|  | /* origin: FreeBSD /usr/src/lib/msun/src/s_fmal.c */ | 
|  | /*- | 
|  | * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG> | 
|  | * All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND | 
|  | * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | 
|  | * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE | 
|  | * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | 
|  | * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | 
|  | * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | 
|  | * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | 
|  | * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | 
|  | * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | 
|  | * SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include "libm.h" | 
|  | #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 | 
|  | long double fmal(long double x, long double y, long double z) | 
|  | { | 
|  | return fma(x, y, z); | 
|  | } | 
|  | #elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384 | 
|  | #include <fenv.h> | 
|  | #if LDBL_MANT_DIG == 64 | 
|  | #define LASTBIT(u) (u.i.m & 1) | 
|  | #define SPLIT (0x1p32L + 1) | 
|  | #elif LDBL_MANT_DIG == 113 | 
|  | #define LASTBIT(u) (u.i.lo & 1) | 
|  | #define SPLIT (0x1p57L + 1) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * A struct dd represents a floating-point number with twice the precision | 
|  | * of a long double.  We maintain the invariant that "hi" stores the high-order | 
|  | * bits of the result. | 
|  | */ | 
|  | struct dd { | 
|  | long double hi; | 
|  | long double lo; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Compute a+b exactly, returning the exact result in a struct dd.  We assume | 
|  | * that both a and b are finite, but make no assumptions about their relative | 
|  | * magnitudes. | 
|  | */ | 
|  | static inline struct dd dd_add(long double a, long double b) | 
|  | { | 
|  | struct dd ret; | 
|  | long double s; | 
|  |  | 
|  | ret.hi = a + b; | 
|  | s = ret.hi - a; | 
|  | ret.lo = (a - (ret.hi - s)) + (b - s); | 
|  | return (ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute a+b, with a small tweak:  The least significant bit of the | 
|  | * result is adjusted into a sticky bit summarizing all the bits that | 
|  | * were lost to rounding.  This adjustment negates the effects of double | 
|  | * rounding when the result is added to another number with a higher | 
|  | * exponent.  For an explanation of round and sticky bits, see any reference | 
|  | * on FPU design, e.g., | 
|  | * | 
|  | *     J. Coonen.  An Implementation Guide to a Proposed Standard for | 
|  | *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980. | 
|  | */ | 
|  | static inline long double add_adjusted(long double a, long double b) | 
|  | { | 
|  | struct dd sum; | 
|  | union ldshape u; | 
|  |  | 
|  | sum = dd_add(a, b); | 
|  | if (sum.lo != 0) { | 
|  | u.f = sum.hi; | 
|  | if (!LASTBIT(u)) | 
|  | sum.hi = nextafterl(sum.hi, INFINITY * sum.lo); | 
|  | } | 
|  | return (sum.hi); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute ldexp(a+b, scale) with a single rounding error. It is assumed | 
|  | * that the result will be subnormal, and care is taken to ensure that | 
|  | * double rounding does not occur. | 
|  | */ | 
|  | static inline long double add_and_denormalize(long double a, long double b, int scale) | 
|  | { | 
|  | struct dd sum; | 
|  | int bits_lost; | 
|  | union ldshape u; | 
|  |  | 
|  | sum = dd_add(a, b); | 
|  |  | 
|  | /* | 
|  | * If we are losing at least two bits of accuracy to denormalization, | 
|  | * then the first lost bit becomes a round bit, and we adjust the | 
|  | * lowest bit of sum.hi to make it a sticky bit summarizing all the | 
|  | * bits in sum.lo. With the sticky bit adjusted, the hardware will | 
|  | * break any ties in the correct direction. | 
|  | * | 
|  | * If we are losing only one bit to denormalization, however, we must | 
|  | * break the ties manually. | 
|  | */ | 
|  | if (sum.lo != 0) { | 
|  | u.f = sum.hi; | 
|  | bits_lost = -u.i.se - scale + 1; | 
|  | if ((bits_lost != 1) ^ LASTBIT(u)) | 
|  | sum.hi = nextafterl(sum.hi, INFINITY * sum.lo); | 
|  | } | 
|  | return scalbnl(sum.hi, scale); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compute a*b exactly, returning the exact result in a struct dd.  We assume | 
|  | * that both a and b are normalized, so no underflow or overflow will occur. | 
|  | * The current rounding mode must be round-to-nearest. | 
|  | */ | 
|  | static inline struct dd dd_mul(long double a, long double b) | 
|  | { | 
|  | struct dd ret; | 
|  | long double ha, hb, la, lb, p, q; | 
|  |  | 
