| /* | 
 |  * jcphuff.c | 
 |  * | 
 |  * Copyright (C) 1995-1997, Thomas G. Lane. | 
 |  * This file is part of the Independent JPEG Group's software. | 
 |  * For conditions of distribution and use, see the accompanying README file. | 
 |  * | 
 |  * This file contains Huffman entropy encoding routines for progressive JPEG. | 
 |  * | 
 |  * We do not support output suspension in this module, since the library | 
 |  * currently does not allow multiple-scan files to be written with output | 
 |  * suspension. | 
 |  */ | 
 |  | 
 | #define JPEG_INTERNALS | 
 | #include "jinclude.h" | 
 | #include "jpeglib.h" | 
 | #include "jchuff.h"		/* Declarations shared with jchuff.c */ | 
 |  | 
 | #ifdef C_PROGRESSIVE_SUPPORTED | 
 |  | 
 | /* Expanded entropy encoder object for progressive Huffman encoding. */ | 
 |  | 
 | typedef struct { | 
 |   struct jpeg_entropy_encoder pub; /* public fields */ | 
 |  | 
 |   /* Mode flag: TRUE for optimization, FALSE for actual data output */ | 
 |   boolean gather_statistics; | 
 |  | 
 |   /* Bit-level coding status. | 
 |    * next_output_byte/free_in_buffer are local copies of cinfo->dest fields. | 
 |    */ | 
 |   JOCTET * next_output_byte;	/* => next byte to write in buffer */ | 
 |   size_t free_in_buffer;	/* # of byte spaces remaining in buffer */ | 
 |   INT32 put_buffer;		/* current bit-accumulation buffer */ | 
 |   int put_bits;			/* # of bits now in it */ | 
 |   j_compress_ptr cinfo;		/* link to cinfo (needed for dump_buffer) */ | 
 |  | 
 |   /* Coding status for DC components */ | 
 |   int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | 
 |  | 
 |   /* Coding status for AC components */ | 
 |   int ac_tbl_no;		/* the table number of the single component */ | 
 |   unsigned int EOBRUN;		/* run length of EOBs */ | 
 |   unsigned int BE;		/* # of buffered correction bits before MCU */ | 
 |   char * bit_buffer;		/* buffer for correction bits (1 per char) */ | 
 |   /* packing correction bits tightly would save some space but cost time... */ | 
 |  | 
 |   unsigned int restarts_to_go;	/* MCUs left in this restart interval */ | 
 |   int next_restart_num;		/* next restart number to write (0-7) */ | 
 |  | 
 |   /* Pointers to derived tables (these workspaces have image lifespan). | 
 |    * Since any one scan codes only DC or only AC, we only need one set | 
 |    * of tables, not one for DC and one for AC. | 
 |    */ | 
 |   c_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; | 
 |  | 
 |   /* Statistics tables for optimization; again, one set is enough */ | 
 |   long * count_ptrs[NUM_HUFF_TBLS]; | 
 | } phuff_entropy_encoder; | 
 |  | 
 | typedef phuff_entropy_encoder * phuff_entropy_ptr; | 
 |  | 
 | /* MAX_CORR_BITS is the number of bits the AC refinement correction-bit | 
 |  * buffer can hold.  Larger sizes may slightly improve compression, but | 
 |  * 1000 is already well into the realm of overkill. | 
 |  * The minimum safe size is 64 bits. | 
 |  */ | 
 |  | 
 | #define MAX_CORR_BITS  1000	/* Max # of correction bits I can buffer */ | 
 |  | 
 | /* IRIGHT_SHIFT is like RIGHT_SHIFT, but works on int rather than INT32. | 
 |  * We assume that int right shift is unsigned if INT32 right shift is, | 
 |  * which should be safe. | 
 |  */ | 
 |  | 
 | #ifdef RIGHT_SHIFT_IS_UNSIGNED | 
 | #define ISHIFT_TEMPS	int ishift_temp; | 
 | #define IRIGHT_SHIFT(x,shft)  \ | 
 | 	((ishift_temp = (x)) < 0 ? \ | 
 | 	 (ishift_temp >> (shft)) | ((~0) << (16-(shft))) : \ | 
 | 	 (ishift_temp >> (shft))) | 
 | #else | 
 | #define ISHIFT_TEMPS | 
 | #define IRIGHT_SHIFT(x,shft)	((x) >> (shft)) | 
 | #endif | 
 |  | 
 | /* Forward declarations */ | 
 | METHODDEF(boolean) encode_mcu_DC_first JPP((j_compress_ptr cinfo, | 
 | 					    JBLOCKROW *MCU_data)); | 
