|  | /* | 
|  | * jdmerge.c | 
|  | * | 
|  | * Copyright (C) 1994-1996, Thomas G. Lane. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains code for merged upsampling/color conversion. | 
|  | * | 
|  | * This file combines functions from jdsample.c and jdcolor.c; | 
|  | * read those files first to understand what's going on. | 
|  | * | 
|  | * When the chroma components are to be upsampled by simple replication | 
|  | * (ie, box filtering), we can save some work in color conversion by | 
|  | * calculating all the output pixels corresponding to a pair of chroma | 
|  | * samples at one time.  In the conversion equations | 
|  | *	R = Y           + K1 * Cr | 
|  | *	G = Y + K2 * Cb + K3 * Cr | 
|  | *	B = Y + K4 * Cb | 
|  | * only the Y term varies among the group of pixels corresponding to a pair | 
|  | * of chroma samples, so the rest of the terms can be calculated just once. | 
|  | * At typical sampling ratios, this eliminates half or three-quarters of the | 
|  | * multiplications needed for color conversion. | 
|  | * | 
|  | * This file currently provides implementations for the following cases: | 
|  | *	YCbCr => RGB color conversion only. | 
|  | *	Sampling ratios of 2h1v or 2h2v. | 
|  | *	No scaling needed at upsample time. | 
|  | *	Corner-aligned (non-CCIR601) sampling alignment. | 
|  | * Other special cases could be added, but in most applications these are | 
|  | * the only common cases.  (For uncommon cases we fall back on the more | 
|  | * general code in jdsample.c and jdcolor.c.) | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  |  | 
|  | #ifdef UPSAMPLE_MERGING_SUPPORTED | 
|  |  | 
|  |  | 
|  | /* Private subobject */ | 
|  |  | 
|  | typedef struct { | 
|  | struct jpeg_upsampler pub;	/* public fields */ | 
|  |  | 
|  | /* Pointer to routine to do actual upsampling/conversion of one row group */ | 
|  | JMETHOD(void, upmethod, (j_decompress_ptr cinfo, | 
|  | JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, | 
|  | JSAMPARRAY output_buf)); | 
|  |  | 
|  | /* Private state for YCC->RGB conversion */ | 
|  | int * Cr_r_tab;		/* => table for Cr to R conversion */ | 
|  | int * Cb_b_tab;		/* => table for Cb to B conversion */ | 
|  | INT32 * Cr_g_tab;		/* => table for Cr to G conversion */ | 
|  | INT32 * Cb_g_tab;		/* => table for Cb to G conversion */ | 
|  |  | 
|  | /* For 2:1 vertical sampling, we produce two output rows at a time. | 
|  | * We need a "spare" row buffer to hold the second output row if the | 
|  | * application provides just a one-row buffer; we also use the spare | 
|  | * to discard the dummy last row if the image height is odd. | 
|  | */ | 
|  | JSAMPROW spare_row; | 
|  | boolean spare_full;		/* T if spare buffer is occupied */ | 
|  |  | 
|  | JDIMENSION out_row_width;	/* samples per output row */ | 
|  | JDIMENSION rows_to_go;	/* counts rows remaining in image */ | 
|  | } my_upsampler; | 
|  |  | 
|  | typedef my_upsampler * my_upsample_ptr; | 
|  |  | 
|  | #define SCALEBITS	16	/* speediest right-shift on some machines */ | 
|  | #define ONE_HALF	((INT32) 1 << (SCALEBITS-1)) | 
|  | #define FIX(x)		((INT32) ((x) * (1L<<SCALEBITS) + 0.5)) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize tables for YCC->RGB colorspace conversion. | 
|  | * This is taken directly from jdcolor.c; see that file for more info. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | build_ycc_rgb_table (j_decompress_ptr cinfo) | 
|  | { | 
|  | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | 
|  | int i; | 
|  | INT32 x; | 
|  | SHIFT_TEMPS | 
|  |  | 
|  | upsample->Cr_r_tab = (int *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | (MAXJSAMPLE+1) * SIZEOF(int)); | 
|  | upsample->Cb_b_tab = (int *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | (MAXJSAMPLE+1) * SIZEOF(int)); | 
|  | upsample->Cr_g_tab = (INT32 *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | (MAXJSAMPLE+1) * SIZEOF(INT32)); | 
