|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include <string.h> | 
|  | #include <time.h> | 
|  | #include <algorithm> | 
|  | #include <numeric> | 
|  | #include <vector> | 
|  |  | 
|  | #include "base/basictypes.h" | 
|  | #include "base/logging.h" | 
|  | #include "base/time/time.h" | 
|  | #include "skia/ext/convolver.h" | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  | #include "third_party/skia/include/core/SkBitmap.h" | 
|  | #include "third_party/skia/include/core/SkColorPriv.h" | 
|  | #include "third_party/skia/include/core/SkRect.h" | 
|  | #include "third_party/skia/include/core/SkTypes.h" | 
|  |  | 
|  | namespace skia { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Fills the given filter with impulse functions for the range 0->num_entries. | 
|  | void FillImpulseFilter(int num_entries, ConvolutionFilter1D* filter) { | 
|  | float one = 1.0f; | 
|  | for (int i = 0; i < num_entries; i++) | 
|  | filter->AddFilter(i, &one, 1); | 
|  | } | 
|  |  | 
|  | // Filters the given input with the impulse function, and verifies that it | 
|  | // does not change. | 
|  | void TestImpulseConvolution(const unsigned char* data, int width, int height) { | 
|  | int byte_count = width * height * 4; | 
|  |  | 
|  | ConvolutionFilter1D filter_x; | 
|  | FillImpulseFilter(width, &filter_x); | 
|  |  | 
|  | ConvolutionFilter1D filter_y; | 
|  | FillImpulseFilter(height, &filter_y); | 
|  |  | 
|  | std::vector<unsigned char> output; | 
|  | output.resize(byte_count); | 
|  | BGRAConvolve2D(data, width * 4, true, filter_x, filter_y, | 
|  | filter_x.num_values() * 4, &output[0], false); | 
|  |  | 
|  | // Output should exactly match input. | 
|  | EXPECT_EQ(0, memcmp(data, &output[0], byte_count)); | 
|  | } | 
|  |  | 
|  | // Fills the destination filter with a box filter averaging every two pixels | 
|  | // to produce the output. | 
|  | void FillBoxFilter(int size, ConvolutionFilter1D* filter) { | 
|  | const float box[2] = { 0.5, 0.5 }; | 
|  | for (int i = 0; i < size; i++) | 
|  | filter->AddFilter(i * 2, box, 2); | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | // Tests that each pixel, when set and run through the impulse filter, does | 
|  | // not change. | 
|  | TEST(Convolver, Impulse) { | 
|  | // We pick an "odd" size that is not likely to fit on any boundaries so that | 
|  | // we can see if all the widths and paddings are handled properly. | 
|  | int width = 15; | 
|  | int height = 31; | 
|  | int byte_count = width * height * 4; | 
|  | std::vector<unsigned char> input; | 
|  | input.resize(byte_count); | 
|  |  | 
|  | unsigned char* input_ptr = &input[0]; | 
|  | for (int y = 0; y < height; y++) { | 
|  | for (int x = 0; x < width; x++) { | 
|  | for (int channel = 0; channel < 3; channel++) { | 
|  | memset(input_ptr, 0, byte_count); | 
|  | input_ptr[(y * width + x) * 4 + channel] = 0xff; | 
|  | // Always set the alpha channel or it will attempt to "fix" it for us. | 
|  | input_ptr[(y * width + x) * 4 + 3] = 0xff; | 
|  | TestImpulseConvolution(input_ptr, width, height); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tests that using a box filter to halve an image results in every square of 4 | 
|  | // pixels in the original get averaged to a pixel in the output. | 
|  | TEST(Convolver, Halve) { | 