 | METHODDEF(boolean) encode_mcu_AC_first JPP((j_compress_ptr cinfo, | 
 | 					    JBLOCKROW *MCU_data)); | 
 | METHODDEF(boolean) encode_mcu_DC_refine JPP((j_compress_ptr cinfo, | 
 | 					     JBLOCKROW *MCU_data)); | 
 | METHODDEF(boolean) encode_mcu_AC_refine JPP((j_compress_ptr cinfo, | 
 | 					     JBLOCKROW *MCU_data)); | 
 | METHODDEF(void) finish_pass_phuff JPP((j_compress_ptr cinfo)); | 
 | METHODDEF(void) finish_pass_gather_phuff JPP((j_compress_ptr cinfo)); | 
 |  | 
 |  | 
 | /* | 
 |  * Initialize for a Huffman-compressed scan using progressive JPEG. | 
 |  */ | 
 |  | 
 | METHODDEF(void) | 
 | start_pass_phuff (j_compress_ptr cinfo, boolean gather_statistics) | 
 | {   | 
 |   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
 |   boolean is_DC_band; | 
 |   int ci, tbl; | 
 |   jpeg_component_info * compptr; | 
 |  | 
 |   entropy->cinfo = cinfo; | 
 |   entropy->gather_statistics = gather_statistics; | 
 |  | 
 |   is_DC_band = (cinfo->Ss == 0); | 
 |  | 
 |   /* We assume jcmaster.c already validated the scan parameters. */ | 
 |  | 
 |   /* Select execution routines */ | 
 |   if (cinfo->Ah == 0) { | 
 |     if (is_DC_band) | 
 |       entropy->pub.encode_mcu = encode_mcu_DC_first; | 
 |     else | 
 |       entropy->pub.encode_mcu = encode_mcu_AC_first; | 
 |   } else { | 
 |     if (is_DC_band) | 
 |       entropy->pub.encode_mcu = encode_mcu_DC_refine; | 
 |     else { | 
 |       entropy->pub.encode_mcu = encode_mcu_AC_refine; | 
 |       /* AC refinement needs a correction bit buffer */ | 
 |       if (entropy->bit_buffer == NULL) | 
 | 	entropy->bit_buffer = (char *) | 
 | 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
 | 				      MAX_CORR_BITS * SIZEOF(char)); | 
 |     } | 
 |   } | 
 |   if (gather_statistics) | 
 |     entropy->pub.finish_pass = finish_pass_gather_phuff; | 
 |   else | 
 |     entropy->pub.finish_pass = finish_pass_phuff; | 
 |  | 
 |   /* Only DC coefficients may be interleaved, so cinfo->comps_in_scan = 1 | 
 |    * for AC coefficients. | 
 |    */ | 
 |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
 |     compptr = cinfo->cur_comp_info[ci]; | 
 |     /* Initialize DC predictions to 0 */ | 
 |     entropy->last_dc_val[ci] = 0; | 
 |     /* Get table index */ | 
 |     if (is_DC_band) { | 
 |       if (cinfo->Ah != 0)	/* DC refinement needs no table */ | 
 | 	continue; | 
 |       tbl = compptr->dc_tbl_no; | 
 |     } else { | 
 |       entropy->ac_tbl_no = tbl = compptr->ac_tbl_no; | 
 |     } | 
 |     if (gather_statistics) { | 
 |       /* Check for invalid table index */ | 
 |       /* (make_c_derived_tbl does this in the other path) */ | 
 |       if (tbl < 0 || tbl >= NUM_HUFF_TBLS) | 
 |         ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tbl); | 
 |       /* Allocate and zero the statistics tables */ | 
 |       /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ | 
 |       if (entropy->count_ptrs[tbl] == NULL) | 
 | 	entropy->count_ptrs[tbl] = (long *) | 
 | 	  (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
 | 				      257 * SIZEOF(long)); | 
 |       MEMZERO(entropy->count_ptrs[tbl], 257 * SIZEOF(long)); | 
 |     } else { | 
 |       /* Compute derived values for Huffman table */ | 
 |       /* We may do this more than once for a table, but it's not expensive */ | 
 |       jpeg_make_c_derived_tbl(cinfo, is_DC_band, tbl, | 
 | 			      & entropy->derived_tbls[tbl]); | 
 |     } | 
 |   } | 
 |  | 
 |   /* Initialize AC stuff */ | 
 |   entropy->EOBRUN = 0; | 
 |   entropy->BE = 0; | 
 |  | 
 |   /* Initialize bit buffer to empty */ | 
 |   entropy->put_buffer = 0; | 
 |   entropy->put_bits = 0; | 
 |  | 
 |   /* Initialize restart stuff */ | 
 |   entropy->restarts_to_go = cinfo->restart_interval; | 
