| /* | 
 |  * jddctmgr.c | 
 |  * | 
 |  * Copyright (C) 1994-1996, Thomas G. Lane. | 
 |  * This file is part of the Independent JPEG Group's software. | 
 |  * For conditions of distribution and use, see the accompanying README file. | 
 |  * | 
 |  * This file contains the inverse-DCT management logic. | 
 |  * This code selects a particular IDCT implementation to be used, | 
 |  * and it performs related housekeeping chores.  No code in this file | 
 |  * is executed per IDCT step, only during output pass setup. | 
 |  * | 
 |  * Note that the IDCT routines are responsible for performing coefficient | 
 |  * dequantization as well as the IDCT proper.  This module sets up the | 
 |  * dequantization multiplier table needed by the IDCT routine. | 
 |  */ | 
 |  | 
 | #define JPEG_INTERNALS | 
 | #include "jinclude.h" | 
 | #include "jpeglib.h" | 
 | #include "jdct.h"		/* Private declarations for DCT subsystem */ | 
 |  | 
 |  | 
 | /* | 
 |  * The decompressor input side (jdinput.c) saves away the appropriate | 
 |  * quantization table for each component at the start of the first scan | 
 |  * involving that component.  (This is necessary in order to correctly | 
 |  * decode files that reuse Q-table slots.) | 
 |  * When we are ready to make an output pass, the saved Q-table is converted | 
 |  * to a multiplier table that will actually be used by the IDCT routine. | 
 |  * The multiplier table contents are IDCT-method-dependent.  To support | 
 |  * application changes in IDCT method between scans, we can remake the | 
 |  * multiplier tables if necessary. | 
 |  * In buffered-image mode, the first output pass may occur before any data | 
 |  * has been seen for some components, and thus before their Q-tables have | 
 |  * been saved away.  To handle this case, multiplier tables are preset | 
 |  * to zeroes; the result of the IDCT will be a neutral gray level. | 
 |  */ | 
 |  | 
 |  | 
 | /* Private subobject for this module */ | 
 |  | 
 | typedef struct { | 
 |   struct jpeg_inverse_dct pub;	/* public fields */ | 
 |  | 
 |   /* This array contains the IDCT method code that each multiplier table | 
 |    * is currently set up for, or -1 if it's not yet set up. | 
 |    * The actual multiplier tables are pointed to by dct_table in the | 
 |    * per-component comp_info structures. | 
 |    */ | 
 |   int cur_method[MAX_COMPONENTS]; | 
 | } my_idct_controller; | 
 |  | 
 | typedef my_idct_controller * my_idct_ptr; | 
 |  | 
 |  | 
 | /* Allocated multiplier tables: big enough for any supported variant */ | 
 |  | 
 | typedef union { | 
 |   ISLOW_MULT_TYPE islow_array[DCTSIZE2]; | 
 | #ifdef DCT_IFAST_SUPPORTED | 
 |   IFAST_MULT_TYPE ifast_array[DCTSIZE2]; | 
 | #endif | 
 | #ifdef DCT_FLOAT_SUPPORTED | 
 |   FLOAT_MULT_TYPE float_array[DCTSIZE2]; | 
 | #endif | 
 | } multiplier_table; | 
 |  | 
 |  | 
 | /* The current scaled-IDCT routines require ISLOW-style multiplier tables, | 
 |  * so be sure to compile that code if either ISLOW or SCALING is requested. | 
 |  */ | 
 | #ifdef DCT_ISLOW_SUPPORTED | 
 | #define PROVIDE_ISLOW_TABLES | 
 | #else | 
 | #ifdef IDCT_SCALING_SUPPORTED | 
 | #define PROVIDE_ISLOW_TABLES | 
 | #endif | 
 | #endif | 
 |  | 
 |  | 
 | /* | 
 |  * Prepare for an output pass. | 
