|  | /* | 
|  | "A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964) | 
|  | "Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001) | 
|  | "An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004) | 
|  |  | 
|  | approximation method: | 
|  |  | 
|  | (x - 0.5)         S(x) | 
|  | Gamma(x) = (x + g - 0.5)         *  ---------------- | 
|  | exp(x + g - 0.5) | 
|  |  | 
|  | with | 
|  | a1      a2      a3            aN | 
|  | S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ] | 
|  | x + 1   x + 2   x + 3         x + N | 
|  |  | 
|  | with a0, a1, a2, a3,.. aN constants which depend on g. | 
|  |  | 
|  | for x < 0 the following reflection formula is used: | 
|  |  | 
|  | Gamma(x)*Gamma(-x) = -pi/(x sin(pi x)) | 
|  |  | 
|  | most ideas and constants are from boost and python | 
|  | */ | 
|  | #include "libm.h" | 
|  |  | 
|  | static const double pi = 3.141592653589793238462643383279502884; | 
|  |  | 
|  | /* sin(pi x) with x > 0x1p-100, if sin(pi*x)==0 the sign is arbitrary */ | 
|  | static double sinpi(double x) | 
|  | { | 
|  | int n; | 
|  |  | 
|  | /* argument reduction: x = |x| mod 2 */ | 
|  | /* spurious inexact when x is odd int */ | 
|  | x = x * 0.5; | 
|  | x = 2 * (x - floor(x)); | 
|  |  | 
|  | /* reduce x into [-.25,.25] */ | 
|  | n = 4 * x; | 
|  | n = (n+1)/2; | 
|  | x -= n * 0.5; | 
|  |  | 
|  | x *= pi; | 
|  | switch (n) { | 
|  | default: /* case 4 */ | 
|  | case 0: | 
|  | return __sin(x, 0, 0); | 
|  | case 1: | 
|  | return __cos(x, 0); | 
|  | case 2: | 
|  | return __sin(-x, 0, 0); | 
|  | case 3: | 
|  | return -__cos(x, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define N 12 | 
|  | //static const double g = 6.024680040776729583740234375; | 
|  | static const double gmhalf = 5.524680040776729583740234375; | 
|  | static const double Snum[N+1] = { | 
|  | 23531376880.410759688572007674451636754734846804940, | 
|  | 42919803642.649098768957899047001988850926355848959, | 
|  | 35711959237.355668049440185451547166705960488635843, | 
|  | 17921034426.037209699919755754458931112671403265390, | 
|  | 6039542586.3520280050642916443072979210699388420708, | 
|  | 1439720407.3117216736632230727949123939715485786772, | 
|  | 248874557.86205415651146038641322942321632125127801, | 
|  | 31426415.585400194380614231628318205362874684987640, | 
|  | 2876370.6289353724412254090516208496135991145378768, | 
|  | 186056.26539522349504029498971604569928220784236328, | 
|  | 8071.6720023658162106380029022722506138218516325024, | 
|  | 210.82427775157934587250973392071336271166969580291, | 
|  | 2.5066282746310002701649081771338373386264310793408, | 
|  | }; | 
|  | static const double Sden[N+1] = { | 
|  | 0, 39916800, 120543840, 150917976, 105258076, 45995730, 13339535, | 
|  | 2637558, 357423, 32670, 1925, 66, 1, | 
|  | }; | 
|  | /* n! for small integer n */ | 
|  | static const double fact[] = { | 
|  | 1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0, | 
|  | 479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0, | 
|  | 355687428096000.0, 6402373705728000.0, 121645100408832000.0, | 
|  | 2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0, | 
|  | }; | 
|  |  | 
|  | /* S(x) rational function for positive x */ | 
|  | static double S(double x) | 
|  | { | 
|  | double_t num = 0, den = 0; | 
|  | int i; | 
|  |  | 
|  | /* to avoid overflow handle large x differently */ | 
|  | if (x < 8) | 
