module 'sky:core' { // EVENTS interface Event { constructor (String type, Boolean bubbles, any data); // O(1) readonly attribute String type; // O(1) readonly attribute Boolean bubbles; // O(1) attribute any data; // O(1) readonly attribute EventTarget target; // O(1) void preventDefault(); // O(1) attribute any result; // O(1) // defaults to undefined // TODO(ianh): do events get blocked at scope boundaries, e.g. focus events when both sides are in the scope? // TODO(ianh): do events ger retargetted, e.g. focus when leaving a custom element? } callback EventListener any (Event event); // return value is assigned to Event.result interface EventTarget { any dispatchEvent(Event event); // O(N) in total number of listeners for this type in the chain // returns Event.result void addEventListener(String type, EventListener listener); // O(1) void removeEventListener(String type, EventListener listener); // O(N) in event listeners with that type } interface CustomEventTarget : EventTarget { constructor (); // O(1) attribute EventTarget parentNode; // getter O(1), setter O(N) in height of tree, throws if this would make a loop // you can inherit from this to make your object into an event target } // DOM typedef ChildNode (Element or Text); typedef ChildArgument (Element or Text or String); abstract interface Node : EventTarget { readonly attribute TreeScope? ownerScope; // O(1) readonly attribute ParentNode? parentNode; // O(1) readonly attribute Element? parentElement; // O(1) // if parentNode isn't an element, returns null readonly attribute ChildNode? previousSibling; // O(1) readonly attribute ChildNode? nextSibling; // O(1) // the following all throw if parentNode is null void insertBefore(ChildArgument... nodes); // O(N) in number of arguments plus all their descendants void insertAfter(ChildArgument... nodes); // O(N) in number of arguments plus all their descendants void replaceWith(ChildArgument... nodes); // O(N) in number of descendants plus arguments plus all their descendants void remove(); // O(N) in number of descendants Node cloneNode(Boolean deep); // O(1) if deep=false, O(N) in the number of descendants if deep=true // called when parentNode changes virtual void parentChangeCallback(ParentNode? oldParent, ParentNode? newParent, ChildNode? previousSibling, ChildNode? nextSibling); // O(N) in descendants (calls attached/detached) virtual void attachedCallback(); // noop virtual void detachedCallback(); // noop } abstract interface ParentNode : Node { readonly attribute ChildNode? firstChild; // O(1) readonly attribute ChildNode? lastChild; // O(1) // Returns a new Array every time. Array<ChildNode> getChildNodes(); // O(N) in number of child nodes Array<Element> getChildElements(); // O(N) in number of child nodes // TODO(ianh): might not be necessary if we have the parser drop unnecessary whitespace text nodes void append(ChildArgument... nodes); // O(N) in number of arguments plus all their descendants void prepend(ChildArgument... nodes); // O(N) in number of arguments plus all their descendants void replaceChildrenWith(ChildArgument... nodes); // O(N) in number of descendants plus arguments plus all their descendants Element? findId(String id); // O(1) } interface Attr { constructor (String name, String value); // O(1) readonly attribute String name; // O(1) readonly attribute String value; // O(1) } interface Element : ParentNode { readonly attribute String tagName; // O(1) Boolean hasAttribute(String name); // O(N) in arguments String getAttribute(String name); // O(N) in arguments void setAttribute(String name, String value); // O(N) in arguments void removeAttribute(String name); // O(N) in arguments // Returns a new Array and new Attr instances every time. Array<Attr> getAttributes(); // O(N) in arguments readonly attribute ShadowRoot? shadowRoot; // O(1) // returns the youngest shadow root void addShadowRoot(ShadowRoot root); // O(N) in descendants of argument Array<ContentElement> getDestinationInsertionPoints(); // O(N) in number of insertion points the node is in virtual void attributeChangeCallback(String name, String? oldValue, String? newValue); // noop virtual void shadowRootChangeCallback(ShadowRoot root); // noop // TODO(ianh): does a node ever need to know when it's been redistributed? } Element createElement(String tagName, Dictionary attributes, ChildArguments... nodes); // O(M+N), M = number of attributes, N = number of nodes plus all their descendants Element createElement(String tagName, Dictionary attributes); // shorthand Element createElement(String tagName, ChildArguments... nodes); // shorthand Element createElement(String tagName); // shorthand Object registerElement(String tagName, Object interfaceObject); // O(N) in number of outstanding elements with that tag name to be upgraded interface Text : Node { constructor (String value); // O(1) attribute String value; // O(1) void replaceWith(String node); // O(1) // special case override of Node.replaceWith() virtual void valueChangeCallback(String? oldValue, String? newValue); // noop } interface DocumentFragment : ParentNode { constructor (ChildArguments... nodes); // O(N) in number of arguments plus all their descendants } abstract interface TreeScope : ParentNode { readonly attribute Document? ownerDocument; // O(1) readonly attribute TreeScope? parentScope; // O(1) } interface ShadowRoot : TreeScope { constructor (ChildArguments... nodes); // O(N) in number of arguments plus all their descendants readonly attribute