|  | /* | 
|  | * jdphuff.c | 
|  | * | 
|  | * Copyright (C) 1995-1997, Thomas G. Lane. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains Huffman entropy decoding routines for progressive JPEG. | 
|  | * | 
|  | * Much of the complexity here has to do with supporting input suspension. | 
|  | * If the data source module demands suspension, we want to be able to back | 
|  | * up to the start of the current MCU.  To do this, we copy state variables | 
|  | * into local working storage, and update them back to the permanent | 
|  | * storage only upon successful completion of an MCU. | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  | #include "jdhuff.h"		/* Declarations shared with jdhuff.c */ | 
|  |  | 
|  |  | 
|  | #ifdef D_PROGRESSIVE_SUPPORTED | 
|  |  | 
|  | /* | 
|  | * Expanded entropy decoder object for progressive Huffman decoding. | 
|  | * | 
|  | * The savable_state subrecord contains fields that change within an MCU, | 
|  | * but must not be updated permanently until we complete the MCU. | 
|  | */ | 
|  |  | 
|  | typedef struct { | 
|  | unsigned int EOBRUN;			/* remaining EOBs in EOBRUN */ | 
|  | int last_dc_val[MAX_COMPS_IN_SCAN];	/* last DC coef for each component */ | 
|  | } savable_state; | 
|  |  | 
|  | /* This macro is to work around compilers with missing or broken | 
|  | * structure assignment.  You'll need to fix this code if you have | 
|  | * such a compiler and you change MAX_COMPS_IN_SCAN. | 
|  | */ | 
|  |  | 
|  | #ifndef NO_STRUCT_ASSIGN | 
|  | #define ASSIGN_STATE(dest,src)  ((dest) = (src)) | 
|  | #else | 
|  | #if MAX_COMPS_IN_SCAN == 4 | 
|  | #define ASSIGN_STATE(dest,src)  \ | 
|  | ((dest).EOBRUN = (src).EOBRUN, \ | 
|  | (dest).last_dc_val[0] = (src).last_dc_val[0], \ | 
|  | (dest).last_dc_val[1] = (src).last_dc_val[1], \ | 
|  | (dest).last_dc_val[2] = (src).last_dc_val[2], \ | 
|  | (dest).last_dc_val[3] = (src).last_dc_val[3]) | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  |  | 
|  | typedef struct { | 
|  | struct jpeg_entropy_decoder pub; /* public fields */ | 
|  |  | 
|  | /* These fields are loaded into local variables at start of each MCU. | 
|  | * In case of suspension, we exit WITHOUT updating them. | 
|  | */ | 
|  | bitread_perm_state bitstate;	/* Bit buffer at start of MCU */ | 
|  | savable_state saved;		/* Other state at start of MCU */ | 
|  |  | 
|  | /* These fields are NOT loaded into local working state. */ | 
|  | unsigned int restarts_to_go;	/* MCUs left in this restart interval */ | 
|  |  | 
|  | /* Pointers to derived tables (these workspaces have image lifespan) */ | 
|  | d_derived_tbl * derived_tbls[NUM_HUFF_TBLS]; | 
|  |  | 
|  | d_derived_tbl * ac_derived_tbl; /* active table during an AC scan */ | 
|  | } phuff_entropy_decoder; | 
|  |  | 
|  | typedef phuff_entropy_decoder * phuff_entropy_ptr; | 
|  |  | 
|  | /* Forward declarations */ | 
|  | METHODDEF(boolean) decode_mcu_DC_first JPP((j_decompress_ptr cinfo, | 
|  | JBLOCKROW *MCU_data)); | 
|  | METHODDEF(boolean) decode_mcu_AC_first JPP((j_decompress_ptr cinfo, | 
|  | JBLOCKROW *MCU_data)); | 
|  | METHODDEF(boolean) decode_mcu_DC_refine JPP((j_decompress_ptr cinfo, | 
|  | JBLOCKROW *MCU_data)); | 
|  | METHODDEF(boolean) decode_mcu_AC_refine JPP((j_decompress_ptr cinfo, | 
|  | JBLOCKROW *MCU_data)); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize for a Huffman-compressed scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | start_pass_phuff_decoder (j_decompress_ptr cinfo) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | boolean is_DC_band, bad; | 
|  | int ci, coefi, tbl; | 
|  | int *coef_bit_ptr; | 
|  | jpeg_component_info * compptr; | 
|  |  | 
|  | is_DC_band = (cinfo->Ss == 0); | 
|  |  | 
|  | /* Validate scan parameters */ | 
|  | bad = FALSE; | 
|  | if (is_DC_band) { | 
|  | if (cinfo->Se != 0) | 
|  | bad = TRUE; | 
|  | } else { | 
|  | /* need not check Ss/Se < 0 since they came from unsigned bytes */ | 
|  | if (cinfo->Ss > cinfo->Se || cinfo->Se >= DCTSIZE2) | 
|  | bad = TRUE; | 
|  | /* AC scans may have only one component */ | 
|  | if (cinfo->comps_in_scan != 1) | 
|  | bad = TRUE; | 
|  | } | 
|  | if (cinfo->Ah != 0) { | 
|  | /* Successive approximation refinement scan: must have Al = Ah-1. */ | 
