-inf */
+    if (ix >> 31)
+      return (x - x) / 0.0f; /* log(-#) = NaN */
+    /* subnormal number, scale up x */
+    k -= 25;
+    x *= 0x1p25f;
+    u.f = x;
+    ix = u.i;
+  } else if (ix >= 0x7f800000) {
+    return x;
+  } else if (ix == 0x3f800000)
+    return 0;
 
-	/* reduce x into [sqrt(2)/2, sqrt(2)] */
-	ix += 0x3f800000 - 0x3f3504f3;
-	k += (int)(ix>>23) - 0x7f;
-	ix = (ix&0x007fffff) + 0x3f3504f3;
-	u.i = ix;
-	x = u.f;
+  /* reduce x into [sqrt(2)/2, sqrt(2)] */
+  ix += 0x3f800000 - 0x3f3504f3;
+  k += (int)(ix >> 23) - 0x7f;
+  ix = (ix & 0x007fffff) + 0x3f3504f3;
+  u.i = ix;
+  x = u.f;
 
-	f = x - 1.0f;
-	s = f/(2.0f + f);
-	z = s*s;
-	w = z*z;
-	t1= w*(Lg2+w*Lg4);
-	t2= z*(Lg1+w*Lg3);
-	R = t2 + t1;
-	hfsq = 0.5f*f*f;
+  f = x - 1.0f;
+  s = f / (2.0f + f);
+  z = s * s;
+  w = z * z;
+  t1 = w * (Lg2 + w * Lg4);
+  t2 = z * (Lg1 + w * Lg3);
+  R = t2 + t1;
+  hfsq = 0.5f * f * f;
 
-	hi = f - hfsq;
-	u.f = hi;
-	u.i &= 0xfffff000;
-	hi = u.f;
-	lo = f - hi - hfsq + s*(hfsq+R);
-	dk = k;
-	return dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi + hi*ivln10hi + dk*log10_2hi;
+  hi = f - hfsq;
+  u.f = hi;
+  u.i &= 0xfffff000;
+  hi = u.f;
+  lo = f - hi - hfsq + s * (hfsq + R);
+  dk = k;
+  return dk * log10_2lo + (lo + hi) * ivln10lo + lo * ivln10hi + hi * ivln10hi +
+         dk * log10_2hi;
 }
diff --git a/fusl/src/math/log10l.c b/fusl/src/math/log10l.c
index 63dcc28..30b4041 100644
--- a/fusl/src/math/log10l.c
+++ b/fusl/src/math/log10l.c
@@ -60,9 +60,8 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double log10l(long double x)
-{
-	return log10(x);
+long double log10l(long double x) {
+  return log10(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
@@ -70,23 +69,17 @@
  * Theoretical peak relative error = 6.2e-22
  */
 static const long double P[] = {
- 4.9962495940332550844739E-1L,
- 1.0767376367209449010438E1L,
- 7.7671073698359539859595E1L,
- 2.5620629828144409632571E2L,
- 4.2401812743503691187826E2L,
- 3.4258224542413922935104E2L,
- 1.0747524399916215149070E2L,
+    4.9962495940332550844739E-1L, 1.0767376367209449010438E1L,
+    7.7671073698359539859595E1L,  2.5620629828144409632571E2L,
+    4.2401812743503691187826E2L,  3.4258224542413922935104E2L,
+    1.0747524399916215149070E2L,
 };
 static const long double Q[] = {
-/* 1.0000000000000000000000E0,*/
- 2.3479774160285863271658E1L,
- 1.9444210022760132894510E2L,
- 7.7952888181207260646090E2L,
- 1.6911722418503949084863E3L,
- 2.0307734695595183428202E3L,
- 1.2695660352705325274404E3L,
- 3.2242573199748645407652E2L,
+    /* 1.0000000000000000000000E0,*/
+    2.3479774160285863271658E1L, 1.9444210022760132894510E2L,
+    7.7952888181207260646090E2L, 1.6911722418503949084863E3L,
+    2.0307734695595183428202E3L, 1.2695660352705325274404E3L,
+    3.2242573199748645407652E2L,
 };
 
 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
@@ -95,16 +88,13 @@
  * Theoretical peak relative error = 6.16e-22
  */
 static const long double R[4] = {
- 1.9757429581415468984296E-3L,
--7.1990767473014147232598E-1L,
- 1.0777257190312272158094E1L,
--3.5717684488096787370998E1L,
+    1.9757429581415468984296E-3L, -7.1990767473014147232598E-1L,
+    1.0777257190312272158094E1L, -3.5717684488096787370998E1L,
 };
 static const long double S[4] = {
-/* 1.00000000000000000000E0L,*/
--2.6201045551331104417768E1L,
- 1.9361891836232102174846E2L,
--4.2861221385716144629696E2L,
+    /* 1.00000000000000000000E0L,*/
+    -2.6201045551331104417768E1L, 1.9361891836232102174846E2L,
+    -4.2861221385716144629696E2L,
 };
 /* log10(2) */
 #define L102A 0.3125L
@@ -115,77 +105,75 @@
 
 #define SQRTH 0.70710678118654752440L
 
-long double log10l(long double x)
-{
-	long double y, z;
-	int e;
+long double log10l(long double x) {
+  long double y, z;
+  int e;
 
-	if (isnan(x))
-		return x;
-	if(x <= 0.0) {
-		if(x == 0.0)
-			return -1.0 / (x*x);
-		return (x - x) / 0.0;
-	}
-	if (x == INFINITY)
-		return INFINITY;
-	/* separate mantissa from exponent */
-	/* Note, frexp is used so that denormal numbers
-	 * will be handled properly.
-	 */
-	x = frexpl(x, &e);
+  if (isnan(x))
+    return x;
+  if (x <= 0.0) {
+    if (x == 0.0)
+      return -1.0 / (x * x);
+    return (x - x) / 0.0;
+  }
+  if (x == INFINITY)
+    return INFINITY;
+  /* separate mantissa from exponent */
+  /* Note, frexp is used so that denormal numbers
+   * will be handled properly.
+   */
+  x = frexpl(x, &e);
 
-	/* logarithm using log(x) = z + z**3 P(z)/Q(z),
-	 * where z = 2(x-1)/x+1)
-	 */
-	if (e > 2 || e < -2) {
-		if (x < SQRTH) {  /* 2(2x-1)/(2x+1) */
-			e -= 1;
-			z = x - 0.5;
-			y = 0.5 * z + 0.5;
-		} else {  /*  2 (x-1)/(x+1)   */
-			z = x - 0.5;
-			z -= 0.5;
-			y = 0.5 * x  + 0.5;
-		}
-		x = z / y;
-		z = x*x;
-		y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
-		goto done;
-	}
+  /* logarithm using log(x) = z + z**3 P(z)/Q(z),
+   * where z = 2(x-1)/x+1)
+   */
+  if (e > 2 || e < -2) {
+    if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
+      e -= 1;
+      z = x - 0.5;
+      y = 0.5 * z + 0.5;
+    } else { /*  2 (x-1)/(x+1)   */
+      z = x - 0.5;
+      z -= 0.5;
+      y = 0.5 * x + 0.5;
+    }
+    x = z / y;
+    z = x * x;
+    y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
+    goto done;
+  }
 
-	/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
-	if (x < SQRTH) {
-		e -= 1;
-		x = 2.0*x - 1.0;
-	} else {
-		x = x - 1.0;
-	}
-	z = x*x;
-	y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
-	y = y - 0.5*z;
+  /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
+  if (x < SQRTH) {
+    e -= 1;
+    x = 2.0 * x - 1.0;
+  } else {
+    x = x - 1.0;
+  }
+  z = x * x;
+  y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
+  y = y - 0.5 * z;
 
 done:
-	/* Multiply log of fraction by log10(e)
-	 * and base 2 exponent by log10(2).
-	 *
-	 * ***CAUTION***
-	 *
-	 * This sequence of operations is critical and it may
-	 * be horribly defeated by some compiler optimizers.
-	 */
-	z = y * (L10EB);
-	z += x * (L10EB);
-	z += e * (L102B);
-	z += y * (L10EA);
-	z += x * (L10EA);
-	z += e * (L102A);
-	return z;
+  /* Multiply log of fraction by log10(e)
+   * and base 2 exponent by log10(2).
+   *
+   * ***CAUTION***
+   *
+   * This sequence of operations is critical and it may
+   * be horribly defeated by some compiler optimizers.
+   */
+  z = y * (L10EB);
+  z += x * (L10EB);
+  z += e * (L102B);
+  z += y * (L10EA);
+  z += x * (L10EA);
+  z += e * (L102A);
+  return z;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double log10l(long double x)
-{
-	return log10(x);
+long double log10l(long double x) {
+  return log10(x);
 }
 #endif
diff --git a/fusl/src/math/log1p.c b/fusl/src/math/log1p.c
index 0097134..0fac0ca 100644
--- a/fusl/src/math/log1p.c
+++ b/fusl/src/math/log1p.c
@@ -55,68 +55,69 @@
 
 #include "libm.h"
 
-static const double
-ln2_hi = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
-ln2_lo = 1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
-Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
-Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
-Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
-Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
-Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
-Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
-Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
+static const double ln2_hi = 6.93147180369123816490e-01, /* 3fe62e42 fee00000 */
+    ln2_lo = 1.90821492927058770002e-10,                 /* 3dea39ef 35793c76 */
+    Lg1 = 6.666666666666735130e-01,                      /* 3FE55555 55555593 */
+    Lg2 = 3.999999999940941908e-01,                      /* 3FD99999 9997FA04 */
+    Lg3 = 2.857142874366239149e-01,                      /* 3FD24924 94229359 */
+    Lg4 = 2.222219843214978396e-01,                      /* 3FCC71C5 1D8E78AF */
+    Lg5 = 1.818357216161805012e-01,                      /* 3FC74664 96CB03DE */
+    Lg6 = 1.531383769920937332e-01,                      /* 3FC39A09 D078C69F */
+    Lg7 = 1.479819860511658591e-01;                      /* 3FC2F112 DF3E5244 */
 
-double log1p(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	double_t hfsq,f,c,s,z,R,w,t1,t2,dk;
-	uint32_t hx,hu;
-	int k;
+double log1p(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  double_t hfsq, f, c, s, z, R, w, t1, t2, dk;
+  uint32_t hx, hu;
+  int k;
 
-	hx = u.i>>32;
-	k = 1;
-	if (hx < 0x3fda827a || hx>>31) {  /* 1+x < sqrt(2)+ */
-		if (hx >= 0xbff00000) {  /* x <= -1.0 */
-			if (x == -1)
-				return x/0.0; /* log1p(-1) = -inf */
-			return (x-x)/0.0;     /* log1p(x<-1) = NaN */
-		}
-		if (hx<<1 < 0x3ca00000<<1) {  /* |x| < 2**-53 */
-			/* underflow if subnormal */
-			if ((hx&0x7ff00000) == 0)
-				FORCE_EVAL((float)x);
-			return x;
-		}
-		if (hx <= 0xbfd2bec4) {  /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
-			k = 0;
-			c = 0;
-			f = x;
-		}
-	} else if (hx >= 0x7ff00000)
-		return x;
-	if (k) {
-		u.f = 1 + x;
-		hu = u.i>>32;
-		hu += 0x3ff00000 - 0x3fe6a09e;
-		k = (int)(hu>>20) - 0x3ff;
-		/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
-		if (k < 54) {
-			c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
-			c /= u.f;
-		} else
-			c = 0;
-		/* reduce u into [sqrt(2)/2, sqrt(2)] */
-		hu = (hu&0x000fffff) + 0x3fe6a09e;
-		u.i = (uint64_t)hu<<32 | (u.i&0xffffffff);
-		f = u.f - 1;
-	}
-	hfsq = 0.5*f*f;
-	s = f/(2.0+f);
-	z = s*s;
-	w = z*z;
-	t1 = w*(Lg2+w*(Lg4+w*Lg6));
-	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
-	R = t2 + t1;
-	dk = k;
-	return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
+  hx = u.i >> 32;
+  k = 1;
+  if (hx < 0x3fda827a || hx >> 31) { /* 1+x < sqrt(2)+ */
+    if (hx >= 0xbff00000) {          /* x <= -1.0 */
+      if (x == -1)
+        return x / 0.0;     /* log1p(-1) = -inf */
+      return (x - x) / 0.0; /* log1p(x<-1) = NaN */
+    }
+    if (hx << 1 < 0x3ca00000 << 1) { /* |x| < 2**-53 */
+      /* underflow if subnormal */
+      if ((hx & 0x7ff00000) == 0)
+        FORCE_EVAL((float)x);
+      return x;
+    }
+    if (hx <= 0xbfd2bec4) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+      k = 0;
+      c = 0;
+      f = x;
+    }
+  } else if (hx >= 0x7ff00000)
+    return x;
+  if (k) {
+    u.f = 1 + x;
+    hu = u.i >> 32;
+    hu += 0x3ff00000 - 0x3fe6a09e;
+    k = (int)(hu >> 20) - 0x3ff;
+    /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+    if (k < 54) {
+      c = k >= 2 ? 1 - (u.f - x) : x - (u.f - 1);
+      c /= u.f;
+    } else
+      c = 0;
+    /* reduce u into [sqrt(2)/2, sqrt(2)] */
+    hu = (hu & 0x000fffff) + 0x3fe6a09e;
+    u.i = (uint64_t)hu << 32 | (u.i & 0xffffffff);
+    f = u.f - 1;
+  }
+  hfsq = 0.5 * f * f;
+  s = f / (2.0 + f);
+  z = s * s;
+  w = z * z;
+  t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
+  t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
+  R = t2 + t1;
+  dk = k;
+  return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
 }
diff --git a/fusl/src/math/log1pf.c b/fusl/src/math/log1pf.c
index 23985c3..e50ad82 100644
--- a/fusl/src/math/log1pf.c
+++ b/fusl/src/math/log1pf.c
@@ -12,66 +12,67 @@
 
 #include "libm.h"
 
-static const float
-ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
-ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
-/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
-Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
-Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
-Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
-Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
+static const float ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
+    ln2_lo = 9.0580006145e-06,                /* 0x3717f7d1 */
+    /* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+    Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
+    Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
+    Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
+    Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
 
-float log1pf(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	float_t hfsq,f,c,s,z,R,w,t1,t2,dk;
-	uint32_t ix,iu;
-	int k;
+float log1pf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  float_t hfsq, f, c, s, z, R, w, t1, t2, dk;
+  uint32_t ix, iu;
+  int k;
 
-	ix = u.i;
-	k = 1;
-	if (ix < 0x3ed413d0 || ix>>31) {  /* 1+x < sqrt(2)+  */
-		if (ix >= 0xbf800000) {  /* x <= -1.0 */
-			if (x == -1)
-				return x/0.0f; /* log1p(-1)=+inf */
-			return (x-x)/0.0f;     /* log1p(x<-1)=NaN */
-		}
-		if (ix<<1 < 0x33800000<<1) {   /* |x| < 2**-24 */
-			/* underflow if subnormal */
-			if ((ix&0x7f800000) == 0)
-				FORCE_EVAL(x*x);
-			return x;
-		}
-		if (ix <= 0xbe95f619) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
-			k = 0;
-			c = 0;
-			f = x;
-		}
-	} else if (ix >= 0x7f800000)
-		return x;
-	if (k) {
-		u.f = 1 + x;
-		iu = u.i;
-		iu += 0x3f800000 - 0x3f3504f3;
-		k = (int)(iu>>23) - 0x7f;
-		/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
-		if (k < 25) {
-			c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
-			c /= u.f;
-		} else
-			c = 0;
-		/* reduce u into [sqrt(2)/2, sqrt(2)] */
-		iu = (iu&0x007fffff) + 0x3f3504f3;
-		u.i = iu;
-		f = u.f - 1;
-	}
-	s = f/(2.0f + f);
-	z = s*s;
-	w = z*z;
-	t1= w*(Lg2+w*Lg4);
-	t2= z*(Lg1+w*Lg3);
-	R = t2 + t1;
-	hfsq = 0.5f*f*f;
-	dk = k;
-	return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
+  ix = u.i;
+  k = 1;
+  if (ix < 0x3ed413d0 || ix >> 31) { /* 1+x < sqrt(2)+  */
+    if (ix >= 0xbf800000) {          /* x <= -1.0 */
+      if (x == -1)
+        return x / 0.0f;     /* log1p(-1)=+inf */
+      return (x - x) / 0.0f; /* log1p(x<-1)=NaN */
+    }
+    if (ix << 1 < 0x33800000 << 1) { /* |x| < 2**-24 */
+      /* underflow if subnormal */
+      if ((ix & 0x7f800000) == 0)
+        FORCE_EVAL(x * x);
+      return x;
+    }
+    if (ix <= 0xbe95f619) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+      k = 0;
+      c = 0;
+      f = x;
+    }
+  } else if (ix >= 0x7f800000)
+    return x;
+  if (k) {
+    u.f = 1 + x;
+    iu = u.i;
+    iu += 0x3f800000 - 0x3f3504f3;
+    k = (int)(iu >> 23) - 0x7f;
+    /* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+    if (k < 25) {
+      c = k >= 2 ? 1 - (u.f - x) : x - (u.f - 1);
+      c /= u.f;
+    } else
+      c = 0;
+    /* reduce u into [sqrt(2)/2, sqrt(2)] */
+    iu = (iu & 0x007fffff) + 0x3f3504f3;
+    u.i = iu;
+    f = u.f - 1;
+  }
+  s = f / (2.0f + f);
+  z = s * s;
+  w = z * z;
+  t1 = w * (Lg2 + w * Lg4);
+  t2 = z * (Lg1 + w * Lg3);
+  R = t2 + t1;
+  hfsq = 0.5f * f * f;
+  dk = k;
+  return s * (hfsq + R) + (dk * ln2_lo + c) - hfsq + f + dk * ln2_hi;
 }
diff --git a/fusl/src/math/log1pl.c b/fusl/src/math/log1pl.c
index 141b5f0..2e070cb 100644
--- a/fusl/src/math/log1pl.c
+++ b/fusl/src/math/log1pl.c
@@ -51,9 +51,8 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double log1pl(long double x)
-{
-	return log1p(x);
+long double log1pl(long double x) {
+  return log1p(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 /* Coefficients for log(1+x) = x - x^2 / 2 + x^3 P(x)/Q(x)
@@ -61,22 +60,16 @@
  * Theoretical peak relative error = 2.32e-20
  */
 static const long double P[] = {
- 4.5270000862445199635215E-5L,
- 4.9854102823193375972212E-1L,
- 6.5787325942061044846969E0L,
- 2.9911919328553073277375E1L,
- 6.0949667980987787057556E1L,
- 5.7112963590585538103336E1L,
- 2.0039553499201281259648E1L,
+    4.5270000862445199635215E-5L, 4.9854102823193375972212E-1L,
+    6.5787325942061044846969E0L,  2.9911919328553073277375E1L,
+    6.0949667980987787057556E1L,  5.7112963590585538103336E1L,
+    2.0039553499201281259648E1L,
 };
 static const long double Q[] = {
-/* 1.0000000000000000000000E0,*/
- 1.5062909083469192043167E1L,
- 8.3047565967967209469434E1L,
- 2.2176239823732856465394E2L,
- 3.0909872225312059774938E2L,
- 2.1642788614495947685003E2L,
- 6.0118660497603843919306E1L,
+    /* 1.0000000000000000000000E0,*/
+    1.5062909083469192043167E1L, 8.3047565967967209469434E1L,
+    2.2176239823732856465394E2L, 3.0909872225312059774938E2L,
+    2.1642788614495947685003E2L, 6.0118660497603843919306E1L,
 };
 
 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
@@ -85,93 +78,88 @@
  * Theoretical peak relative error = 6.16e-22
  */
 static const long double R[4] = {
- 1.9757429581415468984296E-3L,
--7.1990767473014147232598E-1L,
- 1.0777257190312272158094E1L,
--3.5717684488096787370998E1L,
+    1.9757429581415468984296E-3L, -7.1990767473014147232598E-1L,
+    1.0777257190312272158094E1L, -3.5717684488096787370998E1L,
 };
 static const long double S[4] = {
-/* 1.00000000000000000000E0L,*/
--2.6201045551331104417768E1L,
- 1.9361891836232102174846E2L,
--4.2861221385716144629696E2L,
+    /* 1.00000000000000000000E0L,*/
+    -2.6201045551331104417768E1L, 1.9361891836232102174846E2L,
+    -4.2861221385716144629696E2L,
 };
 static const long double C1 = 6.9314575195312500000000E-1L;
 static const long double C2 = 1.4286068203094172321215E-6L;
 
 #define SQRTH 0.70710678118654752440L
 
-long double log1pl(long double xm1)
-{
-	long double x, y, z;
-	int e;
+long double log1pl(long double xm1) {
+  long double x, y, z;
+  int e;
 
-	if (isnan(xm1))
-		return xm1;
-	if (xm1 == INFINITY)
-		return xm1;
-	if (xm1 == 0.0)
-		return xm1;
+  if (isnan(xm1))
+    return xm1;
+  if (xm1 == INFINITY)
+    return xm1;
+  if (xm1 == 0.0)
+    return xm1;
 
-	x = xm1 + 1.0;
+  x = xm1 + 1.0;
 
-	/* Test for domain errors.  */
-	if (x <= 0.0) {
-		if (x == 0.0)
-			return -1/(x*x); /* -inf with divbyzero */
-		return 0/0.0f; /* nan with invalid */
-	}
+  /* Test for domain errors.  */
+  if (x <= 0.0) {
+    if (x == 0.0)
+      return -1 / (x * x); /* -inf with divbyzero */
+    return 0 / 0.0f;       /* nan with invalid */
+  }
 
-	/* Separate mantissa from exponent.
-	   Use frexp so that denormal numbers will be handled properly.  */
-	x = frexpl(x, &e);
+  /* Separate mantissa from exponent.
+     Use frexp so that denormal numbers will be handled properly.  */
+  x = frexpl(x, &e);
 
-	/* logarithm using log(x) = z + z^3 P(z)/Q(z),
-	   where z = 2(x-1)/x+1)  */
-	if (e > 2 || e < -2) {
-		if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
-			e -= 1;
-			z = x - 0.5;
-			y = 0.5 * z + 0.5;
-		} else { /*  2 (x-1)/(x+1)   */
-			z = x - 0.5;
-			z -= 0.5;
-			y = 0.5 * x  + 0.5;
-		}
-		x = z / y;
-		z = x*x;
-		z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
-		z = z + e * C2;
-		z = z + x;
-		z = z + e * C1;
-		return z;
-	}
+  /* logarithm using log(x) = z + z^3 P(z)/Q(z),
+     where z = 2(x-1)/x+1)  */
+  if (e > 2 || e < -2) {
+    if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
+      e -= 1;
+      z = x - 0.5;
+      y = 0.5 * z + 0.5;
+    } else { /*  2 (x-1)/(x+1)   */
+      z = x - 0.5;
+      z -= 0.5;
+      y = 0.5 * x + 0.5;
+    }
+    x = z / y;
+    z = x * x;
+    z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
+    z = z + e * C2;
+    z = z + x;
+    z = z + e * C1;
+    return z;
+  }
 
-	/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
-	if (x < SQRTH) {
-		e -= 1;
-		if (e != 0)
-			x = 2.0 * x - 1.0;
-		else
-			x = xm1;
-	} else {
-		if (e != 0)
-			x = x - 1.0;
-		else
-			x = xm1;
-	}
-	z = x*x;
-	y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
-	y = y + e * C2;
-	z = y - 0.5 * z;
-	z = z + x;
-	z = z + e * C1;
-	return z;
+  /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
+  if (x < SQRTH) {
+    e -= 1;
+    if (e != 0)
+      x = 2.0 * x - 1.0;
+    else
+      x = xm1;
+  } else {
+    if (e != 0)
+      x = x - 1.0;
+    else
+      x = xm1;
+  }
+  z = x * x;
+  y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
+  y = y + e * C2;
+  z = y - 0.5 * z;
+  z = z + x;
+  z = z + e * C1;
+  return z;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double log1pl(long double x)
-{
-	return log1p(x);
+long double log1pl(long double x) {
+  return log1p(x);
 }
 #endif
diff --git a/fusl/src/math/log2.c b/fusl/src/math/log2.c
index 0aafad4..1ee2ea0 100644
--- a/fusl/src/math/log2.c
+++ b/fusl/src/math/log2.c
@@ -20,103 +20,105 @@
 #include <math.h>
 #include <stdint.h>
 
-static const double
-ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
-ivln2lo = 1.67517131648865118353e-10, /* 0x3de705fc, 0x2eefa200 */
-Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
-Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
-Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
-Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
-Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
-Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
-Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
+static const double ivln2hi =
+                        1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
+    ivln2lo = 1.67517131648865118353e-10,           /* 0x3de705fc, 0x2eefa200 */
+    Lg1 = 6.666666666666735130e-01,                 /* 3FE55555 55555593 */
+    Lg2 = 3.999999999940941908e-01,                 /* 3FD99999 9997FA04 */
+    Lg3 = 2.857142874366239149e-01,                 /* 3FD24924 94229359 */
+    Lg4 = 2.222219843214978396e-01,                 /* 3FCC71C5 1D8E78AF */
+    Lg5 = 1.818357216161805012e-01,                 /* 3FC74664 96CB03DE */
+    Lg6 = 1.531383769920937332e-01,                 /* 3FC39A09 D078C69F */
+    Lg7 = 1.479819860511658591e-01;                 /* 3FC2F112 DF3E5244 */
 
-double log2(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	double_t hfsq,f,s,z,R,w,t1,t2,y,hi,lo,val_hi,val_lo;
-	uint32_t hx;
-	int k;
+double log2(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  double_t hfsq, f, s, z, R, w, t1, t2, y, hi, lo, val_hi, val_lo;
+  uint32_t hx;
+  int k;
 
-	hx = u.i>>32;
-	k = 0;
-	if (hx < 0x00100000 || hx>>31) {
-		if (u.i<<1 == 0)
-			return -1/(x*x);  /* log(+-0)=-inf */
-		if (hx>>31)
-			return (x-x)/0.0; /* log(-#) = NaN */
-		/* subnormal number, scale x up */
-		k -= 54;
-		x *= 0x1p54;
-		u.f = x;
-		hx = u.i>>32;
-	} else if (hx >= 0x7ff00000) {
-		return x;
-	} else if (hx == 0x3ff00000 && u.i<<32 == 0)
-		return 0;
+  hx = u.i >> 32;
+  k = 0;
+  if (hx < 0x00100000 || hx >> 31) {
+    if (u.i << 1 == 0)
+      return -1 / (x * x); /* log(+-0)=-inf */
+    if (hx >> 31)
+      return (x - x) / 0.0; /* log(-#) = NaN */
+    /* subnormal number, scale x up */
+    k -= 54;
+    x *= 0x1p54;
+    u.f = x;
+    hx = u.i >> 32;
+  } else if (hx >= 0x7ff00000) {
+    return x;
+  } else if (hx == 0x3ff00000 && u.i << 32 == 0)
+    return 0;
 
-	/* reduce x into [sqrt(2)/2, sqrt(2)] */
-	hx += 0x3ff00000 - 0x3fe6a09e;
-	k += (int)(hx>>20) - 0x3ff;
-	hx = (hx&0x000fffff) + 0x3fe6a09e;
-	u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
-	x = u.f;
+  /* reduce x into [sqrt(2)/2, sqrt(2)] */
+  hx += 0x3ff00000 - 0x3fe6a09e;
+  k += (int)(hx >> 20) - 0x3ff;
+  hx = (hx & 0x000fffff) + 0x3fe6a09e;
+  u.i = (uint64_t)hx << 32 | (u.i & 0xffffffff);
+  x = u.f;
 
-	f = x - 1.0;
-	hfsq = 0.5*f*f;
-	s = f/(2.0+f);
-	z = s*s;
-	w = z*z;
-	t1 = w*(Lg2+w*(Lg4+w*Lg6));
-	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
-	R = t2 + t1;
+  f = x - 1.0;
+  hfsq = 0.5 * f * f;
+  s = f / (2.0 + f);
+  z = s * s;
+  w = z * z;
+  t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
+  t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
+  R = t2 + t1;
 
-	/*
-	 * f-hfsq must (for args near 1) be evaluated in extra precision
-	 * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
-	 * This is fairly efficient since f-hfsq only depends on f, so can
-	 * be evaluated in parallel with R.  Not combining hfsq with R also
-	 * keeps R small (though not as small as a true `lo' term would be),
-	 * so that extra precision is not needed for terms involving R.
-	 *
-	 * Compiler bugs involving extra precision used to break Dekker's
-	 * theorem for spitting f-hfsq as hi+lo, unless double_t was used
-	 * or the multi-precision calculations were avoided when double_t
-	 * has extra precision.  These problems are now automatically
-	 * avoided as a side effect of the optimization of combining the
-	 * Dekker splitting step with the clear-low-bits step.
-	 *
-	 * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
-	 * precision to avoid a very large cancellation when x is very near
-	 * these values.  Unlike the above cancellations, this problem is
-	 * specific to base 2.  It is strange that adding +-1 is so much
-	 * harder than adding +-ln2 or +-log10_2.
-	 *
-	 * This uses Dekker's theorem to normalize y+val_hi, so the
-	 * compiler bugs are back in some configurations, sigh.  And I
-	 * don't want to used double_t to avoid them, since that gives a
-	 * pessimization and the support for avoiding the pessimization
-	 * is not yet available.
-	 *
-	 * The multi-precision calculations for the multiplications are
-	 * routine.
-	 */
+  /*
+   * f-hfsq must (for args near 1) be evaluated in extra precision
+   * to avoid a large cancellation when x is near sqrt(2) or 1/sqrt(2).
+   * This is fairly efficient since f-hfsq only depends on f, so can
+   * be evaluated in parallel with R.  Not combining hfsq with R also
+   * keeps R small (though not as small as a true `lo' term would be),
+   * so that extra precision is not needed for terms involving R.
+   *
+   * Compiler bugs involving extra precision used to break Dekker's
+   * theorem for spitting f-hfsq as hi+lo, unless double_t was used
+   * or the multi-precision calculations were avoided when double_t
+   * has extra precision.  These problems are now automatically
+   * avoided as a side effect of the optimization of combining the
+   * Dekker splitting step with the clear-low-bits step.
+   *
+   * y must (for args near sqrt(2) and 1/sqrt(2)) be added in extra
+   * precision to avoid a very large cancellation when x is very near
+   * these values.  Unlike the above cancellations, this problem is
+   * specific to base 2.  It is strange that adding +-1 is so much
+   * harder than adding +-ln2 or +-log10_2.
+   *
+   * This uses Dekker's theorem to normalize y+val_hi, so the
+   * compiler bugs are back in some configurations, sigh.  And I
+   * don't want to used double_t to avoid them, since that gives a
+   * pessimization and the support for avoiding the pessimization
+   * is not yet available.
+   *
+   * The multi-precision calculations for the multiplications are
+   * routine.
+   */
 
-	/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
-	hi = f - hfsq;
-	u.f = hi;
-	u.i &= (uint64_t)-1<<32;
-	hi = u.f;
-	lo = f - hi - hfsq + s*(hfsq+R);
+  /* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
+  hi = f - hfsq;
+  u.f = hi;
+  u.i &= (uint64_t)-1 << 32;
+  hi = u.f;
+  lo = f - hi - hfsq + s * (hfsq + R);
 
-	val_hi = hi*ivln2hi;
-	val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
+  val_hi = hi * ivln2hi;
+  val_lo = (lo + hi) * ivln2lo + lo * ivln2hi;
 
-	/* spadd(val_hi, val_lo, y), except for not using double_t: */
-	y = k;
-	w = y + val_hi;
-	val_lo += (y - w) + val_hi;
-	val_hi = w;
+  /* spadd(val_hi, val_lo, y), except for not using double_t: */
+  y = k;
+  w = y + val_hi;
+  val_lo += (y - w) + val_hi;
+  val_hi = w;
 
-	return val_lo + val_hi;
+  return val_lo + val_hi;
 }
diff --git a/fusl/src/math/log2f.c b/fusl/src/math/log2f.c
index b3e305f..1e7e75a 100644
--- a/fusl/src/math/log2f.c
+++ b/fusl/src/math/log2f.c
@@ -16,59 +16,60 @@
 #include <math.h>
 #include <stdint.h>
 
-static const float
-ivln2hi =  1.4428710938e+00, /* 0x3fb8b000 */
-ivln2lo = -1.7605285393e-04, /* 0xb9389ad4 */
-/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
-Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
-Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
-Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
-Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
+static const float ivln2hi = 1.4428710938e+00, /* 0x3fb8b000 */
+    ivln2lo = -1.7605285393e-04,               /* 0xb9389ad4 */
+    /* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+    Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
+    Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
+    Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
+    Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
 
-float log2f(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	float_t hfsq,f,s,z,R,w,t1,t2,hi,lo;
-	uint32_t ix;
-	int k;
+float log2f(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  float_t hfsq, f, s, z, R, w, t1, t2, hi, lo;
+  uint32_t ix;
+  int k;
 
-	ix = u.i;
-	k = 0;
-	if (ix < 0x00800000 || ix>>31) {  /* x < 2**-126  */
-		if (ix<<1 == 0)
-			return -1/(x*x);  /* log(+-0)=-inf */
-		if (ix>>31)
-			return (x-x)/0.0f; /* log(-#) = NaN */
-		/* subnormal number, scale up x */
-		k -= 25;
-		x *= 0x1p25f;
-		u.f = x;
-		ix = u.i;
-	} else if (ix >= 0x7f800000) {
-		return x;
-	} else if (ix == 0x3f800000)
-		return 0;
+  ix = u.i;
+  k = 0;
+  if (ix < 0x00800000 || ix >> 31) { /* x < 2**-126  */
+    if (ix << 1 == 0)
+      return -1 / (x * x); /* log(+-0)=-inf */
+    if (ix >> 31)
+      return (x - x) / 0.0f; /* log(-#) = NaN */
+    /* subnormal number, scale up x */
+    k -= 25;
+    x *= 0x1p25f;
+    u.f = x;
+    ix = u.i;
+  } else if (ix >= 0x7f800000) {
+    return x;
+  } else if (ix == 0x3f800000)
+    return 0;
 
-	/* reduce x into [sqrt(2)/2, sqrt(2)] */
-	ix += 0x3f800000 - 0x3f3504f3;
-	k += (int)(ix>>23) - 0x7f;
-	ix = (ix&0x007fffff) + 0x3f3504f3;
-	u.i = ix;
-	x = u.f;
+  /* reduce x into [sqrt(2)/2, sqrt(2)] */
+  ix += 0x3f800000 - 0x3f3504f3;
+  k += (int)(ix >> 23) - 0x7f;
+  ix = (ix & 0x007fffff) + 0x3f3504f3;
+  u.i = ix;
+  x = u.f;
 
