| /* | 
 |  * jcdctmgr.c | 
 |  * | 
 |  * Copyright (C) 1994-1996, Thomas G. Lane. | 
 |  * This file is part of the Independent JPEG Group's software. | 
 |  * For conditions of distribution and use, see the accompanying README file. | 
 |  * | 
 |  * This file contains the forward-DCT management logic. | 
 |  * This code selects a particular DCT implementation to be used, | 
 |  * and it performs related housekeeping chores including coefficient | 
 |  * quantization. | 
 |  */ | 
 |  | 
 | #define JPEG_INTERNALS | 
 | #include "jinclude.h" | 
 | #include "jpeglib.h" | 
 | #include "jdct.h"		/* Private declarations for DCT subsystem */ | 
 |  | 
 |  | 
 | /* Private subobject for this module */ | 
 |  | 
 | typedef struct { | 
 |   struct jpeg_forward_dct pub;	/* public fields */ | 
 |  | 
 |   /* Pointer to the DCT routine actually in use */ | 
 |   forward_DCT_method_ptr do_dct; | 
 |  | 
 |   /* The actual post-DCT divisors --- not identical to the quant table | 
 |    * entries, because of scaling (especially for an unnormalized DCT). | 
 |    * Each table is given in normal array order. | 
 |    */ | 
 |   DCTELEM * divisors[NUM_QUANT_TBLS]; | 
 |  | 
 | #ifdef DCT_FLOAT_SUPPORTED | 
 |   /* Same as above for the floating-point case. */ | 
 |   float_DCT_method_ptr do_float_dct; | 
 |   FAST_FLOAT * float_divisors[NUM_QUANT_TBLS]; | 
 | #endif | 
 | } my_fdct_controller; | 
 |  | 
 | typedef my_fdct_controller * my_fdct_ptr; | 
 |  | 
 |  | 
 | /* | 
 |  * Initialize for a processing pass. | 
 |  * Verify that all referenced Q-tables are present, and set up | 
 |  * the divisor table for each one. | 
 |  * In the current implementation, DCT of all components is done during | 
 |  * the first pass, even if only some components will be output in the | 
 |  * first scan.  Hence all components should be examined here. | 
 |  */ | 
 |  | 
 | METHODDEF(void) | 
 | start_pass_fdctmgr (j_compress_ptr cinfo) | 
 | { | 
 |   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | 
 |   int ci, qtblno, i; | 
 |   jpeg_component_info *compptr; | 
 |   JQUANT_TBL * qtbl; | 
 |   DCTELEM * dtbl; | 
 |  | 
 |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 
 |        ci++, compptr++) { | 
 |     qtblno = compptr->quant_tbl_no; | 
 |     /* Make sure specified quantization table is present */ | 
 |     if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS || | 
 | 	cinfo->quant_tbl_ptrs[qtblno] == NULL) | 
 |       ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno); | 
 |     qtbl = cinfo->quant_tbl_ptrs[qtblno]; | 
 |     /* Compute divisors for this quant table */ | 
 |     /* We may do this more than once for same table, but it's not a big deal */ | 
 |     switch (cinfo->dct_method) { | 
 | #ifdef DCT_ISLOW_SUPPORTED | 
 |     case JDCT_ISLOW: | 
 |       /* For LL&M IDCT method, divisors are equal to raw quantization | 
 |        * coefficients multiplied by 8 (to counteract scaling). | 
 |        */ | 
 |       if (fdct->divisors[qtblno] == NULL) { | 
 | 	fdct->divisors[qtblno] = (DCTELEM *) | 
 | 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
 | 				      DCTSIZE2 * SIZEOF(DCTELEM)); | 
 |       } | 
 |       dtbl = fdct->divisors[qtblno]; | 
 |       for (i = 0; i < DCTSIZE2; i++) { | 
 | 	dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3; | 
 |       } | 
 |       break; | 
 | #endif | 
 | #ifdef DCT_IFAST_SUPPORTED | 
 |     case JDCT_IFAST: | 
 |       { | 
 | 	/* For AA&N IDCT method, divisors are equal to quantization | 
 | 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where | 
 | 	 *   scalefactor[0] = 1 | 