 |   entropy->next_restart_num = 0; | 
 | } | 
 |  | 
 |  | 
 | /* Outputting bytes to the file. | 
 |  * NB: these must be called only when actually outputting, | 
 |  * that is, entropy->gather_statistics == FALSE. | 
 |  */ | 
 |  | 
 | /* Emit a byte */ | 
 | #define emit_byte(entropy,val)  \ | 
 | 	{ *(entropy)->next_output_byte++ = (JOCTET) (val);  \ | 
 | 	  if (--(entropy)->free_in_buffer == 0)  \ | 
 | 	    dump_buffer(entropy); } | 
 |  | 
 |  | 
 | LOCAL(void) | 
 | dump_buffer (phuff_entropy_ptr entropy) | 
 | /* Empty the output buffer; we do not support suspension in this module. */ | 
 | { | 
 |   struct jpeg_destination_mgr * dest = entropy->cinfo->dest; | 
 |  | 
 |   if (! (*dest->empty_output_buffer) (entropy->cinfo)) | 
 |     ERREXIT(entropy->cinfo, JERR_CANT_SUSPEND); | 
 |   /* After a successful buffer dump, must reset buffer pointers */ | 
 |   entropy->next_output_byte = dest->next_output_byte; | 
 |   entropy->free_in_buffer = dest->free_in_buffer; | 
 | } | 
 |  | 
 |  | 
 | /* Outputting bits to the file */ | 
 |  | 
 | /* Only the right 24 bits of put_buffer are used; the valid bits are | 
 |  * left-justified in this part.  At most 16 bits can be passed to emit_bits | 
 |  * in one call, and we never retain more than 7 bits in put_buffer | 
 |  * between calls, so 24 bits are sufficient. | 
 |  */ | 
 |  | 
 | INLINE | 
 | LOCAL(void) | 
 | emit_bits (phuff_entropy_ptr entropy, unsigned int code, int size) | 
 | /* Emit some bits, unless we are in gather mode */ | 
 | { | 
 |   /* This routine is heavily used, so it's worth coding tightly. */ | 
 |   register INT32 put_buffer = (INT32) code; | 
 |   register int put_bits = entropy->put_bits; | 
 |  | 
 |   /* if size is 0, caller used an invalid Huffman table entry */ | 
 |   if (size == 0) | 
 |     ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); | 
 |  | 
 |   if (entropy->gather_statistics) | 
 |     return;			/* do nothing if we're only getting stats */ | 
 |  | 
 |   put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ | 
 |    | 
 |   put_bits += size;		/* new number of bits in buffer */ | 
 |    | 
 |   put_buffer <<= 24 - put_bits; /* align incoming bits */ | 
 |  | 
 |   put_buffer |= entropy->put_buffer; /* and merge with old buffer contents */ | 
 |  | 
 |   while (put_bits >= 8) { | 
 |     int c = (int) ((put_buffer >> 16) & 0xFF); | 
 |      | 
 |     emit_byte(entropy, c); | 
 |     if (c == 0xFF) {		/* need to stuff a zero byte? */ | 
 |       emit_byte(entropy, 0); | 
 |     } | 
 |     put_buffer <<= 8; | 
 |     put_bits -= 8; | 
 |   } | 
 |  | 
 |   entropy->put_buffer = put_buffer; /* update variables */ | 
 |   entropy->put_bits = put_bits; | 
 | } | 
 |  | 
 |  | 
 | LOCAL(void) | 
 | flush_bits (phuff_entropy_ptr entropy) | 
 | { | 
 |   emit_bits(entropy, 0x7F, 7); /* fill any partial byte with ones */ | 
 |   entropy->put_buffer = 0;     /* and reset bit-buffer to empty */ | 
 |   entropy->put_bits = 0; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Emit (or just count) a Huffman symbol. | 
 |  */ | 
 |  | 
 | INLINE | 
 | LOCAL(void) | 
 | emit_symbol (phuff_entropy_ptr entropy, int tbl_no, int symbol) | 
 | { | 
 |   if (entropy->gather_statistics) | 
 |     entropy->count_ptrs[tbl_no][symbol]++; | 
 |   else { | 
 |     c_derived_tbl * tbl = entropy->derived_tbls[tbl_no]; | 
 |     emit_bits(entropy, tbl->ehufco[symbol], tbl->ehufsi[symbol]); | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Emit bits from a correction bit buffer. | 
 |  */ | 
 |  | 
 | LOCAL(void) | 
 | emit_buffered_bits (phuff_entropy_ptr entropy, char * bufstart, | 
 | 		    unsigned int nbits) | 
 | { | 
 |   if (entropy->gather_statistics) | 
 |     return;			/* no real work */ | 