-	f = x - 1.0f;
-	s = f/(2.0f + f);
-	z = s*s;
-	w = z*z;
-	t1= w*(Lg2+w*Lg4);
-	t2= z*(Lg1+w*Lg3);
-	R = t2 + t1;
-	hfsq = 0.5f*f*f;
+  f = x - 1.0f;
+  s = f / (2.0f + f);
+  z = s * s;
+  w = z * z;
+  t1 = w * (Lg2 + w * Lg4);
+  t2 = z * (Lg1 + w * Lg3);
+  R = t2 + t1;
+  hfsq = 0.5f * f * f;
 
-	hi = f - hfsq;
-	u.f = hi;
-	u.i &= 0xfffff000;
-	hi = u.f;
-	lo = f - hi - hfsq + s*(hfsq+R);
-	return (lo+hi)*ivln2lo + lo*ivln2hi + hi*ivln2hi + k;
+  hi = f - hfsq;
+  u.f = hi;
+  u.i &= 0xfffff000;
+  hi = u.f;
+  lo = f - hi - hfsq + s * (hfsq + R);
+  return (lo + hi) * ivln2lo + lo * ivln2hi + hi * ivln2hi + k;
 }
diff --git a/fusl/src/math/log2l.c b/fusl/src/math/log2l.c
index 722b451..5041251 100644
--- a/fusl/src/math/log2l.c
+++ b/fusl/src/math/log2l.c
@@ -55,9 +55,8 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double log2l(long double x)
-{
-	return log2(x);
+long double log2l(long double x) {
+  return log2(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 /* Coefficients for ln(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
@@ -65,23 +64,17 @@
  * Theoretical peak relative error = 6.2e-22
  */
 static const long double P[] = {
- 4.9962495940332550844739E-1L,
- 1.0767376367209449010438E1L,
- 7.7671073698359539859595E1L,
- 2.5620629828144409632571E2L,
- 4.2401812743503691187826E2L,
- 3.4258224542413922935104E2L,
- 1.0747524399916215149070E2L,
+    4.9962495940332550844739E-1L, 1.0767376367209449010438E1L,
+    7.7671073698359539859595E1L,  2.5620629828144409632571E2L,
+    4.2401812743503691187826E2L,  3.4258224542413922935104E2L,
+    1.0747524399916215149070E2L,
 };
 static const long double Q[] = {
-/* 1.0000000000000000000000E0,*/
- 2.3479774160285863271658E1L,
- 1.9444210022760132894510E2L,
- 7.7952888181207260646090E2L,
- 1.6911722418503949084863E3L,
- 2.0307734695595183428202E3L,
- 1.2695660352705325274404E3L,
- 3.2242573199748645407652E2L,
+    /* 1.0000000000000000000000E0,*/
+    2.3479774160285863271658E1L, 1.9444210022760132894510E2L,
+    7.7952888181207260646090E2L, 1.6911722418503949084863E3L,
+    2.0307734695595183428202E3L, 1.2695660352705325274404E3L,
+    3.2242573199748645407652E2L,
 };
 
 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
@@ -90,93 +83,88 @@
  * Theoretical peak relative error = 6.16e-22
  */
 static const long double R[4] = {
- 1.9757429581415468984296E-3L,
--7.1990767473014147232598E-1L,
- 1.0777257190312272158094E1L,
--3.5717684488096787370998E1L,
+    1.9757429581415468984296E-3L, -7.1990767473014147232598E-1L,
+    1.0777257190312272158094E1L, -3.5717684488096787370998E1L,
 };
 static const long double S[4] = {
-/* 1.00000000000000000000E0L,*/
--2.6201045551331104417768E1L,
- 1.9361891836232102174846E2L,
--4.2861221385716144629696E2L,
+    /* 1.00000000000000000000E0L,*/
+    -2.6201045551331104417768E1L, 1.9361891836232102174846E2L,
+    -4.2861221385716144629696E2L,
 };
 /* log2(e) - 1 */
 #define LOG2EA 4.4269504088896340735992e-1L
 
 #define SQRTH 0.70710678118654752440L
 
-long double log2l(long double x)
-{
-	long double y, z;
-	int e;
+long double log2l(long double x) {
+  long double y, z;
+  int e;
 
-	if (isnan(x))
-		return x;
-	if (x == INFINITY)
-		return x;
-	if (x <= 0.0) {
-		if (x == 0.0)
-			return -1/(x*x); /* -inf with divbyzero */
-		return 0/0.0f; /* nan with invalid */
-	}
+  if (isnan(x))
+    return x;
+  if (x == INFINITY)
+    return x;
+  if (x <= 0.0) {
+    if (x == 0.0)
+      return -1 / (x * x); /* -inf with divbyzero */
+    return 0 / 0.0f;       /* nan with invalid */
+  }
 
-	/* separate mantissa from exponent */
-	/* Note, frexp is used so that denormal numbers
-	 * will be handled properly.
-	 */
-	x = frexpl(x, &e);
+  /* separate mantissa from exponent */
+  /* Note, frexp is used so that denormal numbers
+   * will be handled properly.
+   */
+  x = frexpl(x, &e);
 
-	/* logarithm using log(x) = z + z**3 P(z)/Q(z),
-	 * where z = 2(x-1)/x+1)
-	 */
-	if (e > 2 || e < -2) {
-		if (x < SQRTH) {  /* 2(2x-1)/(2x+1) */
-			e -= 1;
-			z = x - 0.5;
-			y = 0.5 * z + 0.5;
-		} else {  /*  2 (x-1)/(x+1)   */
-			z = x - 0.5;
-			z -= 0.5;
-			y = 0.5 * x + 0.5;
-		}
-		x = z / y;
-		z = x*x;
-		y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
-		goto done;
-	}
+  /* logarithm using log(x) = z + z**3 P(z)/Q(z),
+   * where z = 2(x-1)/x+1)
+   */
+  if (e > 2 || e < -2) {
+    if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
+      e -= 1;
+      z = x - 0.5;
+      y = 0.5 * z + 0.5;
+    } else { /*  2 (x-1)/(x+1)   */
+      z = x - 0.5;
+      z -= 0.5;
+      y = 0.5 * x + 0.5;
+    }
+    x = z / y;
+    z = x * x;
+    y = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
+    goto done;
+  }
 
-	/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
-	if (x < SQRTH) {
-		e -= 1;
-		x = 2.0*x - 1.0;
-	} else {
-		x = x - 1.0;
-	}
-	z = x*x;
-	y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
-	y = y - 0.5*z;
+  /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
+  if (x < SQRTH) {
+    e -= 1;
+    x = 2.0 * x - 1.0;
+  } else {
+    x = x - 1.0;
+  }
+  z = x * x;
+  y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 7));
+  y = y - 0.5 * z;
 
 done:
-	/* Multiply log of fraction by log2(e)
-	 * and base 2 exponent by 1
-	 *
-	 * ***CAUTION***
-	 *
-	 * This sequence of operations is critical and it may
-	 * be horribly defeated by some compiler optimizers.
-	 */
-	z = y * LOG2EA;
-	z += x * LOG2EA;
-	z += y;
-	z += x;
-	z += e;
-	return z;
+  /* Multiply log of fraction by log2(e)
+   * and base 2 exponent by 1
+   *
+   * ***CAUTION***
+   *
+   * This sequence of operations is critical and it may
+   * be horribly defeated by some compiler optimizers.
+   */
+  z = y * LOG2EA;
+  z += x * LOG2EA;
+  z += y;
+  z += x;
+  z += e;
+  return z;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double log2l(long double x)
-{
-	return log2(x);
+long double log2l(long double x) {
+  return log2(x);
 }
 #endif
diff --git a/fusl/src/math/logb.c b/fusl/src/math/logb.c
index 7f8bdfa..bff5101 100644
--- a/fusl/src/math/logb.c
+++ b/fusl/src/math/logb.c
@@ -2,16 +2,15 @@
 
 /*
 special cases:
-	logb(+-0) = -inf, and raise divbyzero
-	logb(+-inf) = +inf
-	logb(nan) = nan
+        logb(+-0) = -inf, and raise divbyzero
+        logb(+-inf) = +inf
+        logb(nan) = nan
 */
 
-double logb(double x)
-{
-	if (!isfinite(x))
-		return x * x;
-	if (x == 0)
-		return -1/(x*x);
-	return ilogb(x);
+double logb(double x) {
+  if (!isfinite(x))
+    return x * x;
+  if (x == 0)
+    return -1 / (x * x);
+  return ilogb(x);
 }
diff --git a/fusl/src/math/logbf.c b/fusl/src/math/logbf.c
index a0a0b5e..9c42fc7 100644
--- a/fusl/src/math/logbf.c
+++ b/fusl/src/math/logbf.c
@@ -1,10 +1,9 @@
 #include <math.h>
 
-float logbf(float x)
-{
-	if (!isfinite(x))
-		return x * x;
-	if (x == 0)
-		return -1/(x*x);
-	return ilogbf(x);
+float logbf(float x) {
+  if (!isfinite(x))
+    return x * x;
+  if (x == 0)
+    return -1 / (x * x);
+  return ilogbf(x);
 }
diff --git a/fusl/src/math/logbl.c b/fusl/src/math/logbl.c
index 962973a..cfb84c5 100644
--- a/fusl/src/math/logbl.c
+++ b/fusl/src/math/logbl.c
@@ -1,16 +1,14 @@
 #include <math.h>
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double logbl(long double x)
-{
-	return logb(x);
+long double logbl(long double x) {
+  return logb(x);
 }
 #else
-long double logbl(long double x)
-{
-	if (!isfinite(x))
-		return x * x;
-	if (x == 0)
-		return -1/(x*x);
-	return ilogbl(x);
+long double logbl(long double x) {
+  if (!isfinite(x))
+    return x * x;
+  if (x == 0)
+    return -1 / (x * x);
+  return ilogbl(x);
 }
 #endif
diff --git a/fusl/src/math/logf.c b/fusl/src/math/logf.c
index 52230a1..ae5e6ba 100644
--- a/fusl/src/math/logf.c
+++ b/fusl/src/math/logf.c
@@ -16,54 +16,55 @@
 #include <math.h>
 #include <stdint.h>
 
-static const float
-ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
-ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
-/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
-Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
-Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
-Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
-Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
+static const float ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
+    ln2_lo = 9.0580006145e-06,                /* 0x3717f7d1 */
+    /* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+    Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
+    Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
+    Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
+    Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
 
-float logf(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	float_t hfsq,f,s,z,R,w,t1,t2,dk;
-	uint32_t ix;
-	int k;
+float logf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  float_t hfsq, f, s, z, R, w, t1, t2, dk;
+  uint32_t ix;
+  int k;
 
-	ix = u.i;
-	k = 0;
-	if (ix < 0x00800000 || ix>>31) {  /* x < 2**-126  */
-		if (ix<<1 == 0)
-			return -1/(x*x);  /* log(+-0)=-inf */
-		if (ix>>31)
-			return (x-x)/0.0f; /* log(-#) = NaN */
-		/* subnormal number, scale up x */
-		k -= 25;
-		x *= 0x1p25f;
-		u.f = x;
-		ix = u.i;
-	} else if (ix >= 0x7f800000) {
-		return x;
-	} else if (ix == 0x3f800000)
-		return 0;
+  ix = u.i;
+  k = 0;
+  if (ix < 0x00800000 || ix >> 31) { /* x < 2**-126  */
+    if (ix << 1 == 0)
+      return -1 / (x * x); /* log(+-0)=-inf */
+    if (ix >> 31)
+      return (x - x) / 0.0f; /* log(-#) = NaN */
+    /* subnormal number, scale up x */
+    k -= 25;
+    x *= 0x1p25f;
+    u.f = x;
+    ix = u.i;
+  } else if (ix >= 0x7f800000) {
+    return x;
+  } else if (ix == 0x3f800000)
+    return 0;
 
-	/* reduce x into [sqrt(2)/2, sqrt(2)] */
-	ix += 0x3f800000 - 0x3f3504f3;
-	k += (int)(ix>>23) - 0x7f;
-	ix = (ix&0x007fffff) + 0x3f3504f3;
-	u.i = ix;
-	x = u.f;
+  /* reduce x into [sqrt(2)/2, sqrt(2)] */
+  ix += 0x3f800000 - 0x3f3504f3;
+  k += (int)(ix >> 23) - 0x7f;
+  ix = (ix & 0x007fffff) + 0x3f3504f3;
+  u.i = ix;
+  x = u.f;
 
-	f = x - 1.0f;
-	s = f/(2.0f + f);
-	z = s*s;
-	w = z*z;
-	t1= w*(Lg2+w*Lg4);
-	t2= z*(Lg1+w*Lg3);
-	R = t2 + t1;
-	hfsq = 0.5f*f*f;
-	dk = k;
-	return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
+  f = x - 1.0f;
+  s = f / (2.0f + f);
+  z = s * s;
+  w = z * z;
+  t1 = w * (Lg2 + w * Lg4);
+  t2 = z * (Lg1 + w * Lg3);
+  R = t2 + t1;
+  hfsq = 0.5f * f * f;
+  dk = k;
+  return s * (hfsq + R) + dk * ln2_lo - hfsq + f + dk * ln2_hi;
 }
diff --git a/fusl/src/math/logl.c b/fusl/src/math/logl.c
index 5d53659..b01c9e6 100644
--- a/fusl/src/math/logl.c
+++ b/fusl/src/math/logl.c
@@ -55,9 +55,8 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double logl(long double x)
-{
-	return log(x);
+long double logl(long double x) {
+  return log(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 /* Coefficients for log(1+x) = x - x**2/2 + x**3 P(x)/Q(x)
@@ -65,22 +64,16 @@
  * Theoretical peak relative error = 2.32e-20
  */
 static const long double P[] = {
- 4.5270000862445199635215E-5L,
- 4.9854102823193375972212E-1L,
- 6.5787325942061044846969E0L,
- 2.9911919328553073277375E1L,
- 6.0949667980987787057556E1L,
- 5.7112963590585538103336E1L,
- 2.0039553499201281259648E1L,
+    4.5270000862445199635215E-5L, 4.9854102823193375972212E-1L,
+    6.5787325942061044846969E0L,  2.9911919328553073277375E1L,
+    6.0949667980987787057556E1L,  5.7112963590585538103336E1L,
+    2.0039553499201281259648E1L,
 };
 static const long double Q[] = {
-/* 1.0000000000000000000000E0,*/
- 1.5062909083469192043167E1L,
- 8.3047565967967209469434E1L,
- 2.2176239823732856465394E2L,
- 3.0909872225312059774938E2L,
- 2.1642788614495947685003E2L,
- 6.0118660497603843919306E1L,
+    /* 1.0000000000000000000000E0,*/
+    1.5062909083469192043167E1L, 8.3047565967967209469434E1L,
+    2.2176239823732856465394E2L, 3.0909872225312059774938E2L,
+    2.1642788614495947685003E2L, 6.0118660497603843919306E1L,
 };
 
 /* Coefficients for log(x) = z + z^3 P(z^2)/Q(z^2),
@@ -89,87 +82,82 @@
  * Theoretical peak relative error = 6.16e-22
  */
 static const long double R[4] = {
- 1.9757429581415468984296E-3L,
--7.1990767473014147232598E-1L,
- 1.0777257190312272158094E1L,
--3.5717684488096787370998E1L,
+    1.9757429581415468984296E-3L, -7.1990767473014147232598E-1L,
+    1.0777257190312272158094E1L, -3.5717684488096787370998E1L,
 };
 static const long double S[4] = {
-/* 1.00000000000000000000E0L,*/
--2.6201045551331104417768E1L,
- 1.9361891836232102174846E2L,
--4.2861221385716144629696E2L,
+    /* 1.00000000000000000000E0L,*/
+    -2.6201045551331104417768E1L, 1.9361891836232102174846E2L,
+    -4.2861221385716144629696E2L,
 };
 static const long double C1 = 6.9314575195312500000000E-1L;
 static const long double C2 = 1.4286068203094172321215E-6L;
 
 #define SQRTH 0.70710678118654752440L
 
-long double logl(long double x)
-{
-	long double y, z;
-	int e;
+long double logl(long double x) {
+  long double y, z;
+  int e;
 
-	if (isnan(x))
-		return x;
-	if (x == INFINITY)
-		return x;
-	if (x <= 0.0) {
-		if (x == 0.0)
-			return -1/(x*x); /* -inf with divbyzero */
-		return 0/0.0f; /* nan with invalid */
-	}
+  if (isnan(x))
+    return x;
+  if (x == INFINITY)
+    return x;
+  if (x <= 0.0) {
+    if (x == 0.0)
+      return -1 / (x * x); /* -inf with divbyzero */
+    return 0 / 0.0f;       /* nan with invalid */
+  }
 
-	/* separate mantissa from exponent */
-	/* Note, frexp is used so that denormal numbers
-	 * will be handled properly.
-	 */
-	x = frexpl(x, &e);
+  /* separate mantissa from exponent */
+  /* Note, frexp is used so that denormal numbers
+   * will be handled properly.
+   */
+  x = frexpl(x, &e);
 
-	/* logarithm using log(x) = z + z**3 P(z)/Q(z),
-	 * where z = 2(x-1)/(x+1)
-	 */
-	if (e > 2 || e < -2) {
-		if (x < SQRTH) {  /* 2(2x-1)/(2x+1) */
-			e -= 1;
-			z = x - 0.5;
-			y = 0.5 * z + 0.5;
-		} else {  /*  2 (x-1)/(x+1)   */
-			z = x - 0.5;
-			z -= 0.5;
-			y = 0.5 * x  + 0.5;
-		}
-		x = z / y;
-		z = x*x;
-		z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
-		z = z + e * C2;
-		z = z + x;
-		z = z + e * C1;
-		return z;
-	}
+  /* logarithm using log(x) = z + z**3 P(z)/Q(z),
+   * where z = 2(x-1)/(x+1)
+   */
+  if (e > 2 || e < -2) {
+    if (x < SQRTH) { /* 2(2x-1)/(2x+1) */
+      e -= 1;
+      z = x - 0.5;
+      y = 0.5 * z + 0.5;
+    } else { /*  2 (x-1)/(x+1)   */
+      z = x - 0.5;
+      z -= 0.5;
+      y = 0.5 * x + 0.5;
+    }
+    x = z / y;
+    z = x * x;
+    z = x * (z * __polevll(z, R, 3) / __p1evll(z, S, 3));
+    z = z + e * C2;
+    z = z + x;
+    z = z + e * C1;
+    return z;
+  }
 
-	/* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
-	if (x < SQRTH) {
-		e -= 1;
-		x = 2.0*x - 1.0;
-	} else {
-		x = x - 1.0;
-	}
-	z = x*x;
-	y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
-	y = y + e * C2;
-	z = y - 0.5*z;
-	/* Note, the sum of above terms does not exceed x/4,
-	 * so it contributes at most about 1/4 lsb to the error.
-	 */
-	z = z + x;
-	z = z + e * C1; /* This sum has an error of 1/2 lsb. */
-	return z;
+  /* logarithm using log(1+x) = x - .5x**2 + x**3 P(x)/Q(x) */
+  if (x < SQRTH) {
+    e -= 1;
+    x = 2.0 * x - 1.0;
+  } else {
+    x = x - 1.0;
+  }
+  z = x * x;
+  y = x * (z * __polevll(x, P, 6) / __p1evll(x, Q, 6));
+  y = y + e * C2;
+  z = y - 0.5 * z;
+  /* Note, the sum of above terms does not exceed x/4,
+   * so it contributes at most about 1/4 lsb to the error.
+   */
+  z = z + x;
+  z = z + e * C1; /* This sum has an error of 1/2 lsb. */
+  return z;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double logl(long double x)
-{
-	return log(x);
+long double logl(long double x) {
+  return log(x);
 }
 #endif
diff --git a/fusl/src/math/lrint.c b/fusl/src/math/lrint.c
index bdca8b7..9df34eb 100644
--- a/fusl/src/math/lrint.c
+++ b/fusl/src/math/lrint.c
@@ -25,22 +25,20 @@
 as a double.
 */
 
-#if LONG_MAX < 1U<<53 && defined(FE_INEXACT)
-long lrint(double x)
-{
-	#pragma STDC FENV_ACCESS ON
-	int e;
+#if LONG_MAX < 1U << 53 && defined(FE_INEXACT)
+long lrint(double x) {
+#pragma STDC FENV_ACCESS ON
+  int e;
 
-	e = fetestexcept(FE_INEXACT);
-	x = rint(x);
-	if (!e && (x > LONG_MAX || x < LONG_MIN))
-		feclearexcept(FE_INEXACT);
-	/* conversion */
-	return x;
+  e = fetestexcept(FE_INEXACT);
+  x = rint(x);
+  if (!e && (x > LONG_MAX || x < LONG_MIN))
+    feclearexcept(FE_INEXACT);
+  /* conversion */
+  return x;
 }
 #else
-long lrint(double x)
-{
-	return rint(x);
+long lrint(double x) {
+  return rint(x);
 }
 #endif
diff --git a/fusl/src/math/lrintf.c b/fusl/src/math/lrintf.c
index ca0b6a4..f67deb6 100644
--- a/fusl/src/math/lrintf.c
+++ b/fusl/src/math/lrintf.c
@@ -2,7 +2,6 @@
 
 /* uses LONG_MAX > 2^24, see comments in lrint.c */
 
-long lrintf(float x)
-{
-	return rintf(x);
+long lrintf(float x) {
+  return rintf(x);
 }
diff --git a/fusl/src/math/lrintl.c b/fusl/src/math/lrintl.c
index 08cc1ab..36e4bfc 100644
--- a/fusl/src/math/lrintl.c
+++ b/fusl/src/math/lrintl.c
@@ -2,11 +2,9 @@
 #include <fenv.h>
 #include "libm.h"
 
-
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long lrintl(long double x)
-{
-	return lrint(x);
+long lrintl(long double x) {
+  return lrint(x);
 }
 #elif defined(FE_INEXACT)
 /*
@@ -16,21 +14,19 @@
 then x == 2**63 - 0.5 is the only input that overflows and
 raises inexact (with tonearest or upward rounding mode)
 */
-long lrintl(long double x)
-{
-	PRAGMA_STDC_FENV_ACCESS_ON
-	int e;
+long lrintl(long double x) {
+  PRAGMA_STDC_FENV_ACCESS_ON
+  int e;
 
-	e = fetestexcept(FE_INEXACT);
-	x = rintl(x);
-	if (!e && (x > LONG_MAX || x < LONG_MIN))
-		feclearexcept(FE_INEXACT);
-	/* conversion */
-	return x;
+  e = fetestexcept(FE_INEXACT);
+  x = rintl(x);
+  if (!e && (x > LONG_MAX || x < LONG_MIN))
+    feclearexcept(FE_INEXACT);
+  /* conversion */
+  return x;
 }
 #else
-long lrintl(long double x)
-{
-	return rintl(x);
+long lrintl(long double x) {
+  return rintl(x);
 }
 #endif
diff --git a/fusl/src/math/lround.c b/fusl/src/math/lround.c
index b8b7954..d283026 100644
--- a/fusl/src/math/lround.c
+++ b/fusl/src/math/lround.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-long lround(double x)
-{
-	return round(x);
+long lround(double x) {
+  return round(x);
 }
diff --git a/fusl/src/math/lroundf.c b/fusl/src/math/lroundf.c
index c4707e7..01178aa 100644
--- a/fusl/src/math/lroundf.c
+++ b/fusl/src/math/lroundf.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-long lroundf(float x)
-{
-	return roundf(x);
+long lroundf(float x) {
+  return roundf(x);
 }
diff --git a/fusl/src/math/lroundl.c b/fusl/src/math/lroundl.c
index 094fdf6..5bb9107 100644
--- a/fusl/src/math/lroundl.c
+++ b/fusl/src/math/lroundl.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-long lroundl(long double x)
-{
-	return roundl(x);
+long lroundl(long double x) {
+  return roundl(x);
 }
diff --git a/fusl/src/math/modf.c b/fusl/src/math/modf.c
index 1c8a1db..01a1941 100644
--- a/fusl/src/math/modf.c
+++ b/fusl/src/math/modf.c
@@ -1,34 +1,36 @@
 #include "libm.h"
 
-double modf(double x, double *iptr)
-{
-	union {double f; uint64_t i;} u = {x};
-	uint64_t mask;
-	int e = (int)(u.i>>52 & 0x7ff) - 0x3ff;
+double modf(double x, double* iptr) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  uint64_t mask;
+  int e = (int)(u.i >> 52 & 0x7ff) - 0x3ff;
 
-	/* no fractional part */
-	if (e >= 52) {
-		*iptr = x;
-		if (e == 0x400 && u.i<<12 != 0) /* nan */
-			return x;
-		u.i &= 1ULL<<63;
-		return u.f;
-	}
+  /* no fractional part */
+  if (e >= 52) {
+    *iptr = x;
+    if (e == 0x400 && u.i << 12 != 0) /* nan */
+      return x;
+    u.i &= 1ULL << 63;
+    return u.f;
+  }
 
-	/* no integral part*/
-	if (e < 0) {
-		u.i &= 1ULL<<63;
-		*iptr = u.f;
-		return x;
-	}
+  /* no integral part*/
+  if (e < 0) {
+    u.i &= 1ULL << 63;
+    *iptr = u.f;
+    return x;
+  }
 
-	mask = -1ULL>>12>>e;
-	if ((u.i & mask) == 0) {
-		*iptr = x;
-		u.i &= 1ULL<<63;
-		return u.f;
-	}
-	u.i &= ~mask;
-	*iptr = u.f;
-	return x - u.f;
+  mask = -1ULL >> 12 >> e;
+  if ((u.i & mask) == 0) {
+    *iptr = x;
+    u.i &= 1ULL << 63;
+    return u.f;
+  }
+  u.i &= ~mask;
+  *iptr = u.f;
+  return x - u.f;
 }
diff --git a/fusl/src/math/modff.c b/fusl/src/math/modff.c
index 639514e..eae990e 100644
--- a/fusl/src/math/modff.c
+++ b/fusl/src/math/modff.c
@@ -1,34 +1,36 @@
 #include "libm.h"
 
-float modff(float x, float *iptr)
-{
-	union {float f; uint32_t i;} u = {x};
-	uint32_t mask;
-	int e = (int)(u.i>>23 & 0xff) - 0x7f;
+float modff(float x, float* iptr) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  uint32_t mask;
+  int e = (int)(u.i >> 23 & 0xff) - 0x7f;
 
-	/* no fractional part */
-	if (e >= 23) {
-		*iptr = x;
-		if (e == 0x80 && u.i<<9 != 0) { /* nan */
-			return x;
-		}
-		u.i &= 0x80000000;
-		return u.f;
-	}
-	/* no integral part */
-	if (e < 0) {
-		u.i &= 0x80000000;
-		*iptr = u.f;
-		return x;
-	}
+  /* no fractional part */
+  if (e >= 23) {
+    *iptr = x;
+    if (e == 0x80 && u.i << 9 != 0) { /* nan */
+      return x;
+    }
+    u.i &= 0x80000000;
+    return u.f;
+  }
+  /* no integral part */
+  if (e < 0) {
+    u.i &= 0x80000000;
+    *iptr = u.f;
+    return x;
+  }
 
-	mask = 0x007fffff>>e;
-	if ((u.i & mask) == 0) {
-		*iptr = x;
-		u.i &= 0x80000000;
-		return u.f;
-	}
-	u.i &= ~mask;
-	*iptr = u.f;
-	return x - u.f;
+  mask = 0x007fffff >> e;
+  if ((u.i & mask) == 0) {
+    *iptr = x;
+    u.i &= 0x80000000;
+    return u.f;
+  }
+  u.i &= ~mask;
+  *iptr = u.f;
+  return x - u.f;
 }
diff --git a/fusl/src/math/modfl.c b/fusl/src/math/modfl.c
index a47b192..0736e96 100644
--- a/fusl/src/math/modfl.c
+++ b/fusl/src/math/modfl.c
@@ -1,53 +1,51 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double modfl(long double x, long double *iptr)
-{
-	double d;
-	long double r;
+long double modfl(long double x, long double* iptr) {
+  double d;
+  long double r;
 
-	r = modf(x, &d);
-	*iptr = d;
-	return r;
+  r = modf(x, &d);
+  *iptr = d;
+  return r;
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 
-static const long double toint = 1/LDBL_EPSILON;
+static const long double toint = 1 / LDBL_EPSILON;
 
-long double modfl(long double x, long double *iptr)
-{
-	union ldshape u = {x};
-	int e = (u.i.se & 0x7fff) - 0x3fff;
-	int s = u.i.se >> 15;
-	long double absx;
-	long double y;
+long double modfl(long double x, long double* iptr) {
+  union ldshape u = {x};
+  int e = (u.i.se & 0x7fff) - 0x3fff;
+  int s = u.i.se >> 15;
+  long double absx;
+  long double y;
 
-	/* no fractional part */
-	if (e >= LDBL_MANT_DIG-1) {
-		*iptr = x;
-		if (isnan(x))
-			return x;
-		return s ? -0.0 : 0.0;
-	}
+  /* no fractional part */
+  if (e >= LDBL_MANT_DIG - 1) {
+    *iptr = x;
+    if (isnan(x))
+      return x;
+    return s ? -0.0 : 0.0;
+  }
 
-	/* no integral part*/
-	if (e < 0) {
-		*iptr = s ? -0.0 : 0.0;
-		return x;
-	}
+  /* no integral part*/
+  if (e < 0) {
+    *iptr = s ? -0.0 : 0.0;
+    return x;
+  }
 
-	/* raises spurious inexact */
-	absx = s ? -x : x;
-	y = absx + toint - toint - absx;
-	if (y == 0) {
-		*iptr = x;
-		return s ? -0.0 : 0.0;
-	}
-	if (y > 0)
-		y -= 1;
-	if (s)
-		y = -y;
-	*iptr = x + y;
-	return -y;
+  /* raises spurious inexact */
+  absx = s ? -x : x;
+  y = absx + toint - toint - absx;
+  if (y == 0) {
+    *iptr = x;
+    return s ? -0.0 : 0.0;
+  }
+  if (y > 0)
+    y -= 1;
+  if (s)
+    y = -y;
+  *iptr = x + y;
+  return -y;
 }
 #endif
diff --git a/fusl/src/math/nan.c b/fusl/src/math/nan.c
index 9e0826c..a25ee75 100644
--- a/fusl/src/math/nan.c
+++ b/fusl/src/math/nan.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-double nan(const char *s)
-{
-	return NAN;
+double nan(const char* s) {
+  return NAN;
 }
diff --git a/fusl/src/math/nanf.c b/fusl/src/math/nanf.c
index 752ce54..dafe127 100644
--- a/fusl/src/math/nanf.c
+++ b/fusl/src/math/nanf.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-float nanf(const char *s)
-{
-	return NAN;
+float nanf(const char* s) {
+  return NAN;
 }
diff --git a/fusl/src/math/nanl.c b/fusl/src/math/nanl.c
index 969af56..692645f 100644
--- a/fusl/src/math/nanl.c
+++ b/fusl/src/math/nanl.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-long double nanl(const char *s)
-{
-	return NAN;
+long double nanl(const char* s) {
+  return NAN;
 }
diff --git a/fusl/src/math/nearbyint.c b/fusl/src/math/nearbyint.c
index b1c867f..6fc574e 100644
--- a/fusl/src/math/nearbyint.c
+++ b/fusl/src/math/nearbyint.c
@@ -4,18 +4,17 @@
 
 /* nearbyint is the same as rint, but it must not raise the inexact exception */
 
-double nearbyint(double x)
-{
+double nearbyint(double x) {
 #ifdef FE_INEXACT
-	PRAGMA_STDC_FENV_ACCESS_ON
-	int e;
+  PRAGMA_STDC_FENV_ACCESS_ON
+  int e;
 
-	e = fetestexcept(FE_INEXACT);
+  e = fetestexcept(FE_INEXACT);
 #endif
-	x = rint(x);
+  x = rint(x);
 #ifdef FE_INEXACT
-	if (!e)
-		feclearexcept(FE_INEXACT);
+  if (!e)
+    feclearexcept(FE_INEXACT);
 #endif
-	return x;
+  return x;
 }
diff --git a/fusl/src/math/nearbyintf.c b/fusl/src/math/nearbyintf.c
index 7c0d374..d8dc470 100644
--- a/fusl/src/math/nearbyintf.c
+++ b/fusl/src/math/nearbyintf.c
@@ -2,18 +2,17 @@
 #include <math.h>
 #include "libm.h"
 
-float nearbyintf(float x)
-{
+float nearbyintf(float x) {
 #ifdef FE_INEXACT
-	PRAGMA_STDC_FENV_ACCESS_ON
-	int e;
+  PRAGMA_STDC_FENV_ACCESS_ON
+  int e;
 
-	e = fetestexcept(FE_INEXACT);
+  e = fetestexcept(FE_INEXACT);
 #endif
-	x = rintf(x);
+  x = rintf(x);
 #ifdef FE_INEXACT
-	if (!e)
-		feclearexcept(FE_INEXACT);
+  if (!e)
+    feclearexcept(FE_INEXACT);
 #endif
-	return x;
+  return x;
 }
diff --git a/fusl/src/math/nearbyintl.c b/fusl/src/math/nearbyintl.c
index 82aeadd..89f6700 100644
--- a/fusl/src/math/nearbyintl.c
+++ b/fusl/src/math/nearbyintl.c
@@ -3,25 +3,23 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double nearbyintl(long double x)
-{
-	return nearbyint(x);
+long double nearbyintl(long double x) {
+  return nearbyint(x);
 }
 #else
 #include <fenv.h>
-long double nearbyintl(long double x)
-{
+long double nearbyintl(long double x) {
 #ifdef FE_INEXACT
-	PRAGMA_STDC_FENV_ACCESS_ON
-	int e;
+  PRAGMA_STDC_FENV_ACCESS_ON
+  int e;
 
-	e = fetestexcept(FE_INEXACT);
+  e = fetestexcept(FE_INEXACT);
 #endif
-	x = rintl(x);
+  x = rintl(x);
 #ifdef FE_INEXACT
-	if (!e)
-		feclearexcept(FE_INEXACT);
+  if (!e)
+    feclearexcept(FE_INEXACT);
 #endif
-	return x;
+  return x;
 }
 #endif
diff --git a/fusl/src/math/nextafter.c b/fusl/src/math/nextafter.c
index ab5795a..8f51f95 100644
--- a/fusl/src/math/nextafter.c
+++ b/fusl/src/math/nextafter.c
@@ -1,31 +1,33 @@
 #include "libm.h"
 