 | 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | 
 | 	 * We apply a further scale factor of 8. | 
 | 	 */ | 
 | #define CONST_BITS 14 | 
 | 	static const INT16 aanscales[DCTSIZE2] = { | 
 | 	  /* precomputed values scaled up by 14 bits */ | 
 | 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | 
 | 	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270, | 
 | 	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906, | 
 | 	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315, | 
 | 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | 
 | 	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552, | 
 | 	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446, | 
 | 	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247 | 
 | 	}; | 
 | 	SHIFT_TEMPS | 
 |  | 
 | 	if (fdct->divisors[qtblno] == NULL) { | 
 | 	  fdct->divisors[qtblno] = (DCTELEM *) | 
 | 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
 | 					DCTSIZE2 * SIZEOF(DCTELEM)); | 
 | 	} | 
 | 	dtbl = fdct->divisors[qtblno]; | 
 | 	for (i = 0; i < DCTSIZE2; i++) { | 
 | 	  dtbl[i] = (DCTELEM) | 
 | 	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | 
 | 				  (INT32) aanscales[i]), | 
 | 		    CONST_BITS-3); | 
 | 	} | 
 |       } | 
 |       break; | 
 | #endif | 
 | #ifdef DCT_FLOAT_SUPPORTED | 
 |     case JDCT_FLOAT: | 
 |       { | 
 | 	/* For float AA&N IDCT method, divisors are equal to quantization | 
 | 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where | 
 | 	 *   scalefactor[0] = 1 | 
 | 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | 
 | 	 * We apply a further scale factor of 8. | 
 | 	 * What's actually stored is 1/divisor so that the inner loop can | 
 | 	 * use a multiplication rather than a division. | 
 | 	 */ | 
 | 	FAST_FLOAT * fdtbl; | 
 | 	int row, col; | 
 | 	static const double aanscalefactor[DCTSIZE] = { | 
 | 	  1.0, 1.387039845, 1.306562965, 1.175875602, | 
 | 	  1.0, 0.785694958, 0.541196100, 0.275899379 | 
 | 	}; | 
 |  | 
 | 	if (fdct->float_divisors[qtblno] == NULL) { | 
 | 	  fdct->float_divisors[qtblno] = (FAST_FLOAT *) | 
 | 	    (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
 | 					DCTSIZE2 * SIZEOF(FAST_FLOAT)); | 
 | 	} | 
 | 	fdtbl = fdct->float_divisors[qtblno]; | 
 | 	i = 0; | 
 | 	for (row = 0; row < DCTSIZE; row++) { | 
 | 	  for (col = 0; col < DCTSIZE; col++) { | 
 | 	    fdtbl[i] = (FAST_FLOAT) | 
 | 	      (1.0 / (((double) qtbl->quantval[i] * | 
 | 		       aanscalefactor[row] * aanscalefactor[col] * 8.0))); | 
 | 	    i++; | 
 | 	  } | 
 | 	} | 
 |       } | 
 |       break; | 
 | #endif | 
 |     default: | 
 |       ERREXIT(cinfo, JERR_NOT_COMPILED); | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Perform forward DCT on one or more blocks of a component. | 
 |  * | 
 |  * The input samples are taken from the sample_data[] array starting at | 
 |  * position start_row/start_col, and moving to the right for any additional | 
 |  * blocks. The quantized coefficients are returned in coef_blocks[]. | 
 |  */ | 
 |  | 
 | METHODDEF(void) | 
 | forward_DCT (j_compress_ptr cinfo, jpeg_component_info * compptr, | 
 | 	     JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | 
 | 	     JDIMENSION start_row, JDIMENSION start_col, | 
 | 	     JDIMENSION num_blocks) | 
 | /* This version is used for integer DCT implementations. */ | 
 | { | 
 |   /* This routine is heavily used, so it's worth coding it tightly. */ | 
 |   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | 
 |   forward_DCT_method_ptr do_dct = fdct->do_dct; | 
 |   DCTELEM * divisors = fdct->divisors[compptr->quant_tbl_no]; | 
