| /* | 
 |   regcomp.c - TRE POSIX compatible regex compilation functions. | 
 |  | 
 |   Copyright (c) 2001-2009 Ville Laurikari <vl@iki.fi> | 
 |   All rights reserved. | 
 |  | 
 |   Redistribution and use in source and binary forms, with or without | 
 |   modification, are permitted provided that the following conditions | 
 |   are met: | 
 |  | 
 |     1. Redistributions of source code must retain the above copyright | 
 |        notice, this list of conditions and the following disclaimer. | 
 |  | 
 |     2. Redistributions in binary form must reproduce the above copyright | 
 |        notice, this list of conditions and the following disclaimer in the | 
 |        documentation and/or other materials provided with the distribution. | 
 |  | 
 |   THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER AND CONTRIBUTORS | 
 |   ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
 |   LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
 |   A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT | 
 |   HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
 |   SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
 |   LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
 |   DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
 |   THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 |   (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 |   OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | */ | 
 |  | 
 | #include <string.h> | 
 | #include <stdlib.h> | 
 | #include <regex.h> | 
 | #include <limits.h> | 
 | #include <stdint.h> | 
 | #include <ctype.h> | 
 |  | 
 | #include "tre.h" | 
 |  | 
 | #include <assert.h> | 
 |  | 
 | /*********************************************************************** | 
 |  from tre-compile.h | 
 | ***********************************************************************/ | 
 |  | 
 | typedef struct { | 
 |   int position; | 
 |   int code_min; | 
 |   int code_max; | 
 |   int *tags; | 
 |   int assertions; | 
 |   tre_ctype_t class; | 
 |   tre_ctype_t *neg_classes; | 
 |   int backref; | 
 | } tre_pos_and_tags_t; | 
 |  | 
 |  | 
 | /*********************************************************************** | 
 |  from tre-ast.c and tre-ast.h | 
 | ***********************************************************************/ | 
 |  | 
 | /* The different AST node types. */ | 
 | typedef enum { | 
 |   LITERAL, | 
 |   CATENATION, | 
 |   ITERATION, | 
 |   UNION | 
 | } tre_ast_type_t; | 
 |  | 
 | /* Special subtypes of TRE_LITERAL. */ | 
 | #define EMPTY	  -1   /* Empty leaf (denotes empty string). */ | 
 | #define ASSERTION -2   /* Assertion leaf. */ | 
 | #define TAG	  -3   /* Tag leaf. */ | 
 | #define BACKREF	  -4   /* Back reference leaf. */ | 
 |  | 
 | #define IS_SPECIAL(x)	((x)->code_min < 0) | 
 | #define IS_EMPTY(x)	((x)->code_min == EMPTY) | 
 | #define IS_ASSERTION(x) ((x)->code_min == ASSERTION) | 
 | #define IS_TAG(x)	((x)->code_min == TAG) | 
 | #define IS_BACKREF(x)	((x)->code_min == BACKREF) | 
 |  | 
 |  | 
 | /* A generic AST node.  All AST nodes consist of this node on the top | 
 |    level with `obj' pointing to the actual content. */ | 
 | typedef struct { | 
 |   tre_ast_type_t type;   /* Type of the node. */ | 
 |   void *obj;             /* Pointer to actual node. */ | 
 |   int nullable; | 
 |   int submatch_id; | 
 |   int num_submatches; | 
 |   int num_tags; | 
 |   tre_pos_and_tags_t *firstpos; | 
 |   tre_pos_and_tags_t *lastpos; | 
 | } tre_ast_node_t; | 
 |  | 
 |  | 
 | /* A "literal" node.  These are created for assertions, back references, | 
 |    tags, matching parameter settings, and all expressions that match one | 
 |    character. */ | 
 | typedef struct { | 
 |   long code_min; | 
 |   long code_max; | 
 |   int position; | 
 |   tre_ctype_t class; | 
 |   tre_ctype_t *neg_classes; | 
 | } tre_literal_t; | 
 |  | 
 | /* A "catenation" node.	 These are created when two regexps are concatenated. | 
 |    If there are more than one subexpressions in sequence, the `left' part | 
 |    holds all but the last, and `right' part holds the last subexpression | 
 |    (catenation is left associative). */ | 
 | typedef struct { | 
 |   tre_ast_node_t *left; | 
 |   tre_ast_node_t *right; | 
 | } tre_catenation_t; | 
 |  | 
 | /* An "iteration" node.	 These are created for the "*", "+", "?", and "{m,n}" | 
 |    operators. */ | 
 | typedef struct { | 
 |   /* Subexpression to match. */ | 
 |   tre_ast_node_t *arg; | 
 |   /* Minimum number of consecutive matches. */ | 
 |   int min; | 
 |   /* Maximum number of consecutive matches. */ | 
 |   int max; | 
 |   /* If 0, match as many characters as possible, if 1 match as few as | 
 |      possible.	Note that this does not always mean the same thing as | 
 |      matching as many/few repetitions as possible. */ | 
 |   unsigned int minimal:1; | 
 | } tre_iteration_t; | 
 |  | 
 | /* An "union" node.  These are created for the "|" operator. */ | 
 | typedef struct { | 
 |   tre_ast_node_t *left; | 
 |   tre_ast_node_t *right; | 
 | } tre_union_t; | 
 |  | 
 |  | 
 | static tre_ast_node_t * | 
 | tre_ast_new_node(tre_mem_t mem, int type, void *obj) | 
 | { | 
 | 	tre_ast_node_t *node = tre_mem_calloc(mem, sizeof *node); | 
 | 	if (!node || !obj) | 
 | 		return 0; | 
 | 	node->obj = obj; | 
 | 	node->type = type; | 
 | 	node->nullable = -1; | 
 | 	node->submatch_id = -1; | 
 | 	return node; | 
 | } | 
 |  | 
 | static tre_ast_node_t * | 
 | tre_ast_new_literal(tre_mem_t mem, int code_min, int code_max, int position) | 
 | { | 
 | 	tre_ast_node_t *node; | 
 | 	tre_literal_t *lit; | 
 |  | 
 | 	lit = tre_mem_calloc(mem, sizeof *lit); | 
 | 	node = tre_ast_new_node(mem, LITERAL, lit); | 
 | 	if (!node) | 
 | 		return 0; | 
 | 	lit->code_min = code_min; | 
 | 	lit->code_max = code_max; | 
 | 	lit->position = position; | 
 | 	return node; | 
 | } | 
 |  | 
 | static tre_ast_node_t * | 
 | tre_ast_new_iter(tre_mem_t mem, tre_ast_node_t *arg, int min, int max, int minimal) | 
 | { | 
 | 	tre_ast_node_t *node; | 
 | 	tre_iteration_t *iter; | 
 |  | 
 | 	iter = tre_mem_calloc(mem, sizeof *iter); | 
 | 	node = tre_ast_new_node(mem, ITERATION, iter); | 
 | 	if (!node) | 
 | 		return 0; | 
 | 	iter->arg = arg; | 
 | 	iter->min = min; | 
 | 	iter->max = max; | 
 | 	iter->minimal = minimal; | 
 | 	node->num_submatches = arg->num_submatches; | 
 | 	return node; | 
 | } | 
 |  | 
 | static tre_ast_node_t * | 
 | tre_ast_new_union(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right) | 
 | { | 
 | 	tre_ast_node_t *node; | 
 | 	tre_union_t *un; | 
 |  | 
 | 	if (!left) | 
 | 		return right; | 
 | 	un = tre_mem_calloc(mem, sizeof *un); | 
 | 	node = tre_ast_new_node(mem, UNION, un); | 
 | 	if (!node || !right) | 
 | 		return 0; | 
 | 	un->left = left; | 
 | 	un->right = right; | 
 | 	node->num_submatches = left->num_submatches + right->num_submatches; | 
 | 	return node; | 
 | } | 
 |  | 
 | static tre_ast_node_t * | 
 | tre_ast_new_catenation(tre_mem_t mem, tre_ast_node_t *left, tre_ast_node_t *right) | 
 | { | 
 | 	tre_ast_node_t *node; | 
 | 	tre_catenation_t *cat; | 
 |  | 
 | 	if (!left) | 
 | 		return right; | 
 | 	cat = tre_mem_calloc(mem, sizeof *cat); | 
 | 	node = tre_ast_new_node(mem, CATENATION, cat); | 
 | 	if (!node) | 
 | 		return 0; | 
 | 	cat->left = left; | 
 | 	cat->right = right; | 
 | 	node->num_submatches = left->num_submatches + right->num_submatches; | 
 | 	return node; | 
 | } | 
 |  | 
 |  | 
 | /*********************************************************************** | 
 |  from tre-stack.c and tre-stack.h | 
 | ***********************************************************************/ | 
 |  | 
 | typedef struct tre_stack_rec tre_stack_t; | 
 |  | 
 | /* Creates a new stack object.	`size' is initial size in bytes, `max_size' | 
 |    is maximum size, and `increment' specifies how much more space will be | 
 |    allocated with realloc() if all space gets used up.	Returns the stack | 
 |    object or NULL if out of memory. */ | 
 | static tre_stack_t * | 
 | tre_stack_new(int size, int max_size, int increment); | 
 |  | 
 | /* Frees the stack object. */ | 
 | static void | 
 | tre_stack_destroy(tre_stack_t *s); | 
 |  | 
 | /* Returns the current number of objects in the stack. */ | 
 | static int | 
 | tre_stack_num_objects(tre_stack_t *s); | 
 |  | 
 | /* Each tre_stack_push_*(tre_stack_t *s, <type> value) function pushes | 
 |    `value' on top of stack `s'.  Returns REG_ESPACE if out of memory. | 
 |    This tries to realloc() more space before failing if maximum size | 
 |    has not yet been reached.  Returns REG_OK if successful. */ | 
 | #define declare_pushf(typetag, type)					      \ | 
 |   static reg_errcode_t tre_stack_push_ ## typetag(tre_stack_t *s, type value) | 
 |  | 
 | declare_pushf(voidptr, void *); | 
 | declare_pushf(int, int); | 
 |  | 
 | /* Each tre_stack_pop_*(tre_stack_t *s) function pops the topmost | 
 |    element off of stack `s' and returns it.  The stack must not be | 
 |    empty. */ | 
 | #define declare_popf(typetag, type)		  \ | 
 |   static type tre_stack_pop_ ## typetag(tre_stack_t *s) | 
 |  | 
 | declare_popf(voidptr, void *); | 
 | declare_popf(int, int); | 
 |  | 
 | /* Just to save some typing. */ | 
 | #define STACK_PUSH(s, typetag, value)					      \ | 
 |   do									      \ | 
 |     {									      \ | 
 |       status = tre_stack_push_ ## typetag(s, value);			      \ | 
 |     }									      \ | 
 |   while (/*CONSTCOND*/0) | 
 |  | 
 | #define STACK_PUSHX(s, typetag, value)					      \ | 
 |   {									      \ | 
 |     status = tre_stack_push_ ## typetag(s, value);			      \ | 
 |     if (status != REG_OK)						      \ | 
 |       break;								      \ | 
 |   } | 
 |  | 
 | #define STACK_PUSHR(s, typetag, value)					      \ | 
 |   {									      \ | 
 |     reg_errcode_t _status;						      \ | 
 |     _status = tre_stack_push_ ## typetag(s, value);			      \ | 
 |     if (_status != REG_OK)						      \ | 
 |       return _status;							      \ | 
 |   } | 
 |  | 
 | union tre_stack_item { | 
 |   void *voidptr_value; | 
 |   int int_value; | 
 | }; | 
 |  | 
 | struct tre_stack_rec { | 
 |   int size; | 
 |   int max_size; | 
 |   int increment; | 
 |   int ptr; | 
 |   union tre_stack_item *stack; | 
 | }; | 
 |  | 
 |  | 
 | static tre_stack_t * | 
 | tre_stack_new(int size, int max_size, int increment) | 
 | { | 
 |   tre_stack_t *s; | 
 |  | 
 |   s = xmalloc(sizeof(*s)); | 
 |   if (s != NULL) | 
 |     { | 
 |       s->stack = xmalloc(sizeof(*s->stack) * size); | 
 |       if (s->stack == NULL) | 
 | 	{ | 
 | 	  xfree(s); | 
 | 	  return NULL; | 
 | 	} | 
 |       s->size = size; | 
 |       s->max_size = max_size; | 
 |       s->increment = increment; | 
 |       s->ptr = 0; | 
 |     } | 
 |   return s; | 
 | } | 
 |  | 
 | static void | 
 | tre_stack_destroy(tre_stack_t *s) | 
 | { | 
 |   xfree(s->stack); | 
 |   xfree(s); | 
 | } | 
 |  | 
 | static int | 
 | tre_stack_num_objects(tre_stack_t *s) | 
 | { | 
 |   return s->ptr; | 
 | } | 
 |  | 
 | static reg_errcode_t | 
 | tre_stack_push(tre_stack_t *s, union tre_stack_item value) | 
 | { | 
 |   if (s->ptr < s->size) | 
 |     { | 
 |       s->stack[s->ptr] = value; | 
 |       s->ptr++; | 
 |     } | 
 |   else | 
 |     { | 
 |       if (s->size >= s->max_size) | 
 | 	{ | 
 | 	  return REG_ESPACE; | 
 | 	} | 
 |       else | 
 | 	{ | 
 | 	  union tre_stack_item *new_buffer; | 
 | 	  int new_size; | 
 | 	  new_size = s->size + s->increment; | 
 | 	  if (new_size > s->max_size) | 