-double nextafter(double x, double y)
-{
-	union {double f; uint64_t i;} ux={x}, uy={y};
-	uint64_t ax, ay;
-	int e;
+double nextafter(double x, double y) {
+  union {
+    double f;
+    uint64_t i;
+  } ux = {x}, uy = {y};
+  uint64_t ax, ay;
+  int e;
 
-	if (isnan(x) || isnan(y))
-		return x + y;
-	if (ux.i == uy.i)
-		return y;
-	ax = ux.i & -1ULL/2;
-	ay = uy.i & -1ULL/2;
-	if (ax == 0) {
-		if (ay == 0)
-			return y;
-		ux.i = (uy.i & 1ULL<<63) | 1;
-	} else if (ax > ay || ((ux.i ^ uy.i) & 1ULL<<63))
-		ux.i--;
-	else
-		ux.i++;
-	e = ux.i >> 52 & 0x7ff;
-	/* raise overflow if ux.f is infinite and x is finite */
-	if (e == 0x7ff)
-		FORCE_EVAL(x+x);
-	/* raise underflow if ux.f is subnormal or zero */
-	if (e == 0)
-		FORCE_EVAL(x*x + ux.f*ux.f);
-	return ux.f;
+  if (isnan(x) || isnan(y))
+    return x + y;
+  if (ux.i == uy.i)
+    return y;
+  ax = ux.i & -1ULL / 2;
+  ay = uy.i & -1ULL / 2;
+  if (ax == 0) {
+    if (ay == 0)
+      return y;
+    ux.i = (uy.i & 1ULL << 63) | 1;
+  } else if (ax > ay || ((ux.i ^ uy.i) & 1ULL << 63))
+    ux.i--;
+  else
+    ux.i++;
+  e = ux.i >> 52 & 0x7ff;
+  /* raise overflow if ux.f is infinite and x is finite */
+  if (e == 0x7ff)
+    FORCE_EVAL(x + x);
+  /* raise underflow if ux.f is subnormal or zero */
+  if (e == 0)
+    FORCE_EVAL(x * x + ux.f * ux.f);
+  return ux.f;
 }
diff --git a/fusl/src/math/nextafterf.c b/fusl/src/math/nextafterf.c
index 75a09f7..57ec9f0 100644
--- a/fusl/src/math/nextafterf.c
+++ b/fusl/src/math/nextafterf.c
@@ -1,30 +1,32 @@
 #include "libm.h"
 
-float nextafterf(float x, float y)
-{
-	union {float f; uint32_t i;} ux={x}, uy={y};
-	uint32_t ax, ay, e;
+float nextafterf(float x, float y) {
+  union {
+    float f;
+    uint32_t i;
+  } ux = {x}, uy = {y};
+  uint32_t ax, ay, e;
 
-	if (isnan(x) || isnan(y))
-		return x + y;
-	if (ux.i == uy.i)
-		return y;
-	ax = ux.i & 0x7fffffff;
-	ay = uy.i & 0x7fffffff;
-	if (ax == 0) {
-		if (ay == 0)
-			return y;
-		ux.i = (uy.i & 0x80000000) | 1;
-	} else if (ax > ay || ((ux.i ^ uy.i) & 0x80000000))
-		ux.i--;
-	else
-		ux.i++;
-	e = ux.i & 0x7f800000;
-	/* raise overflow if ux.f is infinite and x is finite */
-	if (e == 0x7f800000)
-		FORCE_EVAL(x+x);
-	/* raise underflow if ux.f is subnormal or zero */
-	if (e == 0)
-		FORCE_EVAL(x*x + ux.f*ux.f);
-	return ux.f;
+  if (isnan(x) || isnan(y))
+    return x + y;
+  if (ux.i == uy.i)
+    return y;
+  ax = ux.i & 0x7fffffff;
+  ay = uy.i & 0x7fffffff;
+  if (ax == 0) {
+    if (ay == 0)
+      return y;
+    ux.i = (uy.i & 0x80000000) | 1;
+  } else if (ax > ay || ((ux.i ^ uy.i) & 0x80000000))
+    ux.i--;
+  else
+    ux.i++;
+  e = ux.i & 0x7f800000;
+  /* raise overflow if ux.f is infinite and x is finite */
+  if (e == 0x7f800000)
+    FORCE_EVAL(x + x);
+  /* raise underflow if ux.f is subnormal or zero */
+  if (e == 0)
+    FORCE_EVAL(x * x + ux.f * ux.f);
+  return ux.f;
 }
diff --git a/fusl/src/math/nextafterl.c b/fusl/src/math/nextafterl.c
index 37e858f..3394b75 100644
--- a/fusl/src/math/nextafterl.c
+++ b/fusl/src/math/nextafterl.c
@@ -1,75 +1,72 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double nextafterl(long double x, long double y)
-{
-	return nextafter(x, y);
+long double nextafterl(long double x, long double y) {
+  return nextafter(x, y);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-long double nextafterl(long double x, long double y)
-{
-	union ldshape ux, uy;
+long double nextafterl(long double x, long double y) {
+  union ldshape ux, uy;
 
-	if (isnan(x) || isnan(y))
-		return x + y;
-	if (x == y)
-		return y;
-	ux.f = x;
-	if (x == 0) {
-		uy.f = y;
-		ux.i.m = 1;
-		ux.i.se = uy.i.se & 0x8000;
-	} else if ((x < y) == !(ux.i.se & 0x8000)) {
-		ux.i.m++;
-		if (ux.i.m << 1 == 0) {
-			ux.i.m = 1ULL << 63;
-			ux.i.se++;
-		}
-	} else {
-		if (ux.i.m << 1 == 0) {
-			ux.i.se--;
-			if (ux.i.se)
-				ux.i.m = 0;
-		}
-		ux.i.m--;
-	}
-	/* raise overflow if ux is infinite and x is finite */
-	if ((ux.i.se & 0x7fff) == 0x7fff)
-		return x + x;
-	/* raise underflow if ux is subnormal or zero */
-	if ((ux.i.se & 0x7fff) == 0)
-		FORCE_EVAL(x*x + ux.f*ux.f);
-	return ux.f;
+  if (isnan(x) || isnan(y))
+    return x + y;
+  if (x == y)
+    return y;
+  ux.f = x;
+  if (x == 0) {
+    uy.f = y;
+    ux.i.m = 1;
+    ux.i.se = uy.i.se & 0x8000;
+  } else if ((x < y) == !(ux.i.se & 0x8000)) {
+    ux.i.m++;
+    if (ux.i.m << 1 == 0) {
+      ux.i.m = 1ULL << 63;
+      ux.i.se++;
+    }
+  } else {
+    if (ux.i.m << 1 == 0) {
+      ux.i.se--;
+      if (ux.i.se)
+        ux.i.m = 0;
+    }
+    ux.i.m--;
+  }
+  /* raise overflow if ux is infinite and x is finite */
+  if ((ux.i.se & 0x7fff) == 0x7fff)
+    return x + x;
+  /* raise underflow if ux is subnormal or zero */
+  if ((ux.i.se & 0x7fff) == 0)
+    FORCE_EVAL(x * x + ux.f * ux.f);
+  return ux.f;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
-long double nextafterl(long double x, long double y)
-{
-	union ldshape ux, uy;
+long double nextafterl(long double x, long double y) {
+  union ldshape ux, uy;
 
-	if (isnan(x) || isnan(y))
-		return x + y;
-	if (x == y)
-		return y;
-	ux.f = x;
-	if (x == 0) {
-		uy.f = y;
-		ux.i.lo = 1;
-		ux.i.se = uy.i.se & 0x8000;
-	} else if ((x < y) == !(ux.i.se & 0x8000)) {
-		ux.i2.lo++;
-		if (ux.i2.lo == 0)
-			ux.i2.hi++;
-	} else {
-		if (ux.i2.lo == 0)
-			ux.i2.hi--;
-		ux.i2.lo--;
-	}
-	/* raise overflow if ux is infinite and x is finite */
-	if ((ux.i.se & 0x7fff) == 0x7fff)
-		return x + x;
-	/* raise underflow if ux is subnormal or zero */
-	if ((ux.i.se & 0x7fff) == 0)
-		FORCE_EVAL(x*x + ux.f*ux.f);
-	return ux.f;
+  if (isnan(x) || isnan(y))
+    return x + y;
+  if (x == y)
+    return y;
+  ux.f = x;
+  if (x == 0) {
+    uy.f = y;
+    ux.i.lo = 1;
+    ux.i.se = uy.i.se & 0x8000;
+  } else if ((x < y) == !(ux.i.se & 0x8000)) {
+    ux.i2.lo++;
+    if (ux.i2.lo == 0)
+      ux.i2.hi++;
+  } else {
+    if (ux.i2.lo == 0)
+      ux.i2.hi--;
+    ux.i2.lo--;
+  }
+  /* raise overflow if ux is infinite and x is finite */
+  if ((ux.i.se & 0x7fff) == 0x7fff)
+    return x + x;
+  /* raise underflow if ux is subnormal or zero */
+  if ((ux.i.se & 0x7fff) == 0)
+    FORCE_EVAL(x * x + ux.f * ux.f);
+  return ux.f;
 }
 #endif
diff --git a/fusl/src/math/nexttoward.c b/fusl/src/math/nexttoward.c
index 827ee5c..7cdee83 100644
--- a/fusl/src/math/nexttoward.c
+++ b/fusl/src/math/nexttoward.c
@@ -1,42 +1,43 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-double nexttoward(double x, long double y)
-{
-	return nextafter(x, y);
+double nexttoward(double x, long double y) {
+  return nextafter(x, y);
 }
 #else
-double nexttoward(double x, long double y)
-{
-	union {double f; uint64_t i;} ux = {x};
-	int e;
+double nexttoward(double x, long double y) {
+  union {
+    double f;
+    uint64_t i;
+  } ux = {x};
+  int e;
 
-	if (isnan(x) || isnan(y))
-		return x + y;
-	if (x == y)
-		return y;
-	if (x == 0) {
-		ux.i = 1;
-		if (signbit(y))
-			ux.i |= 1ULL<<63;
-	} else if (x < y) {
-		if (signbit(x))
-			ux.i--;
-		else
-			ux.i++;
-	} else {
-		if (signbit(x))
-			ux.i++;
-		else
-			ux.i--;
-	}
-	e = ux.i>>52 & 0x7ff;
-	/* raise overflow if ux.f is infinite and x is finite */
-	if (e == 0x7ff)
-		FORCE_EVAL(x+x);
-	/* raise underflow if ux.f is subnormal or zero */
-	if (e == 0)
-		FORCE_EVAL(x*x + ux.f*ux.f);
-	return ux.f;
+  if (isnan(x) || isnan(y))
+    return x + y;
+  if (x == y)
+    return y;
+  if (x == 0) {
+    ux.i = 1;
+    if (signbit(y))
+      ux.i |= 1ULL << 63;
+  } else if (x < y) {
+    if (signbit(x))
+      ux.i--;
+    else
+      ux.i++;
+  } else {
+    if (signbit(x))
+      ux.i++;
+    else
+      ux.i--;
+  }
+  e = ux.i >> 52 & 0x7ff;
+  /* raise overflow if ux.f is infinite and x is finite */
+  if (e == 0x7ff)
+    FORCE_EVAL(x + x);
+  /* raise underflow if ux.f is subnormal or zero */
+  if (e == 0)
+    FORCE_EVAL(x * x + ux.f * ux.f);
+  return ux.f;
 }
 #endif
diff --git a/fusl/src/math/nexttowardf.c b/fusl/src/math/nexttowardf.c
index bbf172f..f004e99 100644
--- a/fusl/src/math/nexttowardf.c
+++ b/fusl/src/math/nexttowardf.c
@@ -1,35 +1,37 @@
 #include "libm.h"
 
-float nexttowardf(float x, long double y)
-{
-	union {float f; uint32_t i;} ux = {x};
-	uint32_t e;
+float nexttowardf(float x, long double y) {
+  union {
+    float f;
+    uint32_t i;
+  } ux = {x};
+  uint32_t e;
 
-	if (isnan(x) || isnan(y))
-		return x + y;
-	if (x == y)
-		return y;
-	if (x == 0) {
-		ux.i = 1;
-		if (signbit(y))
-			ux.i |= 0x80000000;
-	} else if (x < y) {
-		if (signbit(x))
-			ux.i--;
-		else
-			ux.i++;
-	} else {
-		if (signbit(x))
-			ux.i++;
-		else
-			ux.i--;
-	}
-	e = ux.i & 0x7f800000;
-	/* raise overflow if ux.f is infinite and x is finite */
-	if (e == 0x7f800000)
-		FORCE_EVAL(x+x);
-	/* raise underflow if ux.f is subnormal or zero */
-	if (e == 0)
-		FORCE_EVAL(x*x + ux.f*ux.f);
-	return ux.f;
+  if (isnan(x) || isnan(y))
+    return x + y;
+  if (x == y)
+    return y;
+  if (x == 0) {
+    ux.i = 1;
+    if (signbit(y))
+      ux.i |= 0x80000000;
+  } else if (x < y) {
+    if (signbit(x))
+      ux.i--;
+    else
+      ux.i++;
+  } else {
+    if (signbit(x))
+      ux.i++;
+    else
+      ux.i--;
+  }
+  e = ux.i & 0x7f800000;
+  /* raise overflow if ux.f is infinite and x is finite */
+  if (e == 0x7f800000)
+    FORCE_EVAL(x + x);
+  /* raise underflow if ux.f is subnormal or zero */
+  if (e == 0)
+    FORCE_EVAL(x * x + ux.f * ux.f);
+  return ux.f;
 }
diff --git a/fusl/src/math/nexttowardl.c b/fusl/src/math/nexttowardl.c
index 67a6340..132909d 100644
--- a/fusl/src/math/nexttowardl.c
+++ b/fusl/src/math/nexttowardl.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-long double nexttowardl(long double x, long double y)
-{
-	return nextafterl(x, y);
+long double nexttowardl(long double x, long double y) {
+  return nextafterl(x, y);
 }
diff --git a/fusl/src/math/pow.c b/fusl/src/math/pow.c
index b66f632..7a9f1a6 100644
--- a/fusl/src/math/pow.c
+++ b/fusl/src/math/pow.c
@@ -31,14 +31,17 @@
  *      9.  -1          ** +-INF is 1
  *      10. +0 ** (+anything except 0, NAN)               is +0
  *      11. -0 ** (+anything except 0, NAN, odd integer)  is +0
- *      12. +0 ** (-anything except 0, NAN)               is +INF, raise divbyzero
- *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF, raise divbyzero
+ *      12. +0 ** (-anything except 0, NAN)               is +INF, raise
+ * divbyzero
+ *      13. -0 ** (-anything except 0, NAN, odd integer)  is +INF, raise
+ * divbyzero
  *      14. -0 ** (+odd integer) is -0
  *      15. -0 ** (-odd integer) is -INF, raise divbyzero
  *      16. +INF ** (+anything except 0,NAN) is +INF
  *      17. +INF ** (-anything except 0,NAN) is +0
  *      18. -INF ** (+odd integer) is -INF
- *      19. -INF ** (anything) = -0 ** (-anything), (anything except odd integer)
+ *      19. -INF ** (anything) = -0 ** (-anything), (anything except odd
+ * integer)
  *      20. (anything) ** 1 is (anything)
  *      21. (anything) ** -1 is 1/(anything)
  *      22. (-anything) ** (integer) is (-1)**(integer)*(+anything**integer)
@@ -59,270 +62,285 @@
 
 #include "libm.h"
 
-static const double
-bp[]   = {1.0, 1.5,},
-dp_h[] = { 0.0, 5.84962487220764160156e-01,}, /* 0x3FE2B803, 0x40000000 */
-dp_l[] = { 0.0, 1.35003920212974897128e-08,}, /* 0x3E4CFDEB, 0x43CFD006 */
-two53  =  9007199254740992.0, /* 0x43400000, 0x00000000 */
-huge   =  1.0e300,
-tiny   =  1.0e-300,
-/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
-L1 =  5.99999999999994648725e-01, /* 0x3FE33333, 0x33333303 */
-L2 =  4.28571428578550184252e-01, /* 0x3FDB6DB6, 0xDB6FABFF */
-L3 =  3.33333329818377432918e-01, /* 0x3FD55555, 0x518F264D */
-L4 =  2.72728123808534006489e-01, /* 0x3FD17460, 0xA91D4101 */
-L5 =  2.30660745775561754067e-01, /* 0x3FCD864A, 0x93C9DB65 */
-L6 =  2.06975017800338417784e-01, /* 0x3FCA7E28, 0x4A454EEF */
-P1 =  1.66666666666666019037e-01, /* 0x3FC55555, 0x5555553E */
-P2 = -2.77777777770155933842e-03, /* 0xBF66C16C, 0x16BEBD93 */
-P3 =  6.61375632143793436117e-05, /* 0x3F11566A, 0xAF25DE2C */
-P4 = -1.65339022054652515390e-06, /* 0xBEBBBD41, 0xC5D26BF1 */
-P5 =  4.13813679705723846039e-08, /* 0x3E663769, 0x72BEA4D0 */
-lg2     =  6.93147180559945286227e-01, /* 0x3FE62E42, 0xFEFA39EF */
-lg2_h   =  6.93147182464599609375e-01, /* 0x3FE62E43, 0x00000000 */
-lg2_l   = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
-ovt     =  8.0085662595372944372e-017, /* -(1024-log2(ovfl+.5ulp)) */
-cp      =  9.61796693925975554329e-01, /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
-cp_h    =  9.61796700954437255859e-01, /* 0x3FEEC709, 0xE0000000 =(float)cp */
-cp_l    = -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
-ivln2   =  1.44269504088896338700e+00, /* 0x3FF71547, 0x652B82FE =1/ln2 */
-ivln2_h =  1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
-ivln2_l =  1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
+static const double bp[] =
+    {
+        1.0, 1.5,
+},
+                    dp_h[] =
+                        {
+                            0.0, 5.84962487220764160156e-01,
+}, /* 0x3FE2B803, 0x40000000 */
+    dp_l[] =
+        {
+            0.0, 1.35003920212974897128e-08,
+},                              /* 0x3E4CFDEB, 0x43CFD006 */
+    two53 = 9007199254740992.0, /* 0x43400000, 0x00000000 */
+    huge = 1.0e300,
+                    tiny = 1.0e-300,
+                    /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
+    L1 = 5.99999999999994648725e-01,     /* 0x3FE33333, 0x33333303 */
+    L2 = 4.28571428578550184252e-01,     /* 0x3FDB6DB6, 0xDB6FABFF */
+    L3 = 3.33333329818377432918e-01,     /* 0x3FD55555, 0x518F264D */
+    L4 = 2.72728123808534006489e-01,     /* 0x3FD17460, 0xA91D4101 */
+    L5 = 2.30660745775561754067e-01,     /* 0x3FCD864A, 0x93C9DB65 */
+    L6 = 2.06975017800338417784e-01,     /* 0x3FCA7E28, 0x4A454EEF */
+    P1 = 1.66666666666666019037e-01,     /* 0x3FC55555, 0x5555553E */
+    P2 = -2.77777777770155933842e-03,    /* 0xBF66C16C, 0x16BEBD93 */
+    P3 = 6.61375632143793436117e-05,     /* 0x3F11566A, 0xAF25DE2C */
+    P4 = -1.65339022054652515390e-06,    /* 0xBEBBBD41, 0xC5D26BF1 */
+    P5 = 4.13813679705723846039e-08,     /* 0x3E663769, 0x72BEA4D0 */
+    lg2 = 6.93147180559945286227e-01,    /* 0x3FE62E42, 0xFEFA39EF */
+    lg2_h = 6.93147182464599609375e-01,  /* 0x3FE62E43, 0x00000000 */
+    lg2_l = -1.90465429995776804525e-09, /* 0xBE205C61, 0x0CA86C39 */
+    ovt = 8.0085662595372944372e-017,    /* -(1024-log2(ovfl+.5ulp)) */
+    cp = 9.61796693925975554329e-01,     /* 0x3FEEC709, 0xDC3A03FD =2/(3ln2) */
+    cp_h = 9.61796700954437255859e-01,   /* 0x3FEEC709, 0xE0000000 =(float)cp */
+    cp_l =
+        -7.02846165095275826516e-09, /* 0xBE3E2FE0, 0x145B01F5 =tail of cp_h*/
+    ivln2 = 1.44269504088896338700e+00,   /* 0x3FF71547, 0x652B82FE =1/ln2 */
+    ivln2_h = 1.44269502162933349609e+00, /* 0x3FF71547, 0x60000000 =24b 1/ln2*/
+    ivln2_l =
+        1.92596299112661746887e-08; /* 0x3E54AE0B, 0xF85DDF44 =1/ln2 tail*/
 
-double pow(double x, double y)
-{
-	double z,ax,z_h,z_l,p_h,p_l;
-	double y1,t1,t2,r,s,t,u,v,w;
-	int32_t i,j,k,yisint,n;
-	int32_t hx,hy,ix,iy;
-	uint32_t lx,ly;
+double pow(double x, double y) {
+  double z, ax, z_h, z_l, p_h, p_l;
+  double y1, t1, t2, r, s, t, u, v, w;
+  int32_t i, j, k, yisint, n;
+  int32_t hx, hy, ix, iy;
+  uint32_t lx, ly;
 
-	EXTRACT_WORDS(hx, lx, x);
-	EXTRACT_WORDS(hy, ly, y);
-	ix = hx & 0x7fffffff;
-	iy = hy & 0x7fffffff;
+  EXTRACT_WORDS(hx, lx, x);
+  EXTRACT_WORDS(hy, ly, y);
+  ix = hx & 0x7fffffff;
+  iy = hy & 0x7fffffff;
 
-	/* x**0 = 1, even if x is NaN */
-	if ((iy|ly) == 0)
-		return 1.0;
-	/* 1**y = 1, even if y is NaN */
-	if (hx == 0x3ff00000 && lx == 0)
-		return 1.0;
-	/* NaN if either arg is NaN */
-	if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0) ||
-	    iy > 0x7ff00000 || (iy == 0x7ff00000 && ly != 0))
-		return x + y;
+  /* x**0 = 1, even if x is NaN */
+  if ((iy | ly) == 0)
+    return 1.0;
+  /* 1**y = 1, even if y is NaN */
+  if (hx == 0x3ff00000 && lx == 0)
+    return 1.0;
+  /* NaN if either arg is NaN */
+  if (ix > 0x7ff00000 || (ix == 0x7ff00000 && lx != 0) || iy > 0x7ff00000 ||
+      (iy == 0x7ff00000 && ly != 0))
+    return x + y;
 
-	/* determine if y is an odd int when x < 0
-	 * yisint = 0       ... y is not an integer
-	 * yisint = 1       ... y is an odd int
-	 * yisint = 2       ... y is an even int
-	 */
-	yisint = 0;
-	if (hx < 0) {
-		if (iy >= 0x43400000)
-			yisint = 2; /* even integer y */
-		else if (iy >= 0x3ff00000) {
-			k = (iy>>20) - 0x3ff;  /* exponent */
-			if (k > 20) {
-				j = ly>>(52-k);
-				if ((j<<(52-k)) == ly)
-					yisint = 2 - (j&1);
-			} else if (ly == 0) {
-				j = iy>>(20-k);
-				if ((j<<(20-k)) == iy)
-					yisint = 2 - (j&1);
-			}
-		}
-	}
+  /* determine if y is an odd int when x < 0
+   * yisint = 0       ... y is not an integer
+   * yisint = 1       ... y is an odd int
+   * yisint = 2       ... y is an even int
+   */
+  yisint = 0;
+  if (hx < 0) {
+    if (iy >= 0x43400000)
+      yisint = 2; /* even integer y */
+    else if (iy >= 0x3ff00000) {
+      k = (iy >> 20) - 0x3ff; /* exponent */
+      if (k > 20) {
+        j = ly >> (52 - k);
+        if ((j << (52 - k)) == ly)
+          yisint = 2 - (j & 1);
+      } else if (ly == 0) {
+        j = iy >> (20 - k);
+        if ((j << (20 - k)) == iy)
+          yisint = 2 - (j & 1);
+      }
+    }
+  }
 
-	/* special value of y */
-	if (ly == 0) {
-		if (iy == 0x7ff00000) {  /* y is +-inf */
-			if (((ix-0x3ff00000)|lx) == 0)  /* (-1)**+-inf is 1 */
-				return 1.0;
-			else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
-				return hy >= 0 ? y : 0.0;
-			else                       /* (|x|<1)**+-inf = 0,inf */
-				return hy >= 0 ? 0.0 : -y;
-		}
-		if (iy == 0x3ff00000) {    /* y is +-1 */
-			if (hy >= 0)
-				return x;
-			y = 1/x;
-#if FLT_EVAL_METHOD!=0
-			{
-				union {double f; uint64_t i;} u = {y};
-				uint64_t i = u.i & -1ULL/2;
-				if (i>>52 == 0 && (i&(i-1)))
-					FORCE_EVAL((float)y);
-			}
+  /* special value of y */
+  if (ly == 0) {
+    if (iy == 0x7ff00000) {              /* y is +-inf */
+      if (((ix - 0x3ff00000) | lx) == 0) /* (-1)**+-inf is 1 */
+        return 1.0;
+      else if (ix >= 0x3ff00000) /* (|x|>1)**+-inf = inf,0 */
+        return hy >= 0 ? y : 0.0;
+      else /* (|x|<1)**+-inf = 0,inf */
+        return hy >= 0 ? 0.0 : -y;
+    }
+    if (iy == 0x3ff00000) { /* y is +-1 */
+      if (hy >= 0)
+        return x;
+      y = 1 / x;
+#if FLT_EVAL_METHOD != 0
+      {
+        union {
+          double f;
+          uint64_t i;
+        } u = {y};
+        uint64_t i = u.i & -1ULL / 2;
+        if (i >> 52 == 0 && (i & (i - 1)))
+          FORCE_EVAL((float)y);
+      }
 #endif
-			return y;
-		}
-		if (hy == 0x40000000)    /* y is 2 */
-			return x*x;
-		if (hy == 0x3fe00000) {  /* y is 0.5 */
-			if (hx >= 0)     /* x >= +0 */
-				return sqrt(x);
-		}
-	}
+      return y;
+    }
+    if (hy == 0x40000000) /* y is 2 */
+      return x * x;
+    if (hy == 0x3fe00000) { /* y is 0.5 */
+      if (hx >= 0)          /* x >= +0 */
+        return sqrt(x);
+    }
+  }
 
-	ax = fabs(x);
-	/* special value of x */
-	if (lx == 0) {
-		if (ix == 0x7ff00000 || ix == 0 || ix == 0x3ff00000) { /* x is +-0,+-inf,+-1 */
-			z = ax;
-			if (hy < 0)   /* z = (1/|x|) */
-				z = 1.0/z;
-			if (hx < 0) {
-				if (((ix-0x3ff00000)|yisint) == 0) {
-					z = (z-z)/(z-z); /* (-1)**non-int is NaN */
-				} else if (yisint == 1)
-					z = -z;          /* (x<0)**odd = -(|x|**odd) */
-			}
-			return z;
-		}
-	}
+  ax = fabs(x);
+  /* special value of x */
+  if (lx == 0) {
+    if (ix == 0x7ff00000 || ix == 0 ||
+        ix == 0x3ff00000) { /* x is +-0,+-inf,+-1 */
+      z = ax;
+      if (hy < 0) /* z = (1/|x|) */
+        z = 1.0 / z;
+      if (hx < 0) {
+        if (((ix - 0x3ff00000) | yisint) == 0) {
+          z = (z - z) / (z - z); /* (-1)**non-int is NaN */
+        } else if (yisint == 1)
+          z = -z; /* (x<0)**odd = -(|x|**odd) */
+      }
+      return z;
+    }
+  }
 
-	s = 1.0; /* sign of result */
-	if (hx < 0) {
-		if (yisint == 0) /* (x<0)**(non-int) is NaN */
-			return (x-x)/(x-x);
-		if (yisint == 1) /* (x<0)**(odd int) */
-			s = -1.0;
-	}
+  s = 1.0; /* sign of result */
+  if (hx < 0) {
+    if (yisint == 0) /* (x<0)**(non-int) is NaN */
+      return (x - x) / (x - x);
+    if (yisint == 1) /* (x<0)**(odd int) */
+      s = -1.0;
+  }
 
-	/* |y| is huge */
-	if (iy > 0x41e00000) { /* if |y| > 2**31 */
-		if (iy > 0x43f00000) {  /* if |y| > 2**64, must o/uflow */
-			if (ix <= 0x3fefffff)
-				return hy < 0 ? huge*huge : tiny*tiny;
-			if (ix >= 0x3ff00000)
-				return hy > 0 ? huge*huge : tiny*tiny;
-		}
-		/* over/underflow if x is not close to one */
-		if (ix < 0x3fefffff)
-			return hy < 0 ? s*huge*huge : s*tiny*tiny;
-		if (ix > 0x3ff00000)
-			return hy > 0 ? s*huge*huge : s*tiny*tiny;
-		/* now |1-x| is tiny <= 2**-20, suffice to compute
-		   log(x) by x-x^2/2+x^3/3-x^4/4 */
-		t = ax - 1.0;       /* t has 20 trailing zeros */
-		w = (t*t)*(0.5 - t*(0.3333333333333333333333-t*0.25));
-		u = ivln2_h*t;      /* ivln2_h has 21 sig. bits */
-		v = t*ivln2_l - w*ivln2;
-		t1 = u + v;
-		SET_LOW_WORD(t1, 0);
-		t2 = v - (t1-u);
-	} else {
-		double ss,s2,s_h,s_l,t_h,t_l;
-		n = 0;
-		/* take care subnormal number */
-		if (ix < 0x00100000) {
-			ax *= two53;
-			n -= 53;
-			GET_HIGH_WORD(ix,ax);
-		}
-		n += ((ix)>>20) - 0x3ff;
-		j = ix & 0x000fffff;
-		/* determine interval */
-		ix = j | 0x3ff00000;   /* normalize ix */
-		if (j <= 0x3988E)      /* |x|<sqrt(3/2) */
-			k = 0;
-		else if (j < 0xBB67A)  /* |x|<sqrt(3)   */
-			k = 1;
-		else {
-			k = 0;
-			n += 1;
-			ix -= 0x00100000;
-		}
-		SET_HIGH_WORD(ax, ix);
+  /* |y| is huge */
+  if (iy > 0x41e00000) {   /* if |y| > 2**31 */
+    if (iy > 0x43f00000) { /* if |y| > 2**64, must o/uflow */
+      if (ix <= 0x3fefffff)
+        return hy < 0 ? huge * huge : tiny * tiny;
+      if (ix >= 0x3ff00000)
+        return hy > 0 ? huge * huge : tiny * tiny;
+    }
+    /* over/underflow if x is not close to one */
+    if (ix < 0x3fefffff)
+      return hy < 0 ? s * huge * huge : s * tiny * tiny;
+    if (ix > 0x3ff00000)
+      return hy > 0 ? s * huge * huge : s * tiny * tiny;
+    /* now |1-x| is tiny <= 2**-20, suffice to compute
+       log(x) by x-x^2/2+x^3/3-x^4/4 */
+    t = ax - 1.0; /* t has 20 trailing zeros */
+    w = (t * t) * (0.5 - t * (0.3333333333333333333333 - t * 0.25));
+    u = ivln2_h * t; /* ivln2_h has 21 sig. bits */
+    v = t * ivln2_l - w * ivln2;
+    t1 = u + v;
+    SET_LOW_WORD(t1, 0);
+    t2 = v - (t1 - u);
+  } else {
+    double ss, s2, s_h, s_l, t_h, t_l;
+    n = 0;
+    /* take care subnormal number */
+    if (ix < 0x00100000) {
+      ax *= two53;
+      n -= 53;
+      GET_HIGH_WORD(ix, ax);
+    }
+    n += ((ix) >> 20) - 0x3ff;
+    j = ix & 0x000fffff;
+    /* determine interval */
+    ix = j | 0x3ff00000; /* normalize ix */
+    if (j <= 0x3988E)    /* |x|<sqrt(3/2) */
+      k = 0;
+    else if (j < 0xBB67A) /* |x|<sqrt(3)   */
+      k = 1;
+    else {
+      k = 0;
+      n += 1;
+      ix -= 0x00100000;
+    }
+    SET_HIGH_WORD(ax, ix);
 
-		/* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
-		u = ax - bp[k];        /* bp[0]=1.0, bp[1]=1.5 */
-		v = 1.0/(ax+bp[k]);
-		ss = u*v;
-		s_h = ss;
-		SET_LOW_WORD(s_h, 0);
-		/* t_h=ax+bp[k] High */
-		t_h = 0.0;
-		SET_HIGH_WORD(t_h, ((ix>>1)|0x20000000) + 0x00080000 + (k<<18));
-		t_l = ax - (t_h-bp[k]);
-		s_l = v*((u-s_h*t_h)-s_h*t_l);
-		/* compute log(ax) */
-		s2 = ss*ss;
-		r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
-		r += s_l*(s_h+ss);
-		s2 = s_h*s_h;
-		t_h = 3.0 + s2 + r;
-		SET_LOW_WORD(t_h, 0);
-		t_l = r - ((t_h-3.0)-s2);
-		/* u+v = ss*(1+...) */
-		u = s_h*t_h;
-		v = s_l*t_h + t_l*ss;
-		/* 2/(3log2)*(ss+...) */
-		p_h = u + v;
-		SET_LOW_WORD(p_h, 0);
-		p_l = v - (p_h-u);
-		z_h = cp_h*p_h;        /* cp_h+cp_l = 2/(3*log2) */
-		z_l = cp_l*p_h+p_l*cp + dp_l[k];
-		/* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
-		t = (double)n;
-		t1 = ((z_h + z_l) + dp_h[k]) + t;
-		SET_LOW_WORD(t1, 0);
-		t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
-	}
+    /* compute ss = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+    u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
+    v = 1.0 / (ax + bp[k]);
+    ss = u * v;
+    s_h = ss;
+    SET_LOW_WORD(s_h, 0);
+    /* t_h=ax+bp[k] High */
+    t_h = 0.0;
+    SET_HIGH_WORD(t_h, ((ix >> 1) | 0x20000000) + 0x00080000 + (k << 18));
+    t_l = ax - (t_h - bp[k]);
+    s_l = v * ((u - s_h * t_h) - s_h * t_l);
+    /* compute log(ax) */
+    s2 = ss * ss;
+    r = s2 * s2 *
+        (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
+    r += s_l * (s_h + ss);
+    s2 = s_h * s_h;
+    t_h = 3.0 + s2 + r;
+    SET_LOW_WORD(t_h, 0);
+    t_l = r - ((t_h - 3.0) - s2);
+    /* u+v = ss*(1+...) */
+    u = s_h * t_h;
+    v = s_l * t_h + t_l * ss;
+    /* 2/(3log2)*(ss+...) */
+    p_h = u + v;
+    SET_LOW_WORD(p_h, 0);
+    p_l = v - (p_h - u);
+    z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
+    z_l = cp_l * p_h + p_l * cp + dp_l[k];
+    /* log2(ax) = (ss+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+    t = (double)n;
+    t1 = ((z_h + z_l) + dp_h[k]) + t;
+    SET_LOW_WORD(t1, 0);
+    t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
+  }
 
