blob: dd3a63175bf840e0cb2e987689cbf2b4c1089852 [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
/*
* Copyright (C) 2011 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MOJO_SERVICES_MEDIA_COMMON_CPP_LINEAR_TRANSFORM_H_
#define MOJO_SERVICES_MEDIA_COMMON_CPP_LINEAR_TRANSFORM_H_
#include <stdint.h>
#include <iosfwd>
namespace mojo {
namespace media {
// LinearTransform defines a structure which hold the definition of a
// transformation from single dimensional coordinate system A into coordinate
// system B (and back again). Values in A and in B are 64 bit, the linear
// scale factor is expressed as a rational number using two 32 bit values.
//
// Specifically, let
// f(a) = b
// F(b) = f^-1(b) = a
// then
//
// f(a) = (((a - a_zero) * scale.numerator) / scale.denominator) + b_zero;
//
// and
//
// F(b) = (((b - b_zero) * scale.denominator) / scale.numerator) + a_zero;
//
struct LinearTransform {
struct Ratio {
Ratio() { }
Ratio(uint32_t _numerator, uint32_t _denominator)
: numerator(_numerator),
denominator(_denominator) {
Reduce();
}
// Helper which will reduce the fraction numerator/denominator using
// Euclid's method.
static void Reduce(uint32_t* numerator, uint32_t* denominator);
// Reduce the internal scaling rational.
void Reduce() { Reduce(&numerator, &denominator); }
// Compute a * b, reduce and store in out.
//
// Returns true if the composition was computed and stored with no loss of
// precision. Returns false if the reduced form of the composition could
// not be stored as a 32 bit ratio and had to be shifted in order to be
// stored.
static bool Compose(const Ratio& a, const Ratio& b, Ratio* out);
uint32_t numerator = 1;
uint32_t denominator = 1;
};
LinearTransform() { }
LinearTransform(uint32_t numerator, uint32_t denominator)
: scale(numerator, denominator) {}
explicit LinearTransform(const Ratio& s) : scale(s) {}
LinearTransform(int64_t az,
uint32_t numerator,
uint32_t denominator,
int64_t bz)
: scale(numerator, denominator),
a_zero(az),
b_zero(bz) {}
LinearTransform(int64_t az, const Ratio& s, int64_t bz)
: scale(s),
a_zero(az),
b_zero(bz) {}
// Transform from A->B
// Returns true on success, or false in the case of a singularity or an
// overflow.
bool DoForwardTransform(int64_t a_in, int64_t* b_out) const;
// Transform from B->A
// Returns true on success, or false in the case of a singularity or an
// overflow.
bool DoReverseTransform(int64_t b_in, int64_t* a_out) const;
Ratio scale;
int64_t a_zero = 0;
int64_t b_zero = 0;
};
std::ostream& operator<<(std::ostream& os,
const LinearTransform::Ratio& r);
std::ostream& operator<<(std::ostream& os,
const LinearTransform& lt);
} // namespace media
} // namespace mojo
#endif // MOJO_SERVICES_MEDIA_COMMON_CPP_LINEAR_TRANSFORM_H_