 | 	    new_size = s->max_size; | 
 | 	  new_buffer = xrealloc(s->stack, sizeof(*new_buffer) * new_size); | 
 | 	  if (new_buffer == NULL) | 
 | 	    { | 
 | 	      return REG_ESPACE; | 
 | 	    } | 
 | 	  assert(new_size > s->size); | 
 | 	  s->size = new_size; | 
 | 	  s->stack = new_buffer; | 
 | 	  tre_stack_push(s, value); | 
 | 	} | 
 |     } | 
 |   return REG_OK; | 
 | } | 
 |  | 
 | #define define_pushf(typetag, type)  \ | 
 |   declare_pushf(typetag, type) {     \ | 
 |     union tre_stack_item item;	     \ | 
 |     item.typetag ## _value = value;  \ | 
 |     return tre_stack_push(s, item);  \ | 
 | } | 
 |  | 
 | define_pushf(int, int) | 
 | define_pushf(voidptr, void *) | 
 |  | 
 | #define define_popf(typetag, type)		    \ | 
 |   declare_popf(typetag, type) {			    \ | 
 |     return s->stack[--s->ptr].typetag ## _value;    \ | 
 |   } | 
 |  | 
 | define_popf(int, int) | 
 | define_popf(voidptr, void *) | 
 |  | 
 |  | 
 | /*********************************************************************** | 
 |  from tre-parse.c and tre-parse.h | 
 | ***********************************************************************/ | 
 |  | 
 | /* Parse context. */ | 
 | typedef struct { | 
 | 	/* Memory allocator. The AST is allocated using this. */ | 
 | 	tre_mem_t mem; | 
 | 	/* Stack used for keeping track of regexp syntax. */ | 
 | 	tre_stack_t *stack; | 
 | 	/* The parsed node after a parse function returns. */ | 
 | 	tre_ast_node_t *n; | 
 | 	/* Position in the regexp pattern after a parse function returns. */ | 
 | 	const char *s; | 
 | 	/* The first character of the regexp. */ | 
 | 	const char *re; | 
 | 	/* Current submatch ID. */ | 
 | 	int submatch_id; | 
 | 	/* Current position (number of literal). */ | 
 | 	int position; | 
 | 	/* The highest back reference or -1 if none seen so far. */ | 
 | 	int max_backref; | 
 | 	/* Compilation flags. */ | 
 | 	int cflags; | 
 | } tre_parse_ctx_t; | 
 |  | 
 | /* Some macros for expanding \w, \s, etc. */ | 
 | static const struct { | 
 | 	char c; | 
 | 	const char *expansion; | 
 | } tre_macros[] = { | 
 | 	{'t', "\t"}, {'n', "\n"}, {'r', "\r"}, | 
 | 	{'f', "\f"}, {'a', "\a"}, {'e', "\033"}, | 
 | 	{'w', "[[:alnum:]_]"}, {'W', "[^[:alnum:]_]"}, {'s', "[[:space:]]"}, | 
 | 	{'S', "[^[:space:]]"}, {'d', "[[:digit:]]"}, {'D', "[^[:digit:]]"}, | 
 | 	{ 0, 0 } | 
 | }; | 
 |  | 
 | /* Expands a macro delimited by `regex' and `regex_end' to `buf', which | 
 |    must have at least `len' items.  Sets buf[0] to zero if the there | 
 |    is no match in `tre_macros'. */ | 
 | static const char *tre_expand_macro(const char *s) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; tre_macros[i].c && tre_macros[i].c != *s; i++); | 
 | 	return tre_macros[i].expansion; | 
 | } | 
 |  | 
 | static int | 
 | tre_compare_lit(const void *a, const void *b) | 
 | { | 
 | 	const tre_literal_t *const *la = a; | 
 | 	const tre_literal_t *const *lb = b; | 
 | 	/* assumes the range of valid code_min is < INT_MAX */ | 
 | 	return la[0]->code_min - lb[0]->code_min; | 
 | } | 
 |  | 
 | struct literals { | 
 | 	tre_mem_t mem; | 
 | 	tre_literal_t **a; | 
 | 	int len; | 
 | 	int cap; | 
 | }; | 
 |  | 
 | static tre_literal_t *tre_new_lit(struct literals *p) | 
 | { | 
 | 	tre_literal_t **a; | 
 | 	if (p->len >= p->cap) { | 
 | 		if (p->cap >= 1<<15) | 
 | 			return 0; | 
 | 		p->cap *= 2; | 
 | 		a = xrealloc(p->a, p->cap * sizeof *p->a); | 
 | 		if (!a) | 
 | 			return 0; | 
 | 		p->a = a; | 
 | 	} | 
 | 	a = p->a + p->len++; | 
 | 	*a = tre_mem_calloc(p->mem, sizeof **a); | 
 | 	return *a; | 
 | } | 
 |  | 
 | static int add_icase_literals(struct literals *ls, int min, int max) | 
 | { | 
 | 	tre_literal_t *lit; | 
 | 	int b, e, c; | 
 | 	for (c=min; c<=max; ) { | 
 | 		/* assumes islower(c) and isupper(c) are exclusive | 
 | 		   and toupper(c)!=c if islower(c). | 
 | 		   multiple opposite case characters are not supported */ | 
 | 		if (tre_islower(c)) { | 
 | 			b = e = tre_toupper(c); | 
 | 			for (c++, e++; c<=max; c++, e++) | 
 | 				if (tre_toupper(c) != e) break; | 
 | 		} else if (tre_isupper(c)) { | 
 | 			b = e = tre_tolower(c); | 
 | 			for (c++, e++; c<=max; c++, e++) | 
 | 				if (tre_tolower(c) != e) break; | 
 | 		} else { | 
 | 			c++; | 
 | 			continue; | 
 | 		} | 
 | 		lit = tre_new_lit(ls); | 
 | 		if (!lit) | 
 | 			return -1; | 
 | 		lit->code_min = b; | 
 | 		lit->code_max = e-1; | 
 | 		lit->position = -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | /* Maximum number of character classes in a negated bracket expression. */ | 
 | #define MAX_NEG_CLASSES 64 | 
 |  | 
 | struct neg { | 
 | 	int negate; | 
 | 	int len; | 
 | 	tre_ctype_t a[MAX_NEG_CLASSES]; | 
 | }; | 
 |  | 
 | // TODO: parse bracket into a set of non-overlapping [lo,hi] ranges | 
 |  | 
 | /* | 
 | bracket grammar: | 
 | Bracket  =  '[' List ']'  |  '[^' List ']' | 
 | List     =  Term  |  List Term | 
 | Term     =  Char  |  Range  |  Chclass  |  Eqclass | 
 | Range    =  Char '-' Char  |  Char '-' '-' | 
 | Char     =  Coll  |  coll_single | 
 | Meta     =  ']'  |  '-' | 
 | Coll     =  '[.' coll_single '.]'  |  '[.' coll_multi '.]'  |  '[.' Meta '.]' | 
 | Eqclass  =  '[=' coll_single '=]'  |  '[=' coll_multi '=]' | 
 | Chclass  =  '[:' class ':]' | 
 |  | 
 | coll_single is a single char collating element but it can be | 
 |  '-' only at the beginning or end of a List and | 
 |  ']' only at the beginning of a List and | 
 |  '^' anywhere except after the openning '[' | 
 | */ | 
 |  | 
 | static reg_errcode_t parse_bracket_terms(tre_parse_ctx_t *ctx, const char *s, struct literals *ls, struct neg *neg) | 
 | { | 
 | 	const char *start = s; | 
 | 	tre_ctype_t class; | 
 | 	int min, max; | 
 | 	wchar_t wc; | 
 | 	int len; | 
 |  | 
 | 	for (;;) { | 
 | 		class = 0; | 
 | 		len = mbtowc(&wc, s, -1); | 
 | 		if (len <= 0) | 
 | 			return *s ? REG_BADPAT : REG_EBRACK; | 
 | 		if (*s == ']' && s != start) { | 
 | 			ctx->s = s+1; | 
 | 			return REG_OK; | 
 | 		} | 
 | 		if (*s == '-' && s != start && s[1] != ']' && | 
 | 		    /* extension: [a-z--@] is accepted as [a-z]|[--@] */ | 
 | 		    (s[1] != '-' || s[2] == ']')) | 
 | 			return REG_ERANGE; | 
 | 		if (*s == '[' && (s[1] == '.' || s[1] == '=')) | 
 | 			/* collating symbols and equivalence classes are not supported */ | 
 | 			return REG_ECOLLATE; | 
 | 		if (*s == '[' && s[1] == ':') { | 
 | 			char tmp[CHARCLASS_NAME_MAX+1]; | 
 | 			s += 2; | 
 | 			for (len=0; len < CHARCLASS_NAME_MAX && s[len]; len++) { | 
 | 				if (s[len] == ':') { | 
 | 					memcpy(tmp, s, len); | 
 | 					tmp[len] = 0; | 
 | 					class = tre_ctype(tmp); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			if (!class || s[len+1] != ']') | 
 | 				return REG_ECTYPE; | 
 | 			min = 0; | 
 | 			max = TRE_CHAR_MAX; | 
 | 			s += len+2; | 
 | 		} else { | 
 | 			min = max = wc; | 
 | 			s += len; | 
 | 			if (*s == '-' && s[1] != ']') { | 
 | 				s++; | 
 | 				len = mbtowc(&wc, s, -1); | 
 | 				max = wc; | 
 | 				/* XXX - Should use collation order instead of | 
 | 				   encoding values in character ranges. */ | 
 | 				if (len <= 0 || min > max) | 
 | 					return REG_ERANGE; | 
 | 				s += len; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (class && neg->negate) { | 
 | 			if (neg->len >= MAX_NEG_CLASSES) | 
 | 				return REG_ESPACE; | 
 | 			neg->a[neg->len++] = class; | 
 | 		} else  { | 
 | 			tre_literal_t *lit = tre_new_lit(ls); | 
 | 			if (!lit) | 
 | 				return REG_ESPACE; | 
 | 			lit->code_min = min; | 
 | 			lit->code_max = max; | 
 | 			lit->class = class; | 
 | 			lit->position = -1; | 
 |  | 
 | 			/* Add opposite-case codepoints if REG_ICASE is present. | 
 | 			   It seems that POSIX requires that bracket negation | 
 | 			   should happen before case-folding, but most practical | 
 | 			   implementations do it the other way around. Changing | 
 | 			   the order would need efficient representation of | 
 | 			   case-fold ranges and bracket range sets even with | 
 | 			   simple patterns so this is ok for now. */ | 
 | 			if (ctx->cflags & REG_ICASE && !class) | 
 | 				if (add_icase_literals(ls, min, max)) | 
 | 					return REG_ESPACE; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static reg_errcode_t parse_bracket(tre_parse_ctx_t *ctx, const char *s) | 
 | { | 
 | 	int i, max, min, negmax, negmin; | 
 | 	tre_ast_node_t *node = 0, *n; | 
 | 	tre_ctype_t *nc = 0; | 
 | 	tre_literal_t *lit; | 
 | 	struct literals ls; | 
 | 	struct neg neg; | 
 | 	reg_errcode_t err; | 
 |  | 
 | 	ls.mem = ctx->mem; | 
 | 	ls.len = 0; | 
 | 	ls.cap = 32; | 
 | 	ls.a = xmalloc(ls.cap * sizeof *ls.a); | 
 | 	if (!ls.a) | 
 | 		return REG_ESPACE; | 
 | 	neg.len = 0; | 
 | 	neg.negate = *s == '^'; | 
 | 	if (neg.negate) | 
 | 		s++; | 
 |  | 
 | 	err = parse_bracket_terms(ctx, s, &ls, &neg); | 
 | 	if (err != REG_OK) | 
 | 		goto parse_bracket_done; | 
 |  | 
 | 	if (neg.negate) { | 
 | 		/* Sort the array if we need to negate it. */ | 
 | 		qsort(ls.a, ls.len, sizeof *ls.a, tre_compare_lit); | 
 | 		/* extra lit for the last negated range */ | 
 | 		lit = tre_new_lit(&ls); | 
 | 		if (!lit) { | 
 | 			err = REG_ESPACE; | 
 | 			goto parse_bracket_done; | 
 | 		} | 
 | 		lit->code_min = TRE_CHAR_MAX+1; | 
 | 		lit->code_max = TRE_CHAR_MAX+1; | 
 | 		lit->position = -1; | 
 | 		/* negated classes */ | 
 | 		if (neg.len) { | 
 | 			nc = tre_mem_alloc(ctx->mem, (neg.len+1)*sizeof *neg.a); | 
 | 			if (!nc) { | 
 | 				err = REG_ESPACE; | 
 | 				goto parse_bracket_done; | 
 | 			} | 
 | 			memcpy(nc, neg.a, neg.len*sizeof *neg.a); | 
 | 			nc[neg.len] = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Build a union of the items in the array, negated if necessary. */ | 
 | 	negmax = negmin = 0; | 
 | 	for (i = 0; i < ls.len; i++) { | 
 | 		lit = ls.a[i]; | 
 | 		min = lit->code_min; | 
 | 		max = lit->code_max; | 
 | 		if (neg.negate) { | 
 | 			if (min <= negmin) { | 
 | 				/* Overlap. */ | 
 | 				negmin = MAX(max + 1, negmin); | 
 | 				continue; | 
 | 			} | 
 | 			negmax = min - 1; | 
 | 			lit->code_min = negmin; | 
 | 			lit->code_max = negmax; | 
 | 			negmin = max + 1; | 
 | 		} | 
 | 		lit->position = ctx->position; | 
 | 		lit->neg_classes = nc; | 
 | 		n = tre_ast_new_node(ctx->mem, LITERAL, lit); | 
 | 		node = tre_ast_new_union(ctx->mem, node, n); | 
 | 		if (!node) { | 
 | 			err = REG_ESPACE; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | parse_bracket_done: | 
 | 	xfree(ls.a); | 
 | 	ctx->position++; | 
 | 	ctx->n = node; | 
 | 	return err; | 
 | } | 
 |  | 
 | static const char *parse_dup_count(const char *s, int *n) | 
 | { | 
 | 	*n = -1; | 
 | 	if (!isdigit(*s)) | 
 | 		return s; | 
 | 	*n = 0; | 
 | 	for (;;) { | 
 | 		*n = 10 * *n + (*s - '0'); | 
 | 		s++; | 
 | 		if (!isdigit(*s) || *n > RE_DUP_MAX) | 
 | 			break; | 
 | 	} | 
 | 	return s; | 
 | } | 
 |  | 
 | static reg_errcode_t parse_dup(tre_parse_ctx_t *ctx, const char *s) | 
 | { | 
 | 	int min, max; | 
 |  | 
 | 	s = parse_dup_count(s, &min); | 
 | 	if (*s == ',') | 
 | 		s = parse_dup_count(s+1, &max); | 
 | 	else | 
 | 		max = min; | 
 |  | 
 | 	if ( | 
 | 		(max < min && max >= 0) || | 
 | 		max > RE_DUP_MAX || | 
 | 		min > RE_DUP_MAX || | 
 | 		min < 0 || | 
 | 		(!(ctx->cflags & REG_EXTENDED) && *s++ != '\\') || | 
 | 		*s++ != '}' | 
 | 	) | 
 | 		return REG_BADBR; | 
 |  | 
 | 	if (min == 0 && max == 0) | 
 | 		ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); | 
 | 	else | 
 | 		ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0); | 
 | 	if (!ctx->n) | 
 | 		return REG_ESPACE; | 
 | 	ctx->s = s; | 