-	/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
-	y1 = y;
-	SET_LOW_WORD(y1, 0);
-	p_l = (y-y1)*t1 + y*t2;
-	p_h = y1*t1;
-	z = p_l + p_h;
-	EXTRACT_WORDS(j, i, z);
-	if (j >= 0x40900000) {                      /* z >= 1024 */
-		if (((j-0x40900000)|i) != 0)        /* if z > 1024 */
-			return s*huge*huge;         /* overflow */
-		if (p_l + ovt > z - p_h)
-			return s*huge*huge;         /* overflow */
-	} else if ((j&0x7fffffff) >= 0x4090cc00) {  /* z <= -1075 */  // FIXME: instead of abs(j) use unsigned j
-		if (((j-0xc090cc00)|i) != 0)        /* z < -1075 */
-			return s*tiny*tiny;         /* underflow */
-		if (p_l <= z - p_h)
-			return s*tiny*tiny;         /* underflow */
-	}
-	/*
-	 * compute 2**(p_h+p_l)
-	 */
-	i = j & 0x7fffffff;
-	k = (i>>20) - 0x3ff;
-	n = 0;
-	if (i > 0x3fe00000) {  /* if |z| > 0.5, set n = [z+0.5] */
-		n = j + (0x00100000>>(k+1));
-		k = ((n&0x7fffffff)>>20) - 0x3ff;  /* new k for n */
-		t = 0.0;
-		SET_HIGH_WORD(t, n & ~(0x000fffff>>k));
-		n = ((n&0x000fffff)|0x00100000)>>(20-k);
-		if (j < 0)
-			n = -n;
-		p_h -= t;
-	}
-	t = p_l + p_h;
-	SET_LOW_WORD(t, 0);
-	u = t*lg2_h;
-	v = (p_l-(t-p_h))*lg2 + t*lg2_l;
-	z = u + v;
-	w = v - (z-u);
-	t = z*z;
-	t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
-	r = (z*t1)/(t1-2.0) - (w + z*w);
-	z = 1.0 - (r-z);
-	GET_HIGH_WORD(j, z);
-	j += n<<20;
-	if ((j>>20) <= 0)  /* subnormal output */
-		z = scalbn(z,n);
-	else
-		SET_HIGH_WORD(z, j);
-	return s*z;
+  /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+  y1 = y;
+  SET_LOW_WORD(y1, 0);
+  p_l = (y - y1) * t1 + y * t2;
+  p_h = y1 * t1;
+  z = p_l + p_h;
+  EXTRACT_WORDS(j, i, z);
+  if (j >= 0x40900000) {             /* z >= 1024 */
+    if (((j - 0x40900000) | i) != 0) /* if z > 1024 */
+      return s * huge * huge;        /* overflow */
+    if (p_l + ovt > z - p_h)
+      return s * huge * huge; /* overflow */
+  } else if ((j & 0x7fffffff) >= 0x4090cc00) {
+    /* z <= -1075 */                 // FIXME: instead of abs(j) use unsigned j
+    if (((j - 0xc090cc00) | i) != 0) /* z < -1075 */
+      return s * tiny * tiny;        /* underflow */
+    if (p_l <= z - p_h)
+      return s * tiny * tiny; /* underflow */
+  }
+  /*
+   * compute 2**(p_h+p_l)
+   */
+  i = j & 0x7fffffff;
+  k = (i >> 20) - 0x3ff;
+  n = 0;
+  if (i > 0x3fe00000) { /* if |z| > 0.5, set n = [z+0.5] */
+    n = j + (0x00100000 >> (k + 1));
+    k = ((n & 0x7fffffff) >> 20) - 0x3ff; /* new k for n */
+    t = 0.0;
+    SET_HIGH_WORD(t, n & ~(0x000fffff >> k));
+    n = ((n & 0x000fffff) | 0x00100000) >> (20 - k);
+    if (j < 0)
+      n = -n;
+    p_h -= t;
+  }
+  t = p_l + p_h;
+  SET_LOW_WORD(t, 0);
+  u = t * lg2_h;
+  v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
+  z = u + v;
+  w = v - (z - u);
+  t = z * z;
+  t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+  r = (z * t1) / (t1 - 2.0) - (w + z * w);
+  z = 1.0 - (r - z);
+  GET_HIGH_WORD(j, z);
+  j += n << 20;
+  if ((j >> 20) <= 0) /* subnormal output */
+    z = scalbn(z, n);
+  else
+    SET_HIGH_WORD(z, j);
+  return s * z;
 }
diff --git a/fusl/src/math/powf.c b/fusl/src/math/powf.c
index 427c896..ee4bd98 100644
--- a/fusl/src/math/powf.c
+++ b/fusl/src/math/powf.c
@@ -15,245 +15,257 @@
 
 #include "libm.h"
 
-static const float
-bp[]   = {1.0, 1.5,},
-dp_h[] = { 0.0, 5.84960938e-01,}, /* 0x3f15c000 */
-dp_l[] = { 0.0, 1.56322085e-06,}, /* 0x35d1cfdc */
-two24  =  16777216.0,  /* 0x4b800000 */
-huge   =  1.0e30,
-tiny   =  1.0e-30,
-/* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
-L1 =  6.0000002384e-01, /* 0x3f19999a */
-L2 =  4.2857143283e-01, /* 0x3edb6db7 */
-L3 =  3.3333334327e-01, /* 0x3eaaaaab */
-L4 =  2.7272811532e-01, /* 0x3e8ba305 */
-L5 =  2.3066075146e-01, /* 0x3e6c3255 */
-L6 =  2.0697501302e-01, /* 0x3e53f142 */
-P1 =  1.6666667163e-01, /* 0x3e2aaaab */
-P2 = -2.7777778450e-03, /* 0xbb360b61 */
-P3 =  6.6137559770e-05, /* 0x388ab355 */
-P4 = -1.6533901999e-06, /* 0xb5ddea0e */
-P5 =  4.1381369442e-08, /* 0x3331bb4c */
-lg2     =  6.9314718246e-01, /* 0x3f317218 */
-lg2_h   =  6.93145752e-01,   /* 0x3f317200 */
-lg2_l   =  1.42860654e-06,   /* 0x35bfbe8c */
-ovt     =  4.2995665694e-08, /* -(128-log2(ovfl+.5ulp)) */
-cp      =  9.6179670095e-01, /* 0x3f76384f =2/(3ln2) */
-cp_h    =  9.6191406250e-01, /* 0x3f764000 =12b cp */
-cp_l    = -1.1736857402e-04, /* 0xb8f623c6 =tail of cp_h */
-ivln2   =  1.4426950216e+00, /* 0x3fb8aa3b =1/ln2 */
-ivln2_h =  1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
-ivln2_l =  7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
+static const float bp[] =
+    {
+        1.0, 1.5,
+},
+                   dp_h[] =
+                       {
+                           0.0, 5.84960938e-01,
+}, /* 0x3f15c000 */
+    dp_l[] =
+        {
+            0.0, 1.56322085e-06,
+},                      /* 0x35d1cfdc */
+    two24 = 16777216.0, /* 0x4b800000 */
+    huge = 1.0e30,
+                   tiny = 1.0e-30,
+                   /* poly coefs for (3/2)*(log(x)-2s-2/3*s**3 */
+    L1 = 6.0000002384e-01,      /* 0x3f19999a */
+    L2 = 4.2857143283e-01,      /* 0x3edb6db7 */
+    L3 = 3.3333334327e-01,      /* 0x3eaaaaab */
+    L4 = 2.7272811532e-01,      /* 0x3e8ba305 */
+    L5 = 2.3066075146e-01,      /* 0x3e6c3255 */
+    L6 = 2.0697501302e-01,      /* 0x3e53f142 */
+    P1 = 1.6666667163e-01,      /* 0x3e2aaaab */
+    P2 = -2.7777778450e-03,     /* 0xbb360b61 */
+    P3 = 6.6137559770e-05,      /* 0x388ab355 */
+    P4 = -1.6533901999e-06,     /* 0xb5ddea0e */
+    P5 = 4.1381369442e-08,      /* 0x3331bb4c */
+    lg2 = 6.9314718246e-01,     /* 0x3f317218 */
+    lg2_h = 6.93145752e-01,     /* 0x3f317200 */
+    lg2_l = 1.42860654e-06,     /* 0x35bfbe8c */
+    ovt = 4.2995665694e-08,     /* -(128-log2(ovfl+.5ulp)) */
+    cp = 9.6179670095e-01,      /* 0x3f76384f =2/(3ln2) */
+    cp_h = 9.6191406250e-01,    /* 0x3f764000 =12b cp */
+    cp_l = -1.1736857402e-04,   /* 0xb8f623c6 =tail of cp_h */
+    ivln2 = 1.4426950216e+00,   /* 0x3fb8aa3b =1/ln2 */
+    ivln2_h = 1.4426879883e+00, /* 0x3fb8aa00 =16b 1/ln2*/
+    ivln2_l = 7.0526075433e-06; /* 0x36eca570 =1/ln2 tail*/
 
-float powf(float x, float y)
-{
-	float z,ax,z_h,z_l,p_h,p_l;
-	float y1,t1,t2,r,s,sn,t,u,v,w;
-	int32_t i,j,k,yisint,n;
-	int32_t hx,hy,ix,iy,is;
+float powf(float x, float y) {
+  float z, ax, z_h, z_l, p_h, p_l;
+  float y1, t1, t2, r, s, sn, t, u, v, w;
+  int32_t i, j, k, yisint, n;
+  int32_t hx, hy, ix, iy, is;
 
-	GET_FLOAT_WORD(hx, x);
-	GET_FLOAT_WORD(hy, y);
-	ix = hx & 0x7fffffff;
-	iy = hy & 0x7fffffff;
+  GET_FLOAT_WORD(hx, x);
+  GET_FLOAT_WORD(hy, y);
+  ix = hx & 0x7fffffff;
+  iy = hy & 0x7fffffff;
 
-	/* x**0 = 1, even if x is NaN */
-	if (iy == 0)
-		return 1.0f;
-	/* 1**y = 1, even if y is NaN */
-	if (hx == 0x3f800000)
-		return 1.0f;
-	/* NaN if either arg is NaN */
-	if (ix > 0x7f800000 || iy > 0x7f800000)
-		return x + y;
+  /* x**0 = 1, even if x is NaN */
+  if (iy == 0)
+    return 1.0f;
+  /* 1**y = 1, even if y is NaN */
+  if (hx == 0x3f800000)
+    return 1.0f;
+  /* NaN if either arg is NaN */
+  if (ix > 0x7f800000 || iy > 0x7f800000)
+    return x + y;
 
-	/* determine if y is an odd int when x < 0
-	 * yisint = 0       ... y is not an integer
-	 * yisint = 1       ... y is an odd int
-	 * yisint = 2       ... y is an even int
-	 */
-	yisint  = 0;
-	if (hx < 0) {
-		if (iy >= 0x4b800000)
-			yisint = 2; /* even integer y */
-		else if (iy >= 0x3f800000) {
-			k = (iy>>23) - 0x7f;         /* exponent */
-			j = iy>>(23-k);
-			if ((j<<(23-k)) == iy)
-				yisint = 2 - (j & 1);
-		}
-	}
+  /* determine if y is an odd int when x < 0
+   * yisint = 0       ... y is not an integer
+   * yisint = 1       ... y is an odd int
+   * yisint = 2       ... y is an even int
+   */
+  yisint = 0;
+  if (hx < 0) {
+    if (iy >= 0x4b800000)
+      yisint = 2; /* even integer y */
+    else if (iy >= 0x3f800000) {
+      k = (iy >> 23) - 0x7f; /* exponent */
+      j = iy >> (23 - k);
+      if ((j << (23 - k)) == iy)
+        yisint = 2 - (j & 1);
+    }
+  }
 
-	/* special value of y */
-	if (iy == 0x7f800000) {  /* y is +-inf */
-		if (ix == 0x3f800000)      /* (-1)**+-inf is 1 */
-			return 1.0f;
-		else if (ix > 0x3f800000)  /* (|x|>1)**+-inf = inf,0 */
-			return hy >= 0 ? y : 0.0f;
-		else                       /* (|x|<1)**+-inf = 0,inf */
-			return hy >= 0 ? 0.0f: -y;
-	}
-	if (iy == 0x3f800000)    /* y is +-1 */
-		return hy >= 0 ? x : 1.0f/x;
-	if (hy == 0x40000000)    /* y is 2 */
-		return x*x;
-	if (hy == 0x3f000000) {  /* y is  0.5 */
-		if (hx >= 0)     /* x >= +0 */
-			return sqrtf(x);
-	}
+  /* special value of y */
+  if (iy == 0x7f800000) { /* y is +-inf */
+    if (ix == 0x3f800000) /* (-1)**+-inf is 1 */
+      return 1.0f;
+    else if (ix > 0x3f800000) /* (|x|>1)**+-inf = inf,0 */
+      return hy >= 0 ? y : 0.0f;
+    else /* (|x|<1)**+-inf = 0,inf */
+      return hy >= 0 ? 0.0f : -y;
+  }
+  if (iy == 0x3f800000) /* y is +-1 */
+    return hy >= 0 ? x : 1.0f / x;
+  if (hy == 0x40000000) /* y is 2 */
+    return x * x;
+  if (hy == 0x3f000000) { /* y is  0.5 */
+    if (hx >= 0)          /* x >= +0 */
+      return sqrtf(x);
+  }
 
-	ax = fabsf(x);
-	/* special value of x */
-	if (ix == 0x7f800000 || ix == 0 || ix == 0x3f800000) { /* x is +-0,+-inf,+-1 */
-		z = ax;
-		if (hy < 0)  /* z = (1/|x|) */
-			z = 1.0f/z;
-		if (hx < 0) {
-			if (((ix-0x3f800000)|yisint) == 0) {
-				z = (z-z)/(z-z); /* (-1)**non-int is NaN */
-			} else if (yisint == 1)
-				z = -z;          /* (x<0)**odd = -(|x|**odd) */
-		}
-		return z;
-	}
+  ax = fabsf(x);
+  /* special value of x */
+  if (ix == 0x7f800000 || ix == 0 ||
+      ix == 0x3f800000) { /* x is +-0,+-inf,+-1 */
+    z = ax;
+    if (hy < 0) /* z = (1/|x|) */
+      z = 1.0f / z;
+    if (hx < 0) {
+      if (((ix - 0x3f800000) | yisint) == 0) {
+        z = (z - z) / (z - z); /* (-1)**non-int is NaN */
+      } else if (yisint == 1)
+        z = -z; /* (x<0)**odd = -(|x|**odd) */
+    }
+    return z;
+  }
 
-	sn = 1.0f; /* sign of result */
-	if (hx < 0) {
-		if (yisint == 0) /* (x<0)**(non-int) is NaN */
-			return (x-x)/(x-x);
-		if (yisint == 1) /* (x<0)**(odd int) */
-			sn = -1.0f;
-	}
+  sn = 1.0f; /* sign of result */
+  if (hx < 0) {
+    if (yisint == 0) /* (x<0)**(non-int) is NaN */
+      return (x - x) / (x - x);
+    if (yisint == 1) /* (x<0)**(odd int) */
+      sn = -1.0f;
+  }
 
-	/* |y| is huge */
-	if (iy > 0x4d000000) { /* if |y| > 2**27 */
-		/* over/underflow if x is not close to one */
-		if (ix < 0x3f7ffff8)
-			return hy < 0 ? sn*huge*huge : sn*tiny*tiny;
-		if (ix > 0x3f800007)
-			return hy > 0 ? sn*huge*huge : sn*tiny*tiny;
-		/* now |1-x| is tiny <= 2**-20, suffice to compute
-		   log(x) by x-x^2/2+x^3/3-x^4/4 */
-		t = ax - 1;     /* t has 20 trailing zeros */
-		w = (t*t)*(0.5f - t*(0.333333333333f - t*0.25f));
-		u = ivln2_h*t;  /* ivln2_h has 16 sig. bits */
-		v = t*ivln2_l - w*ivln2;
-		t1 = u + v;
-		GET_FLOAT_WORD(is, t1);
-		SET_FLOAT_WORD(t1, is & 0xfffff000);
-		t2 = v - (t1-u);
-	} else {
-		float s2,s_h,s_l,t_h,t_l;
-		n = 0;
-		/* take care subnormal number */
-		if (ix < 0x00800000) {
-			ax *= two24;
-			n -= 24;
-			GET_FLOAT_WORD(ix, ax);
-		}
-		n += ((ix)>>23) - 0x7f;
-		j = ix & 0x007fffff;
-		/* determine interval */
-		ix = j | 0x3f800000;     /* normalize ix */
-		if (j <= 0x1cc471)       /* |x|<sqrt(3/2) */
-			k = 0;
-		else if (j < 0x5db3d7)   /* |x|<sqrt(3)   */
-			k = 1;
-		else {
-			k = 0;
-			n += 1;
-			ix -= 0x00800000;
-		}
-		SET_FLOAT_WORD(ax, ix);
+  /* |y| is huge */
+  if (iy > 0x4d000000) { /* if |y| > 2**27 */
+    /* over/underflow if x is not close to one */
+    if (ix < 0x3f7ffff8)
+      return hy < 0 ? sn * huge * huge : sn * tiny * tiny;
+    if (ix > 0x3f800007)
+      return hy > 0 ? sn * huge * huge : sn * tiny * tiny;
+    /* now |1-x| is tiny <= 2**-20, suffice to compute
+       log(x) by x-x^2/2+x^3/3-x^4/4 */
+    t = ax - 1; /* t has 20 trailing zeros */
+    w = (t * t) * (0.5f - t * (0.333333333333f - t * 0.25f));
+    u = ivln2_h * t; /* ivln2_h has 16 sig. bits */
+    v = t * ivln2_l - w * ivln2;
+    t1 = u + v;
+    GET_FLOAT_WORD(is, t1);
+    SET_FLOAT_WORD(t1, is & 0xfffff000);
+    t2 = v - (t1 - u);
+  } else {
+    float s2, s_h, s_l, t_h, t_l;
+    n = 0;
+    /* take care subnormal number */
+    if (ix < 0x00800000) {
+      ax *= two24;
+      n -= 24;
+      GET_FLOAT_WORD(ix, ax);
+    }
+    n += ((ix) >> 23) - 0x7f;
+    j = ix & 0x007fffff;
+    /* determine interval */
+    ix = j | 0x3f800000; /* normalize ix */
+    if (j <= 0x1cc471)   /* |x|<sqrt(3/2) */
+      k = 0;
+    else if (j < 0x5db3d7) /* |x|<sqrt(3)   */
+      k = 1;
+    else {
+      k = 0;
+      n += 1;
+      ix -= 0x00800000;
+    }
+    SET_FLOAT_WORD(ax, ix);
 
-		/* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
-		u = ax - bp[k];   /* bp[0]=1.0, bp[1]=1.5 */
-		v = 1.0f/(ax+bp[k]);
-		s = u*v;
-		s_h = s;
-		GET_FLOAT_WORD(is, s_h);
-		SET_FLOAT_WORD(s_h, is & 0xfffff000);
-		/* t_h=ax+bp[k] High */
-		is = ((ix>>1) & 0xfffff000) | 0x20000000;
-		SET_FLOAT_WORD(t_h, is + 0x00400000 + (k<<21));
-		t_l = ax - (t_h - bp[k]);
-		s_l = v*((u - s_h*t_h) - s_h*t_l);
-		/* compute log(ax) */
-		s2 = s*s;
-		r = s2*s2*(L1+s2*(L2+s2*(L3+s2*(L4+s2*(L5+s2*L6)))));
-		r += s_l*(s_h+s);
-		s2 = s_h*s_h;
-		t_h = 3.0f + s2 + r;
-		GET_FLOAT_WORD(is, t_h);
-		SET_FLOAT_WORD(t_h, is & 0xfffff000);
-		t_l = r - ((t_h - 3.0f) - s2);
-		/* u+v = s*(1+...) */
-		u = s_h*t_h;
-		v = s_l*t_h + t_l*s;
-		/* 2/(3log2)*(s+...) */
-		p_h = u + v;
-		GET_FLOAT_WORD(is, p_h);
-		SET_FLOAT_WORD(p_h, is & 0xfffff000);
-		p_l = v - (p_h - u);
-		z_h = cp_h*p_h;  /* cp_h+cp_l = 2/(3*log2) */
-		z_l = cp_l*p_h + p_l*cp+dp_l[k];
-		/* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
-		t = (float)n;
-		t1 = (((z_h + z_l) + dp_h[k]) + t);
-		GET_FLOAT_WORD(is, t1);
-		SET_FLOAT_WORD(t1, is & 0xfffff000);
-		t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
-	}
+    /* compute s = s_h+s_l = (x-1)/(x+1) or (x-1.5)/(x+1.5) */
+    u = ax - bp[k]; /* bp[0]=1.0, bp[1]=1.5 */
+    v = 1.0f / (ax + bp[k]);
+    s = u * v;
+    s_h = s;
+    GET_FLOAT_WORD(is, s_h);
+    SET_FLOAT_WORD(s_h, is & 0xfffff000);
+    /* t_h=ax+bp[k] High */
+    is = ((ix >> 1) & 0xfffff000) | 0x20000000;
+    SET_FLOAT_WORD(t_h, is + 0x00400000 + (k << 21));
+    t_l = ax - (t_h - bp[k]);
+    s_l = v * ((u - s_h * t_h) - s_h * t_l);
+    /* compute log(ax) */
+    s2 = s * s;
+    r = s2 * s2 *
+        (L1 + s2 * (L2 + s2 * (L3 + s2 * (L4 + s2 * (L5 + s2 * L6)))));
+    r += s_l * (s_h + s);
+    s2 = s_h * s_h;
+    t_h = 3.0f + s2 + r;
+    GET_FLOAT_WORD(is, t_h);
+    SET_FLOAT_WORD(t_h, is & 0xfffff000);
+    t_l = r - ((t_h - 3.0f) - s2);
+    /* u+v = s*(1+...) */
+    u = s_h * t_h;
+    v = s_l * t_h + t_l * s;
+    /* 2/(3log2)*(s+...) */
+    p_h = u + v;
+    GET_FLOAT_WORD(is, p_h);
+    SET_FLOAT_WORD(p_h, is & 0xfffff000);
+    p_l = v - (p_h - u);
+    z_h = cp_h * p_h; /* cp_h+cp_l = 2/(3*log2) */
+    z_l = cp_l * p_h + p_l * cp + dp_l[k];
+    /* log2(ax) = (s+..)*2/(3*log2) = n + dp_h + z_h + z_l */
+    t = (float)n;
+    t1 = (((z_h + z_l) + dp_h[k]) + t);
+    GET_FLOAT_WORD(is, t1);
+    SET_FLOAT_WORD(t1, is & 0xfffff000);
+    t2 = z_l - (((t1 - t) - dp_h[k]) - z_h);
+  }
 
-	/* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
-	GET_FLOAT_WORD(is, y);
-	SET_FLOAT_WORD(y1, is & 0xfffff000);
-	p_l = (y-y1)*t1 + y*t2;
-	p_h = y1*t1;
-	z = p_l + p_h;
-	GET_FLOAT_WORD(j, z);
-	if (j > 0x43000000)          /* if z > 128 */
-		return sn*huge*huge;  /* overflow */
-	else if (j == 0x43000000) {  /* if z == 128 */
-		if (p_l + ovt > z - p_h)
-			return sn*huge*huge;  /* overflow */
-	} else if ((j&0x7fffffff) > 0x43160000)  /* z < -150 */ // FIXME: check should be  (uint32_t)j > 0xc3160000
-		return sn*tiny*tiny;  /* underflow */
-	else if (j == 0xc3160000) {  /* z == -150 */
-		if (p_l <= z-p_h)
-			return sn*tiny*tiny;  /* underflow */
-	}
-	/*
-	 * compute 2**(p_h+p_l)
-	 */
-	i = j & 0x7fffffff;
-	k = (i>>23) - 0x7f;
-	n = 0;
-	if (i > 0x3f000000) {   /* if |z| > 0.5, set n = [z+0.5] */
-		n = j + (0x00800000>>(k+1));
-		k = ((n&0x7fffffff)>>23) - 0x7f;  /* new k for n */
-		SET_FLOAT_WORD(t, n & ~(0x007fffff>>k));
-		n = ((n&0x007fffff)|0x00800000)>>(23-k);
-		if (j < 0)
-			n = -n;
-		p_h -= t;
-	}
-	t = p_l + p_h;
-	GET_FLOAT_WORD(is, t);
-	SET_FLOAT_WORD(t, is & 0xffff8000);
-	u = t*lg2_h;
-	v = (p_l-(t-p_h))*lg2 + t*lg2_l;
-	z = u + v;
-	w = v - (z - u);
-	t = z*z;
-	t1 = z - t*(P1+t*(P2+t*(P3+t*(P4+t*P5))));
-	r = (z*t1)/(t1-2.0f) - (w+z*w);
-	z = 1.0f - (r - z);
-	GET_FLOAT_WORD(j, z);
-	j += n<<23;
-	if ((j>>23) <= 0)  /* subnormal output */
-		z = scalbnf(z, n);
-	else
-		SET_FLOAT_WORD(z, j);
-	return sn*z;
+  /* split up y into y1+y2 and compute (y1+y2)*(t1+t2) */
+  GET_FLOAT_WORD(is, y);
+  SET_FLOAT_WORD(y1, is & 0xfffff000);
+  p_l = (y - y1) * t1 + y * t2;
+  p_h = y1 * t1;
+  z = p_l + p_h;
+  GET_FLOAT_WORD(j, z);
+  if (j > 0x43000000)         /* if z > 128 */
+    return sn * huge * huge;  /* overflow */
+  else if (j == 0x43000000) { /* if z == 128 */
+    if (p_l + ovt > z - p_h)
+      return sn * huge * huge;                              /* overflow */
+  } else if ((j & 0x7fffffff) > 0x43160000) /* z < -150 */  // FIXME: check
+                                                            // should be
+                                                            // (uint32_t)j >
+                                                            // 0xc3160000
+    return sn * tiny * tiny;                                /* underflow */
+  else if (j == 0xc3160000) {                               /* z == -150 */
+    if (p_l <= z - p_h)
+      return sn * tiny * tiny; /* underflow */
+  }
+  /*
+   * compute 2**(p_h+p_l)
+   */
+  i = j & 0x7fffffff;
+  k = (i >> 23) - 0x7f;
+  n = 0;
+  if (i > 0x3f000000) { /* if |z| > 0.5, set n = [z+0.5] */
+    n = j + (0x00800000 >> (k + 1));
+    k = ((n & 0x7fffffff) >> 23) - 0x7f; /* new k for n */
+    SET_FLOAT_WORD(t, n & ~(0x007fffff >> k));
+    n = ((n & 0x007fffff) | 0x00800000) >> (23 - k);
+    if (j < 0)
+      n = -n;
+    p_h -= t;
+  }
+  t = p_l + p_h;
+  GET_FLOAT_WORD(is, t);
+  SET_FLOAT_WORD(t, is & 0xffff8000);
+  u = t * lg2_h;
+  v = (p_l - (t - p_h)) * lg2 + t * lg2_l;
+  z = u + v;
+  w = v - (z - u);
+  t = z * z;
+  t1 = z - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+  r = (z * t1) / (t1 - 2.0f) - (w + z * w);
+  z = 1.0f - (r - z);
+  GET_FLOAT_WORD(j, z);
+  j += n << 23;
+  if ((j >> 23) <= 0) /* subnormal output */
+    z = scalbnf(z, n);
+  else
+    SET_FLOAT_WORD(z, j);
+  return sn * z;
 }
diff --git a/fusl/src/math/powl.c b/fusl/src/math/powl.c
index 5b6da07..d7737b0 100644
--- a/fusl/src/math/powl.c
+++ b/fusl/src/math/powl.c
@@ -70,9 +70,8 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double powl(long double x, long double y)
-{
-	return pow(x, y);
+long double powl(long double x, long double y) {
+  return pow(x, y);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 
@@ -83,91 +82,61 @@
  * on the domain  2^(-1/32) - 1  <=  x  <=  2^(1/32) - 1
  */
 static const long double P[] = {
- 8.3319510773868690346226E-4L,
- 4.9000050881978028599627E-1L,
- 1.7500123722550302671919E0L,
- 1.4000100839971580279335E0L,
+    8.3319510773868690346226E-4L, 4.9000050881978028599627E-1L,
+    1.7500123722550302671919E0L, 1.4000100839971580279335E0L,
 };
 static const long double Q[] = {
-/* 1.0000000000000000000000E0L,*/
- 5.2500282295834889175431E0L,
- 8.4000598057587009834666E0L,
- 4.2000302519914740834728E0L,
+    /* 1.0000000000000000000000E0L,*/
+    5.2500282295834889175431E0L, 8.4000598057587009834666E0L,
+    4.2000302519914740834728E0L,
 };
 /* A[i] = 2^(-i/32), rounded to IEEE long double precision.
  * If i is even, A[i] + B[i/2] gives additional accuracy.
  */
 static const long double A[33] = {
- 1.0000000000000000000000E0L,
- 9.7857206208770013448287E-1L,
- 9.5760328069857364691013E-1L,
- 9.3708381705514995065011E-1L,
- 9.1700404320467123175367E-1L,
- 8.9735453750155359320742E-1L,
- 8.7812608018664974155474E-1L,
- 8.5930964906123895780165E-1L,
- 8.4089641525371454301892E-1L,
- 8.2287773907698242225554E-1L,
- 8.0524516597462715409607E-1L,
- 7.8799042255394324325455E-1L,
- 7.7110541270397041179298E-1L,
- 7.5458221379671136985669E-1L,
- 7.3841307296974965571198E-1L,
- 7.2259040348852331001267E-1L,
- 7.0710678118654752438189E-1L,
- 6.9195494098191597746178E-1L,
- 6.7712777346844636413344E-1L,
- 6.6261832157987064729696E-1L,
- 6.4841977732550483296079E-1L,
- 6.3452547859586661129850E-1L,
- 6.2092890603674202431705E-1L,
- 6.0762367999023443907803E-1L,
- 5.9460355750136053334378E-1L,
- 5.8186242938878875689693E-1L,
- 5.6939431737834582684856E-1L,
- 5.5719337129794626814472E-1L,
- 5.4525386633262882960438E-1L,
- 5.3357020033841180906486E-1L,
- 5.2213689121370692017331E-1L,
- 5.1094857432705833910408E-1L,
- 5.0000000000000000000000E-1L,
+    1.0000000000000000000000E0L,  9.7857206208770013448287E-1L,
+    9.5760328069857364691013E-1L, 9.3708381705514995065011E-1L,
+    9.1700404320467123175367E-1L, 8.9735453750155359320742E-1L,
+    8.7812608018664974155474E-1L, 8.5930964906123895780165E-1L,
+    8.4089641525371454301892E-1L, 8.2287773907698242225554E-1L,
+    8.0524516597462715409607E-1L, 7.8799042255394324325455E-1L,
+    7.7110541270397041179298E-1L, 7.5458221379671136985669E-1L,
+    7.3841307296974965571198E-1L, 7.2259040348852331001267E-1L,
+    7.0710678118654752438189E-1L, 6.9195494098191597746178E-1L,
+    6.7712777346844636413344E-1L, 6.6261832157987064729696E-1L,
+    6.4841977732550483296079E-1L, 6.3452547859586661129850E-1L,
+    6.2092890603674202431705E-1L, 6.0762367999023443907803E-1L,
+    5.9460355750136053334378E-1L, 5.8186242938878875689693E-1L,
+    5.6939431737834582684856E-1L, 5.5719337129794626814472E-1L,
+    5.4525386633262882960438E-1L, 5.3357020033841180906486E-1L,
+    5.2213689121370692017331E-1L, 5.1094857432705833910408E-1L,
+    5.0000000000000000000000E-1L,
 };
 static const long double B[17] = {
- 0.0000000000000000000000E0L,
- 2.6176170809902549338711E-20L,
--1.0126791927256478897086E-20L,
- 1.3438228172316276937655E-21L,
- 1.2207982955417546912101E-20L,
--6.3084814358060867200133E-21L,
- 1.3164426894366316434230E-20L,
--1.8527916071632873716786E-20L,
- 1.8950325588932570796551E-20L,
- 1.5564775779538780478155E-20L,
- 6.0859793637556860974380E-21L,
--2.0208749253662532228949E-20L,
- 1.4966292219224761844552E-20L,
- 3.3540909728056476875639E-21L,
--8.6987564101742849540743E-22L,
--1.2327176863327626135542E-20L,
- 0.0000000000000000000000E0L,
+    0.0000000000000000000000E0L,    2.6176170809902549338711E-20L,
+    -1.0126791927256478897086E-20L, 1.3438228172316276937655E-21L,
+    1.2207982955417546912101E-20L,  -6.3084814358060867200133E-21L,
+    1.3164426894366316434230E-20L,  -1.8527916071632873716786E-20L,
+    1.8950325588932570796551E-20L,  1.5564775779538780478155E-20L,
+    6.0859793637556860974380E-21L,  -2.0208749253662532228949E-20L,
+    1.4966292219224761844552E-20L,  3.3540909728056476875639E-21L,
+    -8.6987564101742849540743E-22L, -1.2327176863327626135542E-20L,
+    0.0000000000000000000000E0L,
 };
 
 /* 2^x = 1 + x P(x),
  * on the interval -1/32 <= x <= 0
  */
 static const long double R[] = {
- 1.5089970579127659901157E-5L,
- 1.5402715328927013076125E-4L,
- 1.3333556028915671091390E-3L,
- 9.6181291046036762031786E-3L,
- 5.5504108664798463044015E-2L,
- 2.4022650695910062854352E-1L,
- 6.9314718055994530931447E-1L,
+    1.5089970579127659901157E-5L, 1.5402715328927013076125E-4L,
+    1.3333556028915671091390E-3L, 9.6181291046036762031786E-3L,
+    5.5504108664798463044015E-2L, 2.4022650695910062854352E-1L,
+    6.9314718055994530931447E-1L,
 };
 
