| // Copyright 2014 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "mojo/public/cpp/utility/run_loop.h" |
| |
| #include <assert.h> |
| #include <pthread.h> |
| |
| #include <algorithm> |
| #include <vector> |
| |
| #include "mojo/public/c/system/macros.h" |
| #include "mojo/public/cpp/system/time.h" |
| #include "mojo/public/cpp/system/wait.h" |
| #include "mojo/public/cpp/utility/run_loop_handler.h" |
| |
| namespace mojo { |
| namespace { |
| |
| const MojoTimeTicks kInvalidTimeTicks = static_cast<MojoTimeTicks>(0); |
| |
| pthread_key_t g_current_run_loop_key; |
| |
| // Ensures that the "current run loop" functionality is available (i.e., that we |
| // have a TLS slot). |
| void InitializeCurrentRunLoopIfNecessary() { |
| static pthread_once_t current_run_loop_key_once = PTHREAD_ONCE_INIT; |
| int error = pthread_once(¤t_run_loop_key_once, []() { |
| int error = pthread_key_create(&g_current_run_loop_key, nullptr); |
| MOJO_ALLOW_UNUSED_LOCAL(error); |
| assert(!error); |
| }); |
| MOJO_ALLOW_UNUSED_LOCAL(error); |
| assert(!error); |
| } |
| |
| void SetCurrentRunLoop(RunLoop* run_loop) { |
| InitializeCurrentRunLoopIfNecessary(); |
| |
| int error = pthread_setspecific(g_current_run_loop_key, run_loop); |
| MOJO_ALLOW_UNUSED_LOCAL(error); |
| assert(!error); |
| } |
| |
| // State needed for one iteration of WaitMany(). |
| struct WaitState { |
| std::vector<Handle> handles; |
| std::vector<MojoHandleSignals> handle_signals; |
| MojoDeadline deadline = MOJO_DEADLINE_INDEFINITE; |
| }; |
| |
| } // namespace |
| |
| struct RunLoop::RunState { |
| bool should_quit = false; |
| WaitState wait_state; |
| }; |
| |
| RunLoop::RunLoop() |
| : run_state_(nullptr), next_handler_id_(0), next_sequence_number_(0) { |
| assert(!current()); |
| SetCurrentRunLoop(this); |
| } |
| |
| RunLoop::~RunLoop() { |
| assert(current() == this); |
| NotifyHandlers(MOJO_RESULT_ABORTED, IGNORE_DEADLINE); |
| SetCurrentRunLoop(nullptr); |
| } |
| |
| // static |
| RunLoop* RunLoop::current() { |
| InitializeCurrentRunLoopIfNecessary(); |
| return static_cast<RunLoop*>(pthread_getspecific(g_current_run_loop_key)); |
| } |
| |
| void RunLoop::AddHandler(RunLoopHandler* handler, |
| const Handle& handle, |
| MojoHandleSignals handle_signals, |
| MojoDeadline deadline) { |
| assert(current() == this); |
| assert(handler); |
| assert(handle.is_valid()); |
| // Assume it's an error if someone tries to reregister an existing handle. |
| assert(0u == handler_data_.count(handle)); |
| HandlerData handler_data; |
| handler_data.handler = handler; |
| handler_data.handle_signals = handle_signals; |
| handler_data.deadline = |
| (deadline == MOJO_DEADLINE_INDEFINITE) |
| ? kInvalidTimeTicks |
| : GetTimeTicksNow() + static_cast<MojoTimeTicks>(deadline); |
| handler_data.id = next_handler_id_++; |
| handler_data_[handle] = handler_data; |
| } |
| |
| void RunLoop::RemoveHandler(const Handle& handle) { |
| assert(current() == this); |
| handler_data_.erase(handle); |
| } |
| |
| bool RunLoop::HasHandler(const Handle& handle) const { |
| return handler_data_.find(handle) != handler_data_.end(); |
| } |
| |
| void RunLoop::Run() { |
| RunInternal(UNTIL_EMPTY); |
| } |
| |
| void RunLoop::RunUntilIdle() { |
| RunInternal(UNTIL_IDLE); |
| } |
| |
| void RunLoop::RunInternal(RunMode run_mode) { |
| assert(current() == this); |
| RunState* old_state = run_state_; |
| RunState run_state; |
| run_state_ = &run_state; |
| for (;;) { |
| bool did_work = DoDelayedWork(); |
| if (run_state.should_quit) |
| break; |
| did_work |= Wait(run_mode == UNTIL_IDLE); |
| if (run_state.should_quit) |
| break; |
| if (!did_work && run_mode == UNTIL_IDLE) |
| break; |
| } |
| run_state_ = old_state; |
| } |
| |
| bool RunLoop::DoDelayedWork() { |
| MojoTimeTicks now = GetTimeTicksNow(); |
| if (!delayed_tasks_.empty() && delayed_tasks_.top().run_time <= now) { |
| PendingTask task = delayed_tasks_.top(); |
| delayed_tasks_.pop(); |
| task.task.Run(); |
| return true; |
| } |
| return false; |
| } |
| |
| void RunLoop::Quit() { |
| assert(current() == this); |
| if (run_state_) |
| run_state_->should_quit = true; |
| } |
| |
| void RunLoop::PostDelayedTask(const Closure& task, MojoTimeTicks delay) { |
| assert(current() == this); |
| MojoTimeTicks run_time = delay + GetTimeTicksNow(); |
| delayed_tasks_.push(PendingTask(task, run_time, next_sequence_number_++)); |
| } |
| |
| bool RunLoop::Wait(bool non_blocking) { |