|  | p = a * SPLIT; | 
|  | ha = a - p; | 
|  | ha += p; | 
|  | la = a - ha; | 
|  |  | 
|  | p = b * SPLIT; | 
|  | hb = b - p; | 
|  | hb += p; | 
|  | lb = b - hb; | 
|  |  | 
|  | p = ha * hb; | 
|  | q = ha * lb + la * hb; | 
|  |  | 
|  | ret.hi = p + q; | 
|  | ret.lo = p - ret.hi + q + la * lb; | 
|  | return (ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fused multiply-add: Compute x * y + z with a single rounding error. | 
|  | * | 
|  | * We use scaling to avoid overflow/underflow, along with the | 
|  | * canonical precision-doubling technique adapted from: | 
|  | * | 
|  | *      Dekker, T.  A Floating-Point Technique for Extending the | 
|  | *      Available Precision.  Numer. Math. 18, 224-242 (1971). | 
|  | */ | 
|  | long double fmal(long double x, long double y, long double z) | 
|  | { | 
|  | PRAGMA_STDC_FENV_ACCESS_ON | 
|  | long double xs, ys, zs, adj; | 
|  | struct dd xy, r; | 
|  | int oround; | 
|  | int ex, ey, ez; | 
|  | int spread; | 
|  |  | 
|  | /* | 
|  | * Handle special cases. The order of operations and the particular | 
|  | * return values here are crucial in handling special cases involving | 
|  | * infinities, NaNs, overflows, and signed zeroes correctly. | 
|  | */ | 
|  | if (!isfinite(x) || !isfinite(y)) | 
|  | return (x * y + z); | 
|  | if (!isfinite(z)) | 
|  | return (z); | 
|  | if (x == 0.0 || y == 0.0) | 
|  | return (x * y + z); | 
|  | if (z == 0.0) | 
|  | return (x * y); | 
|  |  | 
|  | xs = frexpl(x, &ex); | 
|  | ys = frexpl(y, &ey); | 
|  | zs = frexpl(z, &ez); | 
|  | oround = fegetround(); | 
|  | spread = ex + ey - ez; | 
|  |  | 
|  | /* | 
|  | * If x * y and z are many orders of magnitude apart, the scaling | 
|  | * will overflow, so we handle these cases specially.  Rounding | 
|  | * modes other than FE_TONEAREST are painful. | 
|  | */ | 
|  | if (spread < -LDBL_MANT_DIG) { | 
|  | #ifdef FE_INEXACT | 
|  | feraiseexcept(FE_INEXACT); | 
|  | #endif | 
|  | #ifdef FE_UNDERFLOW | 
|  | if (!isnormal(z)) | 
|  | feraiseexcept(FE_UNDERFLOW); | 
|  | #endif | 
|  | switch (oround) { | 
|  | default: /* FE_TONEAREST */ | 
|  | return (z); | 
|  | #ifdef FE_TOWARDZERO | 
|  | case FE_TOWARDZERO: | 
|  | if (x > 0.0 ^ y < 0.0 ^ z < 0.0) | 
|  | return (z); | 
|  | else | 
|  | return (nextafterl(z, 0)); | 
|  | #endif | 
|  | #ifdef FE_DOWNWARD | 
|  | case FE_DOWNWARD: | 
|  | if (x > 0.0 ^ y < 0.0) | 
|  | return (z); | 
|  | else | 
|  | return (nextafterl(z, -INFINITY)); | 
|  | #endif | 
|  | #ifdef FE_UPWARD | 
|  | case FE_UPWARD: | 
|  | if (x > 0.0 ^ y < 0.0) | 
|  | return (nextafterl(z, INFINITY)); | 
|  | else | 
|  | return (z); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | if (spread <= LDBL_MANT_DIG * 2) | 
|  | zs = scalbnl(zs, -spread); | 
|  | else | 
|  | zs = copysignl(LDBL_MIN, zs); | 
|  |  | 
|  | fesetround(FE_TONEAREST); | 
|  |  | 
|  | /* | 
|  | * Basic approach for round-to-nearest: | 
|  | * | 
|  | *     (xy.hi, xy.lo) = x * y           (exact) | 
|  | *     (r.hi, r.lo)   = xy.hi + z       (exact) | 
|  | *     adj = xy.lo + r.lo               (inexact; low bit is sticky) | 
|  | *     result = r.hi + adj              (correctly rounded) | 
|  | */ | 
|  | xy = dd_mul(xs, ys); | 
|  | r = dd_add(xy.hi, zs); | 
|  |  | 
|  | spread = ex + ey; | 
|  |  | 
|  | if (r.hi == 0.0) { | 
|  | /* | 
|  | * When the addends cancel to 0, ensure that the result has | 
|  | * the correct sign. | 
|  | */ | 
|  | fesetround(oround); | 
|  | volatile long double vzs = zs; /* XXX gcc CSE bug workaround */ | 
|  | return xy.hi + vzs + scalbnl(xy.lo, spread); | 
|  | } | 
|  |  | 
|  | if (oround != FE_TONEAREST) { | 
|  | /* | 
|  | * There is no need to worry about double rounding in directed | 
|  | * rounding modes. | 
|  | * But underflow may not be raised correctly, example in downward rounding: | 
|  | * fmal(0x1.0000000001p-16000L, 0x1.0000000001p-400L, -0x1p-16440L) | 
|  | */ | 
|  | long double ret; | 
|  | #if defined(FE_INEXACT) && defined(FE_UNDERFLOW) | 
|  | int e = fetestexcept(FE_INEXACT); | 
|  | feclearexcept(FE_INEXACT); | 
|  | #endif | 
|  | fesetround(oround); | 
|  | adj = r.lo + xy.lo; | 
|  | ret = scalbnl(r.hi + adj, spread); | 
|  | #if defined(FE_INEXACT) && defined(FE_UNDERFLOW) | 
|  | if (ilogbl(ret) < -16382 && fetestexcept(FE_INEXACT)) | 
|  | feraiseexcept(FE_UNDERFLOW); | 
|  | else if (e) | 
|  | feraiseexcept(FE_INEXACT); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | adj = add_adjusted(r.lo, xy.lo); | 
|  | if (spread + ilogbl(r.hi) > -16383) | 
|  | return scalbnl(r.hi + adj, spread); | 
|  | else | 
|  | return add_and_denormalize(r.hi, adj, spread); | 
|  | } | 
|  | #endif |