-#define MEXP (NXT*16384.0L)
+#define MEXP (NXT * 16384.0L)
 /* The following if denormal numbers are supported, else -MEXP: */
-#define MNEXP (-NXT*(16384.0L+64.0L))
+#define MNEXP (-NXT * (16384.0L + 64.0L))
 /* log2(e) - 1 */
 #define LOG2EA 0.44269504088896340735992L
 
@@ -191,231 +160,228 @@
 static long double reducl(long double);
 static long double powil(long double, int);
 
-long double powl(long double x, long double y)
-{
-	/* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
-	int i, nflg, iyflg, yoddint;
-	long e;
-	volatile long double z=0;
-	long double w=0, W=0, Wa=0, Wb=0, ya=0, yb=0, u=0;
+long double powl(long double x, long double y) {
+  /* double F, Fa, Fb, G, Ga, Gb, H, Ha, Hb */
+  int i, nflg, iyflg, yoddint;
+  long e;
+  volatile long double z = 0;
+  long double w = 0, W = 0, Wa = 0, Wb = 0, ya = 0, yb = 0, u = 0;
 
-	/* make sure no invalid exception is raised by nan comparision */
-	if (isnan(x)) {
-		if (!isnan(y) && y == 0.0)
-			return 1.0;
-		return x;
-	}
-	if (isnan(y)) {
-		if (x == 1.0)
-			return 1.0;
-		return y;
-	}
-	if (x == 1.0)
-		return 1.0; /* 1**y = 1, even if y is nan */
-	if (x == -1.0 && !isfinite(y))
-		return 1.0; /* -1**inf = 1 */
-	if (y == 0.0)
-		return 1.0; /* x**0 = 1, even if x is nan */
-	if (y == 1.0)
-		return x;
-	if (y >= LDBL_MAX) {
-		if (x > 1.0 || x < -1.0)
-			return INFINITY;
-		if (x != 0.0)
-			return 0.0;
-	}
-	if (y <= -LDBL_MAX) {
-		if (x > 1.0 || x < -1.0)
-			return 0.0;
-		if (x != 0.0 || y == -INFINITY)
-			return INFINITY;
-	}
-	if (x >= LDBL_MAX) {
-		if (y > 0.0)
-			return INFINITY;
-		return 0.0;
-	}
+  /* make sure no invalid exception is raised by nan comparision */
+  if (isnan(x)) {
+    if (!isnan(y) && y == 0.0)
+      return 1.0;
+    return x;
+  }
+  if (isnan(y)) {
+    if (x == 1.0)
+      return 1.0;
+    return y;
+  }
+  if (x == 1.0)
+    return 1.0; /* 1**y = 1, even if y is nan */
+  if (x == -1.0 && !isfinite(y))
+    return 1.0; /* -1**inf = 1 */
+  if (y == 0.0)
+    return 1.0; /* x**0 = 1, even if x is nan */
+  if (y == 1.0)
+    return x;
+  if (y >= LDBL_MAX) {
+    if (x > 1.0 || x < -1.0)
+      return INFINITY;
+    if (x != 0.0)
+      return 0.0;
+  }
+  if (y <= -LDBL_MAX) {
+    if (x > 1.0 || x < -1.0)
+      return 0.0;
+    if (x != 0.0 || y == -INFINITY)
+      return INFINITY;
+  }
+  if (x >= LDBL_MAX) {
+    if (y > 0.0)
+      return INFINITY;
+    return 0.0;
+  }
 
-	w = floorl(y);
+  w = floorl(y);
 
-	/* Set iyflg to 1 if y is an integer. */
-	iyflg = 0;
-	if (w == y)
-		iyflg = 1;
+  /* Set iyflg to 1 if y is an integer. */
+  iyflg = 0;
+  if (w == y)
+    iyflg = 1;
 
-	/* Test for odd integer y. */
-	yoddint = 0;
-	if (iyflg) {
-		ya = fabsl(y);
-		ya = floorl(0.5 * ya);
-		yb = 0.5 * fabsl(w);
-		if( ya != yb )
-			yoddint = 1;
-	}
+  /* Test for odd integer y. */
+  yoddint = 0;
+  if (iyflg) {
+    ya = fabsl(y);
+    ya = floorl(0.5 * ya);
+    yb = 0.5 * fabsl(w);
+    if (ya != yb)
+      yoddint = 1;
+  }
 
-	if (x <= -LDBL_MAX) {
-		if (y > 0.0) {
-			if (yoddint)
-				return -INFINITY;
-			return INFINITY;
-		}
-		if (y < 0.0) {
-			if (yoddint)
-				return -0.0;
-			return 0.0;
-		}
-	}
-	nflg = 0; /* (x<0)**(odd int) */
-	if (x <= 0.0) {
-		if (x == 0.0) {
-			if (y < 0.0) {
-				if (signbit(x) && yoddint)
-					/* (-0.0)**(-odd int) = -inf, divbyzero */
-					return -1.0/0.0;
-				/* (+-0.0)**(negative) = inf, divbyzero */
-				return 1.0/0.0;
-			}
-			if (signbit(x) && yoddint)
-				return -0.0;
-			return 0.0;
-		}
-		if (iyflg == 0)
-			return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
-		/* (x<0)**(integer) */
-		if (yoddint)
-			nflg = 1; /* negate result */
-		x = -x;
-	}
-	/* (+integer)**(integer)  */
-	if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
-		w = powil(x, (int)y);
-		return nflg ? -w : w;
-	}
+  if (x <= -LDBL_MAX) {
+    if (y > 0.0) {
+      if (yoddint)
+        return -INFINITY;
+      return INFINITY;
+    }
+    if (y < 0.0) {
+      if (yoddint)
+        return -0.0;
+      return 0.0;
+    }
+  }
+  nflg = 0; /* (x<0)**(odd int) */
+  if (x <= 0.0) {
+    if (x == 0.0) {
+      if (y < 0.0) {
+        if (signbit(x) && yoddint)
+          /* (-0.0)**(-odd int) = -inf, divbyzero */
+          return -1.0 / 0.0;
+        /* (+-0.0)**(negative) = inf, divbyzero */
+        return 1.0 / 0.0;
+      }
+      if (signbit(x) && yoddint)
+        return -0.0;
+      return 0.0;
+    }
+    if (iyflg == 0)
+      return (x - x) / (x - x); /* (x<0)**(non-int) is NaN */
+    /* (x<0)**(integer) */
+    if (yoddint)
+      nflg = 1; /* negate result */
+    x = -x;
+  }
+  /* (+integer)**(integer)  */
+  if (iyflg && floorl(x) == x && fabsl(y) < 32768.0) {
+    w = powil(x, (int)y);
+    return nflg ? -w : w;
+  }
 
-	/* separate significand from exponent */
-	x = frexpl(x, &i);
-	e = i;
+  /* separate significand from exponent */
+  x = frexpl(x, &i);
+  e = i;
 
-	/* find significand in antilog table A[] */
-	i = 1;
-	if (x <= A[17])
-		i = 17;
-	if (x <= A[i+8])
-		i += 8;
-	if (x <= A[i+4])
-		i += 4;
-	if (x <= A[i+2])
-		i += 2;
-	if (x >= A[1])
-		i = -1;
-	i += 1;
+  /* find significand in antilog table A[] */
+  i = 1;
+  if (x <= A[17])
+    i = 17;
+  if (x <= A[i + 8])
+    i += 8;
+  if (x <= A[i + 4])
+    i += 4;
+  if (x <= A[i + 2])
+    i += 2;
+  if (x >= A[1])
+    i = -1;
+  i += 1;
 
-	/* Find (x - A[i])/A[i]
-	 * in order to compute log(x/A[i]):
-	 *
-	 * log(x) = log( a x/a ) = log(a) + log(x/a)
-	 *
-	 * log(x/a) = log(1+v),  v = x/a - 1 = (x-a)/a
-	 */
-	x -= A[i];
-	x -= B[i/2];
-	x /= A[i];
+  /* Find (x - A[i])/A[i]
+   * in order to compute log(x/A[i]):
+   *
+   * log(x) = log( a x/a ) = log(a) + log(x/a)
+   *
+   * log(x/a) = log(1+v),  v = x/a - 1 = (x-a)/a
+   */
+  x -= A[i];
+  x -= B[i / 2];
+  x /= A[i];
 
-	/* rational approximation for log(1+v):
-	 *
-	 * log(1+v)  =  v  -  v**2/2  +  v**3 P(v) / Q(v)
-	 */
-	z = x*x;
-	w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3));
-	w = w - 0.5*z;
+  /* rational approximation for log(1+v):
+   *
+   * log(1+v)  =  v  -  v**2/2  +  v**3 P(v) / Q(v)
+   */
+  z = x * x;
+  w = x * (z * __polevll(x, P, 3) / __p1evll(x, Q, 3));
+  w = w - 0.5 * z;
 
-	/* Convert to base 2 logarithm:
-	 * multiply by log2(e) = 1 + LOG2EA
-	 */
-	z = LOG2EA * w;
-	z += w;
-	z += LOG2EA * x;
-	z += x;
+  /* Convert to base 2 logarithm:
+   * multiply by log2(e) = 1 + LOG2EA
+   */
+  z = LOG2EA * w;
+  z += w;
+  z += LOG2EA * x;
+  z += x;
 
-	/* Compute exponent term of the base 2 logarithm. */
-	w = -i;
-	w /= NXT;
-	w += e;
-	/* Now base 2 log of x is w + z. */
+  /* Compute exponent term of the base 2 logarithm. */
+  w = -i;
+  w /= NXT;
+  w += e;
+  /* Now base 2 log of x is w + z. */
 
-	/* Multiply base 2 log by y, in extended precision. */
+  /* Multiply base 2 log by y, in extended precision. */
 
-	/* separate y into large part ya
-	 * and small part yb less than 1/NXT
-	 */
-	ya = reducl(y);
-	yb = y - ya;
+  /* separate y into large part ya
+   * and small part yb less than 1/NXT
+   */
+  ya = reducl(y);
+  yb = y - ya;
 
-	/* (w+z)(ya+yb)
-	 * = w*ya + w*yb + z*y
-	 */
-	F = z * y  +  w * yb;
-	Fa = reducl(F);
-	Fb = F - Fa;
+  /* (w+z)(ya+yb)
+   * = w*ya + w*yb + z*y
+   */
+  F = z * y + w * yb;
+  Fa = reducl(F);
+  Fb = F - Fa;
 
-	G = Fa + w * ya;
-	Ga = reducl(G);
-	Gb = G - Ga;
+  G = Fa + w * ya;
+  Ga = reducl(G);
+  Gb = G - Ga;
 
-	H = Fb + Gb;
-	Ha = reducl(H);
-	w = (Ga + Ha) * NXT;
+  H = Fb + Gb;
+  Ha = reducl(H);
+  w = (Ga + Ha) * NXT;
 
-	/* Test the power of 2 for overflow */
-	if (w > MEXP)
-		return huge * huge;  /* overflow */
-	if (w < MNEXP)
-		return twom10000 * twom10000;  /* underflow */
+  /* Test the power of 2 for overflow */
+  if (w > MEXP)
+    return huge * huge; /* overflow */
+  if (w < MNEXP)
+    return twom10000 * twom10000; /* underflow */
 
-	e = w;
-	Hb = H - Ha;
+  e = w;
+  Hb = H - Ha;
 
-	if (Hb > 0.0) {
-		e += 1;
-		Hb -= 1.0/NXT;  /*0.0625L;*/
-	}
+  if (Hb > 0.0) {
+    e += 1;
+    Hb -= 1.0 / NXT; /*0.0625L;*/
+  }
 
-	/* Now the product y * log2(x)  =  Hb + e/NXT.
-	 *
-	 * Compute base 2 exponential of Hb,
-	 * where -0.0625 <= Hb <= 0.
-	 */
-	z = Hb * __polevll(Hb, R, 6);  /*  z = 2**Hb - 1  */
+  /* Now the product y * log2(x)  =  Hb + e/NXT.
+   *
+   * Compute base 2 exponential of Hb,
+   * where -0.0625 <= Hb <= 0.
+   */
+  z = Hb * __polevll(Hb, R, 6); /*  z = 2**Hb - 1  */
 
-	/* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
-	 * Find lookup table entry for the fractional power of 2.
-	 */
-	if (e < 0)
-		i = 0;
-	else
-		i = 1;
-	i = e/NXT + i;
-	e = NXT*i - e;
-	w = A[e];
-	z = w * z;  /*  2**-e * ( 1 + (2**Hb-1) )  */
-	z = z + w;
-	z = scalbnl(z, i);  /* multiply by integer power of 2 */
+  /* Express e/NXT as an integer plus a negative number of (1/NXT)ths.
+   * Find lookup table entry for the fractional power of 2.
+   */
+  if (e < 0)
+    i = 0;
+  else
+    i = 1;
+  i = e / NXT + i;
+  e = NXT * i - e;
+  w = A[e];
+  z = w * z; /*  2**-e * ( 1 + (2**Hb-1) )  */
+  z = z + w;
+  z = scalbnl(z, i); /* multiply by integer power of 2 */
 
-	if (nflg)
-		z = -z;
-	return z;
+  if (nflg)
+    z = -z;
+  return z;
 }
 
-
 /* Find a multiple of 1/NXT that is within 1/NXT of x. */
-static long double reducl(long double x)
-{
-	long double t;
+static long double reducl(long double x) {
+  long double t;
 
-	t = x * NXT;
-	t = floorl(t);
-	t = t / NXT;
-	return t;
+  t = x * NXT;
+  t = floorl(t);
+  t = t / NXT;
+  return t;
 }
 
 /*
@@ -450,73 +416,71 @@
  * Returns MAXNUM on overflow, zero on underflow.
  */
 
-static long double powil(long double x, int nn)
-{
-	long double ww, y;
-	long double s;
-	int n, e, sign, lx;
+static long double powil(long double x, int nn) {
+  long double ww, y;
+  long double s;
+  int n, e, sign, lx;
 
-	if (nn == 0)
-		return 1.0;
+  if (nn == 0)
+    return 1.0;
 
-	if (nn < 0) {
-		sign = -1;
-		n = -nn;
-	} else {
-		sign = 1;
-		n = nn;
-	}
+  if (nn < 0) {
+    sign = -1;
+    n = -nn;
+  } else {
+    sign = 1;
+    n = nn;
+  }
 
-	/* Overflow detection */
+  /* Overflow detection */
 
-	/* Calculate approximate logarithm of answer */
-	s = x;
-	s = frexpl( s, &lx);
-	e = (lx - 1)*n;
-	if ((e == 0) || (e > 64) || (e < -64)) {
-		s = (s - 7.0710678118654752e-1L) / (s +  7.0710678118654752e-1L);
-		s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L;
-	} else {
-		s = LOGE2L * e;
-	}
+  /* Calculate approximate logarithm of answer */
+  s = x;
+  s = frexpl(s, &lx);
+  e = (lx - 1) * n;
+  if ((e == 0) || (e > 64) || (e < -64)) {
+    s = (s - 7.0710678118654752e-1L) / (s + 7.0710678118654752e-1L);
+    s = (2.9142135623730950L * s - 0.5 + lx) * nn * LOGE2L;
+  } else {
+    s = LOGE2L * e;
+  }
 
-	if (s > MAXLOGL)
-		return huge * huge;  /* overflow */
+  if (s > MAXLOGL)
+    return huge * huge; /* overflow */
 
-	if (s < MINLOGL)
-		return twom10000 * twom10000;  /* underflow */
-	/* Handle tiny denormal answer, but with less accuracy
-	 * since roundoff error in 1.0/x will be amplified.
-	 * The precise demarcation should be the gradual underflow threshold.
-	 */
-	if (s < -MAXLOGL+2.0) {
-		x = 1.0/x;
-		sign = -sign;
-	}
+  if (s < MINLOGL)
+    return twom10000 * twom10000; /* underflow */
+  /* Handle tiny denormal answer, but with less accuracy
+   * since roundoff error in 1.0/x will be amplified.
+   * The precise demarcation should be the gradual underflow threshold.
+   */
+  if (s < -MAXLOGL + 2.0) {
+    x = 1.0 / x;
+    sign = -sign;
+  }
 
-	/* First bit of the power */
-	if (n & 1)
-		y = x;
-	else
-		y = 1.0;
+  /* First bit of the power */
+  if (n & 1)
+    y = x;
+  else
+    y = 1.0;
 
-	ww = x;
-	n >>= 1;
-	while (n) {
-		ww = ww * ww;   /* arg to the 2-to-the-kth power */
-		if (n & 1)     /* if that bit is set, then include in product */
-			y *= ww;
-		n >>= 1;
-	}
+  ww = x;
+  n >>= 1;
+  while (n) {
+    ww = ww * ww; /* arg to the 2-to-the-kth power */
+    if (n & 1)    /* if that bit is set, then include in product */
+      y *= ww;
+    n >>= 1;
+  }
 
-	if (sign < 0)
-		y = 1.0/y;
-	return y;
+  if (sign < 0)
+    y = 1.0 / y;
+  return y;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double powl(long double x, long double y)
-{
-	return pow(x, y);
+long double powl(long double x, long double y) {
+  return pow(x, y);
 }
 #endif
diff --git a/fusl/src/math/remainder.c b/fusl/src/math/remainder.c
index 6cd089c..ac85ee7 100644
--- a/fusl/src/math/remainder.c
+++ b/fusl/src/math/remainder.c
@@ -1,10 +1,9 @@
 #include <math.h>
 #include "libc.h"
 
-double remainder(double x, double y)
-{
-	int q;
-	return remquo(x, y, &q);
+double remainder(double x, double y) {
+  int q;
+  return remquo(x, y, &q);
 }
 
 weak_alias(remainder, drem);
diff --git a/fusl/src/math/remainderf.c b/fusl/src/math/remainderf.c
index 420d3bf..e336961 100644
--- a/fusl/src/math/remainderf.c
+++ b/fusl/src/math/remainderf.c
@@ -1,10 +1,9 @@
 #include <math.h>
 #include "libc.h"
 
-float remainderf(float x, float y)
-{
-	int q;
-	return remquof(x, y, &q);
+float remainderf(float x, float y) {
+  int q;
+  return remquof(x, y, &q);
 }
 
 weak_alias(remainderf, dremf);
diff --git a/fusl/src/math/remainderl.c b/fusl/src/math/remainderl.c
index 2a13c1d..039926c 100644
--- a/fusl/src/math/remainderl.c
+++ b/fusl/src/math/remainderl.c
@@ -2,14 +2,12 @@
 #include <float.h>
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double remainderl(long double x, long double y)
-{
-	return remainder(x, y);
+long double remainderl(long double x, long double y) {
+  return remainder(x, y);
 }
 #else
-long double remainderl(long double x, long double y)
-{
-	int q;
-	return remquol(x, y, &q);
+long double remainderl(long double x, long double y) {
+  int q;
+  return remquol(x, y, &q);
 }
 #endif
diff --git a/fusl/src/math/remquo.c b/fusl/src/math/remquo.c
index 59d5ad5..9436d29 100644
--- a/fusl/src/math/remquo.c
+++ b/fusl/src/math/remquo.c
@@ -1,82 +1,87 @@
 #include <math.h>
 #include <stdint.h>
 
-double remquo(double x, double y, int *quo)
-{
-	union {double f; uint64_t i;} ux = {x}, uy = {y};
-	int ex = ux.i>>52 & 0x7ff;
-	int ey = uy.i>>52 & 0x7ff;
-	int sx = ux.i>>63;
-	int sy = uy.i>>63;
-	uint32_t q;
-	uint64_t i;
-	uint64_t uxi = ux.i;
+double remquo(double x, double y, int* quo) {
+  union {
+    double f;
+    uint64_t i;
+  } ux = {x}, uy = {y};
+  int ex = ux.i >> 52 & 0x7ff;
+  int ey = uy.i >> 52 & 0x7ff;
+  int sx = ux.i >> 63;
+  int sy = uy.i >> 63;
+  uint32_t q;
+  uint64_t i;
+  uint64_t uxi = ux.i;
 
-	*quo = 0;
-	if (uy.i<<1 == 0 || isnan(y) || ex == 0x7ff)
-		return (x*y)/(x*y);
-	if (ux.i<<1 == 0)
-		return x;
+  *quo = 0;
+  if (uy.i << 1 == 0 || isnan(y) || ex == 0x7ff)
+    return (x * y) / (x * y);
+  if (ux.i << 1 == 0)
+    return x;
 
-	/* normalize x and y */
-	if (!ex) {
-		for (i = uxi<<12; i>>63 == 0; ex--, i <<= 1);
-		uxi <<= -ex + 1;
-	} else {
-		uxi &= -1ULL >> 12;
-		uxi |= 1ULL << 52;
-	}
-	if (!ey) {
-		for (i = uy.i<<12; i>>63 == 0; ey--, i <<= 1);
-		uy.i <<= -ey + 1;
-	} else {
-		uy.i &= -1ULL >> 12;
-		uy.i |= 1ULL << 52;
-	}
+  /* normalize x and y */
+  if (!ex) {
+    for (i = uxi << 12; i >> 63 == 0; ex--, i <<= 1)
+      ;
+    uxi <<= -ex + 1;
+  } else {
+    uxi &= -1ULL >> 12;
+    uxi |= 1ULL << 52;
+  }
+  if (!ey) {
+    for (i = uy.i << 12; i >> 63 == 0; ey--, i <<= 1)
+      ;
+    uy.i <<= -ey + 1;
+  } else {
+    uy.i &= -1ULL >> 12;
+    uy.i |= 1ULL << 52;
+  }
 
-	q = 0;
-	if (ex < ey) {
-		if (ex+1 == ey)
-			goto end;
-		return x;
-	}
+  q = 0;
+  if (ex < ey) {
+    if (ex + 1 == ey)
+      goto end;
+    return x;
+  }
 
-	/* x mod y */
-	for (; ex > ey; ex--) {
-		i = uxi - uy.i;
-		if (i >> 63 == 0) {
-			uxi = i;
-			q++;
-		}
-		uxi <<= 1;
-		q <<= 1;
-	}
-	i = uxi - uy.i;
-	if (i >> 63 == 0) {
-		uxi = i;
-		q++;
-	}
-	if (uxi == 0)
-		ex = -60;
-	else
-		for (; uxi>>52 == 0; uxi <<= 1, ex--);
+  /* x mod y */
+  for (; ex > ey; ex--) {
+    i = uxi - uy.i;
+    if (i >> 63 == 0) {
+      uxi = i;
+      q++;
+    }
+    uxi <<= 1;
+    q <<= 1;
+  }
+  i = uxi - uy.i;
+  if (i >> 63 == 0) {
+    uxi = i;
+    q++;
+  }
+  if (uxi == 0)
+    ex = -60;
+  else
+    for (; uxi >> 52 == 0; uxi <<= 1, ex--)
+      ;
 end:
-	/* scale result and decide between |x| and |x|-|y| */
-	if (ex > 0) {
-		uxi -= 1ULL << 52;
-		uxi |= (uint64_t)ex << 52;
-	} else {
-		uxi >>= -ex + 1;
-	}
-	ux.i = uxi;
-	x = ux.f;
-	if (sy)
-		y = -y;
-	if (ex == ey || (ex+1 == ey && (2*x > y || (2*x == y && q%2)))) {
-		x -= y;
-		q++;
-	}
-	q &= 0x7fffffff;
-	*quo = sx^sy ? -(int)q : (int)q;
-	return sx ? -x : x;
+  /* scale result and decide between |x| and |x|-|y| */
+  if (ex > 0) {
+    uxi -= 1ULL << 52;
+    uxi |= (uint64_t)ex << 52;
+  } else {
+    uxi >>= -ex + 1;
+  }
+  ux.i = uxi;
+  x = ux.f;
+  if (sy)
+    y = -y;
+  if (ex == ey || (ex + 1 == ey && (2 * x > y || (2 * x == y && q % 2)))) {
+    x -= y;
+    q++;
+  }
+  q &= 0x7fffffff;
+  *quo = sx ^ sy ? -(int)q : (int)q;
+  return sx ? -x : x;
 }
diff --git a/fusl/src/math/remquof.c b/fusl/src/math/remquof.c
index 2f41ff7..0725096 100644
--- a/fusl/src/math/remquof.c
+++ b/fusl/src/math/remquof.c
@@ -1,82 +1,87 @@
 #include <math.h>
 #include <stdint.h>
 
-float remquof(float x, float y, int *quo)
-{
-	union {float f; uint32_t i;} ux = {x}, uy = {y};
-	int ex = ux.i>>23 & 0xff;
-	int ey = uy.i>>23 & 0xff;
-	int sx = ux.i>>31;
-	int sy = uy.i>>31;
-	uint32_t q;
-	uint32_t i;
-	uint32_t uxi = ux.i;
+float remquof(float x, float y, int* quo) {
+  union {
+    float f;
+    uint32_t i;
+  } ux = {x}, uy = {y};
+  int ex = ux.i >> 23 & 0xff;
+  int ey = uy.i >> 23 & 0xff;
+  int sx = ux.i >> 31;
+  int sy = uy.i >> 31;
+  uint32_t q;
+  uint32_t i;
+  uint32_t uxi = ux.i;
 
-	*quo = 0;
-	if (uy.i<<1 == 0 || isnan(y) || ex == 0xff)
-		return (x*y)/(x*y);
-	if (ux.i<<1 == 0)
-		return x;
+  *quo = 0;
+  if (uy.i << 1 == 0 || isnan(y) || ex == 0xff)
+    return (x * y) / (x * y);
+  if (ux.i << 1 == 0)
+    return x;
 
-	/* normalize x and y */
-	if (!ex) {
-		for (i = uxi<<9; i>>31 == 0; ex--, i <<= 1);
-		uxi <<= -ex + 1;
-	} else {
-		uxi &= -1U >> 9;
-		uxi |= 1U << 23;
-	}
-	if (!ey) {
-		for (i = uy.i<<9; i>>31 == 0; ey--, i <<= 1);
-		uy.i <<= -ey + 1;
-	} else {
-		uy.i &= -1U >> 9;
-		uy.i |= 1U << 23;
-	}
+  /* normalize x and y */
+  if (!ex) {
+    for (i = uxi << 9; i >> 31 == 0; ex--, i <<= 1)
+      ;
+    uxi <<= -ex + 1;
+  } else {
+    uxi &= -1U >> 9;
+    uxi |= 1U << 23;
+  }
+  if (!ey) {
+    for (i = uy.i << 9; i >> 31 == 0; ey--, i <<= 1)
+      ;
+    uy.i <<= -ey + 1;
+  } else {
+    uy.i &= -1U >> 9;
+    uy.i |= 1U << 23;
+  }
 
-	q = 0;
-	if (ex < ey) {
-		if (ex+1 == ey)
-			goto end;
-		return x;
-	}
+  q = 0;
+  if (ex < ey) {
+    if (ex + 1 == ey)
+      goto end;
+    return x;
+  }
 
-	/* x mod y */
-	for (; ex > ey; ex--) {
-		i = uxi - uy.i;
-		if (i >> 31 == 0) {
-			uxi = i;
-			q++;
-		}
-		uxi <<= 1;
-		q <<= 1;
-	}
-	i = uxi - uy.i;
-	if (i >> 31 == 0) {
-		uxi = i;
-		q++;
-	}
-	if (uxi == 0)
-		ex = -30;
-	else
-		for (; uxi>>23 == 0; uxi <<= 1, ex--);
+  /* x mod y */
+  for (; ex > ey; ex--) {
+    i = uxi - uy.i;
+    if (i >> 31 == 0) {
+      uxi = i;
+      q++;
+    }
+    uxi <<= 1;
+    q <<= 1;
+  }
+  i = uxi - uy.i;
+  if (i >> 31 == 0) {
+    uxi = i;
+    q++;
+  }
+  if (uxi == 0)
+    ex = -30;
+  else
+    for (; uxi >> 23 == 0; uxi <<= 1, ex--)
+      ;
 end:
-	/* scale result and decide between |x| and |x|-|y| */
-	if (ex > 0) {
-		uxi -= 1U << 23;
-		uxi |= (uint32_t)ex << 23;
-	} else {
-		uxi >>= -ex + 1;
-	}
-	ux.i = uxi;
-	x = ux.f;
-	if (sy)
-		y = -y;
-	if (ex == ey || (ex+1 == ey && (2*x > y || (2*x == y && q%2)))) {
-		x -= y;
-		q++;
-	}
-	q &= 0x7fffffff;
-	*quo = sx^sy ? -(int)q : (int)q;
-	return sx ? -x : x;
+  /* scale result and decide between |x| and |x|-|y| */
+  if (ex > 0) {
+    uxi -= 1U << 23;
+    uxi |= (uint32_t)ex << 23;
+  } else {
+    uxi >>= -ex + 1;
+  }
+  ux.i = uxi;
+  x = ux.f;
+  if (sy)
+    y = -y;
+  if (ex == ey || (ex + 1 == ey && (2 * x > y || (2 * x == y && q % 2)))) {
+    x -= y;
+    q++;
+  }
+  q &= 0x7fffffff;
+  *quo = sx ^ sy ? -(int)q : (int)q;
+  return sx ? -x : x;
 }
diff --git a/fusl/src/math/remquol.c b/fusl/src/math/remquol.c
index 9b065c0..d4cf47f 100644
--- a/fusl/src/math/remquol.c
+++ b/fusl/src/math/remquol.c
@@ -1,124 +1,124 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double remquol(long double x, long double y, int *quo)
-{
-	return remquo(x, y, quo);
+long double remquol(long double x, long double y, int* quo) {
+  return remquo(x, y, quo);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-long double remquol(long double x, long double y, int *quo)
-{
-	union ldshape ux = {x}, uy = {y};
-	int ex = ux.i.se & 0x7fff;
-	int ey = uy.i.se & 0x7fff;
-	int sx = ux.i.se >> 15;
-	int sy = uy.i.se >> 15;
-	uint32_t q;
+long double remquol(long double x, long double y, int* quo) {
+  union ldshape ux = {x}, uy = {y};
+  int ex = ux.i.se & 0x7fff;
+  int ey = uy.i.se & 0x7fff;
+  int sx = ux.i.se >> 15;
+  int sy = uy.i.se >> 15;
+  uint32_t q;
 
-	*quo = 0;
-	if (y == 0 || isnan(y) || ex == 0x7fff)
-		return (x*y)/(x*y);
-	if (x == 0)
-		return x;
+  *quo = 0;
+  if (y == 0 || isnan(y) || ex == 0x7fff)
+    return (x * y) / (x * y);
+  if (x == 0)
+    return x;
 
-	/* normalize x and y */
-	if (!ex) {
-		ux.i.se = ex;
-		ux.f *= 0x1p120f;
-		ex = ux.i.se - 120;
-	}
-	if (!ey) {
-		uy.i.se = ey;
-		uy.f *= 0x1p120f;
-		ey = uy.i.se - 120;
-	}
+  /* normalize x and y */
+  if (!ex) {
+    ux.i.se = ex;
+    ux.f *= 0x1p120f;
+    ex = ux.i.se - 120;
+  }
+  if (!ey) {
+    uy.i.se = ey;
+    uy.f *= 0x1p120f;
+    ey = uy.i.se - 120;
+  }
 
-	q = 0;
-	if (ex >= ey) {
-		/* x mod y */
+  q = 0;
+  if (ex >= ey) {
+/* x mod y */
 #if LDBL_MANT_DIG == 64
-		uint64_t i, mx, my;
-		mx = ux.i.m;
-		my = uy.i.m;
-		for (; ex > ey; ex--) {
-			i = mx - my;
-			if (mx >= my) {
-				mx = 2*i;
-				q++;
-				q <<= 1;
-			} else if (2*mx < mx) {
-				mx = 2*mx - my;
-				q <<= 1;
-				q++;
-			} else {
-				mx = 2*mx;
-				q <<= 1;
-			}
-		}
-		i = mx - my;
-		if (mx >= my) {
-			mx = i;
-			q++;
-		}
-		if (mx == 0)
-			ex = -120;
-		else
-			for (; mx >> 63 == 0; mx *= 2, ex--);
-		ux.i.m = mx;
+    uint64_t i, mx, my;
+    mx = ux.i.m;
+    my = uy.i.m;
+    for (; ex > ey; ex--) {
+      i = mx - my;
+      if (mx >= my) {
+        mx = 2 * i;
+        q++;
+        q <<= 1;
+      } else if (2 * mx < mx) {
+        mx = 2 * mx - my;
+        q <<= 1;
+        q++;
+      } else {
+        mx = 2 * mx;
+        q <<= 1;
+      }
+    }
+    i = mx - my;
+    if (mx >= my) {
+      mx = i;
+      q++;
+    }
+    if (mx == 0)
+      ex = -120;
+    else
+      for (; mx >> 63 == 0; mx *= 2, ex--)
+        ;
+    ux.i.m = mx;
 #elif LDBL_MANT_DIG == 113
-		uint64_t hi, lo, xhi, xlo, yhi, ylo;
-		xhi = (ux.i2.hi & -1ULL>>16) | 1ULL<<48;
-		yhi = (uy.i2.hi & -1ULL>>16) | 1ULL<<48;
-		xlo = ux.i2.lo;
-		ylo = ux.i2.lo;
-		for (; ex > ey; ex--) {
-			hi = xhi - yhi;
-			lo = xlo - ylo;
-			if (xlo < ylo)
-				hi -= 1;
-			if (hi >> 63 == 0) {
-				xhi = 2*hi + (lo>>63);
-				xlo = 2*lo;
-				q++;
-			} else {
-				xhi = 2*xhi + (xlo>>63);
-				xlo = 2*xlo;
-			}
-			q <<= 1;
-		}
-		hi = xhi - yhi;
-		lo = xlo - ylo;
-		if (xlo < ylo)
-			hi -= 1;
-		if (hi >> 63 == 0) {
-			xhi = hi;
-			xlo = lo;
-			q++;
-		}
-		if ((xhi|xlo) == 0)
-			ex = -120;
-		else
-			for (; xhi >> 48 == 0; xhi = 2*xhi + (xlo>>63), xlo = 2*xlo, ex--);
-		ux.i2.hi = xhi;
-		ux.i2.lo = xlo;
+    uint64_t hi, lo, xhi, xlo, yhi, ylo;
+    xhi = (ux.i2.hi & -1ULL >> 16) | 1ULL << 48;
+    yhi = (uy.i2.hi & -1ULL >> 16) | 1ULL << 48;
+    xlo = ux.i2.lo;
+    ylo = ux.i2.lo;
+    for (; ex > ey; ex--) {
+      hi = xhi - yhi;
+      lo = xlo - ylo;
+      if (xlo < ylo)
+        hi -= 1;
+      if (hi >> 63 == 0) {
+        xhi = 2 * hi + (lo >> 63);
+        xlo = 2 * lo;
+        q++;
+      } else {
+        xhi = 2 * xhi + (xlo >> 63);
+        xlo = 2 * xlo;
+      }
+      q <<= 1;
+    }
+    hi = xhi - yhi;
+    lo = xlo - ylo;
+    if (xlo < ylo)
+      hi -= 1;
+    if (hi >> 63 == 0) {
+      xhi = hi;
+      xlo = lo;
+      q++;
+    }
+    if ((xhi | xlo) == 0)
+      ex = -120;
+    else
+      for (; xhi >> 48 == 0; xhi = 2 * xhi + (xlo >> 63), xlo = 2 * xlo, ex--)
+        ;
+    ux.i2.hi = xhi;
+    ux.i2.lo = xlo;
 #endif
-	}
+  }
 