 | 	return REG_OK; | 
 | } | 
 |  | 
 | static int hexval(unsigned c) | 
 | { | 
 | 	if (c-'0'<10) return c-'0'; | 
 | 	c |= 32; | 
 | 	if (c-'a'<6) return c-'a'+10; | 
 | 	return -1; | 
 | } | 
 |  | 
 | static reg_errcode_t marksub(tre_parse_ctx_t *ctx, tre_ast_node_t *node, int subid) | 
 | { | 
 | 	if (node->submatch_id >= 0) { | 
 | 		tre_ast_node_t *n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); | 
 | 		if (!n) | 
 | 			return REG_ESPACE; | 
 | 		n = tre_ast_new_catenation(ctx->mem, n, node); | 
 | 		if (!n) | 
 | 			return REG_ESPACE; | 
 | 		n->num_submatches = node->num_submatches; | 
 | 		node = n; | 
 | 	} | 
 | 	node->submatch_id = subid; | 
 | 	node->num_submatches++; | 
 | 	ctx->n = node; | 
 | 	return REG_OK; | 
 | } | 
 |  | 
 | /* | 
 | BRE grammar: | 
 | Regex  =  Branch  |  '^'  |  '$'  |  '^$'  |  '^' Branch  |  Branch '$'  |  '^' Branch '$' | 
 | Branch =  Atom  |  Branch Atom | 
 | Atom   =  char  |  quoted_char  |  '.'  |  Bracket  |  Atom Dup  |  '\(' Branch '\)'  |  back_ref | 
 | Dup    =  '*'  |  '\{' Count '\}'  |  '\{' Count ',\}'  |  '\{' Count ',' Count '\}' | 
 |  | 
 | (leading ^ and trailing $ in a sub expr may be an anchor or literal as well) | 
 |  | 
 | ERE grammar: | 
 | Regex  =  Branch  |  Regex '|' Branch | 
 | Branch =  Atom  |  Branch Atom | 
 | Atom   =  char  |  quoted_char  |  '.'  |  Bracket  |  Atom Dup  |  '(' Regex ')'  |  '^'  |  '$' | 
 | Dup    =  '*'  |  '+'  |  '?'  |  '{' Count '}'  |  '{' Count ',}'  |  '{' Count ',' Count '}' | 
 |  | 
 | (a*+?, ^*, $+, \X, {, (|a) are unspecified) | 
 | */ | 
 |  | 
 | static reg_errcode_t parse_atom(tre_parse_ctx_t *ctx, const char *s) | 
 | { | 
 | 	int len, ere = ctx->cflags & REG_EXTENDED; | 
 | 	const char *p; | 
 | 	tre_ast_node_t *node; | 
 | 	wchar_t wc; | 
 | 	switch (*s) { | 
 | 	case '[': | 
 | 		return parse_bracket(ctx, s+1); | 
 | 	case '\\': | 
 | 		p = tre_expand_macro(s+1); | 
 | 		if (p) { | 
 | 			/* assume \X expansion is a single atom */ | 
 | 			reg_errcode_t err = parse_atom(ctx, p); | 
 | 			ctx->s = s+2; | 
 | 			return err; | 
 | 		} | 
 | 		/* extensions: \b, \B, \<, \>, \xHH \x{HHHH} */ | 
 | 		switch (*++s) { | 
 | 		case 0: | 
 | 			return REG_EESCAPE; | 
 | 		case 'b': | 
 | 			node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB, -1); | 
 | 			break; | 
 | 		case 'B': | 
 | 			node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_WB_NEG, -1); | 
 | 			break; | 
 | 		case '<': | 
 | 			node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOW, -1); | 
 | 			break; | 
 | 		case '>': | 
 | 			node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOW, -1); | 
 | 			break; | 
 | 		case 'x': | 
 | 			s++; | 
 | 			int i, v = 0, c; | 
 | 			len = 2; | 
 | 			if (*s == '{') { | 
 | 				len = 8; | 
 | 				s++; | 
 | 			} | 
 | 			for (i=0; i<len && v<0x110000; i++) { | 
 | 				c = hexval(s[i]); | 
 | 				if (c < 0) break; | 
 | 				v = 16*v + c; | 
 | 			} | 
 | 			s += i; | 
 | 			if (len == 8) { | 
 | 				if (*s != '}') | 
 | 					return REG_EBRACE; | 
 | 				s++; | 
 | 			} | 
 | 			node = tre_ast_new_literal(ctx->mem, v, v, ctx->position); | 
 | 			ctx->position++; | 
 | 			s--; | 
 | 			break; | 
 | 		default: | 
 | 			if (!ere && (unsigned)*s-'1' < 9) { | 
 | 				/* back reference */ | 
 | 				int val = *s - '0'; | 
 | 				node = tre_ast_new_literal(ctx->mem, BACKREF, val, ctx->position); | 
 | 				ctx->max_backref = MAX(val, ctx->max_backref); | 
 | 			} else { | 
 | 				/* extension: accept unknown escaped char | 
 | 				   as a literal */ | 
 | 				goto parse_literal; | 
 | 			} | 
 | 			ctx->position++; | 
 | 		} | 
 | 		s++; | 
 | 		break; | 
 | 	case '.': | 
 | 		if (ctx->cflags & REG_NEWLINE) { | 
 | 			tre_ast_node_t *tmp1, *tmp2; | 
 | 			tmp1 = tre_ast_new_literal(ctx->mem, 0, '\n'-1, ctx->position++); | 
 | 			tmp2 = tre_ast_new_literal(ctx->mem, '\n'+1, TRE_CHAR_MAX, ctx->position++); | 
 | 			if (tmp1 && tmp2) | 
 | 				node = tre_ast_new_union(ctx->mem, tmp1, tmp2); | 
 | 			else | 
 | 				node = 0; | 
 | 		} else { | 
 | 			node = tre_ast_new_literal(ctx->mem, 0, TRE_CHAR_MAX, ctx->position++); | 
 | 		} | 
 | 		s++; | 
 | 		break; | 
 | 	case '^': | 
 | 		/* '^' has a special meaning everywhere in EREs, and at beginning of BRE. */ | 
 | 		if (!ere && s != ctx->re) | 
 | 			goto parse_literal; | 
 | 		node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_BOL, -1); | 
 | 		s++; | 
 | 		break; | 
 | 	case '$': | 
 | 		/* '$' is special everywhere in EREs, and in the end of the string in BREs. */ | 
 | 		if (!ere && s[1]) | 
 | 			goto parse_literal; | 
 | 		node = tre_ast_new_literal(ctx->mem, ASSERTION, ASSERT_AT_EOL, -1); | 
 | 		s++; | 
 | 		break; | 
 | 	case '*': | 
 | 	case '|': | 
 | 	case '{': | 
 | 	case '+': | 
 | 	case '?': | 
 | 		if (!ere) | 
 | 			goto parse_literal; | 
 | 	case 0: | 
 | 		node = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); | 
 | 		break; | 
 | 	default: | 
 | parse_literal: | 
 | 		len = mbtowc(&wc, s, -1); | 
 | 		if (len < 0) | 
 | 			return REG_BADPAT; | 
 | 		if (ctx->cflags & REG_ICASE && (tre_isupper(wc) || tre_islower(wc))) { | 
 | 			tre_ast_node_t *tmp1, *tmp2; | 
 | 			/* multiple opposite case characters are not supported */ | 
 | 			tmp1 = tre_ast_new_literal(ctx->mem, tre_toupper(wc), tre_toupper(wc), ctx->position); | 
 | 			tmp2 = tre_ast_new_literal(ctx->mem, tre_tolower(wc), tre_tolower(wc), ctx->position); | 
 | 			if (tmp1 && tmp2) | 
 | 				node = tre_ast_new_union(ctx->mem, tmp1, tmp2); | 
 | 			else | 
 | 				node = 0; | 
 | 		} else { | 
 | 			node = tre_ast_new_literal(ctx->mem, wc, wc, ctx->position); | 
 | 		} | 
 | 		ctx->position++; | 
 | 		s += len; | 
 | 		break; | 
 | 	} | 
 | 	if (!node) | 
 | 		return REG_ESPACE; | 
 | 	ctx->n = node; | 
 | 	ctx->s = s; | 
 | 	return REG_OK; | 
 | } | 
 |  | 
 | #define PUSHPTR(err, s, v) do { \ | 
 | 	if ((err = tre_stack_push_voidptr(s, v)) != REG_OK) \ | 
 | 		return err; \ | 
 | } while(0) | 
 |  | 
 | #define PUSHINT(err, s, v) do { \ | 
 | 	if ((err = tre_stack_push_int(s, v)) != REG_OK) \ | 
 | 		return err; \ | 
 | } while(0) | 
 |  | 
 | static reg_errcode_t tre_parse(tre_parse_ctx_t *ctx) | 
 | { | 
 | 	tre_ast_node_t *nbranch=0, *nunion=0; | 
 | 	int ere = ctx->cflags & REG_EXTENDED; | 
 | 	const char *s = ctx->re; | 
 | 	int subid = 0; | 
 | 	int depth = 0; | 
 | 	reg_errcode_t err; | 
 | 	tre_stack_t *stack = ctx->stack; | 
 |  | 
 | 	PUSHINT(err, stack, subid++); | 
 | 	for (;;) { | 
 | 		if ((!ere && *s == '\\' && s[1] == '(') || | 
 | 		    (ere && *s == '(')) { | 
 | 			PUSHPTR(err, stack, nunion); | 
 | 			PUSHPTR(err, stack, nbranch); | 
 | 			PUSHINT(err, stack, subid++); | 
 | 			s++; | 
 | 			if (!ere) | 
 | 				s++; | 
 | 			depth++; | 
 | 			nbranch = nunion = 0; | 
 | 			continue; | 
 | 		} | 
 | 		if ((!ere && *s == '\\' && s[1] == ')') || | 
 | 		    (ere && *s == ')' && depth)) { | 
 | 			ctx->n = tre_ast_new_literal(ctx->mem, EMPTY, -1, -1); | 
 | 			if (!ctx->n) | 
 | 				return REG_ESPACE; | 
 | 		} else { | 
 | 			err = parse_atom(ctx, s); | 
 | 			if (err != REG_OK) | 
 | 				return err; | 
 | 			s = ctx->s; | 
 | 		} | 
 |  | 
 | 	parse_iter: | 
 | 		/* extension: repetitions are accepted after an empty node | 
 | 		   eg. (+), ^*, a$?, a|{2} */ | 
 | 		switch (*s) { | 
 | 		case '+': | 
 | 		case '?': | 
 | 			if (!ere) | 
 | 				break; | 
 | 			/* fallthrough */ | 
 | 		case '*':; | 
 | 			int min=0, max=-1; | 
 | 			if (*s == '+') | 
 | 				min = 1; | 
 | 			if (*s == '?') | 
 | 				max = 1; | 
 | 			s++; | 
 | 			ctx->n = tre_ast_new_iter(ctx->mem, ctx->n, min, max, 0); | 
 | 			if (!ctx->n) | 
 | 				return REG_ESPACE; | 
 | 			/* extension: multiple consecutive *+?{,} is unspecified, | 
 | 			   but (a+)+ has to be supported so accepting a++ makes | 
 | 			   sense, note however that the RE_DUP_MAX limit can be | 
 | 			   circumvented: (a{255}){255} uses a lot of memory.. */ | 
 | 			goto parse_iter; | 
 | 		case '\\': | 
 | 			if (ere || s[1] != '{') | 
 | 				break; | 
 | 			s++; | 
 | 			goto parse_brace; | 
 | 		case '{': | 
 | 			if (!ere) | 
 | 				break; | 
 | 		parse_brace: | 
 | 			err = parse_dup(ctx, s+1); | 
 | 			if (err != REG_OK) | 
 | 				return err; | 
 | 			s = ctx->s; | 
 | 			goto parse_iter; | 
 | 		} | 
 |  | 
 | 		nbranch = tre_ast_new_catenation(ctx->mem, nbranch, ctx->n); | 
 | 		if ((ere && *s == '|') || | 
 | 		    (ere && *s == ')' && depth) || | 
 | 		    (!ere && *s == '\\' && s[1] == ')') || | 
 | 		    !*s) { | 
 | 			/* extension: empty branch is unspecified (), (|a), (a|) | 
 | 			   here they are not rejected but match on empty string */ | 
 | 			int c = *s; | 
 | 			nunion = tre_ast_new_union(ctx->mem, nunion, nbranch); | 
 | 			nbranch = 0; | 
 | 			if (c != '|') { | 
 | 				if (c == '\\') { | 
 | 					if (!depth) return REG_EPAREN; | 
 | 					s+=2; | 
 | 				} else if (c == ')') | 
 | 					s++; | 
 | 				depth--; | 
 | 				err = marksub(ctx, nunion, tre_stack_pop_int(stack)); | 
 | 				if (err != REG_OK) | 
 | 					return err; | 
 | 				if (!c && depth<0) { | 
 | 					ctx->submatch_id = subid; | 
 | 					return REG_OK; | 
 | 				} | 
 | 				if (!c || depth<0) | 
 | 					return REG_EPAREN; | 
 | 				nbranch = tre_stack_pop_voidptr(stack); | 
 | 				nunion = tre_stack_pop_voidptr(stack); | 
 | 				goto parse_iter; | 
 | 			} | 
 | 			s++; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /*********************************************************************** | 
 |  from tre-compile.c | 
 | ***********************************************************************/ | 
 |  | 
 |  | 
 | /* | 
 |   TODO: | 
 |    - Fix tre_ast_to_tnfa() to recurse using a stack instead of recursive | 
 |      function calls. | 
 | */ | 
 |  | 
 | /* | 
 |   Algorithms to setup tags so that submatch addressing can be done. | 
 | */ | 
 |  | 
 |  | 
 | /* Inserts a catenation node to the root of the tree given in `node'. | 
 |    As the left child a new tag with number `tag_id' to `node' is added, | 
 |    and the right child is the old root. */ | 
 | static reg_errcode_t | 
 | tre_add_tag_left(tre_mem_t mem, tre_ast_node_t *node, int tag_id) | 
 | { | 
 |   tre_catenation_t *c; | 
 |  | 
 |   c = tre_mem_alloc(mem, sizeof(*c)); | 
 |   if (c == NULL) | 
 |     return REG_ESPACE; | 
 |   c->left = tre_ast_new_literal(mem, TAG, tag_id, -1); | 
 |   if (c->left == NULL) | 
 |     return REG_ESPACE; | 
 |   c->right = tre_mem_alloc(mem, sizeof(tre_ast_node_t)); | 
 |   if (c->right == NULL) | 
 |     return REG_ESPACE; | 
 |  | 
 |   c->right->obj = node->obj; | 
 |   c->right->type = node->type; | 
 |   c->right->nullable = -1; | 
 |   c->right->submatch_id = -1; | 
 |   c->right->firstpos = NULL; | 
 |   c->right->lastpos = NULL; | 
 |   c->right->num_tags = 0; | 
 |   node->obj = c; | 
 |   node->type = CATENATION; | 
 |   return REG_OK; | 
 | } | 
 |  | 
 | /* Inserts a catenation node to the root of the tree given in `node'. | 
 |    As the right child a new tag with number `tag_id' to `node' is added, | 
 |    and the left child is the old root. */ | 
 | static reg_errcode_t | 
 | tre_add_tag_right(tre_mem_t mem, tre_ast_node_t *node, int tag_id) | 
 | { | 
 |   tre_catenation_t *c; | 
 |  | 
 |   c = tre_mem_alloc(mem, sizeof(*c)); | 
 |   if (c == NULL) | 
 |     return REG_ESPACE; | 
 |   c->right = tre_ast_new_literal(mem, TAG, tag_id, -1); | 
 |   if (c->right == NULL) | 
 |     return REG_ESPACE; | 
 |   c->left = tre_mem_alloc(mem, sizeof(tre_ast_node_t)); | 
 |   if (c->left == NULL) | 
 |     return REG_ESPACE; | 
