blob: b26654d066eb9365d48f4bef061325e42ff0e6bc [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef UI_OZONE_PLATFORM_DRI_HARDWARE_DISPLAY_CONTROLLER_H_
#define UI_OZONE_PLATFORM_DRI_HARDWARE_DISPLAY_CONTROLLER_H_
#include <stddef.h>
#include <stdint.h>
#include <xf86drmMode.h>
#include <vector>
#include "base/basictypes.h"
#include "base/memory/scoped_ptr.h"
#include "base/memory/scoped_vector.h"
#include "base/memory/weak_ptr.h"
#include "ui/ozone/platform/dri/dri_wrapper.h"
namespace gfx {
class Point;
}
namespace ui {
class CrtcState;
class ScanoutBuffer;
struct OverlayPlane {
// Simpler constructor for the primary plane.
explicit OverlayPlane(scoped_refptr<ScanoutBuffer> buffer);
OverlayPlane(scoped_refptr<ScanoutBuffer> buffer,
int z_order,
gfx::OverlayTransform plane_transform,
const gfx::Rect& display_bounds,
const gfx::RectF& crop_rect);
~OverlayPlane();
scoped_refptr<ScanoutBuffer> buffer;
int z_order;
gfx::OverlayTransform plane_transform;
gfx::Rect display_bounds;
gfx::RectF crop_rect;
int overlay_plane;
};
typedef std::vector<OverlayPlane> OverlayPlaneList;
// The HDCOz will handle modesettings and scannout operations for hardware
// devices.
//
// In the DRM world there are 3 components that need to be paired up to be able
// to display an image to the monitor: CRTC (cathode ray tube controller),
// encoder and connector. The CRTC determines which framebuffer to read, when
// to scanout and where to scanout. Encoders converts the stream from the CRTC
// to the appropriate format for the connector. The connector is the physical
// connection that monitors connect to.
//
// There is no 1:1:1 pairing for these components. It is possible for an encoder
// to be compatible to multiple CRTCs and each connector can be used with
// multiple encoders. In addition, it is possible to use one CRTC with multiple
// connectors such that we can display the same image on multiple monitors.
//
// For example, the following configuration shows 2 different screens being
// initialized separately.
// ------------- -------------
// | Connector | | Connector |
// | HDMI | | VGA |
// ------------- -------------
// ^ ^
// | |
// ------------- -------------
// | Encoder1 | | Encoder2 |
// ------------- -------------
// ^ ^
// | |
// ------------- -------------
// | CRTC1 | | CRTC2 |
// ------------- -------------
//
// In the following configuration 2 different screens are associated with the
// same CRTC, so on scanout the same framebuffer will be displayed on both
// monitors.
// ------------- -------------
// | Connector | | Connector |
// | HDMI | | VGA |
// ------------- -------------
// ^ ^
// | |
// ------------- -------------
// | Encoder1 | | Encoder2 |
// ------------- -------------
// ^ ^
// | |
// ----------------------
// | CRTC1 |
// ----------------------
//
// Note that it is possible to have more connectors than CRTCs which means that
// only a subset of connectors can be active independently, showing different
// framebuffers. Though, in this case, it would be possible to have all
// connectors active if some use the same CRTC to mirror the display.
class HardwareDisplayController
: public base::SupportsWeakPtr<HardwareDisplayController> {
public:
HardwareDisplayController(DriWrapper* drm,
scoped_ptr<CrtcState> state);
~HardwareDisplayController();
// Performs the initial CRTC configuration. If successful, it will display the
// framebuffer for |primary| with |mode|.
bool Modeset(const OverlayPlane& primary,
drmModeModeInfo mode);
// Reconfigures the CRTC with the current surface and mode.
bool Enable();
// Disables the CRTC.
void Disable();
void QueueOverlayPlane(const OverlayPlane& plane);
// Schedules the |overlays|' framebuffers to be displayed on the next vsync
// event. The event will be posted on the graphics card file descriptor |fd_|
// and it can be read and processed by |drmHandleEvent|. That function can
// define the callback for the page flip event. A generic data argument will
// be presented to the callback. We use that argument to pass in the HDCO
// object the event belongs to.
//
// Between this call and the callback, the framebuffers used in this call
// should not be modified in any way as it would cause screen tearing if the
// hardware performed the flip. Note that the frontbuffer should also not
// be modified as it could still be displayed.
//
// Note that this function does not block. Also, this function should not be
// called again before the page flip occurrs.
//
// Returns true if the page flip was successfully registered, false otherwise.
bool SchedulePageFlip();
// TODO(dnicoara) This should be on the MessageLoop when Ozone can have
// BeginFrame can be triggered explicitly by Ozone.
void WaitForPageFlipEvent();
// Called when the page flip event occurred. The event is provided by the
// kernel when a VBlank event finished. This allows the controller to
// update internal state and propagate the update to the surface.
// The tuple (seconds, useconds) represents the event timestamp. |seconds|
// represents the number of seconds while |useconds| represents the
// microseconds (< 1 second) in the timestamp.
void OnPageFlipEvent(unsigned int frame,
unsigned int seconds,
unsigned int useconds);
// Set the hardware cursor to show the contents of |surface|.
bool SetCursor(scoped_refptr<ScanoutBuffer> buffer);
bool UnsetCursor();
// Moves the hardware cursor to |location|.
bool MoveCursor(const gfx::Point& location);
void AddCrtc(scoped_ptr<CrtcState> state);
scoped_ptr<CrtcState> RemoveCrtc(uint32_t crtc);
bool HasCrtc(uint32_t crtc) const;
bool IsMirrored() const;
bool IsDisabled() const;
gfx::Size GetModeSize() const;
gfx::Point origin() const { return origin_; }
void set_origin(const gfx::Point& origin) { origin_ = origin; }
const drmModeModeInfo& get_mode() const { return mode_; };
uint64_t get_time_of_last_flip() const {
return time_of_last_flip_;
};
private:
bool ModesetCrtc(const scoped_refptr<ScanoutBuffer>& buffer,
drmModeModeInfo mode,
CrtcState* state);
bool SchedulePageFlipOnCrtc(const OverlayPlaneList& overlays,
CrtcState* state);
// Buffers need to be declared first so that they are destroyed last. Needed
// since the controllers may reference the buffers.
OverlayPlaneList current_planes_;
OverlayPlaneList pending_planes_;
scoped_refptr<ScanoutBuffer> cursor_buffer_;
// Object containing the connection to the graphics device and wraps the API
// calls to control it.
DriWrapper* drm_;
// Stores the CRTC configuration. This is used to identify monitors and
// configure them.
ScopedVector<CrtcState> crtc_states_;
gfx::Point origin_;
drmModeModeInfo mode_;
bool is_disabled_;
uint64_t time_of_last_flip_;
// Keeps track of the number of page flips scheduled but not yet serviced (in
// mirror mode each CRTC schedules its own page flip event). This value is
// changed as follows:
// 1) incremented when a successful SchedulePageFlipOnController() occurrs,
// 2) decremented when the page flip callback is triggered,
// 3) reset to 0 when a drmModeSetCrtc is called (via the DriWrapper).
uint32_t pending_page_flips_;
DISALLOW_COPY_AND_ASSIGN(HardwareDisplayController);
};
} // namespace ui
#endif // UI_OZONE_PLATFORM_DRI_HARDWARE_DISPLAY_CONTROLLER_H_