-	/* scale result and decide between |x| and |x|-|y| */
-	if (ex <= 0) {
-		ux.i.se = ex + 120;
-		ux.f *= 0x1p-120f;
-	} else
-		ux.i.se = ex;
-	x = ux.f;
-	if (sy)
-		y = -y;
-	if (ex == ey || (ex+1 == ey && (2*x > y || (2*x == y && q%2)))) {
-		x -= y;
-		q++;
-	}
-	q &= 0x7fffffff;
-	*quo = sx^sy ? -(int)q : (int)q;
-	return sx ? -x : x;
+  /* scale result and decide between |x| and |x|-|y| */
+  if (ex <= 0) {
+    ux.i.se = ex + 120;
+    ux.f *= 0x1p-120f;
+  } else
+    ux.i.se = ex;
+  x = ux.f;
+  if (sy)
+    y = -y;
+  if (ex == ey || (ex + 1 == ey && (2 * x > y || (2 * x == y && q % 2)))) {
+    x -= y;
+    q++;
+  }
+  q &= 0x7fffffff;
+  *quo = sx ^ sy ? -(int)q : (int)q;
+  return sx ? -x : x;
 }
 #endif
diff --git a/fusl/src/math/rint.c b/fusl/src/math/rint.c
index fbba390..8d2447e 100644
--- a/fusl/src/math/rint.c
+++ b/fusl/src/math/rint.c
@@ -2,27 +2,29 @@
 #include <math.h>
 #include <stdint.h>
 
-#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#if FLT_EVAL_METHOD == 0 || FLT_EVAL_METHOD == 1
 #define EPS DBL_EPSILON
-#elif FLT_EVAL_METHOD==2
+#elif FLT_EVAL_METHOD == 2
 #define EPS LDBL_EPSILON
 #endif
-static const double_t toint = 1/EPS;
+static const double_t toint = 1 / EPS;
 
-double rint(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	int e = u.i>>52 & 0x7ff;
-	int s = u.i>>63;
-	double_t y;
+double rint(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  int e = u.i >> 52 & 0x7ff;
+  int s = u.i >> 63;
+  double_t y;
 
-	if (e >= 0x3ff+52)
-		return x;
-	if (s)
-		y = x - toint + toint;
-	else
-		y = x + toint - toint;
-	if (y == 0)
-		return s ? -0.0 : 0;
-	return y;
+  if (e >= 0x3ff + 52)
+    return x;
+  if (s)
+    y = x - toint + toint;
+  else
+    y = x + toint - toint;
+  if (y == 0)
+    return s ? -0.0 : 0;
+  return y;
 }
diff --git a/fusl/src/math/rintf.c b/fusl/src/math/rintf.c
index 9047688..0ed0ecc 100644
--- a/fusl/src/math/rintf.c
+++ b/fusl/src/math/rintf.c
@@ -2,29 +2,31 @@
 #include <math.h>
 #include <stdint.h>
 
-#if FLT_EVAL_METHOD==0
+#if FLT_EVAL_METHOD == 0
 #define EPS FLT_EPSILON
-#elif FLT_EVAL_METHOD==1
+#elif FLT_EVAL_METHOD == 1
 #define EPS DBL_EPSILON
-#elif FLT_EVAL_METHOD==2
+#elif FLT_EVAL_METHOD == 2
 #define EPS LDBL_EPSILON
 #endif
-static const float_t toint = 1/EPS;
+static const float_t toint = 1 / EPS;
 
-float rintf(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	int e = u.i>>23 & 0xff;
-	int s = u.i>>31;
-	float_t y;
+float rintf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  int e = u.i >> 23 & 0xff;
+  int s = u.i >> 31;
+  float_t y;
 
-	if (e >= 0x7f+23)
-		return x;
-	if (s)
-		y = x - toint + toint;
-	else
-		y = x + toint - toint;
-	if (y == 0)
-		return s ? -0.0f : 0.0f;
-	return y;
+  if (e >= 0x7f + 23)
+    return x;
+  if (s)
+    y = x - toint + toint;
+  else
+    y = x + toint - toint;
+  if (y == 0)
+    return s ? -0.0f : 0.0f;
+  return y;
 }
diff --git a/fusl/src/math/rintl.c b/fusl/src/math/rintl.c
index 374327d..e5b5267 100644
--- a/fusl/src/math/rintl.c
+++ b/fusl/src/math/rintl.c
@@ -1,29 +1,27 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double rintl(long double x)
-{
-	return rint(x);
+long double rintl(long double x) {
+  return rint(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 
-static const long double toint = 1/LDBL_EPSILON;
+static const long double toint = 1 / LDBL_EPSILON;
 
-long double rintl(long double x)
-{
-	union ldshape u = {x};
-	int e = u.i.se & 0x7fff;
-	int s = u.i.se >> 15;
-	long double y;
+long double rintl(long double x) {
+  union ldshape u = {x};
+  int e = u.i.se & 0x7fff;
+  int s = u.i.se >> 15;
+  long double y;
 
-	if (e >= 0x3fff+LDBL_MANT_DIG-1)
-		return x;
-	if (s)
-		y = x - toint + toint;
-	else
-		y = x + toint - toint;
-	if (y == 0)
-		return 0*x;
-	return y;
+  if (e >= 0x3fff + LDBL_MANT_DIG - 1)
+    return x;
+  if (s)
+    y = x - toint + toint;
+  else
+    y = x + toint - toint;
+  if (y == 0)
+    return 0 * x;
+  return y;
 }
 #endif
diff --git a/fusl/src/math/round.c b/fusl/src/math/round.c
index 130d58d..ad1baa8 100644
--- a/fusl/src/math/round.c
+++ b/fusl/src/math/round.c
@@ -1,35 +1,37 @@
 #include "libm.h"
 
-#if FLT_EVAL_METHOD==0 || FLT_EVAL_METHOD==1
+#if FLT_EVAL_METHOD == 0 || FLT_EVAL_METHOD == 1
 #define EPS DBL_EPSILON
-#elif FLT_EVAL_METHOD==2
+#elif FLT_EVAL_METHOD == 2
 #define EPS LDBL_EPSILON
 #endif
-static const double_t toint = 1/EPS;
+static const double_t toint = 1 / EPS;
 
-double round(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	int e = u.i >> 52 & 0x7ff;
-	double_t y;
+double round(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  int e = u.i >> 52 & 0x7ff;
+  double_t y;
 
-	if (e >= 0x3ff+52)
-		return x;
-	if (u.i >> 63)
-		x = -x;
-	if (e < 0x3ff-1) {
-		/* raise inexact if x!=0 */
-		FORCE_EVAL(x + toint);
-		return 0*u.f;
-	}
-	y = x + toint - toint - x;
-	if (y > 0.5)
-		y = y + x - 1;
-	else if (y <= -0.5)
-		y = y + x + 1;
-	else
-		y = y + x;
-	if (u.i >> 63)
-		y = -y;
-	return y;
+  if (e >= 0x3ff + 52)
+    return x;
+  if (u.i >> 63)
+    x = -x;
+  if (e < 0x3ff - 1) {
+    /* raise inexact if x!=0 */
+    FORCE_EVAL(x + toint);
+    return 0 * u.f;
+  }
+  y = x + toint - toint - x;
+  if (y > 0.5)
+    y = y + x - 1;
+  else if (y <= -0.5)
+    y = y + x + 1;
+  else
+    y = y + x;
+  if (u.i >> 63)
+    y = -y;
+  return y;
 }
diff --git a/fusl/src/math/roundf.c b/fusl/src/math/roundf.c
index e8210af..55a38dd 100644
--- a/fusl/src/math/roundf.c
+++ b/fusl/src/math/roundf.c
@@ -1,36 +1,38 @@
 #include "libm.h"
 
-#if FLT_EVAL_METHOD==0
+#if FLT_EVAL_METHOD == 0
 #define EPS FLT_EPSILON
-#elif FLT_EVAL_METHOD==1
+#elif FLT_EVAL_METHOD == 1
 #define EPS DBL_EPSILON
-#elif FLT_EVAL_METHOD==2
+#elif FLT_EVAL_METHOD == 2
 #define EPS LDBL_EPSILON
 #endif
-static const float_t toint = 1/EPS;
+static const float_t toint = 1 / EPS;
 
-float roundf(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	int e = u.i >> 23 & 0xff;
-	float_t y;
+float roundf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  int e = u.i >> 23 & 0xff;
+  float_t y;
 
-	if (e >= 0x7f+23)
-		return x;
-	if (u.i >> 31)
-		x = -x;
-	if (e < 0x7f-1) {
-		FORCE_EVAL(x + toint);
-		return 0*u.f;
-	}
-	y = x + toint - toint - x;
-	if (y > 0.5f)
-		y = y + x - 1;
-	else if (y <= -0.5f)
-		y = y + x + 1;
-	else
-		y = y + x;
-	if (u.i >> 31)
-		y = -y;
-	return y;
+  if (e >= 0x7f + 23)
+    return x;
+  if (u.i >> 31)
+    x = -x;
+  if (e < 0x7f - 1) {
+    FORCE_EVAL(x + toint);
+    return 0 * u.f;
+  }
+  y = x + toint - toint - x;
+  if (y > 0.5f)
+    y = y + x - 1;
+  else if (y <= -0.5f)
+    y = y + x + 1;
+  else
+    y = y + x;
+  if (u.i >> 31)
+    y = -y;
+  return y;
 }
diff --git a/fusl/src/math/roundl.c b/fusl/src/math/roundl.c
index f4ff682..adb580a 100644
--- a/fusl/src/math/roundl.c
+++ b/fusl/src/math/roundl.c
@@ -1,37 +1,35 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double roundl(long double x)
-{
-	return round(x);
+long double roundl(long double x) {
+  return round(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 
-static const long double toint = 1/LDBL_EPSILON;
+static const long double toint = 1 / LDBL_EPSILON;
 
-long double roundl(long double x)
-{
-	union ldshape u = {x};
-	int e = u.i.se & 0x7fff;
-	long double y;
+long double roundl(long double x) {
+  union ldshape u = {x};
+  int e = u.i.se & 0x7fff;
+  long double y;
 
-	if (e >= 0x3fff+LDBL_MANT_DIG-1)
-		return x;
-	if (u.i.se >> 15)
-		x = -x;
-	if (e < 0x3fff-1) {
-		FORCE_EVAL(x + toint);
-		return 0*u.f;
-	}
-	y = x + toint - toint - x;
-	if (y > 0.5)
-		y = y + x - 1;
-	else if (y <= -0.5)
-		y = y + x + 1;
-	else
-		y = y + x;
-	if (u.i.se >> 15)
-		y = -y;
-	return y;
+  if (e >= 0x3fff + LDBL_MANT_DIG - 1)
+    return x;
+  if (u.i.se >> 15)
+    x = -x;
+  if (e < 0x3fff - 1) {
+    FORCE_EVAL(x + toint);
+    return 0 * u.f;
+  }
+  y = x + toint - toint - x;
+  if (y > 0.5)
+    y = y + x - 1;
+  else if (y <= -0.5)
+    y = y + x + 1;
+  else
+    y = y + x;
+  if (u.i.se >> 15)
+    y = -y;
+  return y;
 }
 #endif
diff --git a/fusl/src/math/scalb.c b/fusl/src/math/scalb.c
index efe69e6..49cdb5a 100644
--- a/fusl/src/math/scalb.c
+++ b/fusl/src/math/scalb.c
@@ -18,18 +18,20 @@
 #define _GNU_SOURCE
 #include <math.h>
 
-double scalb(double x, double fn)
-{
-	if (isnan(x) || isnan(fn))
-		return x*fn;
-	if (!isfinite(fn)) {
-		if (fn > 0.0)
-			return x*fn;
-		else
-			return x/(-fn);
-	}
-	if (rint(fn) != fn) return (fn-fn)/(fn-fn);
-	if ( fn > 65000.0) return scalbn(x, 65000);
-	if (-fn > 65000.0) return scalbn(x,-65000);
-	return scalbn(x,(int)fn);
+double scalb(double x, double fn) {
+  if (isnan(x) || isnan(fn))
+    return x * fn;
+  if (!isfinite(fn)) {
+    if (fn > 0.0)
+      return x * fn;
+    else
+      return x / (-fn);
+  }
+  if (rint(fn) != fn)
+    return (fn - fn) / (fn - fn);
+  if (fn > 65000.0)
+    return scalbn(x, 65000);
+  if (-fn > 65000.0)
+    return scalbn(x, -65000);
+  return scalbn(x, (int)fn);
 }
diff --git a/fusl/src/math/scalbf.c b/fusl/src/math/scalbf.c
index f44ed5b..d0f2831 100644
--- a/fusl/src/math/scalbf.c
+++ b/fusl/src/math/scalbf.c
@@ -16,17 +16,20 @@
 #define _GNU_SOURCE
 #include <math.h>
 
-float scalbf(float x, float fn)
-{
-	if (isnan(x) || isnan(fn)) return x*fn;
-	if (!isfinite(fn)) {
-		if (fn > 0.0f)
-			return x*fn;
-		else
-			return x/(-fn);
-	}
-	if (rintf(fn) != fn) return (fn-fn)/(fn-fn);
-	if ( fn > 65000.0f) return scalbnf(x, 65000);
-	if (-fn > 65000.0f) return scalbnf(x,-65000);
-	return scalbnf(x,(int)fn);
+float scalbf(float x, float fn) {
+  if (isnan(x) || isnan(fn))
+    return x * fn;
+  if (!isfinite(fn)) {
+    if (fn > 0.0f)
+      return x * fn;
+    else
+      return x / (-fn);
+  }
+  if (rintf(fn) != fn)
+    return (fn - fn) / (fn - fn);
+  if (fn > 65000.0f)
+    return scalbnf(x, 65000);
+  if (-fn > 65000.0f)
+    return scalbnf(x, -65000);
+  return scalbnf(x, (int)fn);
 }
diff --git a/fusl/src/math/scalbln.c b/fusl/src/math/scalbln.c
index e6f3f19..fc59ea9 100644
--- a/fusl/src/math/scalbln.c
+++ b/fusl/src/math/scalbln.c
@@ -1,11 +1,10 @@
 #include <limits.h>
 #include <math.h>
 
-double scalbln(double x, long n)
-{
-	if (n > INT_MAX)
-		n = INT_MAX;
-	else if (n < INT_MIN)
-		n = INT_MIN;
-	return scalbn(x, n);
+double scalbln(double x, long n) {
+  if (n > INT_MAX)
+    n = INT_MAX;
+  else if (n < INT_MIN)
+    n = INT_MIN;
+  return scalbn(x, n);
 }
diff --git a/fusl/src/math/scalblnf.c b/fusl/src/math/scalblnf.c
index d8e8166..8eb6fc4 100644
--- a/fusl/src/math/scalblnf.c
+++ b/fusl/src/math/scalblnf.c
@@ -1,11 +1,10 @@
 #include <limits.h>
 #include <math.h>
 
-float scalblnf(float x, long n)
-{
-	if (n > INT_MAX)
-		n = INT_MAX;
-	else if (n < INT_MIN)
-		n = INT_MIN;
-	return scalbnf(x, n);
+float scalblnf(float x, long n) {
+  if (n > INT_MAX)
+    n = INT_MAX;
+  else if (n < INT_MIN)
+    n = INT_MIN;
+  return scalbnf(x, n);
 }
diff --git a/fusl/src/math/scalblnl.c b/fusl/src/math/scalblnl.c
index 854c51c..7a0084f 100644
--- a/fusl/src/math/scalblnl.c
+++ b/fusl/src/math/scalblnl.c
@@ -3,17 +3,15 @@
 #include <float.h>
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double scalblnl(long double x, long n)
-{
-	return scalbln(x, n);
+long double scalblnl(long double x, long n) {
+  return scalbln(x, n);
 }
 #else
-long double scalblnl(long double x, long n)
-{
-	if (n > INT_MAX)
-		n = INT_MAX;
-	else if (n < INT_MIN)
-		n = INT_MIN;
-	return scalbnl(x, n);
+long double scalblnl(long double x, long n) {
+  if (n > INT_MAX)
+    n = INT_MAX;
+  else if (n < INT_MIN)
+    n = INT_MIN;
+  return scalbnl(x, n);
 }
 #endif
diff --git a/fusl/src/math/scalbn.c b/fusl/src/math/scalbn.c
index 530e07c..acfc13d 100644
--- a/fusl/src/math/scalbn.c
+++ b/fusl/src/math/scalbn.c
@@ -1,31 +1,33 @@
 #include <math.h>
 #include <stdint.h>
 
-double scalbn(double x, int n)
-{
-	union {double f; uint64_t i;} u;
-	double_t y = x;
+double scalbn(double x, int n) {
+  union {
+    double f;
+    uint64_t i;
+  } u;
+  double_t y = x;
 
-	if (n > 1023) {
-		y *= 0x1p1023;
-		n -= 1023;
-		if (n > 1023) {
-			y *= 0x1p1023;
-			n -= 1023;
-			if (n > 1023)
-				n = 1023;
-		}
-	} else if (n < -1022) {
-		y *= 0x1p-1022;
-		n += 1022;
-		if (n < -1022) {
-			y *= 0x1p-1022;
-			n += 1022;
-			if (n < -1022)
-				n = -1022;
-		}
-	}
-	u.i = (uint64_t)(0x3ff+n)<<52;
-	x = y * u.f;
-	return x;
+  if (n > 1023) {
+    y *= 0x1p1023;
+    n -= 1023;
+    if (n > 1023) {
+      y *= 0x1p1023;
+      n -= 1023;
+      if (n > 1023)
+        n = 1023;
+    }
+  } else if (n < -1022) {
+    y *= 0x1p-1022;
+    n += 1022;
+    if (n < -1022) {
+      y *= 0x1p-1022;
+      n += 1022;
+      if (n < -1022)
+        n = -1022;
+    }
+  }
+  u.i = (uint64_t)(0x3ff + n) << 52;
+  x = y * u.f;
+  return x;
 }
diff --git a/fusl/src/math/scalbnf.c b/fusl/src/math/scalbnf.c
index 0b62c3c..473792d 100644
--- a/fusl/src/math/scalbnf.c
+++ b/fusl/src/math/scalbnf.c
@@ -1,31 +1,33 @@
 #include <math.h>
 #include <stdint.h>
 
-float scalbnf(float x, int n)
-{
-	union {float f; uint32_t i;} u;
-	float_t y = x;
+float scalbnf(float x, int n) {
+  union {
+    float f;
+    uint32_t i;
+  } u;
+  float_t y = x;
 
-	if (n > 127) {
-		y *= 0x1p127f;
-		n -= 127;
-		if (n > 127) {
-			y *= 0x1p127f;
-			n -= 127;
-			if (n > 127)
-				n = 127;
-		}
-	} else if (n < -126) {
-		y *= 0x1p-126f;
-		n += 126;
-		if (n < -126) {
-			y *= 0x1p-126f;
-			n += 126;
-			if (n < -126)
-				n = -126;
-		}
-	}
-	u.i = (uint32_t)(0x7f+n)<<23;
-	x = y * u.f;
-	return x;
+  if (n > 127) {
+    y *= 0x1p127f;
+    n -= 127;
+    if (n > 127) {
+      y *= 0x1p127f;
+      n -= 127;
+      if (n > 127)
+        n = 127;
+    }
+  } else if (n < -126) {
+    y *= 0x1p-126f;
+    n += 126;
+    if (n < -126) {
+      y *= 0x1p-126f;
+      n += 126;
+      if (n < -126)
+        n = -126;
+    }
+  }
+  u.i = (uint32_t)(0x7f + n) << 23;
+  x = y * u.f;
+  return x;
 }
diff --git a/fusl/src/math/scalbnl.c b/fusl/src/math/scalbnl.c
index 08a4c58..9a03ef7 100644
--- a/fusl/src/math/scalbnl.c
+++ b/fusl/src/math/scalbnl.c
@@ -1,36 +1,34 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double scalbnl(long double x, int n)
-{
-	return scalbn(x, n);
+long double scalbnl(long double x, int n) {
+  return scalbn(x, n);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-long double scalbnl(long double x, int n)
-{
-	union ldshape u;
+long double scalbnl(long double x, int n) {
+  union ldshape u;
 
-	if (n > 16383) {
-		x *= 0x1p16383L;
-		n -= 16383;
-		if (n > 16383) {
-			x *= 0x1p16383L;
-			n -= 16383;
-			if (n > 16383)
-				n = 16383;
-		}
-	} else if (n < -16382) {
-		x *= 0x1p-16382L;
-		n += 16382;
-		if (n < -16382) {
-			x *= 0x1p-16382L;
-			n += 16382;
-			if (n < -16382)
-				n = -16382;
-		}
-	}
-	u.f = 1.0;
-	u.i.se = 0x3fff + n;
-	return x * u.f;
+  if (n > 16383) {
+    x *= 0x1p16383L;
+    n -= 16383;
+    if (n > 16383) {
+      x *= 0x1p16383L;
+      n -= 16383;
+      if (n > 16383)
+        n = 16383;
+    }
+  } else if (n < -16382) {
+    x *= 0x1p-16382L;
+    n += 16382;
+    if (n < -16382) {
+      x *= 0x1p-16382L;
+      n += 16382;
+      if (n < -16382)
+        n = -16382;
+    }
+  }
+  u.f = 1.0;
+  u.i.se = 0x3fff + n;
+  return x * u.f;
 }
 #endif
diff --git a/fusl/src/math/significand.c b/fusl/src/math/significand.c
index 40d9aa9..e5d5bbe 100644
--- a/fusl/src/math/significand.c
+++ b/fusl/src/math/significand.c
@@ -1,7 +1,6 @@
 #define _GNU_SOURCE
 #include <math.h>
 
-double significand(double x)
-{
-	return scalbn(x, -ilogb(x));
+double significand(double x) {
+  return scalbn(x, -ilogb(x));
 }
diff --git a/fusl/src/math/significandf.c b/fusl/src/math/significandf.c
index 8a697e1..119aa3a 100644
--- a/fusl/src/math/significandf.c
+++ b/fusl/src/math/significandf.c
@@ -1,7 +1,6 @@
 #define _GNU_SOURCE
 #include <math.h>
 
-float significandf(float x)
-{
-	return scalbnf(x, -ilogbf(x));
+float significandf(float x) {
+  return scalbnf(x, -ilogbf(x));
 }
diff --git a/fusl/src/math/sin.c b/fusl/src/math/sin.c
index 055e215..e44c00c 100644
--- a/fusl/src/math/sin.c
+++ b/fusl/src/math/sin.c
@@ -42,37 +42,39 @@
 
 #include "libm.h"
 
-double sin(double x)
-{
-	double y[2];
-	uint32_t ix;
-	unsigned n;
+double sin(double x) {
+  double y[2];
+  uint32_t ix;
+  unsigned n;
 
-	/* High word of x. */
-	GET_HIGH_WORD(ix, x);
-	ix &= 0x7fffffff;
+  /* High word of x. */
+  GET_HIGH_WORD(ix, x);
+  ix &= 0x7fffffff;
 
-	/* |x| ~< pi/4 */
-	if (ix <= 0x3fe921fb) {
-		if (ix < 0x3e500000) {  /* |x| < 2**-26 */
-			/* raise inexact if x != 0 and underflow if subnormal*/
-			FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
-			return x;
-		}
-		return __sin(x, 0.0, 0);
-	}
+  /* |x| ~< pi/4 */
+  if (ix <= 0x3fe921fb) {
+    if (ix < 0x3e500000) { /* |x| < 2**-26 */
+      /* raise inexact if x != 0 and underflow if subnormal*/
+      FORCE_EVAL(ix < 0x00100000 ? x / 0x1p120f : x + 0x1p120f);
+      return x;
+    }
+    return __sin(x, 0.0, 0);
+  }
 
-	/* sin(Inf or NaN) is NaN */
-	if (ix >= 0x7ff00000)
-		return x - x;
+  /* sin(Inf or NaN) is NaN */
+  if (ix >= 0x7ff00000)
+    return x - x;
 
-	/* argument reduction needed */
-	n = __rem_pio2(x, y);
-	switch (n&3) {
-	case 0: return  __sin(y[0], y[1], 1);
-	case 1: return  __cos(y[0], y[1]);
-	case 2: return -__sin(y[0], y[1], 1);
-	default:
-		return -__cos(y[0], y[1]);
-	}
+  /* argument reduction needed */
+  n = __rem_pio2(x, y);
+  switch (n & 3) {
+    case 0:
+      return __sin(y[0], y[1], 1);
+    case 1:
+      return __cos(y[0], y[1]);
+    case 2:
+      return -__sin(y[0], y[1], 1);
+    default:
+      return -__cos(y[0], y[1]);
+  }
 }
diff --git a/fusl/src/math/sincos.c b/fusl/src/math/sincos.c
index 35b2d92..33d74fc 100644
--- a/fusl/src/math/sincos.c
+++ b/fusl/src/math/sincos.c
@@ -13,57 +13,56 @@
 #define _GNU_SOURCE
 #include "libm.h"
 
-void sincos(double x, double *sin, double *cos)
-{
-	double y[2], s, c;
-	uint32_t ix;
-	unsigned n;
+void sincos(double x, double* sin, double* cos) {
+  double y[2], s, c;
+  uint32_t ix;
+  unsigned n;
 
-	GET_HIGH_WORD(ix, x);
-	ix &= 0x7fffffff;
+  GET_HIGH_WORD(ix, x);
+  ix &= 0x7fffffff;
 
-	/* |x| ~< pi/4 */
-	if (ix <= 0x3fe921fb) {
-		/* if |x| < 2**-27 * sqrt(2) */
-		if (ix < 0x3e46a09e) {
-			/* raise inexact if x!=0 and underflow if subnormal */
-			FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
-			*sin = x;
-			*cos = 1.0;
-			return;
-		}
-		*sin = __sin(x, 0.0, 0);
-		*cos = __cos(x, 0.0);
-		return;
-	}
+  /* |x| ~< pi/4 */
+  if (ix <= 0x3fe921fb) {
+    /* if |x| < 2**-27 * sqrt(2) */
+    if (ix < 0x3e46a09e) {
+      /* raise inexact if x!=0 and underflow if subnormal */
+      FORCE_EVAL(ix < 0x00100000 ? x / 0x1p120f : x + 0x1p120f);
+      *sin = x;
+      *cos = 1.0;
+      return;
+    }
+    *sin = __sin(x, 0.0, 0);
+    *cos = __cos(x, 0.0);
+    return;
+  }
 
-	/* sincos(Inf or NaN) is NaN */
-	if (ix >= 0x7ff00000) {
-		*sin = *cos = x - x;
-		return;
-	}
+  /* sincos(Inf or NaN) is NaN */
+  if (ix >= 0x7ff00000) {
+    *sin = *cos = x - x;
+    return;
+  }
 
-	/* argument reduction needed */
-	n = __rem_pio2(x, y);
-	s = __sin(y[0], y[1], 1);
-	c = __cos(y[0], y[1]);
-	switch (n&3) {
-	case 0:
-		*sin = s;
-		*cos = c;
-		break;
-	case 1:
-		*sin = c;
-		*cos = -s;
-		break;
-	case 2:
-		*sin = -s;
-		*cos = -c;
-		break;
-	case 3:
-	default:
-		*sin = -c;
-		*cos = s;
-		break;
-	}
+  /* argument reduction needed */
+  n = __rem_pio2(x, y);
+  s = __sin(y[0], y[1], 1);
+  c = __cos(y[0], y[1]);
+  switch (n & 3) {
+    case 0:
+      *sin = s;
+      *cos = c;
+      break;
+    case 1:
+      *sin = c;
+      *cos = -s;
+      break;
+    case 2:
+      *sin = -s;
+      *cos = -c;
+      break;
+    case 3:
+    default:
+      *sin = -c;
+      *cos = s;
+      break;
+  }
 }
diff --git a/fusl/src/math/sincosf.c b/fusl/src/math/sincosf.c
index f8ca723..11feeab 100644
--- a/fusl/src/math/sincosf.c
+++ b/fusl/src/math/sincosf.c
@@ -18,100 +18,98 @@
 #include "libm.h"
 
 /* Small multiples of pi/2 rounded to double precision. */
-static const double
-s1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
-s2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
-s3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
-s4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */
+static const double s1pio2 = 1 * M_PI_2, /* 0x3FF921FB, 0x54442D18 */
+    s2pio2 = 2 * M_PI_2,                 /* 0x400921FB, 0x54442D18 */
+    s3pio2 = 3 * M_PI_2,                 /* 0x4012D97C, 0x7F3321D2 */
+    s4pio2 = 4 * M_PI_2;                 /* 0x401921FB, 0x54442D18 */
 
-void sincosf(float x, float *sin, float *cos)
-{
-	double y;
-	float_t s, c;
-	uint32_t ix;
-	unsigned n, sign;
+void sincosf(float x, float* sin, float* cos) {
+  double y;
+  float_t s, c;
+  uint32_t ix;
+  unsigned n, sign;
 
-	GET_FLOAT_WORD(ix, x);
-	sign = ix >> 31;
-	ix &= 0x7fffffff;
+  GET_FLOAT_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
 
-	/* |x| ~<= pi/4 */
-	if (ix <= 0x3f490fda) {
-		/* |x| < 2**-12 */
-		if (ix < 0x39800000) {
-			/* raise inexact if x!=0 and underflow if subnormal */
-			FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
-			*sin = x;
-			*cos = 1.0f;
-			return;
-		}
-		*sin = __sindf(x);
-		*cos = __cosdf(x);
-		return;
-	}
+  /* |x| ~<= pi/4 */
+  if (ix <= 0x3f490fda) {
+    /* |x| < 2**-12 */
+    if (ix < 0x39800000) {
+      /* raise inexact if x!=0 and underflow if subnormal */
+      FORCE_EVAL(ix < 0x00100000 ? x / 0x1p120f : x + 0x1p120f);
+      *sin = x;
+      *cos = 1.0f;
+      return;
+    }
+    *sin = __sindf(x);
+    *cos = __cosdf(x);
+    return;
+  }
 
-	/* |x| ~<= 5*pi/4 */
-	if (ix <= 0x407b53d1) {
-		if (ix <= 0x4016cbe3) {  /* |x| ~<= 3pi/4 */
-			if (sign) {
-				*sin = -__cosdf(x + s1pio2);
-				*cos = __sindf(x + s1pio2);
-			} else {
-				*sin = __cosdf(s1pio2 - x);
-				*cos = __sindf(s1pio2 - x);
-			}
-			return;
-		}
-		/* -sin(x+c) is not correct if x+c could be 0: -0 vs +0 */
-		*sin = -__sindf(sign ? x + s2pio2 : x - s2pio2);
-		*cos = -__cosdf(sign ? x + s2pio2 : x - s2pio2);
-		return;
-	}
+  /* |x| ~<= 5*pi/4 */
+  if (ix <= 0x407b53d1) {
+    if (ix <= 0x4016cbe3) { /* |x| ~<= 3pi/4 */
+      if (sign) {
+        *sin = -__cosdf(x + s1pio2);
+        *cos = __sindf(x + s1pio2);
+      } else {
+        *sin = __cosdf(s1pio2 - x);
+        *cos = __sindf(s1pio2 - x);
+      }
+      return;
+    }
+    /* -sin(x+c) is not correct if x+c could be 0: -0 vs +0 */
+    *sin = -__sindf(sign ? x + s2pio2 : x - s2pio2);
+    *cos = -__cosdf(sign ? x + s2pio2 : x - s2pio2);
+    return;
+  }
 
-	/* |x| ~<= 9*pi/4 */
-	if (ix <= 0x40e231d5) {
-		if (ix <= 0x40afeddf) {  /* |x| ~<= 7*pi/4 */
-			if (sign) {
-				*sin = __cosdf(x + s3pio2);
-				*cos = -__sindf(x + s3pio2);
-			} else {
-				*sin = -__cosdf(x - s3pio2);
-				*cos = __sindf(x - s3pio2);
-			}
-			return;
-		}
-		*sin = __sindf(sign ? x + s4pio2 : x - s4pio2);
-		*cos = __cosdf(sign ? x + s4pio2 : x - s4pio2);
-		return;
-	}
+  /* |x| ~<= 9*pi/4 */
+  if (ix <= 0x40e231d5) {
+    if (ix <= 0x40afeddf) { /* |x| ~<= 7*pi/4 */
+      if (sign) {
+        *sin = __cosdf(x + s3pio2);
+        *cos = -__sindf(x + s3pio2);
+      } else {
+        *sin = -__cosdf(x - s3pio2);
+        *cos = __sindf(x - s3pio2);
+      }
+      return;
+    }
+    *sin = __sindf(sign ? x + s4pio2 : x - s4pio2);
+    *cos = __cosdf(sign ? x + s4pio2 : x - s4pio2);
+    return;
+  }
 
-	/* sin(Inf or NaN) is NaN */
-	if (ix >= 0x7f800000) {
-		*sin = *cos = x - x;
-		return;
-	}
+  /* sin(Inf or NaN) is NaN */
+  if (ix >= 0x7f800000) {
+    *sin = *cos = x - x;
+    return;
+  }
 