 |  | 
 |   c->left->obj = node->obj; | 
 |   c->left->type = node->type; | 
 |   c->left->nullable = -1; | 
 |   c->left->submatch_id = -1; | 
 |   c->left->firstpos = NULL; | 
 |   c->left->lastpos = NULL; | 
 |   c->left->num_tags = 0; | 
 |   node->obj = c; | 
 |   node->type = CATENATION; | 
 |   return REG_OK; | 
 | } | 
 |  | 
 | typedef enum { | 
 |   ADDTAGS_RECURSE, | 
 |   ADDTAGS_AFTER_ITERATION, | 
 |   ADDTAGS_AFTER_UNION_LEFT, | 
 |   ADDTAGS_AFTER_UNION_RIGHT, | 
 |   ADDTAGS_AFTER_CAT_LEFT, | 
 |   ADDTAGS_AFTER_CAT_RIGHT, | 
 |   ADDTAGS_SET_SUBMATCH_END | 
 | } tre_addtags_symbol_t; | 
 |  | 
 |  | 
 | typedef struct { | 
 |   int tag; | 
 |   int next_tag; | 
 | } tre_tag_states_t; | 
 |  | 
 |  | 
 | /* Go through `regset' and set submatch data for submatches that are | 
 |    using this tag. */ | 
 | static void | 
 | tre_purge_regset(int *regset, tre_tnfa_t *tnfa, int tag) | 
 | { | 
 |   int i; | 
 |  | 
 |   for (i = 0; regset[i] >= 0; i++) | 
 |     { | 
 |       int id = regset[i] / 2; | 
 |       int start = !(regset[i] % 2); | 
 |       if (start) | 
 | 	tnfa->submatch_data[id].so_tag = tag; | 
 |       else | 
 | 	tnfa->submatch_data[id].eo_tag = tag; | 
 |     } | 
 |   regset[0] = -1; | 
 | } | 
 |  | 
 |  | 
 | /* Adds tags to appropriate locations in the parse tree in `tree', so that | 
 |    subexpressions marked for submatch addressing can be traced. */ | 
 | static reg_errcode_t | 
 | tre_add_tags(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree, | 
 | 	     tre_tnfa_t *tnfa) | 
 | { | 
 |   reg_errcode_t status = REG_OK; | 
 |   tre_addtags_symbol_t symbol; | 
 |   tre_ast_node_t *node = tree; /* Tree node we are currently looking at. */ | 
 |   int bottom = tre_stack_num_objects(stack); | 
 |   /* True for first pass (counting number of needed tags) */ | 
 |   int first_pass = (mem == NULL || tnfa == NULL); | 
 |   int *regset, *orig_regset; | 
 |   int num_tags = 0; /* Total number of tags. */ | 
 |   int num_minimals = 0;	 /* Number of special minimal tags. */ | 
 |   int tag = 0;	    /* The tag that is to be added next. */ | 
 |   int next_tag = 1; /* Next tag to use after this one. */ | 
 |   int *parents;	    /* Stack of submatches the current submatch is | 
 | 		       contained in. */ | 
 |   int minimal_tag = -1; /* Tag that marks the beginning of a minimal match. */ | 
 |   tre_tag_states_t *saved_states; | 
 |  | 
 |   tre_tag_direction_t direction = TRE_TAG_MINIMIZE; | 
 |   if (!first_pass) | 
 |     { | 
 |       tnfa->end_tag = 0; | 
 |       tnfa->minimal_tags[0] = -1; | 
 |     } | 
 |  | 
 |   regset = xmalloc(sizeof(*regset) * ((tnfa->num_submatches + 1) * 2)); | 
 |   if (regset == NULL) | 
 |     return REG_ESPACE; | 
 |   regset[0] = -1; | 
 |   orig_regset = regset; | 
 |  | 
 |   parents = xmalloc(sizeof(*parents) * (tnfa->num_submatches + 1)); | 
 |   if (parents == NULL) | 
 |     { | 
 |       xfree(regset); | 
 |       return REG_ESPACE; | 
 |     } | 
 |   parents[0] = -1; | 
 |  | 
 |   saved_states = xmalloc(sizeof(*saved_states) * (tnfa->num_submatches + 1)); | 
 |   if (saved_states == NULL) | 
 |     { | 
 |       xfree(regset); | 
 |       xfree(parents); | 
 |       return REG_ESPACE; | 
 |     } | 
 |   else | 
 |     { | 
 |       unsigned int i; | 
 |       for (i = 0; i <= tnfa->num_submatches; i++) | 
 | 	saved_states[i].tag = -1; | 
 |     } | 
 |  | 
 |   STACK_PUSH(stack, voidptr, node); | 
 |   STACK_PUSH(stack, int, ADDTAGS_RECURSE); | 
 |  | 
 |   while (tre_stack_num_objects(stack) > bottom) | 
 |     { | 
 |       if (status != REG_OK) | 
 | 	break; | 
 |  | 
 |       symbol = (tre_addtags_symbol_t)tre_stack_pop_int(stack); | 
 |       switch (symbol) | 
 | 	{ | 
 |  | 
 | 	case ADDTAGS_SET_SUBMATCH_END: | 
 | 	  { | 
 | 	    int id = tre_stack_pop_int(stack); | 
 | 	    int i; | 
 |  | 
 | 	    /* Add end of this submatch to regset. */ | 
 | 	    for (i = 0; regset[i] >= 0; i++); | 
 | 	    regset[i] = id * 2 + 1; | 
 | 	    regset[i + 1] = -1; | 
 |  | 
 | 	    /* Pop this submatch from the parents stack. */ | 
 | 	    for (i = 0; parents[i] >= 0; i++); | 
 | 	    parents[i - 1] = -1; | 
 | 	    break; | 
 | 	  } | 
 |  | 
 | 	case ADDTAGS_RECURSE: | 
 | 	  node = tre_stack_pop_voidptr(stack); | 
 |  | 
 | 	  if (node->submatch_id >= 0) | 
 | 	    { | 
 | 	      int id = node->submatch_id; | 
 | 	      int i; | 
 |  | 
 |  | 
 | 	      /* Add start of this submatch to regset. */ | 
 | 	      for (i = 0; regset[i] >= 0; i++); | 
 | 	      regset[i] = id * 2; | 
 | 	      regset[i + 1] = -1; | 
 |  | 
 | 	      if (!first_pass) | 
 | 		{ | 
 | 		  for (i = 0; parents[i] >= 0; i++); | 
 | 		  tnfa->submatch_data[id].parents = NULL; | 
 | 		  if (i > 0) | 
 | 		    { | 
 | 		      int *p = xmalloc(sizeof(*p) * (i + 1)); | 
 | 		      if (p == NULL) | 
 | 			{ | 
 | 			  status = REG_ESPACE; | 
 | 			  break; | 
 | 			} | 
 | 		      assert(tnfa->submatch_data[id].parents == NULL); | 
 | 		      tnfa->submatch_data[id].parents = p; | 
 | 		      for (i = 0; parents[i] >= 0; i++) | 
 | 			p[i] = parents[i]; | 
 | 		      p[i] = -1; | 
 | 		    } | 
 | 		} | 
 |  | 
 | 	      /* Add end of this submatch to regset after processing this | 
 | 		 node. */ | 
 | 	      STACK_PUSHX(stack, int, node->submatch_id); | 
 | 	      STACK_PUSHX(stack, int, ADDTAGS_SET_SUBMATCH_END); | 
 | 	    } | 
 |  | 
 | 	  switch (node->type) | 
 | 	    { | 
 | 	    case LITERAL: | 
 | 	      { | 
 | 		tre_literal_t *lit = node->obj; | 
 |  | 
 | 		if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) | 
 | 		  { | 
 | 		    int i; | 
 | 		    if (regset[0] >= 0) | 
 | 		      { | 
 | 			/* Regset is not empty, so add a tag before the | 
 | 			   literal or backref. */ | 
 | 			if (!first_pass) | 
 | 			  { | 
 | 			    status = tre_add_tag_left(mem, node, tag); | 
 | 			    tnfa->tag_directions[tag] = direction; | 
 | 			    if (minimal_tag >= 0) | 
 | 			      { | 
 | 				for (i = 0; tnfa->minimal_tags[i] >= 0; i++); | 
 | 				tnfa->minimal_tags[i] = tag; | 
 | 				tnfa->minimal_tags[i + 1] = minimal_tag; | 
 | 				tnfa->minimal_tags[i + 2] = -1; | 
 | 				minimal_tag = -1; | 
 | 				num_minimals++; | 
 | 			      } | 
 | 			    tre_purge_regset(regset, tnfa, tag); | 
 | 			  } | 
 | 			else | 
 | 			  { | 
 | 			    node->num_tags = 1; | 
 | 			  } | 
 |  | 
 | 			regset[0] = -1; | 
 | 			tag = next_tag; | 
 | 			num_tags++; | 
 | 			next_tag++; | 
 | 		      } | 
 | 		  } | 
 | 		else | 
 | 		  { | 
 | 		    assert(!IS_TAG(lit)); | 
 | 		  } | 
 | 		break; | 
 | 	      } | 
 | 	    case CATENATION: | 
 | 	      { | 
 | 		tre_catenation_t *cat = node->obj; | 
 | 		tre_ast_node_t *left = cat->left; | 
 | 		tre_ast_node_t *right = cat->right; | 
 | 		int reserved_tag = -1; | 
 |  | 
 |  | 
 | 		/* After processing right child. */ | 
 | 		STACK_PUSHX(stack, voidptr, node); | 
 | 		STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_RIGHT); | 
 |  | 
 | 		/* Process right child. */ | 
 | 		STACK_PUSHX(stack, voidptr, right); | 
 | 		STACK_PUSHX(stack, int, ADDTAGS_RECURSE); | 
 |  | 
 | 		/* After processing left child. */ | 
 | 		STACK_PUSHX(stack, int, next_tag + left->num_tags); | 
 | 		if (left->num_tags > 0 && right->num_tags > 0) | 
 | 		  { | 
 | 		    /* Reserve the next tag to the right child. */ | 
 | 		    reserved_tag = next_tag; | 
 | 		    next_tag++; | 
 | 		  } | 
 | 		STACK_PUSHX(stack, int, reserved_tag); | 
 | 		STACK_PUSHX(stack, int, ADDTAGS_AFTER_CAT_LEFT); | 
 |  | 
 | 		/* Process left child. */ | 
 | 		STACK_PUSHX(stack, voidptr, left); | 
 | 		STACK_PUSHX(stack, int, ADDTAGS_RECURSE); | 
 |  | 
 | 		} | 
 | 	      break; | 
 | 	    case ITERATION: | 
 | 	      { | 
 | 		tre_iteration_t *iter = node->obj; | 
 |  | 
 | 		if (first_pass) | 
 | 		  { | 
 | 		    STACK_PUSHX(stack, int, regset[0] >= 0 || iter->minimal); | 
 | 		  } | 
 | 		else | 
 | 		  { | 
 | 		    STACK_PUSHX(stack, int, tag); | 
 | 		    STACK_PUSHX(stack, int, iter->minimal); | 
 | 		  } | 
 | 		STACK_PUSHX(stack, voidptr, node); | 
 | 		STACK_PUSHX(stack, int, ADDTAGS_AFTER_ITERATION); | 
 |  | 
 | 		STACK_PUSHX(stack, voidptr, iter->arg); | 
 | 		STACK_PUSHX(stack, int, ADDTAGS_RECURSE); | 
 |  | 
 | 		/* Regset is not empty, so add a tag here. */ | 
 | 		if (regset[0] >= 0 || iter->minimal) | 
 | 		  { | 
 | 		    if (!first_pass) | 
 | 		      { | 
 | 			int i; | 
 | 			status = tre_add_tag_left(mem, node, tag); | 
 | 			if (iter->minimal) | 
 | 			  tnfa->tag_directions[tag] = TRE_TAG_MAXIMIZE; | 
 | 			else | 
 | 			  tnfa->tag_directions[tag] = direction; | 
 | 			if (minimal_tag >= 0) | 
 | 			  { | 
 | 			    for (i = 0; tnfa->minimal_tags[i] >= 0; i++); | 
 | 			    tnfa->minimal_tags[i] = tag; | 
 | 			    tnfa->minimal_tags[i + 1] = minimal_tag; | 
 | 			    tnfa->minimal_tags[i + 2] = -1; | 
 | 			    minimal_tag = -1; | 
 | 			    num_minimals++; | 
 | 			  } | 
 | 			tre_purge_regset(regset, tnfa, tag); | 
 | 		      } | 
 |  | 
 | 		    regset[0] = -1; | 
 | 		    tag = next_tag; | 
 | 		    num_tags++; | 
 | 		    next_tag++; | 
 | 		  } | 
 | 		direction = TRE_TAG_MINIMIZE; | 
 | 	      } | 
 | 	      break; | 
 | 	    case UNION: | 
 | 	      { | 
 | 		tre_union_t *uni = node->obj; | 
 | 		tre_ast_node_t *left = uni->left; | 
 | 		tre_ast_node_t *right = uni->right; | 
 | 		int left_tag; | 
 | 		int right_tag; | 
 |  | 
 | 		if (regset[0] >= 0) | 
 | 		  { | 
 | 		    left_tag = next_tag; | 
 | 		    right_tag = next_tag + 1; | 
 | 		  } | 
 | 		else | 
 | 		  { | 
 | 		    left_tag = tag; | 
 | 		    right_tag = next_tag; | 
 | 		  } | 
 |  | 
 | 		/* After processing right child. */ | 
 | 		STACK_PUSHX(stack, int, right_tag); | 
 | 		STACK_PUSHX(stack, int, left_tag); | 
 | 		STACK_PUSHX(stack, voidptr, regset); | 
 | 		STACK_PUSHX(stack, int, regset[0] >= 0); | 
 | 		STACK_PUSHX(stack, voidptr, node); | 
 | 		STACK_PUSHX(stack, voidptr, right); | 
 | 		STACK_PUSHX(stack, voidptr, left); | 
 | 		STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_RIGHT); | 
 |  | 
 | 		/* Process right child. */ | 
 | 		STACK_PUSHX(stack, voidptr, right); | 
 | 		STACK_PUSHX(stack, int, ADDTAGS_RECURSE); | 
 |  | 
 | 		/* After processing left child. */ | 
 | 		STACK_PUSHX(stack, int, ADDTAGS_AFTER_UNION_LEFT); | 
 |  | 
 | 		/* Process left child. */ | 
 | 		STACK_PUSHX(stack, voidptr, left); | 
 | 		STACK_PUSHX(stack, int, ADDTAGS_RECURSE); | 
 |  | 
 | 		/* Regset is not empty, so add a tag here. */ | 
 | 		if (regset[0] >= 0) | 
 | 		  { | 
 | 		    if (!first_pass) | 
 | 		      { | 
 | 			int i; | 
 | 			status = tre_add_tag_left(mem, node, tag); | 
 | 			tnfa->tag_directions[tag] = direction; | 
 | 			if (minimal_tag >= 0) | 
 | 			  { | 
 | 			    for (i = 0; tnfa->minimal_tags[i] >= 0; i++); | 
 | 			    tnfa->minimal_tags[i] = tag; | 
 | 			    tnfa->minimal_tags[i + 1] = minimal_tag; | 
 | 			    tnfa->minimal_tags[i + 2] = -1; | 
 | 			    minimal_tag = -1; | 
 | 			    num_minimals++; | 
 | 			  } | 
 | 			tre_purge_regset(regset, tnfa, tag); | 
 | 		      } | 
 |  | 
 | 		    regset[0] = -1; | 
 | 		    tag = next_tag; | 
 | 		    num_tags++; | 
 | 		    next_tag++; | 
 | 		  } | 
 |  | 
 | 		if (node->num_submatches > 0) | 
 | 		  { | 
 | 		    /* The next two tags are reserved for markers. */ | 
 | 		    next_tag++; | 
 | 		    tag = next_tag; | 
 | 		    next_tag++; | 
 | 		  } | 
 |  | 
 | 		break; | 
 | 	      } | 
 | 	    } | 
 |  | 
 | 	  if (node->submatch_id >= 0) | 
 | 	    { | 
 | 	      int i; | 
 | 	      /* Push this submatch on the parents stack. */ | 