|  | upsample->Cb_g_tab = (INT32 *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | (MAXJSAMPLE+1) * SIZEOF(INT32)); | 
|  |  | 
|  | for (i = 0, x = -CENTERJSAMPLE; i <= MAXJSAMPLE; i++, x++) { | 
|  | /* i is the actual input pixel value, in the range 0..MAXJSAMPLE */ | 
|  | /* The Cb or Cr value we are thinking of is x = i - CENTERJSAMPLE */ | 
|  | /* Cr=>R value is nearest int to 1.40200 * x */ | 
|  | upsample->Cr_r_tab[i] = (int) | 
|  | RIGHT_SHIFT(FIX(1.40200) * x + ONE_HALF, SCALEBITS); | 
|  | /* Cb=>B value is nearest int to 1.77200 * x */ | 
|  | upsample->Cb_b_tab[i] = (int) | 
|  | RIGHT_SHIFT(FIX(1.77200) * x + ONE_HALF, SCALEBITS); | 
|  | /* Cr=>G value is scaled-up -0.71414 * x */ | 
|  | upsample->Cr_g_tab[i] = (- FIX(0.71414)) * x; | 
|  | /* Cb=>G value is scaled-up -0.34414 * x */ | 
|  | /* We also add in ONE_HALF so that need not do it in inner loop */ | 
|  | upsample->Cb_g_tab[i] = (- FIX(0.34414)) * x + ONE_HALF; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize for an upsampling pass. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | start_pass_merged_upsample (j_decompress_ptr cinfo) | 
|  | { | 
|  | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | 
|  |  | 
|  | /* Mark the spare buffer empty */ | 
|  | upsample->spare_full = FALSE; | 
|  | /* Initialize total-height counter for detecting bottom of image */ | 
|  | upsample->rows_to_go = cinfo->output_height; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Control routine to do upsampling (and color conversion). | 
|  | * | 
|  | * The control routine just handles the row buffering considerations. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | merged_2v_upsample (j_decompress_ptr cinfo, | 
|  | JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | 
|  | JDIMENSION in_row_groups_avail, | 
|  | JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | 
|  | JDIMENSION out_rows_avail) | 
|  | /* 2:1 vertical sampling case: may need a spare row. */ | 
|  | { | 
|  | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | 
|  | JSAMPROW work_ptrs[2]; | 
|  | JDIMENSION num_rows;		/* number of rows returned to caller */ | 
|  |  | 
|  | if (upsample->spare_full) { | 
|  | /* If we have a spare row saved from a previous cycle, just return it. */ | 
|  | jcopy_sample_rows(& upsample->spare_row, 0, output_buf + *out_row_ctr, 0, | 
|  | 1, upsample->out_row_width); | 
|  | num_rows = 1; | 
|  | upsample->spare_full = FALSE; | 
|  | } else { | 
|  | /* Figure number of rows to return to caller. */ | 
|  | num_rows = 2; | 
|  | /* Not more than the distance to the end of the image. */ | 
|  | if (num_rows > upsample->rows_to_go) | 
|  | num_rows = upsample->rows_to_go; | 
|  | /* And not more than what the client can accept: */ | 
|  | out_rows_avail -= *out_row_ctr; | 
|  | if (num_rows > out_rows_avail) | 
|  | num_rows = out_rows_avail; | 
|  | /* Create output pointer array for upsampler. */ | 
|  | work_ptrs[0] = output_buf[*out_row_ctr]; | 
|  | if (num_rows > 1) { | 
|  | work_ptrs[1] = output_buf[*out_row_ctr + 1]; | 
|  | } else { | 
|  | work_ptrs[1] = upsample->spare_row; | 
|  | upsample->spare_full = TRUE; | 
|  | } | 
|  | /* Now do the upsampling. */ | 
|  | (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, work_ptrs); | 
|  | } | 
|  |  | 
|  | /* Adjust counts */ | 
|  | *out_row_ctr += num_rows; | 
|  | upsample->rows_to_go -= num_rows; | 
|  | /* When the buffer is emptied, declare this input row group consumed */ | 
|  | if (! upsample->spare_full) | 
|  | (*in_row_group_ctr)++; | 
|  | } | 
|  |  | 
|  |  | 
|  | METHODDEF(void) | 
|  | merged_1v_upsample (j_decompress_ptr cinfo, | 
|  | JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | 
|  | JDIMENSION in_row_groups_avail, | 
|  | JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | 
|  | JDIMENSION out_rows_avail) | 
|  | /* 1:1 vertical sampling case: much easier, never need a spare row. */ | 
|  | { | 