|  | for (i = N; i >= 0; i--) { | 
|  | num = num * x + Snum[i]; | 
|  | den = den * x + Sden[i]; | 
|  | } | 
|  | else | 
|  | for (i = 0; i <= N; i++) { | 
|  | num = num / x + Snum[i]; | 
|  | den = den / x + Sden[i]; | 
|  | } | 
|  | return num/den; | 
|  | } | 
|  |  | 
|  | double tgamma(double x) | 
|  | { | 
|  | union {double f; uint64_t i;} u = {x}; | 
|  | double absx, y; | 
|  | double_t dy, z, r; | 
|  | uint32_t ix = u.i>>32 & 0x7fffffff; | 
|  | int sign = u.i>>63; | 
|  |  | 
|  | /* special cases */ | 
|  | if (ix >= 0x7ff00000) | 
|  | /* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */ | 
|  | return x + INFINITY; | 
|  | if (ix < (0x3ff-54)<<20) | 
|  | /* |x| < 2^-54: tgamma(x) ~ 1/x, +-0 raises div-by-zero */ | 
|  | return 1/x; | 
|  |  | 
|  | /* integer arguments */ | 
|  | /* raise inexact when non-integer */ | 
|  | if (x == floor(x)) { | 
|  | if (sign) | 
|  | return 0/0.0; | 
|  | if (x <= sizeof fact/sizeof *fact) | 
|  | return fact[(int)x - 1]; | 
|  | } | 
|  |  | 
|  | /* x >= 172: tgamma(x)=inf with overflow */ | 
|  | /* x =< -184: tgamma(x)=+-0 with underflow */ | 
|  | if (ix >= 0x40670000) { /* |x| >= 184 */ | 
|  | if (sign) { | 
|  | FORCE_EVAL((float)(0x1p-126/x)); | 
|  | if (floor(x) * 0.5 == floor(x * 0.5)) | 
|  | return 0; | 
|  | return -0.0; | 
|  | } | 
|  | x *= 0x1p1023; | 
|  | return x; | 
|  | } | 
|  |  | 
|  | absx = sign ? -x : x; | 
|  |  | 
|  | /* handle the error of x + g - 0.5 */ | 
|  | y = absx + gmhalf; | 
|  | if (absx > gmhalf) { | 
|  | dy = y - absx; | 
|  | dy -= gmhalf; | 
|  | } else { | 
|  | dy = y - gmhalf; | 
|  | dy -= absx; | 
|  | } | 
|  |  | 
|  | z = absx - 0.5; | 
|  | r = S(absx) * exp(-y); | 
|  | if (x < 0) { | 
|  | /* reflection formula for negative x */ | 
|  | /* sinpi(absx) is not 0, integers are already handled */ | 
|  | r = -pi / (sinpi(absx) * absx * r); | 
|  | dy = -dy; | 
|  | z = -z; | 
|  | } | 
|  | r += dy * (gmhalf+0.5) * r / y; | 
|  | z = pow(y, 0.5*z); | 
|  | y = r * z * z; | 
|  | return y; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | double __lgamma_r(double x, int *sign) | 
|  | { | 
|  | double r, absx; | 
|  |  | 
|  | *sign = 1; | 
|  |  | 
|  | /* special cases */ | 
|  | if (!isfinite(x)) | 
|  | /* lgamma(nan)=nan, lgamma(+-inf)=inf */ | 
|  | return x*x; | 
|  |  | 
|  | /* integer arguments */ | 
|  | if (x == floor(x) && x <= 2) { | 
|  | /* n <= 0: lgamma(n)=inf with divbyzero */ | 
|  | /* n == 1,2: lgamma(n)=0 */ | 
|  | if (x <= 0) | 
|  | return 1/0.0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | absx = fabs(x); | 
|  |  | 
|  | /* lgamma(x) ~ -log(|x|) for tiny |x| */ | 
|  | if (absx < 0x1p-54) { | 
|  | *sign = 1 - 2*!!signbit(x); | 
|  | return -log(absx); | 
|  | } | 
|  |  | 
|  | /* use tgamma for smaller |x| */ | 
|  | if (absx < 128) { | 
|  | x = tgamma(x); | 
|  | *sign = 1 - 2*!!signbit(x); | 
|  | return log(fabs(x)); | 
|  | } | 
|  |  | 
|  | /* second term (log(S)-g) could be more precise here.. */ | 
|  | /* or with stirling: (|x|-0.5)*(log(|x|)-1) + poly(1/|x|) */ | 
|  | r = (absx-0.5)*(log(absx+gmhalf)-1) + (log(S(absx)) - (gmhalf+0.5)); | 
|  | if (x < 0) { | 
|  | /* reflection formula for negative x */ | 
|  | x = sinpi(absx); | 
|  | *sign = 2*!!signbit(x) - 1; | 
|  | r = log(pi/(fabs(x)*absx)) - r; | 
|  | } | 
|  | return r; | 
|  | } | 
|  |  | 
|  | weak_alias(__lgamma_r, lgamma_r); | 
|  | #endif |