 | 	      for (i = 0; parents[i] >= 0; i++); | 
 | 	      parents[i] = node->submatch_id; | 
 | 	      parents[i + 1] = -1; | 
 | 	    } | 
 |  | 
 | 	  break; /* end case: ADDTAGS_RECURSE */ | 
 |  | 
 | 	case ADDTAGS_AFTER_ITERATION: | 
 | 	  { | 
 | 	    int minimal = 0; | 
 | 	    int enter_tag; | 
 | 	    node = tre_stack_pop_voidptr(stack); | 
 | 	    if (first_pass) | 
 | 	      { | 
 | 		node->num_tags = ((tre_iteration_t *)node->obj)->arg->num_tags | 
 | 		  + tre_stack_pop_int(stack); | 
 | 		minimal_tag = -1; | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		minimal = tre_stack_pop_int(stack); | 
 | 		enter_tag = tre_stack_pop_int(stack); | 
 | 		if (minimal) | 
 | 		  minimal_tag = enter_tag; | 
 | 	      } | 
 |  | 
 | 	    if (!first_pass) | 
 | 	      { | 
 | 		if (minimal) | 
 | 		  direction = TRE_TAG_MINIMIZE; | 
 | 		else | 
 | 		  direction = TRE_TAG_MAXIMIZE; | 
 | 	      } | 
 | 	    break; | 
 | 	  } | 
 |  | 
 | 	case ADDTAGS_AFTER_CAT_LEFT: | 
 | 	  { | 
 | 	    int new_tag = tre_stack_pop_int(stack); | 
 | 	    next_tag = tre_stack_pop_int(stack); | 
 | 	    if (new_tag >= 0) | 
 | 	      { | 
 | 		tag = new_tag; | 
 | 	      } | 
 | 	    break; | 
 | 	  } | 
 |  | 
 | 	case ADDTAGS_AFTER_CAT_RIGHT: | 
 | 	  node = tre_stack_pop_voidptr(stack); | 
 | 	  if (first_pass) | 
 | 	    node->num_tags = ((tre_catenation_t *)node->obj)->left->num_tags | 
 | 	      + ((tre_catenation_t *)node->obj)->right->num_tags; | 
 | 	  break; | 
 |  | 
 | 	case ADDTAGS_AFTER_UNION_LEFT: | 
 | 	  /* Lift the bottom of the `regset' array so that when processing | 
 | 	     the right operand the items currently in the array are | 
 | 	     invisible.	 The original bottom was saved at ADDTAGS_UNION and | 
 | 	     will be restored at ADDTAGS_AFTER_UNION_RIGHT below. */ | 
 | 	  while (*regset >= 0) | 
 | 	    regset++; | 
 | 	  break; | 
 |  | 
 | 	case ADDTAGS_AFTER_UNION_RIGHT: | 
 | 	  { | 
 | 	    int added_tags, tag_left, tag_right; | 
 | 	    tre_ast_node_t *left = tre_stack_pop_voidptr(stack); | 
 | 	    tre_ast_node_t *right = tre_stack_pop_voidptr(stack); | 
 | 	    node = tre_stack_pop_voidptr(stack); | 
 | 	    added_tags = tre_stack_pop_int(stack); | 
 | 	    if (first_pass) | 
 | 	      { | 
 | 		node->num_tags = ((tre_union_t *)node->obj)->left->num_tags | 
 | 		  + ((tre_union_t *)node->obj)->right->num_tags + added_tags | 
 | 		  + ((node->num_submatches > 0) ? 2 : 0); | 
 | 	      } | 
 | 	    regset = tre_stack_pop_voidptr(stack); | 
 | 	    tag_left = tre_stack_pop_int(stack); | 
 | 	    tag_right = tre_stack_pop_int(stack); | 
 |  | 
 | 	    /* Add tags after both children, the left child gets a smaller | 
 | 	       tag than the right child.  This guarantees that we prefer | 
 | 	       the left child over the right child. */ | 
 | 	    /* XXX - This is not always necessary (if the children have | 
 | 	       tags which must be seen for every match of that child). */ | 
 | 	    /* XXX - Check if this is the only place where tre_add_tag_right | 
 | 	       is used.	 If so, use tre_add_tag_left (putting the tag before | 
 | 	       the child as opposed after the child) and throw away | 
 | 	       tre_add_tag_right. */ | 
 | 	    if (node->num_submatches > 0) | 
 | 	      { | 
 | 		if (!first_pass) | 
 | 		  { | 
 | 		    status = tre_add_tag_right(mem, left, tag_left); | 
 | 		    tnfa->tag_directions[tag_left] = TRE_TAG_MAXIMIZE; | 
 | 		    if (status == REG_OK) | 
 | 		      status = tre_add_tag_right(mem, right, tag_right); | 
 | 		    tnfa->tag_directions[tag_right] = TRE_TAG_MAXIMIZE; | 
 | 		  } | 
 | 		num_tags += 2; | 
 | 	      } | 
 | 	    direction = TRE_TAG_MAXIMIZE; | 
 | 	    break; | 
 | 	  } | 
 |  | 
 | 	default: | 
 | 	  assert(0); | 
 | 	  break; | 
 |  | 
 | 	} /* end switch(symbol) */ | 
 |     } /* end while(tre_stack_num_objects(stack) > bottom) */ | 
 |  | 
 |   if (!first_pass) | 
 |     tre_purge_regset(regset, tnfa, tag); | 
 |  | 
 |   if (!first_pass && minimal_tag >= 0) | 
 |     { | 
 |       int i; | 
 |       for (i = 0; tnfa->minimal_tags[i] >= 0; i++); | 
 |       tnfa->minimal_tags[i] = tag; | 
 |       tnfa->minimal_tags[i + 1] = minimal_tag; | 
 |       tnfa->minimal_tags[i + 2] = -1; | 
 |       minimal_tag = -1; | 
 |       num_minimals++; | 
 |     } | 
 |  | 
 |   assert(tree->num_tags == num_tags); | 
 |   tnfa->end_tag = num_tags; | 
 |   tnfa->num_tags = num_tags; | 
 |   tnfa->num_minimals = num_minimals; | 
 |   xfree(orig_regset); | 
 |   xfree(parents); | 
 |   xfree(saved_states); | 
 |   return status; | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* | 
 |   AST to TNFA compilation routines. | 
 | */ | 
 |  | 
 | typedef enum { | 
 |   COPY_RECURSE, | 
 |   COPY_SET_RESULT_PTR | 
 | } tre_copyast_symbol_t; | 
 |  | 
 | /* Flags for tre_copy_ast(). */ | 
 | #define COPY_REMOVE_TAGS	 1 | 
 | #define COPY_MAXIMIZE_FIRST_TAG	 2 | 
 |  | 
 | static reg_errcode_t | 
 | tre_copy_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast, | 
 | 	     int flags, int *pos_add, tre_tag_direction_t *tag_directions, | 
 | 	     tre_ast_node_t **copy, int *max_pos) | 
 | { | 
 |   reg_errcode_t status = REG_OK; | 
 |   int bottom = tre_stack_num_objects(stack); | 
 |   int num_copied = 0; | 
 |   int first_tag = 1; | 
 |   tre_ast_node_t **result = copy; | 
 |   tre_copyast_symbol_t symbol; | 
 |  | 
 |   STACK_PUSH(stack, voidptr, ast); | 
 |   STACK_PUSH(stack, int, COPY_RECURSE); | 
 |  | 
 |   while (status == REG_OK && tre_stack_num_objects(stack) > bottom) | 
 |     { | 
 |       tre_ast_node_t *node; | 
 |       if (status != REG_OK) | 
 | 	break; | 
 |  | 
 |       symbol = (tre_copyast_symbol_t)tre_stack_pop_int(stack); | 
 |       switch (symbol) | 
 | 	{ | 
 | 	case COPY_SET_RESULT_PTR: | 
 | 	  result = tre_stack_pop_voidptr(stack); | 
 | 	  break; | 
 | 	case COPY_RECURSE: | 
 | 	  node = tre_stack_pop_voidptr(stack); | 
 | 	  switch (node->type) | 
 | 	    { | 
 | 	    case LITERAL: | 
 | 	      { | 
 | 		tre_literal_t *lit = node->obj; | 
 | 		int pos = lit->position; | 
 | 		int min = lit->code_min; | 
 | 		int max = lit->code_max; | 
 | 		if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) | 
 | 		  { | 
 | 		    /* XXX - e.g. [ab] has only one position but two | 
 | 		       nodes, so we are creating holes in the state space | 
 | 		       here.  Not fatal, just wastes memory. */ | 
 | 		    pos += *pos_add; | 
 | 		    num_copied++; | 
 | 		  } | 
 | 		else if (IS_TAG(lit) && (flags & COPY_REMOVE_TAGS)) | 
 | 		  { | 
 | 		    /* Change this tag to empty. */ | 
 | 		    min = EMPTY; | 
 | 		    max = pos = -1; | 
 | 		  } | 
 | 		else if (IS_TAG(lit) && (flags & COPY_MAXIMIZE_FIRST_TAG) | 
 | 			 && first_tag) | 
 | 		  { | 
 | 		    /* Maximize the first tag. */ | 
 | 		    tag_directions[max] = TRE_TAG_MAXIMIZE; | 
 | 		    first_tag = 0; | 
 | 		  } | 
 | 		*result = tre_ast_new_literal(mem, min, max, pos); | 
 | 		if (*result == NULL) | 
 | 		  status = REG_ESPACE; | 
 | 		else { | 
 | 		  tre_literal_t *p = (*result)->obj; | 
 | 		  p->class = lit->class; | 
 | 		  p->neg_classes = lit->neg_classes; | 
 | 		} | 
 |  | 
 | 		if (pos > *max_pos) | 
 | 		  *max_pos = pos; | 
 | 		break; | 
 | 	      } | 
 | 	    case UNION: | 
 | 	      { | 
 | 		tre_union_t *uni = node->obj; | 
 | 		tre_union_t *tmp; | 
 | 		*result = tre_ast_new_union(mem, uni->left, uni->right); | 
 | 		if (*result == NULL) | 
 | 		  { | 
 | 		    status = REG_ESPACE; | 
 | 		    break; | 
 | 		  } | 
 | 		tmp = (*result)->obj; | 
 | 		result = &tmp->left; | 
 | 		STACK_PUSHX(stack, voidptr, uni->right); | 
 | 		STACK_PUSHX(stack, int, COPY_RECURSE); | 
 | 		STACK_PUSHX(stack, voidptr, &tmp->right); | 
 | 		STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR); | 
 | 		STACK_PUSHX(stack, voidptr, uni->left); | 
 | 		STACK_PUSHX(stack, int, COPY_RECURSE); | 
 | 		break; | 
 | 	      } | 
 | 	    case CATENATION: | 
 | 	      { | 
 | 		tre_catenation_t *cat = node->obj; | 
 | 		tre_catenation_t *tmp; | 
 | 		*result = tre_ast_new_catenation(mem, cat->left, cat->right); | 
 | 		if (*result == NULL) | 
 | 		  { | 
 | 		    status = REG_ESPACE; | 
 | 		    break; | 
 | 		  } | 
 | 		tmp = (*result)->obj; | 
 | 		tmp->left = NULL; | 
 | 		tmp->right = NULL; | 
 | 		result = &tmp->left; | 
 |  | 
 | 		STACK_PUSHX(stack, voidptr, cat->right); | 
 | 		STACK_PUSHX(stack, int, COPY_RECURSE); | 
 | 		STACK_PUSHX(stack, voidptr, &tmp->right); | 
 | 		STACK_PUSHX(stack, int, COPY_SET_RESULT_PTR); | 
 | 		STACK_PUSHX(stack, voidptr, cat->left); | 
 | 		STACK_PUSHX(stack, int, COPY_RECURSE); | 
 | 		break; | 
 | 	      } | 
 | 	    case ITERATION: | 
 | 	      { | 
 | 		tre_iteration_t *iter = node->obj; | 
 | 		STACK_PUSHX(stack, voidptr, iter->arg); | 
 | 		STACK_PUSHX(stack, int, COPY_RECURSE); | 
 | 		*result = tre_ast_new_iter(mem, iter->arg, iter->min, | 
 | 					   iter->max, iter->minimal); | 
 | 		if (*result == NULL) | 
 | 		  { | 
 | 		    status = REG_ESPACE; | 
 | 		    break; | 
 | 		  } | 
 | 		iter = (*result)->obj; | 
 | 		result = &iter->arg; | 
 | 		break; | 
 | 	      } | 
 | 	    default: | 
 | 	      assert(0); | 
 | 	      break; | 
 | 	    } | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |   *pos_add += num_copied; | 
 |   return status; | 
 | } | 
 |  | 
 | typedef enum { | 
 |   EXPAND_RECURSE, | 
 |   EXPAND_AFTER_ITER | 
 | } tre_expand_ast_symbol_t; | 
 |  | 
 | /* Expands each iteration node that has a finite nonzero minimum or maximum | 
 |    iteration count to a catenated sequence of copies of the node. */ | 
 | static reg_errcode_t | 
 | tre_expand_ast(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *ast, | 
 | 	       int *position, tre_tag_direction_t *tag_directions) | 
 | { | 
 |   reg_errcode_t status = REG_OK; | 
 |   int bottom = tre_stack_num_objects(stack); | 
 |   int pos_add = 0; | 
 |   int pos_add_total = 0; | 
 |   int max_pos = 0; | 
 |   int iter_depth = 0; | 
 |  | 
 |   STACK_PUSHR(stack, voidptr, ast); | 
 |   STACK_PUSHR(stack, int, EXPAND_RECURSE); | 
 |   while (status == REG_OK && tre_stack_num_objects(stack) > bottom) | 
 |     { | 
 |       tre_ast_node_t *node; | 
 |       tre_expand_ast_symbol_t symbol; | 
 |  | 
 |       if (status != REG_OK) | 
 | 	break; | 
 |  | 
 |       symbol = (tre_expand_ast_symbol_t)tre_stack_pop_int(stack); | 
 |       node = tre_stack_pop_voidptr(stack); | 
 |       switch (symbol) | 
 | 	{ | 
 | 	case EXPAND_RECURSE: | 
 | 	  switch (node->type) | 
 | 	    { | 
 | 	    case LITERAL: | 
 | 	      { | 
 | 		tre_literal_t *lit= node->obj; | 
 | 		if (!IS_SPECIAL(lit) || IS_BACKREF(lit)) | 
 | 		  { | 
 | 		    lit->position += pos_add; | 
 | 		    if (lit->position > max_pos) | 
 | 		      max_pos = lit->position; | 
 | 		  } | 
 | 		break; | 
 | 	      } | 
 | 	    case UNION: | 
 | 	      { | 
 | 		tre_union_t *uni = node->obj; | 
 | 		STACK_PUSHX(stack, voidptr, uni->right); | 
 | 		STACK_PUSHX(stack, int, EXPAND_RECURSE); | 
 | 		STACK_PUSHX(stack, voidptr, uni->left); | 
 | 		STACK_PUSHX(stack, int, EXPAND_RECURSE); | 
 | 		break; | 
 | 	      } | 
 | 	    case CATENATION: | 
 | 	      { | 
 | 		tre_catenation_t *cat = node->obj; | 
 | 		STACK_PUSHX(stack, voidptr, cat->right); | 
 | 		STACK_PUSHX(stack, int, EXPAND_RECURSE); | 
 | 		STACK_PUSHX(stack, voidptr, cat->left); | 
 | 		STACK_PUSHX(stack, int, EXPAND_RECURSE); | 
 | 		break; | 
 | 	      } | 
 | 	    case ITERATION: | 
 | 	      { | 
 | 		tre_iteration_t *iter = node->obj; | 
 | 		STACK_PUSHX(stack, int, pos_add); | 