 |  | 
 |   while (nbits > 0) { | 
 |     emit_bits(entropy, (unsigned int) (*bufstart), 1); | 
 |     bufstart++; | 
 |     nbits--; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Emit any pending EOBRUN symbol. | 
 |  */ | 
 |  | 
 | LOCAL(void) | 
 | emit_eobrun (phuff_entropy_ptr entropy) | 
 | { | 
 |   register int temp, nbits; | 
 |  | 
 |   if (entropy->EOBRUN > 0) {	/* if there is any pending EOBRUN */ | 
 |     temp = entropy->EOBRUN; | 
 |     nbits = 0; | 
 |     while ((temp >>= 1)) | 
 |       nbits++; | 
 |     /* safety check: shouldn't happen given limited correction-bit buffer */ | 
 |     if (nbits > 14) | 
 |       ERREXIT(entropy->cinfo, JERR_HUFF_MISSING_CODE); | 
 |  | 
 |     emit_symbol(entropy, entropy->ac_tbl_no, nbits << 4); | 
 |     if (nbits) | 
 |       emit_bits(entropy, entropy->EOBRUN, nbits); | 
 |  | 
 |     entropy->EOBRUN = 0; | 
 |  | 
 |     /* Emit any buffered correction bits */ | 
 |     emit_buffered_bits(entropy, entropy->bit_buffer, entropy->BE); | 
 |     entropy->BE = 0; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Emit a restart marker & resynchronize predictions. | 
 |  */ | 
 |  | 
 | LOCAL(void) | 
 | emit_restart (phuff_entropy_ptr entropy, int restart_num) | 
 | { | 
 |   int ci; | 
 |  | 
 |   emit_eobrun(entropy); | 
 |  | 
 |   if (! entropy->gather_statistics) { | 
 |     flush_bits(entropy); | 
 |     emit_byte(entropy, 0xFF); | 
 |     emit_byte(entropy, JPEG_RST0 + restart_num); | 
 |   } | 
 |  | 
 |   if (entropy->cinfo->Ss == 0) { | 
 |     /* Re-initialize DC predictions to 0 */ | 
 |     for (ci = 0; ci < entropy->cinfo->comps_in_scan; ci++) | 
 |       entropy->last_dc_val[ci] = 0; | 
 |   } else { | 
 |     /* Re-initialize all AC-related fields to 0 */ | 
 |     entropy->EOBRUN = 0; | 
 |     entropy->BE = 0; | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * MCU encoding for DC initial scan (either spectral selection, | 
 |  * or first pass of successive approximation). | 
 |  */ | 
 |  | 
 | METHODDEF(boolean) | 
 | encode_mcu_DC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
 | { | 
 |   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
 |   register int temp, temp2; | 
 |   register int nbits; | 
 |   int blkn, ci; | 
 |   int Al = cinfo->Al; | 
 |   JBLOCKROW block; | 
 |   jpeg_component_info * compptr; | 
 |   ISHIFT_TEMPS | 
 |  | 
 |   entropy->next_output_byte = cinfo->dest->next_output_byte; | 
 |   entropy->free_in_buffer = cinfo->dest->free_in_buffer; | 
 |  | 
 |   /* Emit restart marker if needed */ | 
 |   if (cinfo->restart_interval) | 
 |     if (entropy->restarts_to_go == 0) | 
 |       emit_restart(entropy, entropy->next_restart_num); | 
 |  | 
 |   /* Encode the MCU data blocks */ | 
 |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
 |     block = MCU_data[blkn]; | 
 |     ci = cinfo->MCU_membership[blkn]; | 
 |     compptr = cinfo->cur_comp_info[ci]; | 
 |  | 
 |     /* Compute the DC value after the required point transform by Al. | 
 |      * This is simply an arithmetic right shift. | 
 |      */ | 
 |     temp2 = IRIGHT_SHIFT((int) ((*block)[0]), Al); | 
 |  | 
 |     /* DC differences are figured on the point-transformed values. */ | 
 |     temp = temp2 - entropy->last_dc_val[ci]; | 
 |     entropy->last_dc_val[ci] = temp2; | 
 |  | 
 |     /* Encode the DC coefficient difference per section G.1.2.1 */ | 
 |     temp2 = temp; | 
 |     if (temp < 0) { | 
 |       temp = -temp;		/* temp is abs value of input */ | 
 |       /* For a negative input, want temp2 = bitwise complement of abs(input) */ | 
 |       /* This code assumes we are on a two's complement machine */ | 
 |       temp2--; | 
 |     } | 
 |      | 