Element? host; // O(1) readonly attribute ShadowRoot? olderShadowRoot; // O(1) void removeShadowRoot(); // O(N) in descendants } interface Document : TreeScope { constructor (ChildArguments... nodes); // O(N) in number of arguments plus all their descendants } interface SelectorQuery { constructor (String selector); // O(F()) where F() is the complexity of the selector Boolean matches(Element element); // O(F()) Element? find(ParentNode root); // O(N*F()) where N is the number of descendants Array<Element> findAll(ParentNode root); // O(N*F()) where N is the number of descendants } // Built-in Elements interface ImportElement : Element { } interface TemplateElement : Element { readonly attribute DocumentFragment content; // O(1) } interface ScriptElement : Element { } interface StyleElement : Element { } interface ContentElement : Element { Array<Node> getDistributedNodes(); // O(N) in distributed nodes } interface ShadowElement : Element { Array<Node> getDistributedNodes(); // O(N) in distributed nodes } interface ImgElement : Element { } interface IframeElement : Element { } interface TElement : Element { } interface AElement : Element { } interface TitleElement : Element { } // MODULES interface Module : EventTarget { constructor (Application application, Document document); // O(1) attribute any exports; // O(1) // defaults to the module's document readonly attribute Document document; // O(1) // the module's document readonly attribute Application application; // O(1) } interface Application : EventTarget { constructor (Document document); // O(1) attribute String title; // O(1) readonly attribute Document document; // O(1) // the application's document } // see script.md for a description of the global object, though note that // the sky core module doesn't use it or affect it in any way. }
TODO(ianh): event loop
TODO(ianh): define the DOM APIs listed above, including firing the change callbacks
TODO(ianh): schedule microtask, schedule task, requestAnimationFrame, custom element callbacks...
The Sky IDL language is used to describe JS APIs found in Sky, in particular, the JS APIs exposed by the four magical imports defined in this document.
Sky IDL definitions are typically compiled to C++ that exposes the C++ implementations of the APIs to JavaScript.
Sky IDL works more or less the same as Web IDL but the syntax is a bit different.
module 'sky:modulename' { // this is a comment typedef NewType OldType; // useful when OldType is a commonly-used union interface InterfaceName { // an interface corresponds to a JavaScript prototype } abstract interface Superinterface { // an abstract interface can't have a constructor // in every other respect it is the same as a regular interface } interface Subinterface : Superinterface { // properties readonly attribute ReturnType attributeName; // getter attribute ReturnType attributeName; // getter and setter // methods and constructors constructor (); ReturnType method(); // When the platform calls this method, it always invokes the "real" method, even if it's been // deleted from the prototypes (as if it took a reference to the method at startup, and stored // state using Symbols) virtual ReturnType methodCallback(); // when the platform calls this, it actually calls it the way JS would, so author overrides do // affect what gets called. Make sure if you override it that you call the superclass implementation! // The default implementations of 'virtual' methods all end by calling the identically named method // on the superclass, if there is such a method. // arguments and overloading are done as follows // note that the argument names are only for documentation purposes ReturnType method(ArgumentType argumentName1, ArgumentType argumentName2); // the last argument's type can have "..." appended to it to indicate a varargs-like situation ReturnType method(ArgumentType argumentName1, ArgumentType... allSubsequentArguments); } // the module can have properties and methods also attribute String Foo; void method(); }
The following types are available:
Integer
- WebIDL long long
Float
- WebIDL double
String
- WebIDL USVString
Boolean
- WebIDL boolean
Object
- WebIDL object
InterfaceName
- an instance of the interface InterfaceNamePromise<Type>
- WebIDL Promise<T>
Array<Type>
- WebIDL sequence<T>
Dictionary
- unordered set of name-value String-String pairs with no duplicate namesType?
- union of Type and the singleton type with value “null” (WebIDL nullable)(Type1 or Type2)
- union of Type1 and Type2 (WebIDL union)any
- union of all types (WebIDL any
)Methods that return nothing (undefined, in JS) use the keyword “void” instead of a type.
TODO(ianh): Figure out what should happen with omitted and extraneous parameters
TODO(ianh): Define in detail how this actually works
The Mojom IDL language is used to describe the APIs exposed over Mojo pipes.
Mojom IDL definitions are typically compiled to wrappers in each language, which are then used as imports.
TODO(ianh): Define in detail how this actually works
global object = {} // with Math, RegExp, etc magical imports: the core mojo fabric JS API sky:mojo:fabric:core the asyncWait/cancelWait mojo fabric JS API (interface to IPC thread) sky:mojo:fabric:ipc the mojom for the shell, proxying through C++ so that the shell pipe isn't exposed sky:mojo:shell the sky API sky:core
TODO(ianh): determine if we want to separate the “this” from the Document, especially for Modules, so that exposing a module‘s element doesn’t expose the module's exports attribute.