|  | static const int kSize = 16; | 
|  |  | 
|  | int src_width = kSize; | 
|  | int src_height = kSize; | 
|  | int src_row_stride = src_width * 4; | 
|  | int src_byte_count = src_row_stride * src_height; | 
|  | std::vector<unsigned char> input; | 
|  | input.resize(src_byte_count); | 
|  |  | 
|  | int dest_width = src_width / 2; | 
|  | int dest_height = src_height / 2; | 
|  | int dest_byte_count = dest_width * dest_height * 4; | 
|  | std::vector<unsigned char> output; | 
|  | output.resize(dest_byte_count); | 
|  |  | 
|  | // First fill the array with a bunch of random data. | 
|  | srand(static_cast<unsigned>(time(NULL))); | 
|  | for (int i = 0; i < src_byte_count; i++) | 
|  | input[i] = rand() * 255 / RAND_MAX; | 
|  |  | 
|  | // Compute the filters. | 
|  | ConvolutionFilter1D filter_x, filter_y; | 
|  | FillBoxFilter(dest_width, &filter_x); | 
|  | FillBoxFilter(dest_height, &filter_y); | 
|  |  | 
|  | // Do the convolution. | 
|  | BGRAConvolve2D(&input[0], src_width, true, filter_x, filter_y, | 
|  | filter_x.num_values() * 4, &output[0], false); | 
|  |  | 
|  | // Compute the expected results and check, allowing for a small difference | 
|  | // to account for rounding errors. | 
|  | for (int y = 0; y < dest_height; y++) { | 
|  | for (int x = 0; x < dest_width; x++) { | 
|  | for (int channel = 0; channel < 4; channel++) { | 
|  | int src_offset = (y * 2 * src_row_stride + x * 2 * 4) + channel; | 
|  | int value = input[src_offset] +  // Top left source pixel. | 
|  | input[src_offset + 4] +  // Top right source pixel. | 
|  | input[src_offset + src_row_stride] +  // Lower left. | 
|  | input[src_offset + src_row_stride + 4];  // Lower right. | 
|  | value /= 4;  // Average. | 
|  | int difference = value - output[(y * dest_width + x) * 4 + channel]; | 
|  | EXPECT_TRUE(difference >= -1 || difference <= 1); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Tests the optimization in Convolver1D::AddFilter that avoids storing | 
|  | // leading/trailing zeroes. | 
|  | TEST(Convolver, AddFilter) { | 
|  | skia::ConvolutionFilter1D filter; | 
|  |  | 
|  | const skia::ConvolutionFilter1D::Fixed* values = NULL; | 
|  | int filter_offset = 0; | 
|  | int filter_length = 0; | 
|  |  | 
|  | // An all-zero filter is handled correctly, all factors ignored | 
|  | static const float factors1[] = { 0.0f, 0.0f, 0.0f }; | 
|  | filter.AddFilter(11, factors1, arraysize(factors1)); | 
|  | ASSERT_EQ(0, filter.max_filter()); | 
|  | ASSERT_EQ(1, filter.num_values()); | 
|  |  | 
|  | values = filter.FilterForValue(0, &filter_offset, &filter_length); | 
|  | ASSERT_TRUE(values == NULL);   // No values => NULL. | 
|  | ASSERT_EQ(11, filter_offset);  // Same as input offset. | 
|  | ASSERT_EQ(0, filter_length);   // But no factors since all are zeroes. | 
|  |  | 
|  | // Zeroes on the left are ignored | 
|  | static const float factors2[] = { 0.0f, 1.0f, 1.0f, 1.0f, 1.0f }; | 
|  | filter.AddFilter(22, factors2, arraysize(factors2)); | 
|  | ASSERT_EQ(4, filter.max_filter()); | 
|  | ASSERT_EQ(2, filter.num_values()); | 
|  |  | 
|  | values = filter.FilterForValue(1, &filter_offset, &filter_length); | 
|  | ASSERT_TRUE(values != NULL); | 
|  | ASSERT_EQ(23, filter_offset);  // 22 plus 1 leading zero | 
|  | ASSERT_EQ(4, filter_length);   // 5 - 1 leading zero | 
|  |  | 