 |     /* Find the number of bits needed for the magnitude of the coefficient */ | 
 |     nbits = 0; | 
 |     while (temp) { | 
 |       nbits++; | 
 |       temp >>= 1; | 
 |     } | 
 |     /* Check for out-of-range coefficient values. | 
 |      * Since we're encoding a difference, the range limit is twice as much. | 
 |      */ | 
 |     if (nbits > MAX_COEF_BITS+1) | 
 |       ERREXIT(cinfo, JERR_BAD_DCT_COEF); | 
 |      | 
 |     /* Count/emit the Huffman-coded symbol for the number of bits */ | 
 |     emit_symbol(entropy, compptr->dc_tbl_no, nbits); | 
 |      | 
 |     /* Emit that number of bits of the value, if positive, */ | 
 |     /* or the complement of its magnitude, if negative. */ | 
 |     if (nbits)			/* emit_bits rejects calls with size 0 */ | 
 |       emit_bits(entropy, (unsigned int) temp2, nbits); | 
 |   } | 
 |  | 
 |   cinfo->dest->next_output_byte = entropy->next_output_byte; | 
 |   cinfo->dest->free_in_buffer = entropy->free_in_buffer; | 
 |  | 
 |   /* Update restart-interval state too */ | 
 |   if (cinfo->restart_interval) { | 
 |     if (entropy->restarts_to_go == 0) { | 
 |       entropy->restarts_to_go = cinfo->restart_interval; | 
 |       entropy->next_restart_num++; | 
 |       entropy->next_restart_num &= 7; | 
 |     } | 
 |     entropy->restarts_to_go--; | 
 |   } | 
 |  | 
 |   return TRUE; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * MCU encoding for AC initial scan (either spectral selection, | 
 |  * or first pass of successive approximation). | 
 |  */ | 
 |  | 
 | METHODDEF(boolean) | 
 | encode_mcu_AC_first (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
 | { | 
 |   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
 |   register int temp, temp2; | 
 |   register int nbits; | 
 |   register int r, k; | 
 |   int Se = cinfo->Se; | 
 |   int Al = cinfo->Al; | 
 |   JBLOCKROW block; | 
 |  | 
 |   entropy->next_output_byte = cinfo->dest->next_output_byte; | 
 |   entropy->free_in_buffer = cinfo->dest->free_in_buffer; | 
 |  | 
 |   /* Emit restart marker if needed */ | 
 |   if (cinfo->restart_interval) | 
 |     if (entropy->restarts_to_go == 0) | 
 |       emit_restart(entropy, entropy->next_restart_num); | 
 |  | 
 |   /* Encode the MCU data block */ | 
 |   block = MCU_data[0]; | 
 |  | 
 |   /* Encode the AC coefficients per section G.1.2.2, fig. G.3 */ | 
 |    | 
 |   r = 0;			/* r = run length of zeros */ | 
 |     | 
 |   for (k = cinfo->Ss; k <= Se; k++) { | 
 |     if ((temp = (*block)[jpeg_natural_order[k]]) == 0) { | 
 |       r++; | 
 |       continue; | 
 |     } | 
 |     /* We must apply the point transform by Al.  For AC coefficients this | 
 |      * is an integer division with rounding towards 0.  To do this portably | 
 |      * in C, we shift after obtaining the absolute value; so the code is | 
 |      * interwoven with finding the abs value (temp) and output bits (temp2). | 
 |      */ | 
 |     if (temp < 0) { | 
 |       temp = -temp;		/* temp is abs value of input */ | 
 |       temp >>= Al;		/* apply the point transform */ | 
 |       /* For a negative coef, want temp2 = bitwise complement of abs(coef) */ | 
 |       temp2 = ~temp; | 
 |     } else { | 
 |       temp >>= Al;		/* apply the point transform */ | 
 |       temp2 = temp; | 
 |     } | 
 |     /* Watch out for case that nonzero coef is zero after point transform */ | 
 |     if (temp == 0) { | 
 |       r++; | 
 |       continue; | 
 |     } | 
 |  | 
 |     /* Emit any pending EOBRUN */ | 
 |     if (entropy->EOBRUN > 0) | 
 |       emit_eobrun(entropy); | 
 |     /* if run length > 15, must emit special run-length-16 codes (0xF0) */ | 
 |     while (r > 15) { | 
 |       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); | 
 |       r -= 16; | 
 |     } | 