-	/* general argument reduction needed */
-	n = __rem_pio2f(x, &y);
-	s = __sindf(y);
-	c = __cosdf(y);
-	switch (n&3) {
-	case 0:
-		*sin = s;
-		*cos = c;
-		break;
-	case 1:
-		*sin = c;
-		*cos = -s;
-		break;
-	case 2:
-		*sin = -s;
-		*cos = -c;
-		break;
-	case 3:
-	default:
-		*sin = -c;
-		*cos = s;
-		break;
-	}
+  /* general argument reduction needed */
+  n = __rem_pio2f(x, &y);
+  s = __sindf(y);
+  c = __cosdf(y);
+  switch (n & 3) {
+    case 0:
+      *sin = s;
+      *cos = c;
+      break;
+    case 1:
+      *sin = c;
+      *cos = -s;
+      break;
+    case 2:
+      *sin = -s;
+      *cos = -c;
+      break;
+    case 3:
+    default:
+      *sin = -c;
+      *cos = s;
+      break;
+  }
 }
diff --git a/fusl/src/math/sincosl.c b/fusl/src/math/sincosl.c
index d3ac1c4..a4f6c28 100644
--- a/fusl/src/math/sincosl.c
+++ b/fusl/src/math/sincosl.c
@@ -2,59 +2,58 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-void sincosl(long double x, long double *sin, long double *cos)
-{
-	double sind, cosd;
-	sincos(x, &sind, &cosd);
-	*sin = sind;
-	*cos = cosd;
+void sincosl(long double x, long double* sin, long double* cos) {
+  double sind, cosd;
+  sincos(x, &sind, &cosd);
+  *sin = sind;
+  *cos = cosd;
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-void sincosl(long double x, long double *sin, long double *cos)
-{
-	union ldshape u = {x};
-	unsigned n;
-	long double y[2], s, c;
+void sincosl(long double x, long double* sin, long double* cos) {
+  union ldshape u = {x};
+  unsigned n;
+  long double y[2], s, c;
 
-	u.i.se &= 0x7fff;
-	if (u.i.se == 0x7fff) {
-		*sin = *cos = x - x;
-		return;
-	}
-	if (u.f < M_PI_4) {
-		if (u.i.se < 0x3fff - LDBL_MANT_DIG) {
-			/* raise underflow if subnormal */
-			if (u.i.se == 0) FORCE_EVAL(x*0x1p-120f);
-			*sin = x;
-			/* raise inexact if x!=0 */
-			*cos = 1.0 + x;
-			return;
-		}
-		*sin = __sinl(x, 0, 0);
-		*cos = __cosl(x, 0);
-		return;
-	}
-	n = __rem_pio2l(x, y);
-	s = __sinl(y[0], y[1], 1);
-	c = __cosl(y[0], y[1]);
-	switch (n & 3) {
-	case 0:
-		*sin = s;
-		*cos = c;
-		break;
-	case 1:
-		*sin = c;
-		*cos = -s;
-		break;
-	case 2:
-		*sin = -s;
-		*cos = -c;
-		break;
-	case 3:
-	default:
-		*sin = -c;
-		*cos = s;
-		break;
-	}
+  u.i.se &= 0x7fff;
+  if (u.i.se == 0x7fff) {
+    *sin = *cos = x - x;
+    return;
+  }
+  if (u.f < M_PI_4) {
+    if (u.i.se < 0x3fff - LDBL_MANT_DIG) {
+      /* raise underflow if subnormal */
+      if (u.i.se == 0)
+        FORCE_EVAL(x * 0x1p-120f);
+      *sin = x;
+      /* raise inexact if x!=0 */
+      *cos = 1.0 + x;
+      return;
+    }
+    *sin = __sinl(x, 0, 0);
+    *cos = __cosl(x, 0);
+    return;
+  }
+  n = __rem_pio2l(x, y);
+  s = __sinl(y[0], y[1], 1);
+  c = __cosl(y[0], y[1]);
+  switch (n & 3) {
+    case 0:
+      *sin = s;
+      *cos = c;
+      break;
+    case 1:
+      *sin = c;
+      *cos = -s;
+      break;
+    case 2:
+      *sin = -s;
+      *cos = -c;
+      break;
+    case 3:
+    default:
+      *sin = -c;
+      *cos = s;
+      break;
+  }
 }
 #endif
diff --git a/fusl/src/math/sinf.c b/fusl/src/math/sinf.c
index 64e39f5..7893625 100644
--- a/fusl/src/math/sinf.c
+++ b/fusl/src/math/sinf.c
@@ -17,60 +17,61 @@
 #include "libm.h"
 
 /* Small multiples of pi/2 rounded to double precision. */
-static const double
-s1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
-s2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
-s3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
-s4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */
+static const double s1pio2 = 1 * M_PI_2, /* 0x3FF921FB, 0x54442D18 */
+    s2pio2 = 2 * M_PI_2,                 /* 0x400921FB, 0x54442D18 */
+    s3pio2 = 3 * M_PI_2,                 /* 0x4012D97C, 0x7F3321D2 */
+    s4pio2 = 4 * M_PI_2;                 /* 0x401921FB, 0x54442D18 */
 
-float sinf(float x)
-{
-	double y;
-	uint32_t ix;
-	int n, sign;
+float sinf(float x) {
+  double y;
+  uint32_t ix;
+  int n, sign;
 
-	GET_FLOAT_WORD(ix, x);
-	sign = ix >> 31;
-	ix &= 0x7fffffff;
+  GET_FLOAT_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
 
-	if (ix <= 0x3f490fda) {  /* |x| ~<= pi/4 */
-		if (ix < 0x39800000) {  /* |x| < 2**-12 */
-			/* raise inexact if x!=0 and underflow if subnormal */
-			FORCE_EVAL(ix < 0x00800000 ? x/0x1p120f : x+0x1p120f);
-			return x;
-		}
-		return __sindf(x);
-	}
-	if (ix <= 0x407b53d1) {  /* |x| ~<= 5*pi/4 */
-		if (ix <= 0x4016cbe3) {  /* |x| ~<= 3pi/4 */
-			if (sign)
-				return -__cosdf(x + s1pio2);
-			else
-				return __cosdf(x - s1pio2);
-		}
-		return __sindf(sign ? -(x + s2pio2) : -(x - s2pio2));
-	}
-	if (ix <= 0x40e231d5) {  /* |x| ~<= 9*pi/4 */
-		if (ix <= 0x40afeddf) {  /* |x| ~<= 7*pi/4 */
-			if (sign)
-				return __cosdf(x + s3pio2);
-			else
-				return -__cosdf(x - s3pio2);
-		}
-		return __sindf(sign ? x + s4pio2 : x - s4pio2);
-	}
+  if (ix <= 0x3f490fda) {  /* |x| ~<= pi/4 */
+    if (ix < 0x39800000) { /* |x| < 2**-12 */
+      /* raise inexact if x!=0 and underflow if subnormal */
+      FORCE_EVAL(ix < 0x00800000 ? x / 0x1p120f : x + 0x1p120f);
+      return x;
+    }
+    return __sindf(x);
+  }
+  if (ix <= 0x407b53d1) {   /* |x| ~<= 5*pi/4 */
+    if (ix <= 0x4016cbe3) { /* |x| ~<= 3pi/4 */
+      if (sign)
+        return -__cosdf(x + s1pio2);
+      else
+        return __cosdf(x - s1pio2);
+    }
+    return __sindf(sign ? -(x + s2pio2) : -(x - s2pio2));
+  }
+  if (ix <= 0x40e231d5) {   /* |x| ~<= 9*pi/4 */
+    if (ix <= 0x40afeddf) { /* |x| ~<= 7*pi/4 */
+      if (sign)
+        return __cosdf(x + s3pio2);
+      else
+        return -__cosdf(x - s3pio2);
+    }
+    return __sindf(sign ? x + s4pio2 : x - s4pio2);
+  }
 
-	/* sin(Inf or NaN) is NaN */
-	if (ix >= 0x7f800000)
-		return x - x;
+  /* sin(Inf or NaN) is NaN */
+  if (ix >= 0x7f800000)
+    return x - x;
 
-	/* general argument reduction needed */
-	n = __rem_pio2f(x, &y);
-	switch (n&3) {
-	case 0: return  __sindf(y);
-	case 1: return  __cosdf(y);
-	case 2: return  __sindf(-y);
-	default:
-		return -__cosdf(y);
-	}
+  /* general argument reduction needed */
+  n = __rem_pio2f(x, &y);
+  switch (n & 3) {
+    case 0:
+      return __sindf(y);
+    case 1:
+      return __cosdf(y);
+    case 2:
+      return __sindf(-y);
+    default:
+      return -__cosdf(y);
+  }
 }
diff --git a/fusl/src/math/sinh.c b/fusl/src/math/sinh.c
index 00022c4..c94e59c 100644
--- a/fusl/src/math/sinh.c
+++ b/fusl/src/math/sinh.c
@@ -4,36 +4,38 @@
  *         = (exp(x)-1 + (exp(x)-1)/exp(x))/2
  *         = x + x^3/6 + o(x^5)
  */
-double sinh(double x)
-{
-	union {double f; uint64_t i;} u = {.f = x};
-	uint32_t w;
-	double t, h, absx;
+double sinh(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {.f = x};
+  uint32_t w;
+  double t, h, absx;
 
-	h = 0.5;
-	if (u.i >> 63)
-		h = -h;
-	/* |x| */
-	u.i &= (uint64_t)-1/2;
-	absx = u.f;
-	w = u.i >> 32;
+  h = 0.5;
+  if (u.i >> 63)
+    h = -h;
+  /* |x| */
+  u.i &= (uint64_t)-1 / 2;
+  absx = u.f;
+  w = u.i >> 32;
 
-	/* |x| < log(DBL_MAX) */
-	if (w < 0x40862e42) {
-		t = expm1(absx);
-		if (w < 0x3ff00000) {
-			if (w < 0x3ff00000 - (26<<20))
-				/* note: inexact and underflow are raised by expm1 */
-				/* note: this branch avoids spurious underflow */
-				return x;
-			return h*(2*t - t*t/(t+1));
-		}
-		/* note: |x|>log(0x1p26)+eps could be just h*exp(x) */
-		return h*(t + t/(t+1));
-	}
+  /* |x| < log(DBL_MAX) */
+  if (w < 0x40862e42) {
+    t = expm1(absx);
+    if (w < 0x3ff00000) {
+      if (w < 0x3ff00000 - (26 << 20))
+        /* note: inexact and underflow are raised by expm1 */
+        /* note: this branch avoids spurious underflow */
+        return x;
+      return h * (2 * t - t * t / (t + 1));
+    }
+    /* note: |x|>log(0x1p26)+eps could be just h*exp(x) */
+    return h * (t + t / (t + 1));
+  }
 
-	/* |x| > log(DBL_MAX) or nan */
-	/* note: the result is stored to handle overflow */
-	t = 2*h*__expo2(absx);
-	return t;
+  /* |x| > log(DBL_MAX) or nan */
+  /* note: the result is stored to handle overflow */
+  t = 2 * h * __expo2(absx);
+  return t;
 }
diff --git a/fusl/src/math/sinhf.c b/fusl/src/math/sinhf.c
index 6ad19ea..705ba77 100644
--- a/fusl/src/math/sinhf.c
+++ b/fusl/src/math/sinhf.c
@@ -1,31 +1,33 @@
 #include "libm.h"
 
-float sinhf(float x)
-{
-	union {float f; uint32_t i;} u = {.f = x};
-	uint32_t w;
-	float t, h, absx;
+float sinhf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {.f = x};
+  uint32_t w;
+  float t, h, absx;
 
-	h = 0.5;
-	if (u.i >> 31)
-		h = -h;
-	/* |x| */
-	u.i &= 0x7fffffff;
-	absx = u.f;
-	w = u.i;
+  h = 0.5;
+  if (u.i >> 31)
+    h = -h;
+  /* |x| */
+  u.i &= 0x7fffffff;
+  absx = u.f;
+  w = u.i;
 
-	/* |x| < log(FLT_MAX) */
-	if (w < 0x42b17217) {
-		t = expm1f(absx);
-		if (w < 0x3f800000) {
-			if (w < 0x3f800000 - (12<<23))
-				return x;
-			return h*(2*t - t*t/(t+1));
-		}
-		return h*(t + t/(t+1));
-	}
+  /* |x| < log(FLT_MAX) */
+  if (w < 0x42b17217) {
+    t = expm1f(absx);
+    if (w < 0x3f800000) {
+      if (w < 0x3f800000 - (12 << 23))
+        return x;
+      return h * (2 * t - t * t / (t + 1));
+    }
+    return h * (t + t / (t + 1));
+  }
 
-	/* |x| > logf(FLT_MAX) or nan */
-	t = 2*h*__expo2f(absx);
-	return t;
+  /* |x| > logf(FLT_MAX) or nan */
+  t = 2 * h * __expo2f(absx);
+  return t;
 }
diff --git a/fusl/src/math/sinhl.c b/fusl/src/math/sinhl.c
index b305d4d..4ef2c17 100644
--- a/fusl/src/math/sinhl.c
+++ b/fusl/src/math/sinhl.c
@@ -1,43 +1,40 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double sinhl(long double x)
-{
-	return sinh(x);
+long double sinhl(long double x) {
+  return sinh(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-long double sinhl(long double x)
-{
-	union ldshape u = {x};
-	unsigned ex = u.i.se & 0x7fff;
-	long double h, t, absx;
+long double sinhl(long double x) {
+  union ldshape u = {x};
+  unsigned ex = u.i.se & 0x7fff;
+  long double h, t, absx;
 
-	h = 0.5;
-	if (u.i.se & 0x8000)
-		h = -h;
-	/* |x| */
-	u.i.se = ex;
-	absx = u.f;
+  h = 0.5;
+  if (u.i.se & 0x8000)
+    h = -h;
+  /* |x| */
+  u.i.se = ex;
+  absx = u.f;
 
-	/* |x| < log(LDBL_MAX) */
-	if (ex < 0x3fff+13 || (ex == 0x3fff+13 && u.i.m>>32 < 0xb17217f7)) {
-		t = expm1l(absx);
-		if (ex < 0x3fff) {
-			if (ex < 0x3fff-32)
-				return x;
-			return h*(2*t - t*t/(1+t));
-		}
-		return h*(t + t/(t+1));
-	}
+  /* |x| < log(LDBL_MAX) */
+  if (ex < 0x3fff + 13 || (ex == 0x3fff + 13 && u.i.m >> 32 < 0xb17217f7)) {
+    t = expm1l(absx);
+    if (ex < 0x3fff) {
+      if (ex < 0x3fff - 32)
+        return x;
+      return h * (2 * t - t * t / (1 + t));
+    }
+    return h * (t + t / (t + 1));
+  }
 
-	/* |x| > log(LDBL_MAX) or nan */
-	t = expl(0.5*absx);
-	return h*t*t;
+  /* |x| > log(LDBL_MAX) or nan */
+  t = expl(0.5 * absx);
+  return h * t * t;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double sinhl(long double x)
-{
-	return sinh(x);
+long double sinhl(long double x) {
+  return sinh(x);
 }
 #endif
diff --git a/fusl/src/math/sinl.c b/fusl/src/math/sinl.c
index 9c0b16e..e755374 100644
--- a/fusl/src/math/sinl.c
+++ b/fusl/src/math/sinl.c
@@ -1,41 +1,39 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double sinl(long double x)
-{
-	return sin(x);
+long double sinl(long double x) {
+  return sin(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-long double sinl(long double x)
-{
-	union ldshape u = {x};
-	unsigned n;
-	long double y[2], hi, lo;
+long double sinl(long double x) {
+  union ldshape u = {x};
+  unsigned n;
+  long double y[2], hi, lo;
 
-	u.i.se &= 0x7fff;
-	if (u.i.se == 0x7fff)
-		return x - x;
-	if (u.f < M_PI_4) {
-		if (u.i.se < 0x3fff - LDBL_MANT_DIG/2) {
-			/* raise inexact if x!=0 and underflow if subnormal */
-			FORCE_EVAL(u.i.se == 0 ? x*0x1p-120f : x+0x1p120f);
-			return x;
-		}
-		return __sinl(x, 0.0, 0);
-	}
-	n = __rem_pio2l(x, y);
-	hi = y[0];
-	lo = y[1];
-	switch (n & 3) {
-	case 0:
-		return __sinl(hi, lo, 1);
-	case 1:
-		return __cosl(hi, lo);
-	case 2:
-		return -__sinl(hi, lo, 1);
-	case 3:
-	default:
-		return -__cosl(hi, lo);
-	}
+  u.i.se &= 0x7fff;
+  if (u.i.se == 0x7fff)
+    return x - x;
+  if (u.f < M_PI_4) {
+    if (u.i.se < 0x3fff - LDBL_MANT_DIG / 2) {
+      /* raise inexact if x!=0 and underflow if subnormal */
+      FORCE_EVAL(u.i.se == 0 ? x * 0x1p-120f : x + 0x1p120f);
+      return x;
+    }
+    return __sinl(x, 0.0, 0);
+  }
+  n = __rem_pio2l(x, y);
+  hi = y[0];
+  lo = y[1];
+  switch (n & 3) {
+    case 0:
+      return __sinl(hi, lo, 1);
+    case 1:
+      return __cosl(hi, lo);
+    case 2:
+      return -__sinl(hi, lo, 1);
+    case 3:
+    default:
+      return -__cosl(hi, lo);
+  }
 }
 #endif
diff --git a/fusl/src/math/sqrt.c b/fusl/src/math/sqrt.c
index b277567..ff184fa 100644
--- a/fusl/src/math/sqrt.c
+++ b/fusl/src/math/sqrt.c
@@ -80,106 +80,105 @@
 
 static const double tiny = 1.0e-300;
 
-double sqrt(double x)
-{
-	double z;
-	int32_t sign = (int)0x80000000;
-	int32_t ix0,s0,q,m,t,i;
-	uint32_t r,t1,s1,ix1,q1;
+double sqrt(double x) {
+  double z;
+  int32_t sign = (int)0x80000000;
+  int32_t ix0, s0, q, m, t, i;
+  uint32_t r, t1, s1, ix1, q1;
 
-	EXTRACT_WORDS(ix0, ix1, x);
+  EXTRACT_WORDS(ix0, ix1, x);
 
-	/* take care of Inf and NaN */
-	if ((ix0&0x7ff00000) == 0x7ff00000) {
-		return x*x + x;  /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
-	}
-	/* take care of zero */
-	if (ix0 <= 0) {
-		if (((ix0&~sign)|ix1) == 0)
-			return x;  /* sqrt(+-0) = +-0 */
-		if (ix0 < 0)
-			return (x-x)/(x-x);  /* sqrt(-ve) = sNaN */
-	}
-	/* normalize x */
-	m = ix0>>20;
-	if (m == 0) {  /* subnormal x */
-		while (ix0 == 0) {
-			m -= 21;
-			ix0 |= (ix1>>11);
-			ix1 <<= 21;
-		}
-		for (i=0; (ix0&0x00100000) == 0; i++)
-			ix0<<=1;
-		m -= i - 1;
-		ix0 |= ix1>>(32-i);
-		ix1 <<= i;
-	}
-	m -= 1023;    /* unbias exponent */
-	ix0 = (ix0&0x000fffff)|0x00100000;
-	if (m & 1) {  /* odd m, double x to make it even */
-		ix0 += ix0 + ((ix1&sign)>>31);
-		ix1 += ix1;
-	}
-	m >>= 1;      /* m = [m/2] */
+  /* take care of Inf and NaN */
+  if ((ix0 & 0x7ff00000) == 0x7ff00000) {
+    return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
+  }
+  /* take care of zero */
+  if (ix0 <= 0) {
+    if (((ix0 & ~sign) | ix1) == 0)
+      return x; /* sqrt(+-0) = +-0 */
+    if (ix0 < 0)
+      return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
+  }
+  /* normalize x */
+  m = ix0 >> 20;
+  if (m == 0) { /* subnormal x */
+    while (ix0 == 0) {
+      m -= 21;
+      ix0 |= (ix1 >> 11);
+      ix1 <<= 21;
+    }
+    for (i = 0; (ix0 & 0x00100000) == 0; i++)
+      ix0 <<= 1;
+    m -= i - 1;
+    ix0 |= ix1 >> (32 - i);
+    ix1 <<= i;
+  }
+  m -= 1023; /* unbias exponent */
+  ix0 = (ix0 & 0x000fffff) | 0x00100000;
+  if (m & 1) { /* odd m, double x to make it even */
+    ix0 += ix0 + ((ix1 & sign) >> 31);
+    ix1 += ix1;
+  }
+  m >>= 1; /* m = [m/2] */
 
-	/* generate sqrt(x) bit by bit */
-	ix0 += ix0 + ((ix1&sign)>>31);
-	ix1 += ix1;
-	q = q1 = s0 = s1 = 0;  /* [q,q1] = sqrt(x) */
-	r = 0x00200000;        /* r = moving bit from right to left */
+  /* generate sqrt(x) bit by bit */
+  ix0 += ix0 + ((ix1 & sign) >> 31);
+  ix1 += ix1;
+  q = q1 = s0 = s1 = 0; /* [q,q1] = sqrt(x) */
+  r = 0x00200000;       /* r = moving bit from right to left */
 
-	while (r != 0) {
-		t = s0 + r;
-		if (t <= ix0) {
-			s0   = t + r;
-			ix0 -= t;
-			q   += r;
-		}
-		ix0 += ix0 + ((ix1&sign)>>31);
-		ix1 += ix1;
-		r >>= 1;
-	}
+  while (r != 0) {
+    t = s0 + r;
+    if (t <= ix0) {
+      s0 = t + r;
+      ix0 -= t;
+      q += r;
+    }
+    ix0 += ix0 + ((ix1 & sign) >> 31);
+    ix1 += ix1;
+    r >>= 1;
+  }
 
-	r = sign;
-	while (r != 0) {
-		t1 = s1 + r;
-		t  = s0;
-		if (t < ix0 || (t == ix0 && t1 <= ix1)) {
-			s1 = t1 + r;
-			if ((t1&sign) == sign && (s1&sign) == 0)
-				s0++;
-			ix0 -= t;
-			if (ix1 < t1)
-				ix0--;
-			ix1 -= t1;
-			q1 += r;
-		}
-		ix0 += ix0 + ((ix1&sign)>>31);
-		ix1 += ix1;
-		r >>= 1;
-	}
+  r = sign;
+  while (r != 0) {
+    t1 = s1 + r;
+    t = s0;
+    if (t < ix0 || (t == ix0 && t1 <= ix1)) {
+      s1 = t1 + r;
+      if ((t1 & sign) == sign && (s1 & sign) == 0)
+        s0++;
+      ix0 -= t;
+      if (ix1 < t1)
+        ix0--;
+      ix1 -= t1;
+      q1 += r;
+    }
+    ix0 += ix0 + ((ix1 & sign) >> 31);
+    ix1 += ix1;
+    r >>= 1;
+  }
 
-	/* use floating add to find out rounding direction */
-	if ((ix0|ix1) != 0) {
-		z = 1.0 - tiny; /* raise inexact flag */
-		if (z >= 1.0) {
-			z = 1.0 + tiny;
-			if (q1 == (uint32_t)0xffffffff) {
-				q1 = 0;
-				q++;
-			} else if (z > 1.0) {
-				if (q1 == (uint32_t)0xfffffffe)
-					q++;
-				q1 += 2;
-			} else
-				q1 += q1 & 1;
-		}
-	}
-	ix0 = (q>>1) + 0x3fe00000;
-	ix1 = q1>>1;
-	if (q&1)
-		ix1 |= sign;
-	ix0 += m << 20;
-	INSERT_WORDS(z, ix0, ix1);
-	return z;
+  /* use floating add to find out rounding direction */
+  if ((ix0 | ix1) != 0) {
+    z = 1.0 - tiny; /* raise inexact flag */
+    if (z >= 1.0) {
+      z = 1.0 + tiny;
+      if (q1 == (uint32_t)0xffffffff) {
+        q1 = 0;
+        q++;
+      } else if (z > 1.0) {
+        if (q1 == (uint32_t)0xfffffffe)
+          q++;
+        q1 += 2;
+      } else
+        q1 += q1 & 1;
+    }
+  }
+  ix0 = (q >> 1) + 0x3fe00000;
+  ix1 = q1 >> 1;
+  if (q & 1)
+    ix1 |= sign;
+  ix0 += m << 20;
+  INSERT_WORDS(z, ix0, ix1);
+  return z;
 }
diff --git a/fusl/src/math/sqrtf.c b/fusl/src/math/sqrtf.c
index 28cb4ad..329a00a 100644
--- a/fusl/src/math/sqrtf.c
+++ b/fusl/src/math/sqrtf.c
@@ -17,68 +17,67 @@
 
 static const float tiny = 1.0e-30;
 
-float sqrtf(float x)
-{
-	float z;
-	int32_t sign = (int)0x80000000;
-	int32_t ix,s,q,m,t,i;
-	uint32_t r;
+float sqrtf(float x) {
+  float z;
+  int32_t sign = (int)0x80000000;
+  int32_t ix, s, q, m, t, i;
+  uint32_t r;
 
-	GET_FLOAT_WORD(ix, x);
+  GET_FLOAT_WORD(ix, x);
 
-	/* take care of Inf and NaN */
-	if ((ix&0x7f800000) == 0x7f800000)
-		return x*x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
+  /* take care of Inf and NaN */
+  if ((ix & 0x7f800000) == 0x7f800000)
+    return x * x + x; /* sqrt(NaN)=NaN, sqrt(+inf)=+inf, sqrt(-inf)=sNaN */
 
-	/* take care of zero */
-	if (ix <= 0) {
-		if ((ix&~sign) == 0)
-			return x;  /* sqrt(+-0) = +-0 */
-		if (ix < 0)
-			return (x-x)/(x-x);  /* sqrt(-ve) = sNaN */
-	}
-	/* normalize x */
-	m = ix>>23;
-	if (m == 0) {  /* subnormal x */
-		for (i = 0; (ix&0x00800000) == 0; i++)
-			ix<<=1;
-		m -= i - 1;
-	}
-	m -= 127;  /* unbias exponent */
-	ix = (ix&0x007fffff)|0x00800000;
-	if (m&1)  /* odd m, double x to make it even */
-		ix += ix;
-	m >>= 1;  /* m = [m/2] */
+  /* take care of zero */
+  if (ix <= 0) {
+    if ((ix & ~sign) == 0)
+      return x; /* sqrt(+-0) = +-0 */
+    if (ix < 0)
+      return (x - x) / (x - x); /* sqrt(-ve) = sNaN */
+  }
+  /* normalize x */
+  m = ix >> 23;
+  if (m == 0) { /* subnormal x */
+    for (i = 0; (ix & 0x00800000) == 0; i++)
+      ix <<= 1;
+    m -= i - 1;
+  }
+  m -= 127; /* unbias exponent */
+  ix = (ix & 0x007fffff) | 0x00800000;
+  if (m & 1) /* odd m, double x to make it even */
+    ix += ix;
+  m >>= 1; /* m = [m/2] */
 
-	/* generate sqrt(x) bit by bit */
-	ix += ix;
-	q = s = 0;       /* q = sqrt(x) */
-	r = 0x01000000;  /* r = moving bit from right to left */
+  /* generate sqrt(x) bit by bit */
+  ix += ix;
+  q = s = 0;      /* q = sqrt(x) */
+  r = 0x01000000; /* r = moving bit from right to left */
 
-	while (r != 0) {
-		t = s + r;
-		if (t <= ix) {
-			s = t+r;
-			ix -= t;
-			q += r;
-		}
-		ix += ix;
-		r >>= 1;
-	}
+  while (r != 0) {
+    t = s + r;
+    if (t <= ix) {
+      s = t + r;
+      ix -= t;
+      q += r;
+    }
+    ix += ix;
+    r >>= 1;
+  }
 
-	/* use floating add to find out rounding direction */
-	if (ix != 0) {
-		z = 1.0f - tiny; /* raise inexact flag */
-		if (z >= 1.0f) {
-			z = 1.0f + tiny;
-			if (z > 1.0f)
-				q += 2;
-			else
-				q += q & 1;
-		}
-	}
-	ix = (q>>1) + 0x3f000000;
-	ix += m << 23;
-	SET_FLOAT_WORD(z, ix);
-	return z;
+  /* use floating add to find out rounding direction */
+  if (ix != 0) {
+    z = 1.0f - tiny; /* raise inexact flag */
+    if (z >= 1.0f) {
+      z = 1.0f + tiny;
+      if (z > 1.0f)
+        q += 2;
+      else
+        q += q & 1;
+    }
+  }
+  ix = (q >> 1) + 0x3f000000;
+  ix += m << 23;
+  SET_FLOAT_WORD(z, ix);
+  return z;
 }
diff --git a/fusl/src/math/sqrtl.c b/fusl/src/math/sqrtl.c
index 83a8f80..f21f907 100644
--- a/fusl/src/math/sqrtl.c
+++ b/fusl/src/math/sqrtl.c
@@ -1,7 +1,6 @@
 #include <math.h>
 
-long double sqrtl(long double x)
-{
-	/* FIXME: implement in C, this is for LDBL_MANT_DIG == 64 only */
-	return sqrt(x);
+long double sqrtl(long double x) {
+  /* FIXME: implement in C, this is for LDBL_MANT_DIG == 64 only */
+  return sqrt(x);
 }
diff --git a/fusl/src/math/tan.c b/fusl/src/math/tan.c
index 9c724a4..b1da8a4 100644
--- a/fusl/src/math/tan.c
+++ b/fusl/src/math/tan.c
@@ -41,30 +41,29 @@
 
 #include "libm.h"
 
-double tan(double x)
-{
-	double y[2];
-	uint32_t ix;
-	unsigned n;
+double tan(double x) {
+  double y[2];
+  uint32_t ix;
+  unsigned n;
 
-	GET_HIGH_WORD(ix, x);
-	ix &= 0x7fffffff;
+  GET_HIGH_WORD(ix, x);
+  ix &= 0x7fffffff;
 
-	/* |x| ~< pi/4 */
-	if (ix <= 0x3fe921fb) {
-		if (ix < 0x3e400000) { /* |x| < 2**-27 */
-			/* raise inexact if x!=0 and underflow if subnormal */
-			FORCE_EVAL(ix < 0x00100000 ? x/0x1p120f : x+0x1p120f);
-			return x;
-		}
-		return __tan(x, 0.0, 0);
-	}
+  /* |x| ~< pi/4 */
+  if (ix <= 0x3fe921fb) {
+    if (ix < 0x3e400000) { /* |x| < 2**-27 */
+      /* raise inexact if x!=0 and underflow if subnormal */
+      FORCE_EVAL(ix < 0x00100000 ? x / 0x1p120f : x + 0x1p120f);
+      return x;
+    }
+    return __tan(x, 0.0, 0);
+  }
 
-	/* tan(Inf or NaN) is NaN */
-	if (ix >= 0x7ff00000)
-		return x - x;
+  /* tan(Inf or NaN) is NaN */
+  if (ix >= 0x7ff00000)
+    return x - x;
 
-	/* argument reduction */
-	n = __rem_pio2(x, y);
-	return __tan(y[0], y[1], n&1);
+  /* argument reduction */
+  n = __rem_pio2(x, y);
+  return __tan(y[0], y[1], n & 1);
 }
diff --git a/fusl/src/math/tanf.c b/fusl/src/math/tanf.c
index aba1977..04d86c3 100644
--- a/fusl/src/math/tanf.c
+++ b/fusl/src/math/tanf.c
@@ -17,48 +17,46 @@
 #include "libm.h"
 
 /* Small multiples of pi/2 rounded to double precision. */
-static const double
-t1pio2 = 1*M_PI_2, /* 0x3FF921FB, 0x54442D18 */
-t2pio2 = 2*M_PI_2, /* 0x400921FB, 0x54442D18 */
-t3pio2 = 3*M_PI_2, /* 0x4012D97C, 0x7F3321D2 */
-t4pio2 = 4*M_PI_2; /* 0x401921FB, 0x54442D18 */
+static const double t1pio2 = 1 * M_PI_2, /* 0x3FF921FB, 0x54442D18 */
+    t2pio2 = 2 * M_PI_2,                 /* 0x400921FB, 0x54442D18 */
+    t3pio2 = 3 * M_PI_2,                 /* 0x4012D97C, 0x7F3321D2 */
+    t4pio2 = 4 * M_PI_2;                 /* 0x401921FB, 0x54442D18 */
 
-float tanf(float x)
-{
-	double y;
-	uint32_t ix;
-	unsigned n, sign;
+float tanf(float x) {
+  double y;
+  uint32_t ix;
+  unsigned n, sign;
 
-	GET_FLOAT_WORD(ix, x);
-	sign = ix >> 31;
-	ix &= 0x7fffffff;
+  GET_FLOAT_WORD(ix, x);
+  sign = ix >> 31;
+  ix &= 0x7fffffff;
 
-	if (ix <= 0x3f490fda) {  /* |x| ~<= pi/4 */
-		if (ix < 0x39800000) {  /* |x| < 2**-12 */
-			/* raise inexact if x!=0 and underflow if subnormal */
-			FORCE_EVAL(ix < 0x00800000 ? x/0x1p120f : x+0x1p120f);
-			return x;
-		}
-		return __tandf(x, 0);
-	}
-	if (ix <= 0x407b53d1) {  /* |x| ~<= 5*pi/4 */
-		if (ix <= 0x4016cbe3)  /* |x| ~<= 3pi/4 */
-			return __tandf((sign ? x+t1pio2 : x-t1pio2), 1);
-		else
-			return __tandf((sign ? x+t2pio2 : x-t2pio2), 0);
-	}
-	if (ix <= 0x40e231d5) {  /* |x| ~<= 9*pi/4 */
-		if (ix <= 0x40afeddf)  /* |x| ~<= 7*pi/4 */
-			return __tandf((sign ? x+t3pio2 : x-t3pio2), 1);
-		else
-			return __tandf((sign ? x+t4pio2 : x-t4pio2), 0);
-	}
+  if (ix <= 0x3f490fda) {  /* |x| ~<= pi/4 */
+    if (ix < 0x39800000) { /* |x| < 2**-12 */
+      /* raise inexact if x!=0 and underflow if subnormal */
+      FORCE_EVAL(ix < 0x00800000 ? x / 0x1p120f : x + 0x1p120f);
+      return x;
+    }
+    return __tandf(x, 0);
+  }
+  if (ix <= 0x407b53d1) { /* |x| ~<= 5*pi/4 */
+    if (ix <= 0x4016cbe3) /* |x| ~<= 3pi/4 */
+      return __tandf((sign ? x + t1pio2 : x - t1pio2), 1);
+    else
+      return __tandf((sign ? x + t2pio2 : x - t2pio2), 0);
+  }
+  if (ix <= 0x40e231d5) { /* |x| ~<= 9*pi/4 */
+    if (ix <= 0x40afeddf) /* |x| ~<= 7*pi/4 */
+      return __tandf((sign ? x + t3pio2 : x - t3pio2), 1);
+    else
+      return __tandf((sign ? x + t4pio2 : x - t4pio2), 0);
+  }
 