|  | // Zeroes on the right are ignored | 
|  | static const float factors3[] = { 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f }; | 
|  | filter.AddFilter(33, factors3, arraysize(factors3)); | 
|  | ASSERT_EQ(5, filter.max_filter()); | 
|  | ASSERT_EQ(3, filter.num_values()); | 
|  |  | 
|  | values = filter.FilterForValue(2, &filter_offset, &filter_length); | 
|  | ASSERT_TRUE(values != NULL); | 
|  | ASSERT_EQ(33, filter_offset);  // 33, same as input due to no leading zero | 
|  | ASSERT_EQ(5, filter_length);   // 7 - 2 trailing zeroes | 
|  |  | 
|  | // Zeroes in leading & trailing positions | 
|  | static const float factors4[] = { 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f }; | 
|  | filter.AddFilter(44, factors4, arraysize(factors4)); | 
|  | ASSERT_EQ(5, filter.max_filter());  // No change from existing value. | 
|  | ASSERT_EQ(4, filter.num_values()); | 
|  |  | 
|  | values = filter.FilterForValue(3, &filter_offset, &filter_length); | 
|  | ASSERT_TRUE(values != NULL); | 
|  | ASSERT_EQ(46, filter_offset);  // 44 plus 2 leading zeroes | 
|  | ASSERT_EQ(3, filter_length);   // 7 - (2 leading + 2 trailing) zeroes | 
|  |  | 
|  | // Zeroes surrounded by non-zero values are ignored | 
|  | static const float factors5[] = { 0.0f, 0.0f, | 
|  | 1.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, | 
|  | 0.0f }; | 
|  | filter.AddFilter(55, factors5, arraysize(factors5)); | 
|  | ASSERT_EQ(6, filter.max_filter()); | 
|  | ASSERT_EQ(5, filter.num_values()); | 
|  |  | 
|  | values = filter.FilterForValue(4, &filter_offset, &filter_length); | 
|  | ASSERT_TRUE(values != NULL); | 
|  | ASSERT_EQ(57, filter_offset);  // 55 plus 2 leading zeroes | 
|  | ASSERT_EQ(6, filter_length);   // 9 - (2 leading + 1 trailing) zeroes | 
|  |  | 
|  | // All-zero filters after the first one also work | 
|  | static const float factors6[] = { 0.0f }; | 
|  | filter.AddFilter(66, factors6, arraysize(factors6)); | 
|  | ASSERT_EQ(6, filter.max_filter()); | 
|  | ASSERT_EQ(6, filter.num_values()); | 
|  |  | 
|  | values = filter.FilterForValue(5, &filter_offset, &filter_length); | 
|  | ASSERT_TRUE(values == NULL);   // filter_length == 0 => values is NULL | 
|  | ASSERT_EQ(66, filter_offset);  // value passed in | 
|  | ASSERT_EQ(0, filter_length); | 
|  | } | 
|  |  | 
|  | void VerifySIMD(unsigned int source_width, | 
|  | unsigned int source_height, | 
|  | unsigned int dest_width, | 
|  | unsigned int dest_height) { | 
|  | float filter[] = { 0.05f, -0.15f, 0.6f, 0.6f, -0.15f, 0.05f }; | 
|  | // Preparing convolve coefficients. | 
|  | ConvolutionFilter1D x_filter, y_filter; | 
|  | for (unsigned int p = 0; p < dest_width; ++p) { | 
|  | unsigned int offset = source_width * p / dest_width; | 
|  | EXPECT_LT(offset, source_width); | 
|  | x_filter.AddFilter(offset, filter, | 
|  | std::min<int>(arraysize(filter), | 
|  | source_width - offset)); | 
|  | } | 
|  | x_filter.PaddingForSIMD(); | 
|  | for (unsigned int p = 0; p < dest_height; ++p) { | 
|  | unsigned int offset = source_height * p / dest_height; | 
|  | y_filter.AddFilter(offset, filter, | 
|  | std::min<int>(arraysize(filter), | 
|  | source_height - offset)); | 
|  | } | 
|  | y_filter.PaddingForSIMD(); | 
|  |  | 
|  | // Allocate input and output skia bitmap. | 
|  | SkBitmap source, result_c, result_sse; | 