 |  | 
 |     /* Find the number of bits needed for the magnitude of the coefficient */ | 
 |     nbits = 1;			/* there must be at least one 1 bit */ | 
 |     while ((temp >>= 1)) | 
 |       nbits++; | 
 |     /* Check for out-of-range coefficient values */ | 
 |     if (nbits > MAX_COEF_BITS) | 
 |       ERREXIT(cinfo, JERR_BAD_DCT_COEF); | 
 |  | 
 |     /* Count/emit Huffman symbol for run length / number of bits */ | 
 |     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + nbits); | 
 |  | 
 |     /* Emit that number of bits of the value, if positive, */ | 
 |     /* or the complement of its magnitude, if negative. */ | 
 |     emit_bits(entropy, (unsigned int) temp2, nbits); | 
 |  | 
 |     r = 0;			/* reset zero run length */ | 
 |   } | 
 |  | 
 |   if (r > 0) {			/* If there are trailing zeroes, */ | 
 |     entropy->EOBRUN++;		/* count an EOB */ | 
 |     if (entropy->EOBRUN == 0x7FFF) | 
 |       emit_eobrun(entropy);	/* force it out to avoid overflow */ | 
 |   } | 
 |  | 
 |   cinfo->dest->next_output_byte = entropy->next_output_byte; | 
 |   cinfo->dest->free_in_buffer = entropy->free_in_buffer; | 
 |  | 
 |   /* Update restart-interval state too */ | 
 |   if (cinfo->restart_interval) { | 
 |     if (entropy->restarts_to_go == 0) { | 
 |       entropy->restarts_to_go = cinfo->restart_interval; | 
 |       entropy->next_restart_num++; | 
 |       entropy->next_restart_num &= 7; | 
 |     } | 
 |     entropy->restarts_to_go--; | 
 |   } | 
 |  | 
 |   return TRUE; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * MCU encoding for DC successive approximation refinement scan. | 
 |  * Note: we assume such scans can be multi-component, although the spec | 
 |  * is not very clear on the point. | 
 |  */ | 
 |  | 
 | METHODDEF(boolean) | 
 | encode_mcu_DC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
 | { | 
 |   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
 |   register int temp; | 
 |   int blkn; | 
 |   int Al = cinfo->Al; | 
 |   JBLOCKROW block; | 
 |  | 
 |   entropy->next_output_byte = cinfo->dest->next_output_byte; | 
 |   entropy->free_in_buffer = cinfo->dest->free_in_buffer; | 
 |  | 
 |   /* Emit restart marker if needed */ | 
 |   if (cinfo->restart_interval) | 
 |     if (entropy->restarts_to_go == 0) | 
 |       emit_restart(entropy, entropy->next_restart_num); | 
 |  | 
 |   /* Encode the MCU data blocks */ | 
 |   for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
 |     block = MCU_data[blkn]; | 
 |  | 
 |     /* We simply emit the Al'th bit of the DC coefficient value. */ | 
 |     temp = (*block)[0]; | 
 |     emit_bits(entropy, (unsigned int) (temp >> Al), 1); | 
 |   } | 
 |  | 
 |   cinfo->dest->next_output_byte = entropy->next_output_byte; | 
 |   cinfo->dest->free_in_buffer = entropy->free_in_buffer; | 
 |  | 
 |   /* Update restart-interval state too */ | 
 |   if (cinfo->restart_interval) { | 
 |     if (entropy->restarts_to_go == 0) { | 
 |       entropy->restarts_to_go = cinfo->restart_interval; | 
 |       entropy->next_restart_num++; | 
 |       entropy->next_restart_num &= 7; | 
 |     } | 
 |     entropy->restarts_to_go--; | 
 |   } | 
 |  | 
 |   return TRUE; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * MCU encoding for AC successive approximation refinement scan. | 
 |  */ | 
 |  | 
 | METHODDEF(boolean) | 
 | encode_mcu_AC_refine (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
 | { | 
 |   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
 |   register int temp; | 
 |   register int r, k; | 
 |   int EOB; | 
 |   char *BR_buffer; | 
 |   unsigned int BR; | 
 |   int Se = cinfo->Se; | 
 |   int Al = cinfo->Al; | 
 |   JBLOCKROW block; | 
 |   int absvalues[DCTSIZE2]; | 
 |  | 