| SetUpWaitState(non_blocking); |
| WaitState& wait_state = run_state_->wait_state; |
| |
| if (wait_state.handles.empty()) { |
| if (delayed_tasks_.empty()) |
| Quit(); |
| return false; |
| } |
| |
| const WaitManyResult wmr = |
| WaitMany(wait_state.handles, wait_state.handle_signals, |
| wait_state.deadline, nullptr); |
| |
| if (!wmr.IsIndexValid()) { |
| assert(wmr.result == MOJO_RESULT_DEADLINE_EXCEEDED); |
| return NotifyHandlers(MOJO_RESULT_DEADLINE_EXCEEDED, CHECK_DEADLINE); |
| } |
| |
| Handle handle = wait_state.handles[wmr.index]; |
| assert(handler_data_.find(handle) != handler_data_.end()); |
| RunLoopHandler* handler = handler_data_[handle].handler; |
| |
| switch (wmr.result) { |
| case MOJO_RESULT_OK: |
| handler->OnHandleReady(handle); |
| return true; |
| case MOJO_RESULT_INVALID_ARGUMENT: |
| case MOJO_RESULT_CANCELLED: |
| case MOJO_RESULT_BUSY: |
| // These results indicate a bug in "our" code (e.g., race conditions). |
| assert(false); |
| // Fall through. |
| case MOJO_RESULT_FAILED_PRECONDITION: |
| // Remove the handle first, this way if OnHandleError() tries to remove |
| // the handle our iterator isn't invalidated. |
| handler_data_.erase(handle); |
| handler->OnHandleError(handle, wmr.result); |
| return true; |
| default: |
| assert(false); |
| return false; |
| } |
| } |
| |
| bool RunLoop::NotifyHandlers(MojoResult error, CheckDeadline check) { |
| bool notified = false; |
| |
| // Make a copy in case someone tries to add/remove new handlers as part of |
| // notifying. |
| const HandleToHandlerData cloned_handlers(handler_data_); |
| const MojoTimeTicks now(GetTimeTicksNow()); |
| for (HandleToHandlerData::const_iterator i = cloned_handlers.begin(); |
| i != cloned_handlers.end(); |
| ++i) { |
| // Only check deadline exceeded if that's what we're notifying. |
| if (check == CHECK_DEADLINE && |
| (i->second.deadline == kInvalidTimeTicks || i->second.deadline > now)) { |
| continue; |
| } |
| |
| // Since we're iterating over a clone of the handlers, verify the handler |
| // is still valid before notifying. |
| if (handler_data_.find(i->first) == handler_data_.end() || |
| handler_data_[i->first].id != i->second.id) { |
| continue; |
| } |
| |
| RunLoopHandler* handler = i->second.handler; |
| handler_data_.erase(i->first); |
| handler->OnHandleError(i->first, error); |
| notified = true; |
| } |
| |
| return notified; |
| } |
| |
| void RunLoop::SetUpWaitState(bool non_blocking) { |
| WaitState& wait_state = run_state_->wait_state; |
| |
| MojoTimeTicks min_time = kInvalidTimeTicks; |
| wait_state.handles.resize(handler_data_.size()); |
| wait_state.handle_signals.resize(handler_data_.size()); |
| size_t i = 0; |
| for (HandleToHandlerData::const_iterator it = handler_data_.begin(); |
| it != handler_data_.end(); ++it, i++) { |
| wait_state.handles[i] = it->first; |
| wait_state.handle_signals[i] = it->second.handle_signals; |
| if (!non_blocking && it->second.deadline != kInvalidTimeTicks && |
| (min_time == kInvalidTimeTicks || it->second.deadline < min_time)) { |
| min_time = it->second.deadline; |
| } |
| } |
| if (!delayed_tasks_.empty()) { |
| MojoTimeTicks delayed_min_time = delayed_tasks_.top().run_time; |
| if (min_time == kInvalidTimeTicks) |
| min_time = delayed_min_time; |
| else |
| min_time = std::min(min_time, delayed_min_time); |
| } |
| if (non_blocking) { |
| wait_state.deadline = static_cast<MojoDeadline>(0); |
| } else if (min_time != kInvalidTimeTicks) { |
| const MojoTimeTicks now = GetTimeTicksNow(); |
| if (min_time < now) |
| wait_state.deadline = static_cast<MojoDeadline>(0); |
| else |
| wait_state.deadline = static_cast<MojoDeadline>(min_time - now); |
| } |
| } |
| |
| RunLoop::PendingTask::PendingTask(const Closure& task, |
| MojoTimeTicks run_time, |
| uint64_t sequence_number) |
| : task(task), run_time(run_time), sequence_number(sequence_number) { |
| } |
| |
| RunLoop::PendingTask::~PendingTask() { |
| } |
| |
| bool RunLoop::PendingTask::operator<(const RunLoop::PendingTask& other) const { |
| if (run_time != other.run_time) { |
| // std::priority_queue<> puts the least element at the end of the queue. We |
| // want the soonest eligible task to be at the head of the queue, so |
| // run_times further in the future are considered lesser. |
| return run_time > other.run_time; |
| } |
| |
| return sequence_number > other.sequence_number; |
| } |
| |
| } // namespace mojo |