|  | source.allocN32Pixels(source_width, source_height); | 
|  | result_c.allocN32Pixels(dest_width, dest_height); | 
|  | result_sse.allocN32Pixels(dest_width, dest_height); | 
|  |  | 
|  | // Randomize source bitmap for testing. | 
|  | unsigned char* src_ptr = static_cast<unsigned char*>(source.getPixels()); | 
|  | for (int y = 0; y < source.height(); y++) { | 
|  | for (unsigned int x = 0; x < source.rowBytes(); x++) | 
|  | src_ptr[x] = rand() % 255; | 
|  | src_ptr += source.rowBytes(); | 
|  | } | 
|  |  | 
|  | // Test both cases with different has_alpha. | 
|  | for (int alpha = 0; alpha < 2; alpha++) { | 
|  | // Convolve using C code. | 
|  | base::TimeTicks resize_start; | 
|  | base::TimeDelta delta_c, delta_sse; | 
|  | unsigned char* r1 = static_cast<unsigned char*>(result_c.getPixels()); | 
|  | unsigned char* r2 = static_cast<unsigned char*>(result_sse.getPixels()); | 
|  |  | 
|  | resize_start = base::TimeTicks::Now(); | 
|  | BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()), | 
|  | static_cast<int>(source.rowBytes()), | 
|  | (alpha != 0), x_filter, y_filter, | 
|  | static_cast<int>(result_c.rowBytes()), r1, false); | 
|  | delta_c = base::TimeTicks::Now() - resize_start; | 
|  |  | 
|  | resize_start = base::TimeTicks::Now(); | 
|  | // Convolve using SSE2 code | 
|  | BGRAConvolve2D(static_cast<const uint8*>(source.getPixels()), | 
|  | static_cast<int>(source.rowBytes()), | 
|  | (alpha != 0), x_filter, y_filter, | 
|  | static_cast<int>(result_sse.rowBytes()), r2, true); | 
|  | delta_sse = base::TimeTicks::Now() - resize_start; | 
|  |  | 
|  | // Unfortunately I could not enable the performance check now. | 
|  | // Most bots use debug version, and there are great difference between | 
|  | // the code generation for intrinsic, etc. In release version speed | 
|  | // difference was 150%-200% depend on alpha channel presence; | 
|  | // while in debug version speed difference was 96%-120%. | 
|  | // TODO(jiesun): optimize further until we could enable this for | 
|  | // debug version too. | 
|  | // EXPECT_LE(delta_sse, delta_c); | 
|  |  | 
|  | int64 c_us = delta_c.InMicroseconds(); | 
|  | int64 sse_us = delta_sse.InMicroseconds(); | 
|  | VLOG(1) << "from:" << source_width << "x" << source_height | 
|  | << " to:" << dest_width << "x" << dest_height | 
|  | << (alpha ? " with alpha" : " w/o alpha"); | 
|  | VLOG(1) << "c:" << c_us << " sse:" << sse_us; | 
|  | VLOG(1) << "ratio:" << static_cast<float>(c_us) / sse_us; | 
|  |  | 
|  | // Comparing result. | 
|  | for (unsigned int i = 0; i < dest_height; i++) { | 
|  | EXPECT_FALSE(memcmp(r1, r2, dest_width * 4)); // RGBA always | 
|  | r1 += result_c.rowBytes(); | 
|  | r2 += result_sse.rowBytes(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(Convolver, VerifySIMDEdgeCases) { | 
|  | srand(static_cast<unsigned int>(time(0))); | 
|  | // Loop over all possible (small) image sizes | 
|  | for (unsigned int width = 1; width < 20; width++) { | 
|  | for (unsigned int height = 1; height < 20; height++) { | 
|  | VerifySIMD(width, height, 8, 8); | 
|  | VerifySIMD(8, 8, width, height); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Verify that lage upscales/downscales produce the same result | 
|  | // with and without SIMD. | 
|  | TEST(Convolver, VerifySIMDPrecision) { | 