 |   entropy->next_output_byte = cinfo->dest->next_output_byte; | 
 |   entropy->free_in_buffer = cinfo->dest->free_in_buffer; | 
 |  | 
 |   /* Emit restart marker if needed */ | 
 |   if (cinfo->restart_interval) | 
 |     if (entropy->restarts_to_go == 0) | 
 |       emit_restart(entropy, entropy->next_restart_num); | 
 |  | 
 |   /* Encode the MCU data block */ | 
 |   block = MCU_data[0]; | 
 |  | 
 |   /* It is convenient to make a pre-pass to determine the transformed | 
 |    * coefficients' absolute values and the EOB position. | 
 |    */ | 
 |   EOB = 0; | 
 |   for (k = cinfo->Ss; k <= Se; k++) { | 
 |     temp = (*block)[jpeg_natural_order[k]]; | 
 |     /* We must apply the point transform by Al.  For AC coefficients this | 
 |      * is an integer division with rounding towards 0.  To do this portably | 
 |      * in C, we shift after obtaining the absolute value. | 
 |      */ | 
 |     if (temp < 0) | 
 |       temp = -temp;		/* temp is abs value of input */ | 
 |     temp >>= Al;		/* apply the point transform */ | 
 |     absvalues[k] = temp;	/* save abs value for main pass */ | 
 |     if (temp == 1) | 
 |       EOB = k;			/* EOB = index of last newly-nonzero coef */ | 
 |   } | 
 |  | 
 |   /* Encode the AC coefficients per section G.1.2.3, fig. G.7 */ | 
 |    | 
 |   r = 0;			/* r = run length of zeros */ | 
 |   BR = 0;			/* BR = count of buffered bits added now */ | 
 |   BR_buffer = entropy->bit_buffer + entropy->BE; /* Append bits to buffer */ | 
 |  | 
 |   for (k = cinfo->Ss; k <= Se; k++) { | 
 |     if ((temp = absvalues[k]) == 0) { | 
 |       r++; | 
 |       continue; | 
 |     } | 
 |  | 
 |     /* Emit any required ZRLs, but not if they can be folded into EOB */ | 
 |     while (r > 15 && k <= EOB) { | 
 |       /* emit any pending EOBRUN and the BE correction bits */ | 
 |       emit_eobrun(entropy); | 
 |       /* Emit ZRL */ | 
 |       emit_symbol(entropy, entropy->ac_tbl_no, 0xF0); | 
 |       r -= 16; | 
 |       /* Emit buffered correction bits that must be associated with ZRL */ | 
 |       emit_buffered_bits(entropy, BR_buffer, BR); | 
 |       BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ | 
 |       BR = 0; | 
 |     } | 
 |  | 
 |     /* If the coef was previously nonzero, it only needs a correction bit. | 
 |      * NOTE: a straight translation of the spec's figure G.7 would suggest | 
 |      * that we also need to test r > 15.  But if r > 15, we can only get here | 
 |      * if k > EOB, which implies that this coefficient is not 1. | 
 |      */ | 
 |     if (temp > 1) { | 
 |       /* The correction bit is the next bit of the absolute value. */ | 
 |       BR_buffer[BR++] = (char) (temp & 1); | 
 |       continue; | 
 |     } | 
 |  | 
 |     /* Emit any pending EOBRUN and the BE correction bits */ | 
 |     emit_eobrun(entropy); | 
 |  | 
 |     /* Count/emit Huffman symbol for run length / number of bits */ | 
 |     emit_symbol(entropy, entropy->ac_tbl_no, (r << 4) + 1); | 
 |  | 
 |     /* Emit output bit for newly-nonzero coef */ | 
 |     temp = ((*block)[jpeg_natural_order[k]] < 0) ? 0 : 1; | 
 |     emit_bits(entropy, (unsigned int) temp, 1); | 
 |  | 
 |     /* Emit buffered correction bits that must be associated with this code */ | 
 |     emit_buffered_bits(entropy, BR_buffer, BR); | 
 |     BR_buffer = entropy->bit_buffer; /* BE bits are gone now */ | 
 |     BR = 0; | 
 |     r = 0;			/* reset zero run length */ | 
 |   } | 
 |  | 
 |   if (r > 0 || BR > 0) {	/* If there are trailing zeroes, */ | 
 |     entropy->EOBRUN++;		/* count an EOB */ | 
 |     entropy->BE += BR;		/* concat my correction bits to older ones */ | 
 |     /* We force out the EOB if we risk either: | 
 |      * 1. overflow of the EOB counter; | 