 | 		STACK_PUSHX(stack, voidptr, node); | 
 | 		STACK_PUSHX(stack, int, EXPAND_AFTER_ITER); | 
 | 		STACK_PUSHX(stack, voidptr, iter->arg); | 
 | 		STACK_PUSHX(stack, int, EXPAND_RECURSE); | 
 | 		/* If we are going to expand this node at EXPAND_AFTER_ITER | 
 | 		   then don't increase the `pos' fields of the nodes now, it | 
 | 		   will get done when expanding. */ | 
 | 		if (iter->min > 1 || iter->max > 1) | 
 | 		  pos_add = 0; | 
 | 		iter_depth++; | 
 | 		break; | 
 | 	      } | 
 | 	    default: | 
 | 	      assert(0); | 
 | 	      break; | 
 | 	    } | 
 | 	  break; | 
 | 	case EXPAND_AFTER_ITER: | 
 | 	  { | 
 | 	    tre_iteration_t *iter = node->obj; | 
 | 	    int pos_add_last; | 
 | 	    pos_add = tre_stack_pop_int(stack); | 
 | 	    pos_add_last = pos_add; | 
 | 	    if (iter->min > 1 || iter->max > 1) | 
 | 	      { | 
 | 		tre_ast_node_t *seq1 = NULL, *seq2 = NULL; | 
 | 		int j; | 
 | 		int pos_add_save = pos_add; | 
 |  | 
 | 		/* Create a catenated sequence of copies of the node. */ | 
 | 		for (j = 0; j < iter->min; j++) | 
 | 		  { | 
 | 		    tre_ast_node_t *copy; | 
 | 		    /* Remove tags from all but the last copy. */ | 
 | 		    int flags = ((j + 1 < iter->min) | 
 | 				 ? COPY_REMOVE_TAGS | 
 | 				 : COPY_MAXIMIZE_FIRST_TAG); | 
 | 		    pos_add_save = pos_add; | 
 | 		    status = tre_copy_ast(mem, stack, iter->arg, flags, | 
 | 					  &pos_add, tag_directions, ©, | 
 | 					  &max_pos); | 
 | 		    if (status != REG_OK) | 
 | 		      return status; | 
 | 		    if (seq1 != NULL) | 
 | 		      seq1 = tre_ast_new_catenation(mem, seq1, copy); | 
 | 		    else | 
 | 		      seq1 = copy; | 
 | 		    if (seq1 == NULL) | 
 | 		      return REG_ESPACE; | 
 | 		  } | 
 |  | 
 | 		if (iter->max == -1) | 
 | 		  { | 
 | 		    /* No upper limit. */ | 
 | 		    pos_add_save = pos_add; | 
 | 		    status = tre_copy_ast(mem, stack, iter->arg, 0, | 
 | 					  &pos_add, NULL, &seq2, &max_pos); | 
 | 		    if (status != REG_OK) | 
 | 		      return status; | 
 | 		    seq2 = tre_ast_new_iter(mem, seq2, 0, -1, 0); | 
 | 		    if (seq2 == NULL) | 
 | 		      return REG_ESPACE; | 
 | 		  } | 
 | 		else | 
 | 		  { | 
 | 		    for (j = iter->min; j < iter->max; j++) | 
 | 		      { | 
 | 			tre_ast_node_t *tmp, *copy; | 
 | 			pos_add_save = pos_add; | 
 | 			status = tre_copy_ast(mem, stack, iter->arg, 0, | 
 | 					      &pos_add, NULL, ©, &max_pos); | 
 | 			if (status != REG_OK) | 
 | 			  return status; | 
 | 			if (seq2 != NULL) | 
 | 			  seq2 = tre_ast_new_catenation(mem, copy, seq2); | 
 | 			else | 
 | 			  seq2 = copy; | 
 | 			if (seq2 == NULL) | 
 | 			  return REG_ESPACE; | 
 | 			tmp = tre_ast_new_literal(mem, EMPTY, -1, -1); | 
 | 			if (tmp == NULL) | 
 | 			  return REG_ESPACE; | 
 | 			seq2 = tre_ast_new_union(mem, tmp, seq2); | 
 | 			if (seq2 == NULL) | 
 | 			  return REG_ESPACE; | 
 | 		      } | 
 | 		  } | 
 |  | 
 | 		pos_add = pos_add_save; | 
 | 		if (seq1 == NULL) | 
 | 		  seq1 = seq2; | 
 | 		else if (seq2 != NULL) | 
 | 		  seq1 = tre_ast_new_catenation(mem, seq1, seq2); | 
 | 		if (seq1 == NULL) | 
 | 		  return REG_ESPACE; | 
 | 		node->obj = seq1->obj; | 
 | 		node->type = seq1->type; | 
 | 	      } | 
 |  | 
 | 	    iter_depth--; | 
 | 	    pos_add_total += pos_add - pos_add_last; | 
 | 	    if (iter_depth == 0) | 
 | 	      pos_add = pos_add_total; | 
 |  | 
 | 	    break; | 
 | 	  } | 
 | 	default: | 
 | 	  assert(0); | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |  | 
 |   *position += pos_add_total; | 
 |  | 
 |   /* `max_pos' should never be larger than `*position' if the above | 
 |      code works, but just an extra safeguard let's make sure | 
 |      `*position' is set large enough so enough memory will be | 
 |      allocated for the transition table. */ | 
 |   if (max_pos > *position) | 
 |     *position = max_pos; | 
 |  | 
 |   return status; | 
 | } | 
 |  | 
 | static tre_pos_and_tags_t * | 
 | tre_set_empty(tre_mem_t mem) | 
 | { | 
 |   tre_pos_and_tags_t *new_set; | 
 |  | 
 |   new_set = tre_mem_calloc(mem, sizeof(*new_set)); | 
 |   if (new_set == NULL) | 
 |     return NULL; | 
 |  | 
 |   new_set[0].position = -1; | 
 |   new_set[0].code_min = -1; | 
 |   new_set[0].code_max = -1; | 
 |  | 
 |   return new_set; | 
 | } | 
 |  | 
 | static tre_pos_and_tags_t * | 
 | tre_set_one(tre_mem_t mem, int position, int code_min, int code_max, | 
 | 	    tre_ctype_t class, tre_ctype_t *neg_classes, int backref) | 
 | { | 
 |   tre_pos_and_tags_t *new_set; | 
 |  | 
 |   new_set = tre_mem_calloc(mem, sizeof(*new_set) * 2); | 
 |   if (new_set == NULL) | 
 |     return NULL; | 
 |  | 
 |   new_set[0].position = position; | 
 |   new_set[0].code_min = code_min; | 
 |   new_set[0].code_max = code_max; | 
 |   new_set[0].class = class; | 
 |   new_set[0].neg_classes = neg_classes; | 
 |   new_set[0].backref = backref; | 
 |   new_set[1].position = -1; | 
 |   new_set[1].code_min = -1; | 
 |   new_set[1].code_max = -1; | 
 |  | 
 |   return new_set; | 
 | } | 
 |  | 
 | static tre_pos_and_tags_t * | 
 | tre_set_union(tre_mem_t mem, tre_pos_and_tags_t *set1, tre_pos_and_tags_t *set2, | 
 | 	      int *tags, int assertions) | 
 | { | 
 |   int s1, s2, i, j; | 
 |   tre_pos_and_tags_t *new_set; | 
 |   int *new_tags; | 
 |   int num_tags; | 
 |  | 
 |   for (num_tags = 0; tags != NULL && tags[num_tags] >= 0; num_tags++); | 
 |   for (s1 = 0; set1[s1].position >= 0; s1++); | 
 |   for (s2 = 0; set2[s2].position >= 0; s2++); | 
 |   new_set = tre_mem_calloc(mem, sizeof(*new_set) * (s1 + s2 + 1)); | 
 |   if (!new_set ) | 
 |     return NULL; | 
 |  | 
 |   for (s1 = 0; set1[s1].position >= 0; s1++) | 
 |     { | 
 |       new_set[s1].position = set1[s1].position; | 
 |       new_set[s1].code_min = set1[s1].code_min; | 
 |       new_set[s1].code_max = set1[s1].code_max; | 
 |       new_set[s1].assertions = set1[s1].assertions | assertions; | 
 |       new_set[s1].class = set1[s1].class; | 
 |       new_set[s1].neg_classes = set1[s1].neg_classes; | 
 |       new_set[s1].backref = set1[s1].backref; | 
 |       if (set1[s1].tags == NULL && tags == NULL) | 
 | 	new_set[s1].tags = NULL; | 
 |       else | 
 | 	{ | 
 | 	  for (i = 0; set1[s1].tags != NULL && set1[s1].tags[i] >= 0; i++); | 
 | 	  new_tags = tre_mem_alloc(mem, (sizeof(*new_tags) | 
 | 					 * (i + num_tags + 1))); | 
 | 	  if (new_tags == NULL) | 
 | 	    return NULL; | 
 | 	  for (j = 0; j < i; j++) | 
 | 	    new_tags[j] = set1[s1].tags[j]; | 
 | 	  for (i = 0; i < num_tags; i++) | 
 | 	    new_tags[j + i] = tags[i]; | 
 | 	  new_tags[j + i] = -1; | 
 | 	  new_set[s1].tags = new_tags; | 
 | 	} | 
 |     } | 
 |  | 
 |   for (s2 = 0; set2[s2].position >= 0; s2++) | 
 |     { | 
 |       new_set[s1 + s2].position = set2[s2].position; | 
 |       new_set[s1 + s2].code_min = set2[s2].code_min; | 
 |       new_set[s1 + s2].code_max = set2[s2].code_max; | 
 |       /* XXX - why not | assertions here as well? */ | 
 |       new_set[s1 + s2].assertions = set2[s2].assertions; | 
 |       new_set[s1 + s2].class = set2[s2].class; | 
 |       new_set[s1 + s2].neg_classes = set2[s2].neg_classes; | 
 |       new_set[s1 + s2].backref = set2[s2].backref; | 
 |       if (set2[s2].tags == NULL) | 
 | 	new_set[s1 + s2].tags = NULL; | 
 |       else | 
 | 	{ | 
 | 	  for (i = 0; set2[s2].tags[i] >= 0; i++); | 
 | 	  new_tags = tre_mem_alloc(mem, sizeof(*new_tags) * (i + 1)); | 
 | 	  if (new_tags == NULL) | 
 | 	    return NULL; | 
 | 	  for (j = 0; j < i; j++) | 
 | 	    new_tags[j] = set2[s2].tags[j]; | 
 | 	  new_tags[j] = -1; | 
 | 	  new_set[s1 + s2].tags = new_tags; | 
 | 	} | 
 |     } | 
 |   new_set[s1 + s2].position = -1; | 
 |   return new_set; | 
 | } | 
 |  | 
 | /* Finds the empty path through `node' which is the one that should be | 
 |    taken according to POSIX.2 rules, and adds the tags on that path to | 
 |    `tags'.   `tags' may be NULL.  If `num_tags_seen' is not NULL, it is | 
 |    set to the number of tags seen on the path. */ | 
 | static reg_errcode_t | 
 | tre_match_empty(tre_stack_t *stack, tre_ast_node_t *node, int *tags, | 
 | 		int *assertions, int *num_tags_seen) | 
 | { | 
 |   tre_literal_t *lit; | 
 |   tre_union_t *uni; | 
 |   tre_catenation_t *cat; | 
 |   tre_iteration_t *iter; | 
 |   int i; | 
 |   int bottom = tre_stack_num_objects(stack); | 
 |   reg_errcode_t status = REG_OK; | 
 |   if (num_tags_seen) | 
 |     *num_tags_seen = 0; | 
 |  | 
 |   status = tre_stack_push_voidptr(stack, node); | 
 |  | 
 |   /* Walk through the tree recursively. */ | 
 |   while (status == REG_OK && tre_stack_num_objects(stack) > bottom) | 
 |     { | 
 |       node = tre_stack_pop_voidptr(stack); | 
 |  | 
 |       switch (node->type) | 
 | 	{ | 
 | 	case LITERAL: | 
 | 	  lit = (tre_literal_t *)node->obj; | 
 | 	  switch (lit->code_min) | 
 | 	    { | 
 | 	    case TAG: | 
 | 	      if (lit->code_max >= 0) | 
 | 		{ | 
 | 		  if (tags != NULL) | 
 | 		    { | 
 | 		      /* Add the tag to `tags'. */ | 
 | 		      for (i = 0; tags[i] >= 0; i++) | 
 | 			if (tags[i] == lit->code_max) | 
 | 			  break; | 
 | 		      if (tags[i] < 0) | 
 | 			{ | 
 | 			  tags[i] = lit->code_max; | 
 | 			  tags[i + 1] = -1; | 
 | 			} | 
 | 		    } | 
 | 		  if (num_tags_seen) | 
 | 		    (*num_tags_seen)++; | 
 | 		} | 
 | 	      break; | 
 | 	    case ASSERTION: | 
 | 	      assert(lit->code_max >= 1 | 
 | 		     || lit->code_max <= ASSERT_LAST); | 
 | 	      if (assertions != NULL) | 
 | 		*assertions |= lit->code_max; | 
 | 	      break; | 
 | 	    case EMPTY: | 
 | 	      break; | 
 | 	    default: | 
 | 	      assert(0); | 
 | 	      break; | 
 | 	    } | 
 | 	  break; | 
 |  | 
 | 	case UNION: | 
 | 	  /* Subexpressions starting earlier take priority over ones | 
 | 	     starting later, so we prefer the left subexpression over the | 
 | 	     right subexpression. */ | 
 | 	  uni = (tre_union_t *)node->obj; | 
 | 	  if (uni->left->nullable) | 
 | 	    STACK_PUSHX(stack, voidptr, uni->left) | 
 | 	  else if (uni->right->nullable) | 
 | 	    STACK_PUSHX(stack, voidptr, uni->right) | 
 | 	  else | 
 | 	    assert(0); | 
 | 	  break; | 
 |  | 
 | 	case CATENATION: | 
 | 	  /* The path must go through both children. */ | 
 | 	  cat = (tre_catenation_t *)node->obj; | 
 | 	  assert(cat->left->nullable); | 
 | 	  assert(cat->right->nullable); | 
 | 	  STACK_PUSHX(stack, voidptr, cat->left); | 
 | 	  STACK_PUSHX(stack, voidptr, cat->right); | 
 | 	  break; | 
 |  | 
 | 	case ITERATION: | 
 | 	  /* A match with an empty string is preferred over no match at | 
 | 	     all, so we go through the argument if possible. */ | 
 | 	  iter = (tre_iteration_t *)node->obj; | 
 | 	  if (iter->arg->nullable) | 
 | 	    STACK_PUSHX(stack, voidptr, iter->arg); | 
 | 	  break; | 
 |  | 
 | 	default: | 
 | 	  assert(0); | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |  | 
 |   return status; | 
 | } | 
 |  | 
 |  | 
 | typedef enum { | 
 |   NFL_RECURSE, | 
 |   NFL_POST_UNION, | 
 |   NFL_POST_CATENATION, | 
 |   NFL_POST_ITERATION | 
 | } tre_nfl_stack_symbol_t; | 
 |  | 
 |  | 
 | /* Computes and fills in the fields `nullable', `firstpos', and `lastpos' for | 
 |    the nodes of the AST `tree'. */ | 
 | static reg_errcode_t | 
 | tre_compute_nfl(tre_mem_t mem, tre_stack_t *stack, tre_ast_node_t *tree) | 
 | { | 
 |   int bottom = tre_stack_num_objects(stack); | 
 |  | 
 |   STACK_PUSHR(stack, voidptr, tree); | 
 |   STACK_PUSHR(stack, int, NFL_RECURSE); | 
 |  | 
 |   while (tre_stack_num_objects(stack) > bottom) | 
 |     { | 
 |       tre_nfl_stack_symbol_t symbol; | 