 |  * Here we select the proper IDCT routine for each component and build | 
 |  * a matching multiplier table. | 
 |  */ | 
 |  | 
 | METHODDEF(void) | 
 | start_pass (j_decompress_ptr cinfo) | 
 | { | 
 |   my_idct_ptr idct = (my_idct_ptr) cinfo->idct; | 
 |   int ci, i; | 
 |   jpeg_component_info *compptr; | 
 |   int method = 0; | 
 |   inverse_DCT_method_ptr method_ptr = NULL; | 
 |   JQUANT_TBL * qtbl; | 
 |  | 
 |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 
 |        ci++, compptr++) { | 
 |     /* Select the proper IDCT routine for this component's scaling */ | 
 |     switch (compptr->DCT_scaled_size) { | 
 | #ifdef IDCT_SCALING_SUPPORTED | 
 |     case 1: | 
 |       method_ptr = jpeg_idct_1x1; | 
 |       method = JDCT_ISLOW;	/* jidctred uses islow-style table */ | 
 |       break; | 
 |     case 2: | 
 |       method_ptr = jpeg_idct_2x2; | 
 |       method = JDCT_ISLOW;	/* jidctred uses islow-style table */ | 
 |       break; | 
 |     case 4: | 
 |       method_ptr = jpeg_idct_4x4; | 
 |       method = JDCT_ISLOW;	/* jidctred uses islow-style table */ | 
 |       break; | 
 | #endif | 
 |     case DCTSIZE: | 
 |       switch (cinfo->dct_method) { | 
 | #ifdef DCT_ISLOW_SUPPORTED | 
 |       case JDCT_ISLOW: | 
 | 	method_ptr = jpeg_idct_islow; | 
 | 	method = JDCT_ISLOW; | 
 | 	break; | 
 | #endif | 
 | #ifdef DCT_IFAST_SUPPORTED | 
 |       case JDCT_IFAST: | 
 | 	method_ptr = jpeg_idct_ifast; | 
 | 	method = JDCT_IFAST; | 
 | 	break; | 
 | #endif | 
 | #ifdef DCT_FLOAT_SUPPORTED | 
 |       case JDCT_FLOAT: | 
 | 	method_ptr = jpeg_idct_float; | 
 | 	method = JDCT_FLOAT; | 
 | 	break; | 
 | #endif | 
 |       default: | 
 | 	ERREXIT(cinfo, JERR_NOT_COMPILED); | 
 | 	break; | 
 |       } | 
 |       break; | 
 |     default: | 
 |       ERREXIT1(cinfo, JERR_BAD_DCTSIZE, compptr->DCT_scaled_size); | 
 |       break; | 
 |     } | 
 |     idct->pub.inverse_DCT[ci] = method_ptr; | 
 |     /* Create multiplier table from quant table. | 
 |      * However, we can skip this if the component is uninteresting | 
 |      * or if we already built the table.  Also, if no quant table | 
 |      * has yet been saved for the component, we leave the | 
 |      * multiplier table all-zero; we'll be reading zeroes from the | 
 |      * coefficient controller's buffer anyway. | 
 |      */ | 
 |     if (! compptr->component_needed || idct->cur_method[ci] == method) | 
 |       continue; | 
 |     qtbl = compptr->quant_table; | 
 |     if (qtbl == NULL)		/* happens if no data yet for component */ | 
 |       continue; | 
 |     idct->cur_method[ci] = method; | 
 |     switch (method) { | 
 | #ifdef PROVIDE_ISLOW_TABLES | 
 |     case JDCT_ISLOW: | 
 |       { | 
 | 	/* For LL&M IDCT method, multipliers are equal to raw quantization | 
 | 	 * coefficients, but are stored as ints to ensure access efficiency. | 
 | 	 */ | 
 | 	ISLOW_MULT_TYPE * ismtbl = (ISLOW_MULT_TYPE *) compptr->dct_table; | 
 | 	for (i = 0; i < DCTSIZE2; i++) { | 
 | 	  ismtbl[i] = (ISLOW_MULT_TYPE) qtbl->quantval[i]; | 
 | 	} | 
 |       } | 
 |       break; | 
 | #endif | 
 | #ifdef DCT_IFAST_SUPPORTED | 
 |     case JDCT_IFAST: | 
 |       { | 
 | 	/* For AA&N IDCT method, multipliers are equal to quantization | 