|  | int source_sizes[][2] = { {1920, 1080}, {1377, 523}, {325, 241} }; | 
|  | int dest_sizes[][2] = { {1280, 1024}, {177, 123} }; | 
|  |  | 
|  | srand(static_cast<unsigned int>(time(0))); | 
|  |  | 
|  | // Loop over some specific source and destination dimensions. | 
|  | for (unsigned int i = 0; i < arraysize(source_sizes); ++i) { | 
|  | unsigned int source_width = source_sizes[i][0]; | 
|  | unsigned int source_height = source_sizes[i][1]; | 
|  | for (unsigned int j = 0; j < arraysize(dest_sizes); ++j) { | 
|  | unsigned int dest_width = dest_sizes[j][0]; | 
|  | unsigned int dest_height = dest_sizes[j][1]; | 
|  | VerifySIMD(source_width, source_height, dest_width, dest_height); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(Convolver, SeparableSingleConvolution) { | 
|  | static const int kImgWidth = 1024; | 
|  | static const int kImgHeight = 1024; | 
|  | static const int kChannelCount = 3; | 
|  | static const int kStrideSlack = 22; | 
|  | ConvolutionFilter1D filter; | 
|  | const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f }; | 
|  | filter.AddFilter(0, box, 5); | 
|  |  | 
|  | // Allocate a source image and set to 0. | 
|  | const int src_row_stride = kImgWidth * kChannelCount + kStrideSlack; | 
|  | int src_byte_count = src_row_stride * kImgHeight; | 
|  | std::vector<unsigned char> input; | 
|  | const int signal_x = kImgWidth / 2; | 
|  | const int signal_y = kImgHeight / 2; | 
|  | input.resize(src_byte_count, 0); | 
|  | // The image has a single impulse pixel in channel 1, smack in the middle. | 
|  | const int non_zero_pixel_index = | 
|  | signal_y * src_row_stride + signal_x * kChannelCount + 1; | 
|  | input[non_zero_pixel_index] = 255; | 
|  |  | 
|  | // Destination will be a single channel image with stide matching width. | 
|  | const int dest_row_stride = kImgWidth; | 
|  | const int dest_byte_count = dest_row_stride * kImgHeight; | 
|  | std::vector<unsigned char> output; | 
|  | output.resize(dest_byte_count); | 
|  |  | 
|  | // Apply convolution in X. | 
|  | SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount, | 
|  | filter, SkISize::Make(kImgWidth, kImgHeight), | 
|  | &output[0], dest_row_stride, 0, 1, false); | 
|  | for (int x = signal_x - 2; x <= signal_x + 2; ++x) | 
|  | EXPECT_GT(output[signal_y * dest_row_stride + x], 0); | 
|  |  | 
|  | EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 3], 0); | 
|  | EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 3], 0); | 
|  |  | 
|  | // Apply convolution in Y. | 
|  | SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount, | 
|  | filter, SkISize::Make(kImgWidth, kImgHeight), | 
|  | &output[0], dest_row_stride, 0, 1, false); | 
|  | for (int y = signal_y - 2; y <= signal_y + 2; ++y) | 
|  | EXPECT_GT(output[y * dest_row_stride + signal_x], 0); | 
|  |  | 
|  | EXPECT_EQ(output[(signal_y - 3) * dest_row_stride + signal_x], 0); | 
|  | EXPECT_EQ(output[(signal_y + 3) * dest_row_stride + signal_x], 0); | 
|  |  | 
|  | EXPECT_EQ(output[signal_y * dest_row_stride + signal_x - 1], 0); | 
|  | EXPECT_EQ(output[signal_y * dest_row_stride + signal_x + 1], 0); | 
|  |  | 
|  | // The main point of calling this is to invoke the routine on input without | 
|  | // padding. | 
|  | std::vector<unsigned char> output2; | 
|  | output2.resize(dest_byte_count); | 