 |       tre_ast_node_t *node; | 
 |  | 
 |       symbol = (tre_nfl_stack_symbol_t)tre_stack_pop_int(stack); | 
 |       node = tre_stack_pop_voidptr(stack); | 
 |       switch (symbol) | 
 | 	{ | 
 | 	case NFL_RECURSE: | 
 | 	  switch (node->type) | 
 | 	    { | 
 | 	    case LITERAL: | 
 | 	      { | 
 | 		tre_literal_t *lit = (tre_literal_t *)node->obj; | 
 | 		if (IS_BACKREF(lit)) | 
 | 		  { | 
 | 		    /* Back references: nullable = false, firstpos = {i}, | 
 | 		       lastpos = {i}. */ | 
 | 		    node->nullable = 0; | 
 | 		    node->firstpos = tre_set_one(mem, lit->position, 0, | 
 | 					     TRE_CHAR_MAX, 0, NULL, -1); | 
 | 		    if (!node->firstpos) | 
 | 		      return REG_ESPACE; | 
 | 		    node->lastpos = tre_set_one(mem, lit->position, 0, | 
 | 						TRE_CHAR_MAX, 0, NULL, | 
 | 						(int)lit->code_max); | 
 | 		    if (!node->lastpos) | 
 | 		      return REG_ESPACE; | 
 | 		  } | 
 | 		else if (lit->code_min < 0) | 
 | 		  { | 
 | 		    /* Tags, empty strings, params, and zero width assertions: | 
 | 		       nullable = true, firstpos = {}, and lastpos = {}. */ | 
 | 		    node->nullable = 1; | 
 | 		    node->firstpos = tre_set_empty(mem); | 
 | 		    if (!node->firstpos) | 
 | 		      return REG_ESPACE; | 
 | 		    node->lastpos = tre_set_empty(mem); | 
 | 		    if (!node->lastpos) | 
 | 		      return REG_ESPACE; | 
 | 		  } | 
 | 		else | 
 | 		  { | 
 | 		    /* Literal at position i: nullable = false, firstpos = {i}, | 
 | 		       lastpos = {i}. */ | 
 | 		    node->nullable = 0; | 
 | 		    node->firstpos = | 
 | 		      tre_set_one(mem, lit->position, (int)lit->code_min, | 
 | 				  (int)lit->code_max, 0, NULL, -1); | 
 | 		    if (!node->firstpos) | 
 | 		      return REG_ESPACE; | 
 | 		    node->lastpos = tre_set_one(mem, lit->position, | 
 | 						(int)lit->code_min, | 
 | 						(int)lit->code_max, | 
 | 						lit->class, lit->neg_classes, | 
 | 						-1); | 
 | 		    if (!node->lastpos) | 
 | 		      return REG_ESPACE; | 
 | 		  } | 
 | 		break; | 
 | 	      } | 
 |  | 
 | 	    case UNION: | 
 | 	      /* Compute the attributes for the two subtrees, and after that | 
 | 		 for this node. */ | 
 | 	      STACK_PUSHR(stack, voidptr, node); | 
 | 	      STACK_PUSHR(stack, int, NFL_POST_UNION); | 
 | 	      STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->right); | 
 | 	      STACK_PUSHR(stack, int, NFL_RECURSE); | 
 | 	      STACK_PUSHR(stack, voidptr, ((tre_union_t *)node->obj)->left); | 
 | 	      STACK_PUSHR(stack, int, NFL_RECURSE); | 
 | 	      break; | 
 |  | 
 | 	    case CATENATION: | 
 | 	      /* Compute the attributes for the two subtrees, and after that | 
 | 		 for this node. */ | 
 | 	      STACK_PUSHR(stack, voidptr, node); | 
 | 	      STACK_PUSHR(stack, int, NFL_POST_CATENATION); | 
 | 	      STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->right); | 
 | 	      STACK_PUSHR(stack, int, NFL_RECURSE); | 
 | 	      STACK_PUSHR(stack, voidptr, ((tre_catenation_t *)node->obj)->left); | 
 | 	      STACK_PUSHR(stack, int, NFL_RECURSE); | 
 | 	      break; | 
 |  | 
 | 	    case ITERATION: | 
 | 	      /* Compute the attributes for the subtree, and after that for | 
 | 		 this node. */ | 
 | 	      STACK_PUSHR(stack, voidptr, node); | 
 | 	      STACK_PUSHR(stack, int, NFL_POST_ITERATION); | 
 | 	      STACK_PUSHR(stack, voidptr, ((tre_iteration_t *)node->obj)->arg); | 
 | 	      STACK_PUSHR(stack, int, NFL_RECURSE); | 
 | 	      break; | 
 | 	    } | 
 | 	  break; /* end case: NFL_RECURSE */ | 
 |  | 
 | 	case NFL_POST_UNION: | 
 | 	  { | 
 | 	    tre_union_t *uni = (tre_union_t *)node->obj; | 
 | 	    node->nullable = uni->left->nullable || uni->right->nullable; | 
 | 	    node->firstpos = tre_set_union(mem, uni->left->firstpos, | 
 | 					   uni->right->firstpos, NULL, 0); | 
 | 	    if (!node->firstpos) | 
 | 	      return REG_ESPACE; | 
 | 	    node->lastpos = tre_set_union(mem, uni->left->lastpos, | 
 | 					  uni->right->lastpos, NULL, 0); | 
 | 	    if (!node->lastpos) | 
 | 	      return REG_ESPACE; | 
 | 	    break; | 
 | 	  } | 
 |  | 
 | 	case NFL_POST_ITERATION: | 
 | 	  { | 
 | 	    tre_iteration_t *iter = (tre_iteration_t *)node->obj; | 
 |  | 
 | 	    if (iter->min == 0 || iter->arg->nullable) | 
 | 	      node->nullable = 1; | 
 | 	    else | 
 | 	      node->nullable = 0; | 
 | 	    node->firstpos = iter->arg->firstpos; | 
 | 	    node->lastpos = iter->arg->lastpos; | 
 | 	    break; | 
 | 	  } | 
 |  | 
 | 	case NFL_POST_CATENATION: | 
 | 	  { | 
 | 	    int num_tags, *tags, assertions; | 
 | 	    reg_errcode_t status; | 
 | 	    tre_catenation_t *cat = node->obj; | 
 | 	    node->nullable = cat->left->nullable && cat->right->nullable; | 
 |  | 
 | 	    /* Compute firstpos. */ | 
 | 	    if (cat->left->nullable) | 
 | 	      { | 
 | 		/* The left side matches the empty string.  Make a first pass | 
 | 		   with tre_match_empty() to get the number of tags and | 
 | 		   parameters. */ | 
 | 		status = tre_match_empty(stack, cat->left, | 
 | 					 NULL, NULL, &num_tags); | 
 | 		if (status != REG_OK) | 
 | 		  return status; | 
 | 		/* Allocate arrays for the tags and parameters. */ | 
 | 		tags = xmalloc(sizeof(*tags) * (num_tags + 1)); | 
 | 		if (!tags) | 
 | 		  return REG_ESPACE; | 
 | 		tags[0] = -1; | 
 | 		assertions = 0; | 
 | 		/* Second pass with tre_mach_empty() to get the list of | 
 | 		   tags and parameters. */ | 
 | 		status = tre_match_empty(stack, cat->left, tags, | 
 | 					 &assertions, NULL); | 
 | 		if (status != REG_OK) | 
 | 		  { | 
 | 		    xfree(tags); | 
 | 		    return status; | 
 | 		  } | 
 | 		node->firstpos = | 
 | 		  tre_set_union(mem, cat->right->firstpos, cat->left->firstpos, | 
 | 				tags, assertions); | 
 | 		xfree(tags); | 
 | 		if (!node->firstpos) | 
 | 		  return REG_ESPACE; | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		node->firstpos = cat->left->firstpos; | 
 | 	      } | 
 |  | 
 | 	    /* Compute lastpos. */ | 
 | 	    if (cat->right->nullable) | 
 | 	      { | 
 | 		/* The right side matches the empty string.  Make a first pass | 
 | 		   with tre_match_empty() to get the number of tags and | 
 | 		   parameters. */ | 
 | 		status = tre_match_empty(stack, cat->right, | 
 | 					 NULL, NULL, &num_tags); | 
 | 		if (status != REG_OK) | 
 | 		  return status; | 
 | 		/* Allocate arrays for the tags and parameters. */ | 
 | 		tags = xmalloc(sizeof(int) * (num_tags + 1)); | 
 | 		if (!tags) | 
 | 		  return REG_ESPACE; | 
 | 		tags[0] = -1; | 
 | 		assertions = 0; | 
 | 		/* Second pass with tre_mach_empty() to get the list of | 
 | 		   tags and parameters. */ | 
 | 		status = tre_match_empty(stack, cat->right, tags, | 
 | 					 &assertions, NULL); | 
 | 		if (status != REG_OK) | 
 | 		  { | 
 | 		    xfree(tags); | 
 | 		    return status; | 
 | 		  } | 
 | 		node->lastpos = | 
 | 		  tre_set_union(mem, cat->left->lastpos, cat->right->lastpos, | 
 | 				tags, assertions); | 
 | 		xfree(tags); | 
 | 		if (!node->lastpos) | 
 | 		  return REG_ESPACE; | 
 | 	      } | 
 | 	    else | 
 | 	      { | 
 | 		node->lastpos = cat->right->lastpos; | 
 | 	      } | 
 | 	    break; | 
 | 	  } | 
 |  | 
 | 	default: | 
 | 	  assert(0); | 
 | 	  break; | 
 | 	} | 
 |     } | 
 |  | 
 |   return REG_OK; | 
 | } | 
 |  | 
 |  | 
 | /* Adds a transition from each position in `p1' to each position in `p2'. */ | 
 | static reg_errcode_t | 
 | tre_make_trans(tre_pos_and_tags_t *p1, tre_pos_and_tags_t *p2, | 
 | 	       tre_tnfa_transition_t *transitions, | 
 | 	       int *counts, int *offs) | 
 | { | 
 |   tre_pos_and_tags_t *orig_p2 = p2; | 
 |   tre_tnfa_transition_t *trans; | 
 |   int i, j, k, l, dup, prev_p2_pos; | 
 |  | 
 |   if (transitions != NULL) | 
 |     while (p1->position >= 0) | 
 |       { | 
 | 	p2 = orig_p2; | 
 | 	prev_p2_pos = -1; | 
 | 	while (p2->position >= 0) | 
 | 	  { | 
 | 	    /* Optimization: if this position was already handled, skip it. */ | 
 | 	    if (p2->position == prev_p2_pos) | 
 | 	      { | 
 | 		p2++; | 
 | 		continue; | 
 | 	      } | 
 | 	    prev_p2_pos = p2->position; | 
 | 	    /* Set `trans' to point to the next unused transition from | 
 | 	       position `p1->position'. */ | 
 | 	    trans = transitions + offs[p1->position]; | 
 | 	    while (trans->state != NULL) | 
 | 	      { | 
 | #if 0 | 
 | 		/* If we find a previous transition from `p1->position' to | 
 | 		   `p2->position', it is overwritten.  This can happen only | 
 | 		   if there are nested loops in the regexp, like in "((a)*)*". | 
 | 		   In POSIX.2 repetition using the outer loop is always | 
 | 		   preferred over using the inner loop.	 Therefore the | 
 | 		   transition for the inner loop is useless and can be thrown | 
 | 		   away. */ | 
 | 		/* XXX - The same position is used for all nodes in a bracket | 
 | 		   expression, so this optimization cannot be used (it will | 
 | 		   break bracket expressions) unless I figure out a way to | 
 | 		   detect it here. */ | 
 | 		if (trans->state_id == p2->position) | 
 | 		  { | 
 | 		    break; | 
 | 		  } | 
 | #endif | 
 | 		trans++; | 
 | 	      } | 
 |  | 
 | 	    if (trans->state == NULL) | 
 | 	      (trans + 1)->state = NULL; | 
 | 	    /* Use the character ranges, assertions, etc. from `p1' for | 
 | 	       the transition from `p1' to `p2'. */ | 
 | 	    trans->code_min = p1->code_min; | 
 | 	    trans->code_max = p1->code_max; | 
 | 	    trans->state = transitions + offs[p2->position]; | 
 | 	    trans->state_id = p2->position; | 
 | 	    trans->assertions = p1->assertions | p2->assertions | 
 | 	      | (p1->class ? ASSERT_CHAR_CLASS : 0) | 
 | 	      | (p1->neg_classes != NULL ? ASSERT_CHAR_CLASS_NEG : 0); | 
 | 	    if (p1->backref >= 0) | 
 | 	      { | 
 | 		assert((trans->assertions & ASSERT_CHAR_CLASS) == 0); | 
 | 		assert(p2->backref < 0); | 
 | 		trans->u.backref = p1->backref; | 
 | 		trans->assertions |= ASSERT_BACKREF; | 
 | 	      } | 
 | 	    else | 
 | 	      trans->u.class = p1->class; | 
 | 	    if (p1->neg_classes != NULL) | 
 | 	      { | 
 | 		for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++); | 
 | 		trans->neg_classes = | 
 | 		  xmalloc(sizeof(*trans->neg_classes) * (i + 1)); | 
 | 		if (trans->neg_classes == NULL) | 
 | 		  return REG_ESPACE; | 
 | 		for (i = 0; p1->neg_classes[i] != (tre_ctype_t)0; i++) | 
 | 		  trans->neg_classes[i] = p1->neg_classes[i]; | 
 | 		trans->neg_classes[i] = (tre_ctype_t)0; | 
 | 	      } | 
 | 	    else | 
 | 	      trans->neg_classes = NULL; | 
 |  | 
 | 	    /* Find out how many tags this transition has. */ | 
 | 	    i = 0; | 
 | 	    if (p1->tags != NULL) | 
 | 	      while(p1->tags[i] >= 0) | 
 | 		i++; | 
 | 	    j = 0; | 
 | 	    if (p2->tags != NULL) | 
 | 	      while(p2->tags[j] >= 0) | 
 | 		j++; | 
 |  | 
 | 	    /* If we are overwriting a transition, free the old tag array. */ | 
 | 	    if (trans->tags != NULL) | 
 | 	      xfree(trans->tags); | 
 | 	    trans->tags = NULL; | 
 |  | 
 | 	    /* If there were any tags, allocate an array and fill it. */ | 
 | 	    if (i + j > 0) | 
 | 	      { | 
 | 		trans->tags = xmalloc(sizeof(*trans->tags) * (i + j + 1)); | 
 | 		if (!trans->tags) | 
 | 		  return REG_ESPACE; | 
 | 		i = 0; | 
 | 		if (p1->tags != NULL) | 
 | 		  while(p1->tags[i] >= 0) | 
 | 		    { | 
 | 		      trans->tags[i] = p1->tags[i]; | 
 | 		      i++; | 
 | 		    } | 
 | 		l = i; | 
 | 		j = 0; | 
 | 		if (p2->tags != NULL) | 
 | 		  while (p2->tags[j] >= 0) | 
 | 		    { | 
 | 		      /* Don't add duplicates. */ | 
 | 		      dup = 0; | 
 | 		      for (k = 0; k < i; k++) | 