 | 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where | 
 | 	 *   scalefactor[0] = 1 | 
 | 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | 
 | 	 * For integer operation, the multiplier table is to be scaled by | 
 | 	 * IFAST_SCALE_BITS. | 
 | 	 */ | 
 | 	IFAST_MULT_TYPE * ifmtbl = (IFAST_MULT_TYPE *) compptr->dct_table; | 
 | #define CONST_BITS 14 | 
 | 	static const INT16 aanscales[DCTSIZE2] = { | 
 | 	  /* precomputed values scaled up by 14 bits */ | 
 | 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | 
 | 	  22725, 31521, 29692, 26722, 22725, 17855, 12299,  6270, | 
 | 	  21407, 29692, 27969, 25172, 21407, 16819, 11585,  5906, | 
 | 	  19266, 26722, 25172, 22654, 19266, 15137, 10426,  5315, | 
 | 	  16384, 22725, 21407, 19266, 16384, 12873,  8867,  4520, | 
 | 	  12873, 17855, 16819, 15137, 12873, 10114,  6967,  3552, | 
 | 	   8867, 12299, 11585, 10426,  8867,  6967,  4799,  2446, | 
 | 	   4520,  6270,  5906,  5315,  4520,  3552,  2446,  1247 | 
 | 	}; | 
 | 	SHIFT_TEMPS | 
 |  | 
 | 	for (i = 0; i < DCTSIZE2; i++) { | 
 | 	  ifmtbl[i] = (IFAST_MULT_TYPE) | 
 | 	    DESCALE(MULTIPLY16V16((INT32) qtbl->quantval[i], | 
 | 				  (INT32) aanscales[i]), | 
 | 		    CONST_BITS-IFAST_SCALE_BITS); | 
 | 	} | 
 |       } | 
 |       break; | 
 | #endif | 
 | #ifdef DCT_FLOAT_SUPPORTED | 
 |     case JDCT_FLOAT: | 
 |       { | 
 | 	/* For float AA&N IDCT method, multipliers are equal to quantization | 
 | 	 * coefficients scaled by scalefactor[row]*scalefactor[col], where | 
 | 	 *   scalefactor[0] = 1 | 
 | 	 *   scalefactor[k] = cos(k*PI/16) * sqrt(2)    for k=1..7 | 
 | 	 */ | 
 | 	FLOAT_MULT_TYPE * fmtbl = (FLOAT_MULT_TYPE *) compptr->dct_table; | 
 | 	int row, col; | 
 | 	static const double aanscalefactor[DCTSIZE] = { | 
 | 	  1.0, 1.387039845, 1.306562965, 1.175875602, | 
 | 	  1.0, 0.785694958, 0.541196100, 0.275899379 | 
 | 	}; | 
 |  | 
 | 	i = 0; | 
 | 	for (row = 0; row < DCTSIZE; row++) { | 
 | 	  for (col = 0; col < DCTSIZE; col++) { | 
 | 	    fmtbl[i] = (FLOAT_MULT_TYPE) | 
 | 	      ((double) qtbl->quantval[i] * | 
 | 	       aanscalefactor[row] * aanscalefactor[col]); | 
 | 	    i++; | 
 | 	  } | 
 | 	} | 
 |       } | 
 |       break; | 
 | #endif | 
 |     default: | 
 |       ERREXIT(cinfo, JERR_NOT_COMPILED); | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 |  | 
 | /* | 
 |  * Initialize IDCT manager. | 
 |  */ | 
 |  | 
 | GLOBAL(void) | 
 | jinit_inverse_dct (j_decompress_ptr cinfo) | 
 | { | 
 |   my_idct_ptr idct; | 
 |   int ci; | 
 |   jpeg_component_info *compptr; | 
 |  | 
 |   idct = (my_idct_ptr) | 
 |     (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
 | 				SIZEOF(my_idct_controller)); | 
 |   cinfo->idct = (struct jpeg_inverse_dct *) idct; | 
 |   idct->pub.start_pass = start_pass; | 
 |  | 
 |   for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 
 |        ci++, compptr++) { | 
 |     /* Allocate and pre-zero a multiplier table for each component */ | 
 |     compptr->dct_table = | 
 |       (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
 | 				  SIZEOF(multiplier_table)); | 
 |     MEMZERO(compptr->dct_table, SIZEOF(multiplier_table)); | 
 |     /* Mark multiplier table not yet set up for any method */ | 
 |     idct->cur_method[ci] = -1; | 
 |   } | 
 | } |