-	/* tan(Inf or NaN) is NaN */
-	if (ix >= 0x7f800000)
-		return x - x;
+  /* tan(Inf or NaN) is NaN */
+  if (ix >= 0x7f800000)
+    return x - x;
 
-	/* argument reduction */
-	n = __rem_pio2f(x, &y);
-	return __tandf(y, n&1);
+  /* argument reduction */
+  n = __rem_pio2f(x, &y);
+  return __tandf(y, n & 1);
 }
diff --git a/fusl/src/math/tanh.c b/fusl/src/math/tanh.c
index 20d6dbc..13fe2f6 100644
--- a/fusl/src/math/tanh.c
+++ b/fusl/src/math/tanh.c
@@ -4,42 +4,45 @@
  *         = (exp(2*x) - 1)/(exp(2*x) - 1 + 2)
  *         = (1 - exp(-2*x))/(exp(-2*x) - 1 + 2)
  */
-double tanh(double x)
-{
-	union {double f; uint64_t i;} u = {.f = x};
-	uint32_t w;
-	int sign;
-	double_t t;
+double tanh(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {.f = x};
+  uint32_t w;
+  int sign;
+  double_t t;
 
-	/* x = |x| */
-	sign = u.i >> 63;
-	u.i &= (uint64_t)-1/2;
-	x = u.f;
-	w = u.i >> 32;
+  /* x = |x| */
+  sign = u.i >> 63;
+  u.i &= (uint64_t)-1 / 2;
+  x = u.f;
+  w = u.i >> 32;
 
-	if (w > 0x3fe193ea) {
-		/* |x| > log(3)/2 ~= 0.5493 or nan */
-		if (w > 0x40340000) {
-			/* |x| > 20 or nan */
-			/* note: this branch avoids raising overflow */
-			t = 1 - 0/x;
-		} else {
-			t = expm1(2*x);
-			t = 1 - 2/(t+2);
-		}
-	} else if (w > 0x3fd058ae) {
-		/* |x| > log(5/3)/2 ~= 0.2554 */
-		t = expm1(2*x);
-		t = t/(t+2);
-	} else if (w >= 0x00100000) {
-		/* |x| >= 0x1p-1022, up to 2ulp error in [0.1,0.2554] */
-		t = expm1(-2*x);
-		t = -t/(t+2);
-	} else {
-		/* |x| is subnormal */
-		/* note: the branch above would not raise underflow in [0x1p-1023,0x1p-1022) */
-		FORCE_EVAL((float)x);
-		t = x;
-	}
-	return sign ? -t : t;
+  if (w > 0x3fe193ea) {
+    /* |x| > log(3)/2 ~= 0.5493 or nan */
+    if (w > 0x40340000) {
+      /* |x| > 20 or nan */
+      /* note: this branch avoids raising overflow */
+      t = 1 - 0 / x;
+    } else {
+      t = expm1(2 * x);
+      t = 1 - 2 / (t + 2);
+    }
+  } else if (w > 0x3fd058ae) {
+    /* |x| > log(5/3)/2 ~= 0.2554 */
+    t = expm1(2 * x);
+    t = t / (t + 2);
+  } else if (w >= 0x00100000) {
+    /* |x| >= 0x1p-1022, up to 2ulp error in [0.1,0.2554] */
+    t = expm1(-2 * x);
+    t = -t / (t + 2);
+  } else {
+    /* |x| is subnormal */
+    /* note: the branch above would not raise underflow in [0x1p-1023,0x1p-1022)
+     */
+    FORCE_EVAL((float)x);
+    t = x;
+  }
+  return sign ? -t : t;
 }
diff --git a/fusl/src/math/tanhf.c b/fusl/src/math/tanhf.c
index 10636fb..7c57ccf 100644
--- a/fusl/src/math/tanhf.c
+++ b/fusl/src/math/tanhf.c
@@ -1,39 +1,41 @@
 #include "libm.h"
 
-float tanhf(float x)
-{
-	union {float f; uint32_t i;} u = {.f = x};
-	uint32_t w;
-	int sign;
-	float t;
+float tanhf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {.f = x};
+  uint32_t w;
+  int sign;
+  float t;
 
-	/* x = |x| */
-	sign = u.i >> 31;
-	u.i &= 0x7fffffff;
-	x = u.f;
-	w = u.i;
+  /* x = |x| */
+  sign = u.i >> 31;
+  u.i &= 0x7fffffff;
+  x = u.f;
+  w = u.i;
 
-	if (w > 0x3f0c9f54) {
-		/* |x| > log(3)/2 ~= 0.5493 or nan */
-		if (w > 0x41200000) {
-			/* |x| > 10 */
-			t = 1 + 0/x;
-		} else {
-			t = expm1f(2*x);
-			t = 1 - 2/(t+2);
-		}
-	} else if (w > 0x3e82c578) {
-		/* |x| > log(5/3)/2 ~= 0.2554 */
-		t = expm1f(2*x);
-		t = t/(t+2);
-	} else if (w >= 0x00800000) {
-		/* |x| >= 0x1p-126 */
-		t = expm1f(-2*x);
-		t = -t/(t+2);
-	} else {
-		/* |x| is subnormal */
-		FORCE_EVAL(x*x);
-		t = x;
-	}
-	return sign ? -t : t;
+  if (w > 0x3f0c9f54) {
+    /* |x| > log(3)/2 ~= 0.5493 or nan */
+    if (w > 0x41200000) {
+      /* |x| > 10 */
+      t = 1 + 0 / x;
+    } else {
+      t = expm1f(2 * x);
+      t = 1 - 2 / (t + 2);
+    }
+  } else if (w > 0x3e82c578) {
+    /* |x| > log(5/3)/2 ~= 0.2554 */
+    t = expm1f(2 * x);
+    t = t / (t + 2);
+  } else if (w >= 0x00800000) {
+    /* |x| >= 0x1p-126 */
+    t = expm1f(-2 * x);
+    t = -t / (t + 2);
+  } else {
+    /* |x| is subnormal */
+    FORCE_EVAL(x * x);
+    t = x;
+  }
+  return sign ? -t : t;
 }
diff --git a/fusl/src/math/tanhl.c b/fusl/src/math/tanhl.c
index 4e1aa9f..64389b1 100644
--- a/fusl/src/math/tanhl.c
+++ b/fusl/src/math/tanhl.c
@@ -1,48 +1,45 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double tanhl(long double x)
-{
-	return tanh(x);
+long double tanhl(long double x) {
+  return tanh(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
-long double tanhl(long double x)
-{
-	union ldshape u = {x};
-	unsigned ex = u.i.se & 0x7fff;
-	unsigned sign = u.i.se & 0x8000;
-	uint32_t w;
-	long double t;
+long double tanhl(long double x) {
+  union ldshape u = {x};
+  unsigned ex = u.i.se & 0x7fff;
+  unsigned sign = u.i.se & 0x8000;
+  uint32_t w;
+  long double t;
 
-	/* x = |x| */
-	u.i.se = ex;
-	x = u.f;
-	w = u.i.m >> 32;
+  /* x = |x| */
+  u.i.se = ex;
+  x = u.f;
+  w = u.i.m >> 32;
 
-	if (ex > 0x3ffe || (ex == 0x3ffe && w > 0x8c9f53d5)) {
-		/* |x| > log(3)/2 ~= 0.5493 or nan */
-		if (ex >= 0x3fff+5) {
-			/* |x| >= 32 */
-			t = 1 + 0/(x + 0x1p-120f);
-		} else {
-			t = expm1l(2*x);
-			t = 1 - 2/(t+2);
-		}
-	} else if (ex > 0x3ffd || (ex == 0x3ffd && w > 0x82c577d4)) {
-		/* |x| > log(5/3)/2 ~= 0.2554 */
-		t = expm1l(2*x);
-		t = t/(t+2);
-	} else {
-		/* |x| is small */
-		t = expm1l(-2*x);
-		t = -t/(t+2);
-	}
-	return sign ? -t : t;
+  if (ex > 0x3ffe || (ex == 0x3ffe && w > 0x8c9f53d5)) {
+    /* |x| > log(3)/2 ~= 0.5493 or nan */
+    if (ex >= 0x3fff + 5) {
+      /* |x| >= 32 */
+      t = 1 + 0 / (x + 0x1p-120f);
+    } else {
+      t = expm1l(2 * x);
+      t = 1 - 2 / (t + 2);
+    }
+  } else if (ex > 0x3ffd || (ex == 0x3ffd && w > 0x82c577d4)) {
+    /* |x| > log(5/3)/2 ~= 0.2554 */
+    t = expm1l(2 * x);
+    t = t / (t + 2);
+  } else {
+    /* |x| is small */
+    t = expm1l(-2 * x);
+    t = -t / (t + 2);
+  }
+  return sign ? -t : t;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double tanhl(long double x)
-{
-	return tanh(x);
+long double tanhl(long double x) {
+  return tanh(x);
 }
 #endif
diff --git a/fusl/src/math/tanl.c b/fusl/src/math/tanl.c
index 6af0671..7888309 100644
--- a/fusl/src/math/tanl.c
+++ b/fusl/src/math/tanl.c
@@ -1,29 +1,27 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double tanl(long double x)
-{
-	return tan(x);
+long double tanl(long double x) {
+  return tan(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
-long double tanl(long double x)
-{
-	union ldshape u = {x};
-	long double y[2];
-	unsigned n;
+long double tanl(long double x) {
+  union ldshape u = {x};
+  long double y[2];
+  unsigned n;
 
-	u.i.se &= 0x7fff;
-	if (u.i.se == 0x7fff)
-		return x - x;
-	if (u.f < M_PI_4) {
-		if (u.i.se < 0x3fff - LDBL_MANT_DIG/2) {
-			/* raise inexact if x!=0 and underflow if subnormal */
-			FORCE_EVAL(u.i.se == 0 ? x*0x1p-120f : x+0x1p120f);
-			return x;
-		}
-		return __tanl(x, 0, 0);
-	}
-	n = __rem_pio2l(x, y);
-	return __tanl(y[0], y[1], n&1);
+  u.i.se &= 0x7fff;
+  if (u.i.se == 0x7fff)
+    return x - x;
+  if (u.f < M_PI_4) {
+    if (u.i.se < 0x3fff - LDBL_MANT_DIG / 2) {
+      /* raise inexact if x!=0 and underflow if subnormal */
+      FORCE_EVAL(u.i.se == 0 ? x * 0x1p-120f : x + 0x1p120f);
+      return x;
+    }
+    return __tanl(x, 0, 0);
+  }
+  n = __rem_pio2l(x, y);
+  return __tanl(y[0], y[1], n & 1);
 }
 #endif
diff --git a/fusl/src/math/tgamma.c b/fusl/src/math/tgamma.c
index 28f6e0f..feb0616 100644
--- a/fusl/src/math/tgamma.c
+++ b/fusl/src/math/tgamma.c
@@ -27,147 +27,166 @@
 static const double pi = 3.141592653589793238462643383279502884;
 
 /* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */
-static double sinpi(double x)
-{
-	int n;
+static double sinpi(double x) {
+  int n;
 
-	/* argument reduction: x = |x| mod 2 */
-	/* spurious inexact when x is odd int */
-	x = x * 0.5;
-	x = 2 * (x - floor(x));
+  /* argument reduction: x = |x| mod 2 */
+  /* spurious inexact when x is odd int */
+  x = x * 0.5;
+  x = 2 * (x - floor(x));
 
-	/* reduce x into [-.25,.25] */
-	n = 4 * x;
-	n = (n+1)/2;
-	x -= n * 0.5;
+  /* reduce x into [-.25,.25] */
+  n = 4 * x;
+  n = (n + 1) / 2;
+  x -= n * 0.5;
 
-	x *= pi;
-	switch (n) {
-	default: /* case 4 */
-	case 0:
-		return __sin(x, 0, 0);
-	case 1:
-		return __cos(x, 0);
-	case 2:
-		return __sin(-x, 0, 0);
-	case 3:
-		return -__cos(x, 0);
-	}
+  x *= pi;
+  switch (n) {
+    default: /* case 4 */
+    case 0:
+      return __sin(x, 0, 0);
+    case 1:
+      return __cos(x, 0);
+    case 2:
+      return __sin(-x, 0, 0);
+    case 3:
+      return -__cos(x, 0);
+  }
 }
 
 #define N 12
-//static const double g = 6.024680040776729583740234375;
+// static const double g = 6.024680040776729583740234375;
 static const double gmhalf = 5.524680040776729583740234375;
-static const double Snum[N+1] = {
-	23531376880.410759688572007674451636754734846804940,
-	42919803642.649098768957899047001988850926355848959,
-	35711959237.355668049440185451547166705960488635843,
-	17921034426.037209699919755754458931112671403265390,
-	6039542586.3520280050642916443072979210699388420708,
-	1439720407.3117216736632230727949123939715485786772,
-	248874557.86205415651146038641322942321632125127801,
-	31426415.585400194380614231628318205362874684987640,
-	2876370.6289353724412254090516208496135991145378768,
-	186056.26539522349504029498971604569928220784236328,
-	8071.6720023658162106380029022722506138218516325024,
-	210.82427775157934587250973392071336271166969580291,
-	2.5066282746310002701649081771338373386264310793408,
+static const double Snum[N + 1] = {
+    23531376880.410759688572007674451636754734846804940,
+    42919803642.649098768957899047001988850926355848959,
+    35711959237.355668049440185451547166705960488635843,
+    17921034426.037209699919755754458931112671403265390,
+    6039542586.3520280050642916443072979210699388420708,
+    1439720407.3117216736632230727949123939715485786772,
+    248874557.86205415651146038641322942321632125127801,
+    31426415.585400194380614231628318205362874684987640,
+    2876370.6289353724412254090516208496135991145378768,
+    186056.26539522349504029498971604569928220784236328,
+    8071.6720023658162106380029022722506138218516325024,
+    210.82427775157934587250973392071336271166969580291,
+    2.5066282746310002701649081771338373386264310793408,
 };
-static const double Sden[N+1] = {
-	0, 39916800, 120543840, 150917976, 105258076, 45995730, 13339535,
-	2637558, 357423, 32670, 1925, 66, 1,
+static const double Sden[N + 1] = {
+    0,       39916800, 120543840, 150917976, 105258076, 45995730, 13339535,
+    2637558, 357423,   32670,     1925,      66,        1,
 };
 /* n! for small integer n */
 static const double fact[] = {
-	1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0,
-	479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0,
-	355687428096000.0, 6402373705728000.0, 121645100408832000.0,
-	2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0,
+    1,
+    1,
+    2,
+    6,
+    24,
+    120,
+    720,
+    5040.0,
+    40320.0,
+    362880.0,
+    3628800.0,
+    39916800.0,
+    479001600.0,
+    6227020800.0,
+    87178291200.0,
+    1307674368000.0,
+    20922789888000.0,
+    355687428096000.0,
+    6402373705728000.0,
+    121645100408832000.0,
+    2432902008176640000.0,
+    51090942171709440000.0,
+    1124000727777607680000.0,
 };
 
 /* S(x) rational function for positive x */
-static double S(double x)
-{
-	double_t num = 0, den = 0;
-	int i;
+static double S(double x) {
+  double_t num = 0, den = 0;
+  int i;
 
-	/* to avoid overflow handle large x differently */
-	if (x < 8)
-		for (i = N; i >= 0; i--) {
-			num = num * x + Snum[i];
-			den = den * x + Sden[i];
-		}
-	else
-		for (i = 0; i <= N; i++) {
-			num = num / x + Snum[i];
-			den = den / x + Sden[i];
-		}
-	return num/den;
+  /* to avoid overflow handle large x differently */
+  if (x < 8)
+    for (i = N; i >= 0; i--) {
+      num = num * x + Snum[i];
+      den = den * x + Sden[i];
+    }
+  else
+    for (i = 0; i <= N; i++) {
+      num = num / x + Snum[i];
+      den = den / x + Sden[i];
+    }
+  return num / den;
 }
 
-double tgamma(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	double absx, y;
-	double_t dy, z, r;
-	uint32_t ix = u.i>>32 & 0x7fffffff;
-	int sign = u.i>>63;
+double tgamma(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  double absx, y;
+  double_t dy, z, r;
+  uint32_t ix = u.i >> 32 & 0x7fffffff;
+  int sign = u.i >> 63;
 
-	/* special cases */
-	if (ix >= 0x7ff00000)
-		/* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */
-		return x + INFINITY;
-	if (ix < (0x3ff-54)<<20)
-		/* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
-		return 1/x;
+  /* special cases */
+  if (ix >= 0x7ff00000)
+    /* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */
+    return x + INFINITY;
+  if (ix < (0x3ff - 54) << 20)
+    /* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */
+    return 1 / x;
 
-	/* integer arguments */
-	/* raise inexact when non-integer */
-	if (x == floor(x)) {
-		if (sign)
-			return 0/0.0;
-		if (x <= sizeof fact/sizeof *fact)
-			return fact[(int)x - 1];
-	}
+  /* integer arguments */
+  /* raise inexact when non-integer */
+  if (x == floor(x)) {
+    if (sign)
+      return 0 / 0.0;
+    if (x <= sizeof fact / sizeof *fact)
+      return fact[(int)x - 1];
+  }
 
-	/* x >= 172: tgamma(x)=inf with overflow */
-	/* x =< -184: tgamma(x)=+-0 with underflow */
-	if (ix >= 0x40670000) { /* |x| >= 184 */
-		if (sign) {
-			FORCE_EVAL((float)(0x1p-126/x));
-			if (floor(x) * 0.5 == floor(x * 0.5))
-				return 0;
-			return -0.0;
-		}
-		x *= 0x1p1023;
-		return x;
-	}
+  /* x >= 172: tgamma(x)=inf with overflow */
+  /* x =< -184: tgamma(x)=+-0 with underflow */
+  if (ix >= 0x40670000) { /* |x| >= 184 */
+    if (sign) {
+      FORCE_EVAL((float)(0x1p-126 / x));
+      if (floor(x) * 0.5 == floor(x * 0.5))
+        return 0;
+      return -0.0;
+    }
+    x *= 0x1p1023;
+    return x;
+  }
 
-	absx = sign ? -x : x;
+  absx = sign ? -x : x;
 
-	/* handle the error of x + g - 0.5 */
-	y = absx + gmhalf;
-	if (absx > gmhalf) {
-		dy = y - absx;
-		dy -= gmhalf;
-	} else {
-		dy = y - gmhalf;
-		dy -= absx;
-	}
+  /* handle the error of x + g - 0.5 */
+  y = absx + gmhalf;
+  if (absx > gmhalf) {
+    dy = y - absx;
+    dy -= gmhalf;
+  } else {
+    dy = y - gmhalf;
+    dy -= absx;
+  }
 
-	z = absx - 0.5;
-	r = S(absx) * exp(-y);
-	if (x < 0) {
-		/* reflection formula for negative x */
-		/* sinpi(absx) is not 0, integers are already handled */
-		r = -pi / (sinpi(absx) * absx * r);
-		dy = -dy;
-		z = -z;
-	}
-	r += dy * (gmhalf+0.5) * r / y;
-	z = pow(y, 0.5*z);
-	y = r * z * z;
-	return y;
+  z = absx - 0.5;
+  r = S(absx) * exp(-y);
+  if (x < 0) {
+    /* reflection formula for negative x */
+    /* sinpi(absx) is not 0, integers are already handled */
+    r = -pi / (sinpi(absx) * absx * r);
+    dy = -dy;
+    z = -z;
+  }
+  r += dy * (gmhalf + 0.5) * r / y;
+  z = pow(y, 0.5 * z);
+  y = r * z * z;
+  return y;
 }
 
 #if 0
diff --git a/fusl/src/math/tgammaf.c b/fusl/src/math/tgammaf.c
index b4ca51c..6d8d33f 100644
--- a/fusl/src/math/tgammaf.c
+++ b/fusl/src/math/tgammaf.c
@@ -1,6 +1,5 @@
 #include <math.h>
 
-float tgammaf(float x)
-{
-	return tgamma(x);
+float tgammaf(float x) {
+  return tgamma(x);
 }
diff --git a/fusl/src/math/tgammal.c b/fusl/src/math/tgammal.c
index 5336c5b..9708929 100644
--- a/fusl/src/math/tgammal.c
+++ b/fusl/src/math/tgammal.c
@@ -51,9 +51,8 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double tgammal(long double x)
-{
-	return tgamma(x);
+long double tgammal(long double x) {
+  return tgamma(x);
 }
 #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384
 /*
@@ -65,25 +64,17 @@
 Relative error spread =  8.4e-23
 */
 static const long double P[8] = {
- 4.212760487471622013093E-5L,
- 4.542931960608009155600E-4L,
- 4.092666828394035500949E-3L,
- 2.385363243461108252554E-2L,
- 1.113062816019361559013E-1L,
- 3.629515436640239168939E-1L,
- 8.378004301573126728826E-1L,
- 1.000000000000000000009E0L,
+    4.212760487471622013093E-5L, 4.542931960608009155600E-4L,
+    4.092666828394035500949E-3L, 2.385363243461108252554E-2L,
+    1.113062816019361559013E-1L, 3.629515436640239168939E-1L,
+    8.378004301573126728826E-1L, 1.000000000000000000009E0L,
 };
 static const long double Q[9] = {
--1.397148517476170440917E-5L,
- 2.346584059160635244282E-4L,
--1.237799246653152231188E-3L,
--7.955933682494738320586E-4L,
- 2.773706565840072979165E-2L,
--4.633887671244534213831E-2L,
--2.243510905670329164562E-1L,
- 4.150160950588455434583E-1L,
- 9.999999999999999999908E-1L,
+    -1.397148517476170440917E-5L, 2.346584059160635244282E-4L,
+    -1.237799246653152231188E-3L, -7.955933682494738320586E-4L,
+    2.773706565840072979165E-2L,  -4.633887671244534213831E-2L,
+    -2.243510905670329164562E-1L, 4.150160950588455434583E-1L,
+    9.999999999999999999908E-1L,
 };
 
 /*
@@ -122,15 +113,11 @@
 Relative error spread =  8.8e-4
 */
 static const long double STIR[9] = {
- 7.147391378143610789273E-4L,
--2.363848809501759061727E-5L,
--5.950237554056330156018E-4L,
- 6.989332260623193171870E-5L,
- 7.840334842744753003862E-4L,
--2.294719747873185405699E-4L,
--2.681327161876304418288E-3L,
- 3.472222222230075327854E-3L,
- 8.333333333333331800504E-2L,
+    7.147391378143610789273E-4L,  -2.363848809501759061727E-5L,
+    -5.950237554056330156018E-4L, 6.989332260623193171870E-5L,
+    7.840334842744753003862E-4L,  -2.294719747873185405699E-4L,
+    -2.681327161876304418288E-3L, 3.472222222230075327854E-3L,
+    8.333333333333331800504E-2L,
 };
 
 #define MAXSTIR 1024.0L
@@ -142,15 +129,11 @@
  * Peak relative error 4.2e-23
  */
 static const long double S[9] = {
--1.193945051381510095614E-3L,
- 7.220599478036909672331E-3L,
--9.622023360406271645744E-3L,
--4.219773360705915470089E-2L,
- 1.665386113720805206758E-1L,
--4.200263503403344054473E-2L,
--6.558780715202540684668E-1L,
- 5.772156649015328608253E-1L,
- 1.000000000000000000000E0L,
+    -1.193945051381510095614E-3L, 7.220599478036909672331E-3L,
+    -9.622023360406271645744E-3L, -4.219773360705915470089E-2L,
+    1.665386113720805206758E-1L,  -4.200263503403344054473E-2L,
+    -6.558780715202540684668E-1L, 5.772156649015328608253E-1L,
+    1.000000000000000000000E0L,
 };
 
 /* 1/tgamma(-x) = z P(z)
@@ -160,122 +143,118 @@
  * Relative error spread =  2.5e-24
  */
 static const long double SN[9] = {
- 1.133374167243894382010E-3L,
- 7.220837261893170325704E-3L,
- 9.621911155035976733706E-3L,
--4.219773343731191721664E-2L,
--1.665386113944413519335E-1L,
--4.200263503402112910504E-2L,
- 6.558780715202536547116E-1L,
- 5.772156649015328608727E-1L,
--1.000000000000000000000E0L,
+    1.133374167243894382010E-3L,  7.220837261893170325704E-3L,
+    9.621911155035976733706E-3L,  -4.219773343731191721664E-2L,
+    -1.665386113944413519335E-1L, -4.200263503402112910504E-2L,
+    6.558780715202536547116E-1L,  5.772156649015328608727E-1L,
+    -1.000000000000000000000E0L,
 };
 
 static const long double PIL = 3.1415926535897932384626L;
 
 /* Gamma function computed by Stirling's formula.
  */
-static long double stirf(long double x)
-{
-	long double y, w, v;
+static long double stirf(long double x) {
+  long double y, w, v;
 
-	w = 1.0/x;
-	/* For large x, use rational coefficients from the analytical expansion.  */
-	if (x > 1024.0)
-		w = (((((6.97281375836585777429E-5L * w
-		 + 7.84039221720066627474E-4L) * w
-		 - 2.29472093621399176955E-4L) * w
-		 - 2.68132716049382716049E-3L) * w
-		 + 3.47222222222222222222E-3L) * w
-		 + 8.33333333333333333333E-2L) * w
-		 + 1.0;
-	else
-		w = 1.0 + w * __polevll(w, STIR, 8);
-	y = expl(x);
-	if (x > MAXSTIR) { /* Avoid overflow in pow() */
-		v = powl(x, 0.5L * x - 0.25L);
-		y = v * (v / y);
-	} else {
-		y = powl(x, x - 0.5L) / y;
-	}
-	y = SQTPI * y * w;
-	return y;
+  w = 1.0 / x;
+  /* For large x, use rational coefficients from the analytical expansion.  */
+  if (x > 1024.0)
+    w = (((((6.97281375836585777429E-5L * w + 7.84039221720066627474E-4L) * w -
+            2.29472093621399176955E-4L) *
+               w -
+           2.68132716049382716049E-3L) *
+              w +
+          3.47222222222222222222E-3L) *
+             w +
+         8.33333333333333333333E-2L) *
+            w +
+        1.0;
+  else
+    w = 1.0 + w * __polevll(w, STIR, 8);
+  y = expl(x);
+  if (x > MAXSTIR) { /* Avoid overflow in pow() */
+    v = powl(x, 0.5L * x - 0.25L);
+    y = v * (v / y);
+  } else {
+    y = powl(x, x - 0.5L) / y;
+  }
+  y = SQTPI * y * w;
+  return y;
 }
 
-long double tgammal(long double x)
-{
-	long double p, q, z;
+long double tgammal(long double x) {
+  long double p, q, z;
 
-	if (!isfinite(x))
-		return x + INFINITY;
+  if (!isfinite(x))
+    return x + INFINITY;
 
-	q = fabsl(x);
-	if (q > 13.0) {
-		if (x < 0.0) {
-			p = floorl(q);
-			z = q - p;
-			if (z == 0)
-				return 0 / z;
-			if (q > MAXGAML) {
-				z = 0;
-			} else {
-				if (z > 0.5) {
-					p += 1.0;
-					z = q - p;
-				}
-				z = q * sinl(PIL * z);
-				z = fabsl(z) * stirf(q);
-				z = PIL/z;
-			}
-			if (0.5 * p == floorl(q * 0.5))
-				z = -z;
-		} else if (x > MAXGAML) {
-			z = x * 0x1p16383L;
-		} else {
-			z = stirf(x);
-		}
-		return z;
-	}
+  q = fabsl(x);
+  if (q > 13.0) {
+    if (x < 0.0) {
+      p = floorl(q);
+      z = q - p;
+      if (z == 0)
+        return 0 / z;
+      if (q > MAXGAML) {
+        z = 0;
+      } else {
+        if (z > 0.5) {
+          p += 1.0;
+          z = q - p;
+        }
+        z = q * sinl(PIL * z);
+        z = fabsl(z) * stirf(q);
+        z = PIL / z;
+      }
+      if (0.5 * p == floorl(q * 0.5))
+        z = -z;
+    } else if (x > MAXGAML) {
+      z = x * 0x1p16383L;
+    } else {
+      z = stirf(x);
+    }
+    return z;
+  }
 
-	z = 1.0;
-	while (x >= 3.0) {
-		x -= 1.0;
-		z *= x;
-	}
-	while (x < -0.03125L) {
-		z /= x;
-		x += 1.0;
-	}
-	if (x <= 0.03125L)
-		goto small;
-	while (x < 2.0) {
-		z /= x;
-		x += 1.0;
-	}
-	if (x == 2.0)
-		return z;
+  z = 1.0;
+  while (x >= 3.0) {
+    x -= 1.0;
+    z *= x;
+  }
+  while (x < -0.03125L) {
+    z /= x;
+    x += 1.0;
+  }
+  if (x <= 0.03125L)
+    goto small;
+  while (x < 2.0) {
+    z /= x;
+    x += 1.0;
+  }
+  if (x == 2.0)
+    return z;
 
-	x -= 2.0;
-	p = __polevll(x, P, 7);
-	q = __polevll(x, Q, 8);
-	z = z * p / q;
-	return z;
+  x -= 2.0;
+  p = __polevll(x, P, 7);
+  q = __polevll(x, Q, 8);
+  z = z * p / q;
+  return z;
 
 small:
-	/* z==1 if x was originally +-0 */
-	if (x == 0 && z != 1)
-		return x / x;
-	if (x < 0.0) {
-		x = -x;
-		q = z / (x * __polevll(x, SN, 8));
-	} else
-		q = z / (x * __polevll(x, S, 8));
-	return q;
+  /* z==1 if x was originally +-0 */
+  if (x == 0 && z != 1)
+    return x / x;
+  if (x < 0.0) {
+    x = -x;
+    q = z / (x * __polevll(x, SN, 8));
+  } else
+    q = z / (x * __polevll(x, S, 8));
+  return q;
 }
 #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384
 // TODO: broken implementation to make things compile
-long double tgammal(long double x)
-{
-	return tgamma(x);
+long double tgammal(long double x) {
+  return tgamma(x);
 }
 #endif
diff --git a/fusl/src/math/trunc.c b/fusl/src/math/trunc.c
index d13711b..48c3589 100644
--- a/fusl/src/math/trunc.c
+++ b/fusl/src/math/trunc.c
@@ -1,19 +1,21 @@
 #include "libm.h"
 
-double trunc(double x)
-{
-	union {double f; uint64_t i;} u = {x};
-	int e = (int)(u.i >> 52 & 0x7ff) - 0x3ff + 12;
-	uint64_t m;
+double trunc(double x) {
+  union {
+    double f;
+    uint64_t i;
+  } u = {x};
+  int e = (int)(u.i >> 52 & 0x7ff) - 0x3ff + 12;
+  uint64_t m;
 
-	if (e >= 52 + 12)
-		return x;
-	if (e < 12)
-		e = 1;
-	m = -1ULL >> e;
-	if ((u.i & m) == 0)
-		return x;
-	FORCE_EVAL(x + 0x1p120f);
-	u.i &= ~m;
-	return u.f;
+  if (e >= 52 + 12)
+    return x;
+  if (e < 12)
+    e = 1;
+  m = -1ULL >> e;
+  if ((u.i & m) == 0)
+    return x;
+  FORCE_EVAL(x + 0x1p120f);
+  u.i &= ~m;
+  return u.f;
 }
diff --git a/fusl/src/math/truncf.c b/fusl/src/math/truncf.c
index 1a7d03c..a703662 100644
--- a/fusl/src/math/truncf.c
+++ b/fusl/src/math/truncf.c
@@ -1,19 +1,21 @@
 #include "libm.h"
 
-float truncf(float x)
-{
-	union {float f; uint32_t i;} u = {x};
-	int e = (int)(u.i >> 23 & 0xff) - 0x7f + 9;
-	uint32_t m;
+float truncf(float x) {
+  union {
+    float f;
+    uint32_t i;
+  } u = {x};
+  int e = (int)(u.i >> 23 & 0xff) - 0x7f + 9;
+  uint32_t m;
 
-	if (e >= 23 + 9)
-		return x;
-	if (e < 9)
-		e = 1;
-	m = -1U >> e;
-	if ((u.i & m) == 0)
-		return x;
-	FORCE_EVAL(x + 0x1p120f);
-	u.i &= ~m;
-	return u.f;
+  if (e >= 23 + 9)
+    return x;
+  if (e < 9)
+    e = 1;
+  m = -1U >> e;
+  if ((u.i & m) == 0)
+    return x;
+  FORCE_EVAL(x + 0x1p120f);
+  u.i &= ~m;
+  return u.f;
 }
diff --git a/fusl/src/math/truncl.c b/fusl/src/math/truncl.c
index f07b193..ba2b8f4 100644
--- a/fusl/src/math/truncl.c
+++ b/fusl/src/math/truncl.c
@@ -1,34 +1,32 @@
 #include "libm.h"
 
 #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
-long double truncl(long double x)
-{
-	return trunc(x);
+long double truncl(long double x) {
+  return trunc(x);
 }
 #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
 
-static const long double toint = 1/LDBL_EPSILON;
+static const long double toint = 1 / LDBL_EPSILON;
 
-long double truncl(long double x)
-{
-	union ldshape u = {x};
-	int e = u.i.se & 0x7fff;
-	int s = u.i.se >> 15;
-	long double y;
+long double truncl(long double x) {
+  union ldshape u = {x};
+  int e = u.i.se & 0x7fff;
+  int s = u.i.se >> 15;
+  long double y;
 
-	if (e >= 0x3fff+LDBL_MANT_DIG-1)
-		return x;
-	if (e <= 0x3fff-1) {
-		FORCE_EVAL(x + 0x1p120f);
-		return x*0;
-	}
-	/* y = int(|x|) - |x|, where int(|x|) is an integer neighbor of |x| */
-	if (s)
-		x = -x;
-	y = x + toint - toint - x;
-	if (y > 0)
-		y -= 1;
-	x += y;
-	return s ? -x : x;
+  if (e >= 0x3fff + LDBL_MANT_DIG - 1)
+    return x;
+  if (e <= 0x3fff - 1) {
+    FORCE_EVAL(x + 0x1p120f);
+    return x * 0;
+  }
+  /* y = int(|x|) - |x|, where int(|x|) is an integer neighbor of |x| */
+  if (s)
+    x = -x;
+  y = x + toint - toint - x;
+  if (y > 0)
+    y -= 1;
+  x += y;
+  return s ? -x : x;
 }
 #endif