|  | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | 
|  |  | 
|  | /* Just do the upsampling. */ | 
|  | (*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr, | 
|  | output_buf + *out_row_ctr); | 
|  | /* Adjust counts */ | 
|  | (*out_row_ctr)++; | 
|  | (*in_row_group_ctr)++; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * These are the routines invoked by the control routines to do | 
|  | * the actual upsampling/conversion.  One row group is processed per call. | 
|  | * | 
|  | * Note: since we may be writing directly into application-supplied buffers, | 
|  | * we have to be honest about the output width; we can't assume the buffer | 
|  | * has been rounded up to an even width. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Upsample and color convert for the case of 2:1 horizontal and 1:1 vertical. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | h2v1_merged_upsample (j_decompress_ptr cinfo, | 
|  | JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, | 
|  | JSAMPARRAY output_buf) | 
|  | { | 
|  | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | 
|  | register int y, cred, cgreen, cblue; | 
|  | int cb, cr; | 
|  | register JSAMPROW outptr; | 
|  | JSAMPROW inptr0, inptr1, inptr2; | 
|  | JDIMENSION col; | 
|  | /* copy these pointers into registers if possible */ | 
|  | register JSAMPLE * range_limit = cinfo->sample_range_limit; | 
|  | int * Crrtab = upsample->Cr_r_tab; | 
|  | int * Cbbtab = upsample->Cb_b_tab; | 
|  | INT32 * Crgtab = upsample->Cr_g_tab; | 
|  | INT32 * Cbgtab = upsample->Cb_g_tab; | 
|  | SHIFT_TEMPS | 
|  |  | 
|  | inptr0 = input_buf[0][in_row_group_ctr]; | 
|  | inptr1 = input_buf[1][in_row_group_ctr]; | 
|  | inptr2 = input_buf[2][in_row_group_ctr]; | 
|  | outptr = output_buf[0]; | 
|  | /* Loop for each pair of output pixels */ | 
|  | for (col = cinfo->output_width >> 1; col > 0; col--) { | 
|  | /* Do the chroma part of the calculation */ | 
|  | cb = GETJSAMPLE(*inptr1++); | 
|  | cr = GETJSAMPLE(*inptr2++); | 
|  | cred = Crrtab[cr]; | 
|  | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); | 
|  | cblue = Cbbtab[cb]; | 
|  | /* Fetch 2 Y values and emit 2 pixels */ | 
|  | y  = GETJSAMPLE(*inptr0++); | 
|  | outptr[RGB_RED] =   range_limit[y + cred]; | 
|  | outptr[RGB_GREEN] = range_limit[y + cgreen]; | 
|  | outptr[RGB_BLUE] =  range_limit[y + cblue]; | 
|  | outptr += RGB_PIXELSIZE; | 
|  | y  = GETJSAMPLE(*inptr0++); | 
|  | outptr[RGB_RED] =   range_limit[y + cred]; | 
|  | outptr[RGB_GREEN] = range_limit[y + cgreen]; | 
|  | outptr[RGB_BLUE] =  range_limit[y + cblue]; | 
|  | outptr += RGB_PIXELSIZE; | 
|  | } | 
|  | /* If image width is odd, do the last output column separately */ | 
|  | if (cinfo->output_width & 1) { | 
|  | cb = GETJSAMPLE(*inptr1); | 
|  | cr = GETJSAMPLE(*inptr2); | 
|  | cred = Crrtab[cr]; | 
|  | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); | 
|  | cblue = Cbbtab[cb]; | 
|  | y  = GETJSAMPLE(*inptr0); | 
|  | outptr[RGB_RED] =   range_limit[y + cred]; | 
|  | outptr[RGB_GREEN] = range_limit[y + cgreen]; | 
|  | outptr[RGB_BLUE] =  range_limit[y + cblue]; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Upsample and color convert for the case of 2:1 horizontal and 2:1 vertical. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | h2v2_merged_upsample (j_decompress_ptr cinfo, | 
|  | JSAMPIMAGE input_buf, JDIMENSION in_row_group_ctr, | 
|  | JSAMPARRAY output_buf) | 
|  | { | 
|  | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | 
|  | register int y, cred, cgreen, cblue; | 
|  | int cb, cr; | 
|  | register JSAMPROW outptr0, outptr1; | 
|  | JSAMPROW inptr00, inptr01, inptr1, inptr2; | 
|  | JDIMENSION col; | 
|  | /* copy these pointers into registers if possible */ | 
|  | register JSAMPLE * range_limit = cinfo->sample_range_limit; | 
|  | int * Crrtab = upsample->Cr_r_tab; | 
|  | int * Cbbtab = upsample->Cb_b_tab; | 
|  | INT32 * Crgtab = upsample->Cr_g_tab; | 