|  | SingleChannelConvolveX1D(&output[0], dest_row_stride, 0, 1, | 
|  | filter, SkISize::Make(kImgWidth, kImgHeight), | 
|  | &output2[0], dest_row_stride, 0, 1, false); | 
|  | // This should be a result of 2D convolution. | 
|  | for (int x = signal_x - 2; x <= signal_x + 2; ++x) { | 
|  | for (int y = signal_y - 2; y <= signal_y + 2; ++y) | 
|  | EXPECT_GT(output2[y * dest_row_stride + x], 0); | 
|  | } | 
|  | EXPECT_EQ(output2[0], 0); | 
|  | EXPECT_EQ(output2[dest_row_stride - 1], 0); | 
|  | EXPECT_EQ(output2[dest_byte_count - 1], 0); | 
|  | } | 
|  |  | 
|  | TEST(Convolver, SeparableSingleConvolutionEdges) { | 
|  | // The purpose of this test is to check if the implementation treats correctly | 
|  | // edges of the image. | 
|  | static const int kImgWidth = 600; | 
|  | static const int kImgHeight = 800; | 
|  | static const int kChannelCount = 3; | 
|  | static const int kStrideSlack = 22; | 
|  | static const int kChannel = 1; | 
|  | ConvolutionFilter1D filter; | 
|  | const float box[5] = { 0.2f, 0.2f, 0.2f, 0.2f, 0.2f }; | 
|  | filter.AddFilter(0, box, 5); | 
|  |  | 
|  | // Allocate a source image and set to 0. | 
|  | int src_row_stride = kImgWidth * kChannelCount + kStrideSlack; | 
|  | int src_byte_count = src_row_stride * kImgHeight; | 
|  | std::vector<unsigned char> input(src_byte_count); | 
|  |  | 
|  | // Draw a frame around the image. | 
|  | for (int i = 0; i < src_byte_count; ++i) { | 
|  | int row = i / src_row_stride; | 
|  | int col = i % src_row_stride / kChannelCount; | 
|  | int channel = i % src_row_stride % kChannelCount; | 
|  | if (channel != kChannel || col > kImgWidth) { | 
|  | input[i] = 255; | 
|  | } else if (row == 0 || col == 0 || | 
|  | col == kImgWidth - 1 || row == kImgHeight - 1) { | 
|  | input[i] = 100; | 
|  | } else if (row == 1 || col == 1 || | 
|  | col == kImgWidth - 2 || row == kImgHeight - 2) { | 
|  | input[i] = 200; | 
|  | } else { | 
|  | input[i] = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Destination will be a single channel image with stide matching width. | 
|  | int dest_row_stride = kImgWidth; | 
|  | int dest_byte_count = dest_row_stride * kImgHeight; | 
|  | std::vector<unsigned char> output; | 
|  | output.resize(dest_byte_count); | 
|  |  | 
|  | // Apply convolution in X. | 
|  | SingleChannelConvolveX1D(&input[0], src_row_stride, 1, kChannelCount, | 
|  | filter, SkISize::Make(kImgWidth, kImgHeight), | 
|  | &output[0], dest_row_stride, 0, 1, false); | 
|  |  | 
|  | // Sadly, comparison is not as simple as retaining all values. | 
|  | int invalid_values = 0; | 
|  | const unsigned char first_value = output[0]; | 
|  | EXPECT_NEAR(first_value, 100, 1); | 
|  | for (int i = 0; i < dest_row_stride; ++i) { | 
|  | if (output[i] != first_value) | 
|  | ++invalid_values; | 
|  | } | 
|  | EXPECT_EQ(0, invalid_values); | 
|  |  | 
|  | int test_row = 22; | 
|  | EXPECT_NEAR(output[test_row * dest_row_stride], 100, 1); | 
|  | EXPECT_NEAR(output[test_row * dest_row_stride + 1], 80, 1); | 
|  | EXPECT_NEAR(output[test_row * dest_row_stride + 2], 60, 1); | 
|  | EXPECT_NEAR(output[test_row * dest_row_stride + 3], 40, 1); | 
|  | EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 1], 100, 1); | 
|  | EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 2], 80, 1); | 