 |      * 2. overflow of the correction bit buffer during the next MCU. | 
 |      */ | 
 |     if (entropy->EOBRUN == 0x7FFF || entropy->BE > (MAX_CORR_BITS-DCTSIZE2+1)) | 
 |       emit_eobrun(entropy); | 
 |   } | 
 |  | 
 |   cinfo->dest->next_output_byte = entropy->next_output_byte; | 
 |   cinfo->dest->free_in_buffer = entropy->free_in_buffer; | 
 |  | 
 |   /* Update restart-interval state too */ | 
 |   if (cinfo->restart_interval) { | 
 |     if (entropy->restarts_to_go == 0) { | 
 |       entropy->restarts_to_go = cinfo->restart_interval; | 
 |       entropy->next_restart_num++; | 
 |       entropy->next_restart_num &= 7; | 
 |     } | 
 |     entropy->restarts_to_go--; | 
 |   } | 
 |  | 
 |   return TRUE; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Finish up at the end of a Huffman-compressed progressive scan. | 
 |  */ | 
 |  | 
 | METHODDEF(void) | 
 | finish_pass_phuff (j_compress_ptr cinfo) | 
 | {    | 
 |   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
 |  | 
 |   entropy->next_output_byte = cinfo->dest->next_output_byte; | 
 |   entropy->free_in_buffer = cinfo->dest->free_in_buffer; | 
 |  | 
 |   /* Flush out any buffered data */ | 
 |   emit_eobrun(entropy); | 
 |   flush_bits(entropy); | 
 |  | 
 |   cinfo->dest->next_output_byte = entropy->next_output_byte; | 
 |   cinfo->dest->free_in_buffer = entropy->free_in_buffer; | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Finish up a statistics-gathering pass and create the new Huffman tables. | 
 |  */ | 
 |  | 
 | METHODDEF(void) | 
 | finish_pass_gather_phuff (j_compress_ptr cinfo) | 
 | { | 
 |   phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
 |   boolean is_DC_band; | 
 |   int ci, tbl; | 
 |   jpeg_component_info * compptr; | 
 |   JHUFF_TBL **htblptr; | 
 |   boolean did[NUM_HUFF_TBLS]; | 
 |  | 
 |   /* Flush out buffered data (all we care about is counting the EOB symbol) */ | 
 |   emit_eobrun(entropy); | 
 |  | 
 |   is_DC_band = (cinfo->Ss == 0); | 
 |  | 
 |   /* It's important not to apply jpeg_gen_optimal_table more than once | 
 |    * per table, because it clobbers the input frequency counts! | 
 |    */ | 
 |   MEMZERO(did, SIZEOF(did)); | 
 |  | 
 |   for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
 |     compptr = cinfo->cur_comp_info[ci]; | 
 |     if (is_DC_band) { | 
 |       if (cinfo->Ah != 0)	/* DC refinement needs no table */ | 
 | 	continue; | 
 |       tbl = compptr->dc_tbl_no; | 
 |     } else { | 
 |       tbl = compptr->ac_tbl_no; | 
 |     } | 
 |     if (! did[tbl]) { | 
 |       if (is_DC_band) | 
 |         htblptr = & cinfo->dc_huff_tbl_ptrs[tbl]; | 
 |       else | 
 |         htblptr = & cinfo->ac_huff_tbl_ptrs[tbl]; | 
 |       if (*htblptr == NULL) | 
 |         *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); | 
 |       jpeg_gen_optimal_table(cinfo, *htblptr, entropy->count_ptrs[tbl]); | 
 |       did[tbl] = TRUE; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Module initialization routine for progressive Huffman entropy encoding. | 
 |  */ | 
 |  | 
 | GLOBAL(void) | 
 | jinit_phuff_encoder (j_compress_ptr cinfo) | 
 | { | 
 |   phuff_entropy_ptr entropy; | 
 |   int i; | 
 |  | 
 |   entropy = (phuff_entropy_ptr) | 
 |     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
 | 				SIZEOF(phuff_entropy_encoder)); | 
 |   cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; | 
 |   entropy->pub.start_pass = start_pass_phuff; | 
 |  | 
 |   /* Mark tables unallocated */ | 
 |   for (i = 0; i < NUM_HUFF_TBLS; i++) { | 
 |     entropy->derived_tbls[i] = NULL; | 
 |     entropy->count_ptrs[i] = NULL; | 
 |   } | 
 |   entropy->bit_buffer = NULL;	/* needed only in AC refinement scan */ | 
 | } | 
 |  | 
 | #endif /* C_PROGRESSIVE_SUPPORTED */ |