 |   DCTELEM workspace[DCTSIZE2];	/* work area for FDCT subroutine */ | 
 |   JDIMENSION bi; | 
 |  | 
 |   sample_data += start_row;	/* fold in the vertical offset once */ | 
 |  | 
 |   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { | 
 |     /* Load data into workspace, applying unsigned->signed conversion */ | 
 |     { register DCTELEM *workspaceptr; | 
 |       register JSAMPROW elemptr; | 
 |       register int elemr; | 
 |  | 
 |       workspaceptr = workspace; | 
 |       for (elemr = 0; elemr < DCTSIZE; elemr++) { | 
 | 	elemptr = sample_data[elemr] + start_col; | 
 | #if DCTSIZE == 8		/* unroll the inner loop */ | 
 | 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
 | 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
 | 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
 | 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
 | 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
 | 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
 | 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
 | 	*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
 | #else | 
 | 	{ register int elemc; | 
 | 	  for (elemc = DCTSIZE; elemc > 0; elemc--) { | 
 | 	    *workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE; | 
 | 	  } | 
 | 	} | 
 | #endif | 
 |       } | 
 |     } | 
 |  | 
 |     /* Perform the DCT */ | 
 |     (*do_dct) (workspace); | 
 |  | 
 |     /* Quantize/descale the coefficients, and store into coef_blocks[] */ | 
 |     { register DCTELEM temp, qval; | 
 |       register int i; | 
 |       register JCOEFPTR output_ptr = coef_blocks[bi]; | 
 |  | 
 |       for (i = 0; i < DCTSIZE2; i++) { | 
 | 	qval = divisors[i]; | 
 | 	temp = workspace[i]; | 
 | 	/* Divide the coefficient value by qval, ensuring proper rounding. | 
 | 	 * Since C does not specify the direction of rounding for negative | 
 | 	 * quotients, we have to force the dividend positive for portability. | 
 | 	 * | 
 | 	 * In most files, at least half of the output values will be zero | 
 | 	 * (at default quantization settings, more like three-quarters...) | 
 | 	 * so we should ensure that this case is fast.  On many machines, | 
 | 	 * a comparison is enough cheaper than a divide to make a special test | 
 | 	 * a win.  Since both inputs will be nonnegative, we need only test | 
 | 	 * for a < b to discover whether a/b is 0. | 
 | 	 * If your machine's division is fast enough, define FAST_DIVIDE. | 
 | 	 */ | 
 | #ifdef FAST_DIVIDE | 
 | #define DIVIDE_BY(a,b)	a /= b | 
 | #else | 
 | #define DIVIDE_BY(a,b)	if (a >= b) a /= b; else a = 0 | 
 | #endif | 
 | 	if (temp < 0) { | 
 | 	  temp = -temp; | 
 | 	  temp += qval>>1;	/* for rounding */ | 
 | 	  DIVIDE_BY(temp, qval); | 
 | 	  temp = -temp; | 
 | 	} else { | 
 | 	  temp += qval>>1;	/* for rounding */ | 
 | 	  DIVIDE_BY(temp, qval); | 
 | 	} | 
 | 	output_ptr[i] = (JCOEF) temp; | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | #ifdef DCT_FLOAT_SUPPORTED | 
 |  | 
 | METHODDEF(void) | 
 | forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info * compptr, | 
 | 		   JSAMPARRAY sample_data, JBLOCKROW coef_blocks, | 
 | 		   JDIMENSION start_row, JDIMENSION start_col, | 
 | 		   JDIMENSION num_blocks) | 
 | /* This version is used for floating-point DCT implementations. */ | 
 | { | 
 |   /* This routine is heavily used, so it's worth coding it tightly. */ | 
 |   my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct; | 
 |   float_DCT_method_ptr do_dct = fdct->do_float_dct; | 
 |   FAST_FLOAT * divisors = fdct->float_divisors[compptr->quant_tbl_no]; | 