|  | if (cinfo->Al != cinfo->Ah-1) | 
|  | bad = TRUE; | 
|  | } | 
|  | if (cinfo->Al > 13)		/* need not check for < 0 */ | 
|  | bad = TRUE; | 
|  | /* Arguably the maximum Al value should be less than 13 for 8-bit precision, | 
|  | * but the spec doesn't say so, and we try to be liberal about what we | 
|  | * accept.  Note: large Al values could result in out-of-range DC | 
|  | * coefficients during early scans, leading to bizarre displays due to | 
|  | * overflows in the IDCT math.  But we won't crash. | 
|  | */ | 
|  | if (bad) | 
|  | ERREXIT4(cinfo, JERR_BAD_PROGRESSION, | 
|  | cinfo->Ss, cinfo->Se, cinfo->Ah, cinfo->Al); | 
|  | /* Update progression status, and verify that scan order is legal. | 
|  | * Note that inter-scan inconsistencies are treated as warnings | 
|  | * not fatal errors ... not clear if this is right way to behave. | 
|  | */ | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
|  | int cindex = cinfo->cur_comp_info[ci]->component_index; | 
|  | coef_bit_ptr = & cinfo->coef_bits[cindex][0]; | 
|  | if (!is_DC_band && coef_bit_ptr[0] < 0) /* AC without prior DC scan */ | 
|  | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, 0); | 
|  | for (coefi = cinfo->Ss; coefi <= cinfo->Se; coefi++) { | 
|  | int expected = (coef_bit_ptr[coefi] < 0) ? 0 : coef_bit_ptr[coefi]; | 
|  | if (cinfo->Ah != expected) | 
|  | WARNMS2(cinfo, JWRN_BOGUS_PROGRESSION, cindex, coefi); | 
|  | coef_bit_ptr[coefi] = cinfo->Al; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Select MCU decoding routine */ | 
|  | if (cinfo->Ah == 0) { | 
|  | if (is_DC_band) | 
|  | entropy->pub.decode_mcu = decode_mcu_DC_first; | 
|  | else | 
|  | entropy->pub.decode_mcu = decode_mcu_AC_first; | 
|  | } else { | 
|  | if (is_DC_band) | 
|  | entropy->pub.decode_mcu = decode_mcu_DC_refine; | 
|  | else | 
|  | entropy->pub.decode_mcu = decode_mcu_AC_refine; | 
|  | } | 
|  |  | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | /* Make sure requested tables are present, and compute derived tables. | 
|  | * We may build same derived table more than once, but it's not expensive. | 
|  | */ | 
|  | if (is_DC_band) { | 
|  | if (cinfo->Ah == 0) {	/* DC refinement needs no table */ | 
|  | tbl = compptr->dc_tbl_no; | 
|  | jpeg_make_d_derived_tbl(cinfo, TRUE, tbl, | 
|  | & entropy->derived_tbls[tbl]); | 
|  | } | 
|  | } else { | 
|  | tbl = compptr->ac_tbl_no; | 
|  | jpeg_make_d_derived_tbl(cinfo, FALSE, tbl, | 
|  | & entropy->derived_tbls[tbl]); | 
|  | /* remember the single active table */ | 
|  | entropy->ac_derived_tbl = entropy->derived_tbls[tbl]; | 
|  | } | 
|  | /* Initialize DC predictions to 0 */ | 
|  | entropy->saved.last_dc_val[ci] = 0; | 
|  | } | 
|  |  | 
|  | /* Initialize bitread state variables */ | 
|  | entropy->bitstate.bits_left = 0; | 
|  | entropy->bitstate.get_buffer = 0; /* unnecessary, but keeps Purify quiet */ | 
|  | entropy->pub.insufficient_data = FALSE; | 
|  |  | 
|  | /* Initialize private state variables */ | 
|  | entropy->saved.EOBRUN = 0; | 
|  |  | 
|  | /* Initialize restart counter */ | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Figure F.12: extend sign bit. | 
|  | * On some machines, a shift and add will be faster than a table lookup. | 
|  | */ | 
|  |  | 
|  | #ifdef AVOID_TABLES | 
|  |  | 
|  | #define HUFF_EXTEND(x,s)  ((x) < (1<<((s)-1)) ? (x) + (((-1)<<(s)) + 1) : (x)) | 
|  |  | 
|  | #else | 
|  |  | 
|  | #define HUFF_EXTEND(x,s)  ((x) < extend_test[s] ? (x) + extend_offset[s] : (x)) | 
|  |  | 
|  | static const int extend_test[16] =   /* entry n is 2**(n-1) */ | 
|  | { 0, 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080, | 
|  | 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000 }; | 
|  |  | 
|  | static const int extend_offset[16] = /* entry n is (-1 << n) + 1 */ | 
|  | { 0, ((-1)<<1) + 1, ((-1)<<2) + 1, ((-1)<<3) + 1, ((-1)<<4) + 1, | 
|  | ((-1)<<5) + 1, ((-1)<<6) + 1, ((-1)<<7) + 1, ((-1)<<8) + 1, | 
|  | ((-1)<<9) + 1, ((-1)<<10) + 1, ((-1)<<11) + 1, ((-1)<<12) + 1, | 
|  | ((-1)<<13) + 1, ((-1)<<14) + 1, ((-1)<<15) + 1 }; | 
|  |  | 
|  | #endif /* AVOID_TABLES */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Check for a restart marker & resynchronize decoder. | 
|  | * Returns FALSE if must suspend. | 