 | 			if (trans->tags[k] == p2->tags[j]) | 
 | 			  { | 
 | 			    dup = 1; | 
 | 			    break; | 
 | 			  } | 
 | 		      if (!dup) | 
 | 			trans->tags[l++] = p2->tags[j]; | 
 | 		      j++; | 
 | 		    } | 
 | 		trans->tags[l] = -1; | 
 | 	      } | 
 |  | 
 | 	    p2++; | 
 | 	  } | 
 | 	p1++; | 
 |       } | 
 |   else | 
 |     /* Compute a maximum limit for the number of transitions leaving | 
 |        from each state. */ | 
 |     while (p1->position >= 0) | 
 |       { | 
 | 	p2 = orig_p2; | 
 | 	while (p2->position >= 0) | 
 | 	  { | 
 | 	    counts[p1->position]++; | 
 | 	    p2++; | 
 | 	  } | 
 | 	p1++; | 
 |       } | 
 |   return REG_OK; | 
 | } | 
 |  | 
 | /* Converts the syntax tree to a TNFA.	All the transitions in the TNFA are | 
 |    labelled with one character range (there are no transitions on empty | 
 |    strings).  The TNFA takes O(n^2) space in the worst case, `n' is size of | 
 |    the regexp. */ | 
 | static reg_errcode_t | 
 | tre_ast_to_tnfa(tre_ast_node_t *node, tre_tnfa_transition_t *transitions, | 
 | 		int *counts, int *offs) | 
 | { | 
 |   tre_union_t *uni; | 
 |   tre_catenation_t *cat; | 
 |   tre_iteration_t *iter; | 
 |   reg_errcode_t errcode = REG_OK; | 
 |  | 
 |   /* XXX - recurse using a stack!. */ | 
 |   switch (node->type) | 
 |     { | 
 |     case LITERAL: | 
 |       break; | 
 |     case UNION: | 
 |       uni = (tre_union_t *)node->obj; | 
 |       errcode = tre_ast_to_tnfa(uni->left, transitions, counts, offs); | 
 |       if (errcode != REG_OK) | 
 | 	return errcode; | 
 |       errcode = tre_ast_to_tnfa(uni->right, transitions, counts, offs); | 
 |       break; | 
 |  | 
 |     case CATENATION: | 
 |       cat = (tre_catenation_t *)node->obj; | 
 |       /* Add a transition from each position in cat->left->lastpos | 
 | 	 to each position in cat->right->firstpos. */ | 
 |       errcode = tre_make_trans(cat->left->lastpos, cat->right->firstpos, | 
 | 			       transitions, counts, offs); | 
 |       if (errcode != REG_OK) | 
 | 	return errcode; | 
 |       errcode = tre_ast_to_tnfa(cat->left, transitions, counts, offs); | 
 |       if (errcode != REG_OK) | 
 | 	return errcode; | 
 |       errcode = tre_ast_to_tnfa(cat->right, transitions, counts, offs); | 
 |       break; | 
 |  | 
 |     case ITERATION: | 
 |       iter = (tre_iteration_t *)node->obj; | 
 |       assert(iter->max == -1 || iter->max == 1); | 
 |  | 
 |       if (iter->max == -1) | 
 | 	{ | 
 | 	  assert(iter->min == 0 || iter->min == 1); | 
 | 	  /* Add a transition from each last position in the iterated | 
 | 	     expression to each first position. */ | 
 | 	  errcode = tre_make_trans(iter->arg->lastpos, iter->arg->firstpos, | 
 | 				   transitions, counts, offs); | 
 | 	  if (errcode != REG_OK) | 
 | 	    return errcode; | 
 | 	} | 
 |       errcode = tre_ast_to_tnfa(iter->arg, transitions, counts, offs); | 
 |       break; | 
 |     } | 
 |   return errcode; | 
 | } | 
 |  | 
 |  | 
 | #define ERROR_EXIT(err)		  \ | 
 |   do				  \ | 
 |     {				  \ | 
 |       errcode = err;		  \ | 
 |       if (/*CONSTCOND*/1)	  \ | 
 |       	goto error_exit;	  \ | 
 |     }				  \ | 
 |  while (/*CONSTCOND*/0) | 
 |  | 
 |  | 
 | int | 
 | regcomp(regex_t *restrict preg, const char *restrict regex, int cflags) | 
 | { | 
 |   tre_stack_t *stack; | 
 |   tre_ast_node_t *tree, *tmp_ast_l, *tmp_ast_r; | 
 |   tre_pos_and_tags_t *p; | 
 |   int *counts = NULL, *offs = NULL; | 
 |   int i, add = 0; | 
 |   tre_tnfa_transition_t *transitions, *initial; | 
 |   tre_tnfa_t *tnfa = NULL; | 
 |   tre_submatch_data_t *submatch_data; | 
 |   tre_tag_direction_t *tag_directions = NULL; | 
 |   reg_errcode_t errcode; | 
 |   tre_mem_t mem; | 
 |  | 
 |   /* Parse context. */ | 
 |   tre_parse_ctx_t parse_ctx; | 
 |  | 
 |   /* Allocate a stack used throughout the compilation process for various | 
 |      purposes. */ | 
 |   stack = tre_stack_new(512, 10240, 128); | 
 |   if (!stack) | 
 |     return REG_ESPACE; | 
 |   /* Allocate a fast memory allocator. */ | 
 |   mem = tre_mem_new(); | 
 |   if (!mem) | 
 |     { | 
 |       tre_stack_destroy(stack); | 
 |       return REG_ESPACE; | 
 |     } | 
 |  | 
 |   /* Parse the regexp. */ | 
 |   memset(&parse_ctx, 0, sizeof(parse_ctx)); | 
 |   parse_ctx.mem = mem; | 
 |   parse_ctx.stack = stack; | 
 |   parse_ctx.re = regex; | 
 |   parse_ctx.cflags = cflags; | 
 |   parse_ctx.max_backref = -1; | 
 |   errcode = tre_parse(&parse_ctx); | 
 |   if (errcode != REG_OK) | 
 |     ERROR_EXIT(errcode); | 
 |   preg->re_nsub = parse_ctx.submatch_id - 1; | 
 |   tree = parse_ctx.n; | 
 |  | 
 | #ifdef TRE_DEBUG | 
 |   tre_ast_print(tree); | 
 | #endif /* TRE_DEBUG */ | 
 |  | 
 |   /* Referring to nonexistent subexpressions is illegal. */ | 
 |   if (parse_ctx.max_backref > (int)preg->re_nsub) | 
 |     ERROR_EXIT(REG_ESUBREG); | 
 |  | 
 |   /* Allocate the TNFA struct. */ | 
 |   tnfa = xcalloc(1, sizeof(tre_tnfa_t)); | 
 |   if (tnfa == NULL) | 
 |     ERROR_EXIT(REG_ESPACE); | 
 |   tnfa->have_backrefs = parse_ctx.max_backref >= 0; | 
 |   tnfa->have_approx = 0; | 
 |   tnfa->num_submatches = parse_ctx.submatch_id; | 
 |  | 
 |   /* Set up tags for submatch addressing.  If REG_NOSUB is set and the | 
 |      regexp does not have back references, this can be skipped. */ | 
 |   if (tnfa->have_backrefs || !(cflags & REG_NOSUB)) | 
 |     { | 
 |  | 
 |       /* Figure out how many tags we will need. */ | 
 |       errcode = tre_add_tags(NULL, stack, tree, tnfa); | 
 |       if (errcode != REG_OK) | 
 | 	ERROR_EXIT(errcode); | 
 |  | 
 |       if (tnfa->num_tags > 0) | 
 | 	{ | 
 | 	  tag_directions = xmalloc(sizeof(*tag_directions) | 
 | 				   * (tnfa->num_tags + 1)); | 
 | 	  if (tag_directions == NULL) | 
 | 	    ERROR_EXIT(REG_ESPACE); | 
 | 	  tnfa->tag_directions = tag_directions; | 
 | 	  memset(tag_directions, -1, | 
 | 		 sizeof(*tag_directions) * (tnfa->num_tags + 1)); | 
 | 	} | 
 |       tnfa->minimal_tags = xcalloc((unsigned)tnfa->num_tags * 2 + 1, | 
 | 				   sizeof(*tnfa->minimal_tags)); | 
 |       if (tnfa->minimal_tags == NULL) | 
 | 	ERROR_EXIT(REG_ESPACE); | 
 |  | 
 |       submatch_data = xcalloc((unsigned)parse_ctx.submatch_id, | 
 | 			      sizeof(*submatch_data)); | 
 |       if (submatch_data == NULL) | 
 | 	ERROR_EXIT(REG_ESPACE); | 
 |       tnfa->submatch_data = submatch_data; | 
 |  | 
 |       errcode = tre_add_tags(mem, stack, tree, tnfa); | 
 |       if (errcode != REG_OK) | 
 | 	ERROR_EXIT(errcode); | 
 |  | 
 |     } | 
 |  | 
 |   /* Expand iteration nodes. */ | 
 |   errcode = tre_expand_ast(mem, stack, tree, &parse_ctx.position, | 
 | 			   tag_directions); | 
 |   if (errcode != REG_OK) | 
 |     ERROR_EXIT(errcode); | 
 |  | 
 |   /* Add a dummy node for the final state. | 
 |      XXX - For certain patterns this dummy node can be optimized away, | 
 | 	   for example "a*" or "ab*".	Figure out a simple way to detect | 
 | 	   this possibility. */ | 
 |   tmp_ast_l = tree; | 
 |   tmp_ast_r = tre_ast_new_literal(mem, 0, 0, parse_ctx.position++); | 
 |   if (tmp_ast_r == NULL) | 
 |     ERROR_EXIT(REG_ESPACE); | 
 |  | 
 |   tree = tre_ast_new_catenation(mem, tmp_ast_l, tmp_ast_r); | 
 |   if (tree == NULL) | 
 |     ERROR_EXIT(REG_ESPACE); | 
 |  | 
 |   errcode = tre_compute_nfl(mem, stack, tree); | 
 |   if (errcode != REG_OK) | 
 |     ERROR_EXIT(errcode); | 
 |  | 
 |   counts = xmalloc(sizeof(int) * parse_ctx.position); | 
 |   if (counts == NULL) | 
 |     ERROR_EXIT(REG_ESPACE); | 
 |  | 
 |   offs = xmalloc(sizeof(int) * parse_ctx.position); | 
 |   if (offs == NULL) | 
 |     ERROR_EXIT(REG_ESPACE); | 
 |  | 
 |   for (i = 0; i < parse_ctx.position; i++) | 
 |     counts[i] = 0; | 
 |   tre_ast_to_tnfa(tree, NULL, counts, NULL); | 
 |  | 
 |   add = 0; | 
 |   for (i = 0; i < parse_ctx.position; i++) | 
 |     { | 
 |       offs[i] = add; | 
 |       add += counts[i] + 1; | 
 |       counts[i] = 0; | 
 |     } | 
 |   transitions = xcalloc((unsigned)add + 1, sizeof(*transitions)); | 
 |   if (transitions == NULL) | 
 |     ERROR_EXIT(REG_ESPACE); | 
 |   tnfa->transitions = transitions; | 
 |   tnfa->num_transitions = add; | 
 |  | 
 |   errcode = tre_ast_to_tnfa(tree, transitions, counts, offs); | 
 |   if (errcode != REG_OK) | 
 |     ERROR_EXIT(errcode); | 
 |  | 
 |   tnfa->firstpos_chars = NULL; | 
 |  | 
 |   p = tree->firstpos; | 
 |   i = 0; | 
 |   while (p->position >= 0) | 
 |     { | 
 |       i++; | 
 |       p++; | 
 |     } | 
 |  | 
 |   initial = xcalloc((unsigned)i + 1, sizeof(tre_tnfa_transition_t)); | 
 |   if (initial == NULL) | 
 |     ERROR_EXIT(REG_ESPACE); | 
 |   tnfa->initial = initial; | 
 |  | 
 |   i = 0; | 
 |   for (p = tree->firstpos; p->position >= 0; p++) | 
 |     { | 
 |       initial[i].state = transitions + offs[p->position]; | 
 |       initial[i].state_id = p->position; | 
 |       initial[i].tags = NULL; | 
 |       /* Copy the arrays p->tags, and p->params, they are allocated | 
 | 	 from a tre_mem object. */ | 
 |       if (p->tags) | 
 | 	{ | 
 | 	  int j; | 
 | 	  for (j = 0; p->tags[j] >= 0; j++); | 
 | 	  initial[i].tags = xmalloc(sizeof(*p->tags) * (j + 1)); | 
 | 	  if (!initial[i].tags) | 
 | 	    ERROR_EXIT(REG_ESPACE); | 
 | 	  memcpy(initial[i].tags, p->tags, sizeof(*p->tags) * (j + 1)); | 
 | 	} | 
 |       initial[i].assertions = p->assertions; | 
 |       i++; | 
 |     } | 
 |   initial[i].state = NULL; | 
 |  | 
 |   tnfa->num_transitions = add; | 
 |   tnfa->final = transitions + offs[tree->lastpos[0].position]; | 
 |   tnfa->num_states = parse_ctx.position; | 
 |   tnfa->cflags = cflags; | 
 |  | 
 |   tre_mem_destroy(mem); | 
 |   tre_stack_destroy(stack); | 
 |   xfree(counts); | 
 |   xfree(offs); | 
 |  | 
 |   preg->TRE_REGEX_T_FIELD = (void *)tnfa; | 
 |   return REG_OK; | 
 |  | 
 |  error_exit: | 
 |   /* Free everything that was allocated and return the error code. */ | 
 |   tre_mem_destroy(mem); | 
 |   if (stack != NULL) | 
 |     tre_stack_destroy(stack); | 
 |   if (counts != NULL) | 
 |     xfree(counts); | 
 |   if (offs != NULL) | 
 |     xfree(offs); | 
 |   preg->TRE_REGEX_T_FIELD = (void *)tnfa; | 
 |   regfree(preg); | 
 |   return errcode; | 
 | } | 
 |  | 
 |  | 
 |  | 
 |  | 
 | void | 
 | regfree(regex_t *preg) | 
 | { | 
 |   tre_tnfa_t *tnfa; | 
 |   unsigned int i; | 
 |   tre_tnfa_transition_t *trans; | 
 |  | 
 |   tnfa = (void *)preg->TRE_REGEX_T_FIELD; | 
 |   if (!tnfa) | 
 |     return; | 
 |  | 
 |   for (i = 0; i < tnfa->num_transitions; i++) | 
 |     if (tnfa->transitions[i].state) | 
 |       { | 
 | 	if (tnfa->transitions[i].tags) | 
 | 	  xfree(tnfa->transitions[i].tags); | 
 | 	if (tnfa->transitions[i].neg_classes) | 
 | 	  xfree(tnfa->transitions[i].neg_classes); | 
 |       } | 
 |   if (tnfa->transitions) | 
 |     xfree(tnfa->transitions); | 
 |  | 
 |   if (tnfa->initial) | 
 |     { | 
 |       for (trans = tnfa->initial; trans->state; trans++) | 
 | 	{ | 
 | 	  if (trans->tags) | 
 | 	    xfree(trans->tags); | 
 | 	} | 
 |       xfree(tnfa->initial); | 
 |     } | 
 |  | 
 |   if (tnfa->submatch_data) | 
 |     { | 
 |       for (i = 0; i < tnfa->num_submatches; i++) | 
 | 	if (tnfa->submatch_data[i].parents) | 
 | 	  xfree(tnfa->submatch_data[i].parents); | 
 |       xfree(tnfa->submatch_data); | 
 |     } | 
 |  | 
 |   if (tnfa->tag_directions) | 
 |     xfree(tnfa->tag_directions); | 
 |   if (tnfa->firstpos_chars) | 
 |     xfree(tnfa->firstpos_chars); | 
 |   if (tnfa->minimal_tags) | 
 |     xfree(tnfa->minimal_tags); | 
 |   xfree(tnfa); | 
 | } |