 |   FAST_FLOAT workspace[DCTSIZE2]; /* work area for FDCT subroutine */ | 
 |   JDIMENSION bi; | 
 |  | 
 |   sample_data += start_row;	/* fold in the vertical offset once */ | 
 |  | 
 |   for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) { | 
 |     /* Load data into workspace, applying unsigned->signed conversion */ | 
 |     { register FAST_FLOAT *workspaceptr; | 
 |       register JSAMPROW elemptr; | 
 |       register int elemr; | 
 |  | 
 |       workspaceptr = workspace; | 
 |       for (elemr = 0; elemr < DCTSIZE; elemr++) { | 
 | 	elemptr = sample_data[elemr] + start_col; | 
 | #if DCTSIZE == 8		/* unroll the inner loop */ | 
 | 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
 | 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
 | 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
 | 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
 | 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
 | 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
 | 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
 | 	*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
 | #else | 
 | 	{ register int elemc; | 
 | 	  for (elemc = DCTSIZE; elemc > 0; elemc--) { | 
 | 	    *workspaceptr++ = (FAST_FLOAT) | 
 | 	      (GETJSAMPLE(*elemptr++) - CENTERJSAMPLE); | 
 | 	  } | 
 | 	} | 
 | #endif | 
 |       } | 
 |     } | 
 |  | 
 |     /* Perform the DCT */ | 
 |     (*do_dct) (workspace); | 
 |  | 
 |     /* Quantize/descale the coefficients, and store into coef_blocks[] */ | 
 |     { register FAST_FLOAT temp; | 
 |       register int i; | 
 |       register JCOEFPTR output_ptr = coef_blocks[bi]; | 
 |  | 
 |       for (i = 0; i < DCTSIZE2; i++) { | 
 | 	/* Apply the quantization and scaling factor */ | 
 | 	temp = workspace[i] * divisors[i]; | 
 | 	/* Round to nearest integer. | 
 | 	 * Since C does not specify the direction of rounding for negative | 
 | 	 * quotients, we have to force the dividend positive for portability. | 
 | 	 * The maximum coefficient size is +-16K (for 12-bit data), so this | 
 | 	 * code should work for either 16-bit or 32-bit ints. | 
 | 	 */ | 
 | 	output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384); | 
 |       } | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | #endif /* DCT_FLOAT_SUPPORTED */ | 
 |  | 
 |  | 
 | /* | 
 |  * Initialize FDCT manager. | 
 |  */ | 
 |  | 
 | GLOBAL(void) | 
 | jinit_forward_dct (j_compress_ptr cinfo) | 
 | { | 
 |   my_fdct_ptr fdct; | 
 |   int i; | 
 |  | 
 |   fdct = (my_fdct_ptr) | 
 |     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
 | 				SIZEOF(my_fdct_controller)); | 
 |   cinfo->fdct = (struct jpeg_forward_dct *) fdct; | 
 |   fdct->pub.start_pass = start_pass_fdctmgr; | 
 |  | 
 |   switch (cinfo->dct_method) { | 
 | #ifdef DCT_ISLOW_SUPPORTED | 
 |   case JDCT_ISLOW: | 
 |     fdct->pub.forward_DCT = forward_DCT; | 
 |     fdct->do_dct = jpeg_fdct_islow; | 
 |     break; | 
 | #endif | 
 | #ifdef DCT_IFAST_SUPPORTED | 
 |   case JDCT_IFAST: | 
 |     fdct->pub.forward_DCT = forward_DCT; | 
 |     fdct->do_dct = jpeg_fdct_ifast; | 
 |     break; | 
 | #endif | 
 | #ifdef DCT_FLOAT_SUPPORTED | 
 |   case JDCT_FLOAT: | 
 |     fdct->pub.forward_DCT = forward_DCT_float; | 
 |     fdct->do_float_dct = jpeg_fdct_float; | 
 |     break; | 
 | #endif | 
 |   default: | 
 |     ERREXIT(cinfo, JERR_NOT_COMPILED); | 
 |     break; | 
 |   } | 
 |  | 
 |   /* Mark divisor tables unallocated */ | 
 |   for (i = 0; i < NUM_QUANT_TBLS; i++) { | 
 |     fdct->divisors[i] = NULL; | 
 | #ifdef DCT_FLOAT_SUPPORTED | 
 |     fdct->float_divisors[i] = NULL; | 
 | #endif | 
 |   } | 
 | } |