blob: 0755c6e0cd62a7fd24000ec1fcb8eaf61b94ef5d [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef MOJO_SERVICES_MEDIA_COMMON_CPP_RATIO_H_
#define MOJO_SERVICES_MEDIA_COMMON_CPP_RATIO_H_
#include <stdint.h>
#include <limits>
#include "mojo/public/cpp/environment/logging.h"
namespace mojo {
namespace media {
// TODO(dalesat): Consider always allowing inexact results.
// Expresses a non-negative rational number as the ratio between two uint32_t
// values.
struct Ratio {
// Used to indicate overflow of scaling operations.
static constexpr int64_t kOverflow = std::numeric_limits<int64_t>::max();
// Reduces the ratio of *numerator and *denominator.
static void Reduce(uint32_t* numerator, uint32_t* denominator);
// Produces the product of the ratios. If exact is true, DCHECKs on loss of
// precision.
static void Product(uint32_t a_numerator,
uint32_t a_denominator,
uint32_t b_numerator,
uint32_t b_denominator,
uint32_t* product_numerator,
uint32_t* product_denominator,
bool exact = true);
// Produces the product of the ratios and the int64_t as an int64_t. Returns
// kOverflow on overflow.
static int64_t Scale(int64_t value, uint32_t numerator, uint32_t denominator);
// Returns the product of the ratios. If exact is true, DCHECKs on loss of
// precision.
static Ratio Product(const Ratio& a, const Ratio& b, bool exact = true) {
uint32_t result_numerator;
uint32_t result_denominator;
Product(a.numerator(), a.denominator(), b.numerator(), b.denominator(),
&result_numerator, &result_denominator, exact);
return Ratio(result_numerator, result_denominator);
}
Ratio() : numerator_(0), denominator_(1) {}
explicit Ratio(uint32_t numerator) : numerator_(numerator), denominator_(1) {}
Ratio(uint32_t numerator, uint32_t denominator)
: numerator_(numerator), denominator_(denominator) {
MOJO_DCHECK(denominator != 0);
Reduce(&numerator_, &denominator_);
}
// Returns the inverse of the ratio. DCHECKs if the numerator of this ratio
// is zero.
Ratio Inverse() const {
MOJO_DCHECK(numerator_ != 0);
return Ratio(denominator_, numerator_);
}
// Scales the value by this ratio. Returns kOverflow on overflow.
int64_t Scale(int64_t value) const {
return Scale(value, numerator_, denominator_);
}
uint32_t numerator() const { return numerator_; }
uint32_t denominator() const { return denominator_; }
private:
uint32_t numerator_;
uint32_t denominator_;
};
// Tests two ratios for equality.
inline bool operator==(const Ratio& a, const Ratio& b) {
return a.numerator() == b.numerator() && a.denominator() == b.denominator();
}
// Tests two ratios for inequality.
inline bool operator!=(const Ratio& a, const Ratio& b) {
return !(a == b);
}
// Returns the product of the two ratios. DCHECKs on loss of precision.
inline Ratio operator*(const Ratio& a, const Ratio& b) {
return Ratio::Product(a, b);
}
// Returns the product of the ratio and the int64_t. Returns kOverflow on
// overflow.
inline int64_t operator*(const Ratio& a, int64_t b) {
return a.Scale(b);
}
// Returns the product of the ratio and the int64_t. Returns kOverflow on
// overflow.
inline int64_t operator*(int64_t a, const Ratio& b) {
return b.Scale(a);
}
// Returns the the int64_t divided by the ratio. Returns kOverflow on
// overflow.
inline int64_t operator/(int64_t a, const Ratio& b) {
return b.Inverse().Scale(a);
}
} // namespace media
} // namespace mojo
#endif // MOJO_SERVICES_MEDIA_COMMON_CPP_LINEAR_TRANSFORM_H_