|  | EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 3], 60, 1); | 
|  | EXPECT_NEAR(output[(test_row + 1) * dest_row_stride - 4], 40, 1); | 
|  |  | 
|  | SingleChannelConvolveY1D(&input[0], src_row_stride, 1, kChannelCount, | 
|  | filter, SkISize::Make(kImgWidth, kImgHeight), | 
|  | &output[0], dest_row_stride, 0, 1, false); | 
|  |  | 
|  | int test_column = 42; | 
|  | EXPECT_NEAR(output[test_column], 100, 1); | 
|  | EXPECT_NEAR(output[test_column + dest_row_stride], 80, 1); | 
|  | EXPECT_NEAR(output[test_column + dest_row_stride * 2], 60, 1); | 
|  | EXPECT_NEAR(output[test_column + dest_row_stride * 3], 40, 1); | 
|  |  | 
|  | EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 1)], 100, 1); | 
|  | EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 2)], 80, 1); | 
|  | EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 3)], 60, 1); | 
|  | EXPECT_NEAR(output[test_column + dest_row_stride * (kImgHeight - 4)], 40, 1); | 
|  | } | 
|  |  | 
|  | TEST(Convolver, SetUpGaussianConvolutionFilter) { | 
|  | ConvolutionFilter1D smoothing_filter; | 
|  | ConvolutionFilter1D gradient_filter; | 
|  | SetUpGaussianConvolutionKernel(&smoothing_filter, 4.5f, false); | 
|  | SetUpGaussianConvolutionKernel(&gradient_filter, 3.0f, true); | 
|  |  | 
|  | int specified_filter_length; | 
|  | int filter_offset; | 
|  | int filter_length; | 
|  |  | 
|  | const ConvolutionFilter1D::Fixed* smoothing_kernel = | 
|  | smoothing_filter.GetSingleFilter( | 
|  | &specified_filter_length, &filter_offset, &filter_length); | 
|  | EXPECT_TRUE(smoothing_kernel); | 
|  | std::vector<float> fp_smoothing_kernel(filter_length); | 
|  | std::transform(smoothing_kernel, | 
|  | smoothing_kernel + filter_length, | 
|  | fp_smoothing_kernel.begin(), | 
|  | ConvolutionFilter1D::FixedToFloat); | 
|  | // Should sum-up to 1 (nearly), and all values whould be in ]0, 1[. | 
|  | EXPECT_NEAR(std::accumulate( | 
|  | fp_smoothing_kernel.begin(), fp_smoothing_kernel.end(), 0.0f), | 
|  | 1.0f, 0.01f); | 
|  | EXPECT_GT(*std::min_element(fp_smoothing_kernel.begin(), | 
|  | fp_smoothing_kernel.end()), 0.0f); | 
|  | EXPECT_LT(*std::max_element(fp_smoothing_kernel.begin(), | 
|  | fp_smoothing_kernel.end()), 1.0f); | 
|  |  | 
|  | const ConvolutionFilter1D::Fixed* gradient_kernel = | 
|  | gradient_filter.GetSingleFilter( | 
|  | &specified_filter_length, &filter_offset, &filter_length); | 
|  | EXPECT_TRUE(gradient_kernel); | 
|  | std::vector<float> fp_gradient_kernel(filter_length); | 
|  | std::transform(gradient_kernel, | 
|  | gradient_kernel + filter_length, | 
|  | fp_gradient_kernel.begin(), | 
|  | ConvolutionFilter1D::FixedToFloat); | 
|  | // Should sum-up to 0, and all values whould be in ]-1.5, 1.5[. | 
|  | EXPECT_NEAR(std::accumulate( | 
|  | fp_gradient_kernel.begin(), fp_gradient_kernel.end(), 0.0f), | 
|  | 0.0f, 0.01f); | 
|  | EXPECT_GT(*std::min_element(fp_gradient_kernel.begin(), | 
|  | fp_gradient_kernel.end()), -1.5f); | 
|  | EXPECT_LT(*std::min_element(fp_gradient_kernel.begin(), | 
|  | fp_gradient_kernel.end()), 0.0f); | 
|  | EXPECT_LT(*std::max_element(fp_gradient_kernel.begin(), | 
|  | fp_gradient_kernel.end()), 1.5f); | 
|  | EXPECT_GT(*std::max_element(fp_gradient_kernel.begin(), | 
|  | fp_gradient_kernel.end()), 0.0f); | 
|  | } | 
|  |  | 
|  | }  // namespace skia |