|  | INT32 * Cbgtab = upsample->Cb_g_tab; | 
|  | SHIFT_TEMPS | 
|  |  | 
|  | inptr00 = input_buf[0][in_row_group_ctr*2]; | 
|  | inptr01 = input_buf[0][in_row_group_ctr*2 + 1]; | 
|  | inptr1 = input_buf[1][in_row_group_ctr]; | 
|  | inptr2 = input_buf[2][in_row_group_ctr]; | 
|  | outptr0 = output_buf[0]; | 
|  | outptr1 = output_buf[1]; | 
|  | /* Loop for each group of output pixels */ | 
|  | for (col = cinfo->output_width >> 1; col > 0; col--) { | 
|  | /* Do the chroma part of the calculation */ | 
|  | cb = GETJSAMPLE(*inptr1++); | 
|  | cr = GETJSAMPLE(*inptr2++); | 
|  | cred = Crrtab[cr]; | 
|  | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); | 
|  | cblue = Cbbtab[cb]; | 
|  | /* Fetch 4 Y values and emit 4 pixels */ | 
|  | y  = GETJSAMPLE(*inptr00++); | 
|  | outptr0[RGB_RED] =   range_limit[y + cred]; | 
|  | outptr0[RGB_GREEN] = range_limit[y + cgreen]; | 
|  | outptr0[RGB_BLUE] =  range_limit[y + cblue]; | 
|  | outptr0 += RGB_PIXELSIZE; | 
|  | y  = GETJSAMPLE(*inptr00++); | 
|  | outptr0[RGB_RED] =   range_limit[y + cred]; | 
|  | outptr0[RGB_GREEN] = range_limit[y + cgreen]; | 
|  | outptr0[RGB_BLUE] =  range_limit[y + cblue]; | 
|  | outptr0 += RGB_PIXELSIZE; | 
|  | y  = GETJSAMPLE(*inptr01++); | 
|  | outptr1[RGB_RED] =   range_limit[y + cred]; | 
|  | outptr1[RGB_GREEN] = range_limit[y + cgreen]; | 
|  | outptr1[RGB_BLUE] =  range_limit[y + cblue]; | 
|  | outptr1 += RGB_PIXELSIZE; | 
|  | y  = GETJSAMPLE(*inptr01++); | 
|  | outptr1[RGB_RED] =   range_limit[y + cred]; | 
|  | outptr1[RGB_GREEN] = range_limit[y + cgreen]; | 
|  | outptr1[RGB_BLUE] =  range_limit[y + cblue]; | 
|  | outptr1 += RGB_PIXELSIZE; | 
|  | } | 
|  | /* If image width is odd, do the last output column separately */ | 
|  | if (cinfo->output_width & 1) { | 
|  | cb = GETJSAMPLE(*inptr1); | 
|  | cr = GETJSAMPLE(*inptr2); | 
|  | cred = Crrtab[cr]; | 
|  | cgreen = (int) RIGHT_SHIFT(Cbgtab[cb] + Crgtab[cr], SCALEBITS); | 
|  | cblue = Cbbtab[cb]; | 
|  | y  = GETJSAMPLE(*inptr00); | 
|  | outptr0[RGB_RED] =   range_limit[y + cred]; | 
|  | outptr0[RGB_GREEN] = range_limit[y + cgreen]; | 
|  | outptr0[RGB_BLUE] =  range_limit[y + cblue]; | 
|  | y  = GETJSAMPLE(*inptr01); | 
|  | outptr1[RGB_RED] =   range_limit[y + cred]; | 
|  | outptr1[RGB_GREEN] = range_limit[y + cgreen]; | 
|  | outptr1[RGB_BLUE] =  range_limit[y + cblue]; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Module initialization routine for merged upsampling/color conversion. | 
|  | * | 
|  | * NB: this is called under the conditions determined by use_merged_upsample() | 
|  | * in jdmaster.c.  That routine MUST correspond to the actual capabilities | 
|  | * of this module; no safety checks are made here. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jinit_merged_upsampler (j_decompress_ptr cinfo) | 
|  | { | 
|  | my_upsample_ptr upsample; | 
|  |  | 
|  | upsample = (my_upsample_ptr) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | SIZEOF(my_upsampler)); | 
|  | cinfo->upsample = (struct jpeg_upsampler *) upsample; | 
|  | upsample->pub.start_pass = start_pass_merged_upsample; | 
|  | upsample->pub.need_context_rows = FALSE; | 
|  |  | 
|  | upsample->out_row_width = cinfo->output_width * cinfo->out_color_components; | 
|  |  | 
|  | if (cinfo->max_v_samp_factor == 2) { | 
|  | upsample->pub.upsample = merged_2v_upsample; | 
|  | upsample->upmethod = h2v2_merged_upsample; | 
|  | /* Allocate a spare row buffer */ | 
|  | upsample->spare_row = (JSAMPROW) | 
|  | (*cinfo->mem->alloc_large) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | (size_t) (upsample->out_row_width * SIZEOF(JSAMPLE))); | 
|  | } else { | 
|  | upsample->pub.upsample = merged_1v_upsample; | 
|  | upsample->upmethod = h2v1_merged_upsample; | 
|  | /* No spare row needed */ | 
|  | upsample->spare_row = NULL; | 
|  | } | 
|  |  | 
|  | build_ycc_rgb_table(cinfo); | 
|  | } | 
|  |  | 
|  | #endif /* UPSAMPLE_MERGING_SUPPORTED */ |