|  | */ | 
|  |  | 
|  | LOCAL(boolean) | 
|  | process_restart (j_decompress_ptr cinfo) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | int ci; | 
|  |  | 
|  | /* Throw away any unused bits remaining in bit buffer; */ | 
|  | /* include any full bytes in next_marker's count of discarded bytes */ | 
|  | cinfo->marker->discarded_bytes += entropy->bitstate.bits_left / 8; | 
|  | entropy->bitstate.bits_left = 0; | 
|  |  | 
|  | /* Advance past the RSTn marker */ | 
|  | if (! (*cinfo->marker->read_restart_marker) (cinfo)) | 
|  | return FALSE; | 
|  |  | 
|  | /* Re-initialize DC predictions to 0 */ | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) | 
|  | entropy->saved.last_dc_val[ci] = 0; | 
|  | /* Re-init EOB run count, too */ | 
|  | entropy->saved.EOBRUN = 0; | 
|  |  | 
|  | /* Reset restart counter */ | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  |  | 
|  | /* Reset out-of-data flag, unless read_restart_marker left us smack up | 
|  | * against a marker.  In that case we will end up treating the next data | 
|  | * segment as empty, and we can avoid producing bogus output pixels by | 
|  | * leaving the flag set. | 
|  | */ | 
|  | if (cinfo->unread_marker == 0) | 
|  | entropy->pub.insufficient_data = FALSE; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Huffman MCU decoding. | 
|  | * Each of these routines decodes and returns one MCU's worth of | 
|  | * Huffman-compressed coefficients. | 
|  | * The coefficients are reordered from zigzag order into natural array order, | 
|  | * but are not dequantized. | 
|  | * | 
|  | * The i'th block of the MCU is stored into the block pointed to by | 
|  | * MCU_data[i].  WE ASSUME THIS AREA IS INITIALLY ZEROED BY THE CALLER. | 
|  | * | 
|  | * We return FALSE if data source requested suspension.  In that case no | 
|  | * changes have been made to permanent state.  (Exception: some output | 
|  | * coefficients may already have been assigned.  This is harmless for | 
|  | * spectral selection, since we'll just re-assign them on the next call. | 
|  | * Successive approximation AC refinement has to be more careful, however.) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * MCU decoding for DC initial scan (either spectral selection, | 
|  | * or first pass of successive approximation). | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | decode_mcu_DC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | int Al = cinfo->Al; | 
|  | register int s, r; | 
|  | int blkn, ci; | 
|  | JBLOCKROW block; | 
|  | BITREAD_STATE_VARS; | 
|  | savable_state state; | 
|  | d_derived_tbl * tbl; | 
|  | jpeg_component_info * compptr; | 
|  |  | 
|  | /* Process restart marker if needed; may have to suspend */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) | 
|  | if (! process_restart(cinfo)) | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | /* If we've run out of data, just leave the MCU set to zeroes. | 
|  | * This way, we return uniform gray for the remainder of the segment. | 
|  | */ | 
|  | if (! entropy->pub.insufficient_data) { | 
|  |  | 
|  | /* Load up working state */ | 
|  | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | 
|  | ASSIGN_STATE(state, entropy->saved); | 
|  |  | 
|  | /* Outer loop handles each block in the MCU */ | 
|  |  | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | block = MCU_data[blkn]; | 
|  | ci = cinfo->MCU_membership[blkn]; | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | tbl = entropy->derived_tbls[compptr->dc_tbl_no]; | 
|  |  | 
|  | /* Decode a single block's worth of coefficients */ | 
|  |  | 
|  | /* Section F.2.2.1: decode the DC coefficient difference */ | 
|  | HUFF_DECODE(s, br_state, tbl, return FALSE, label1); | 
|  | if (s) { | 
|  | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 
|  | r = GET_BITS(s); | 
|  | s = HUFF_EXTEND(r, s); | 
|  | } | 
|  |  | 
|  | /* Convert DC difference to actual value, update last_dc_val */ | 
|  | s += state.last_dc_val[ci]; | 
|  | state.last_dc_val[ci] = s; | 
|  | /* Scale and output the coefficient (assumes jpeg_natural_order[0]=0) */ | 
|  | (*block)[0] = (JCOEF) (s << Al); | 
|  | } | 
|  |  | 
|  | /* Completed MCU, so update state */ | 
|  | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | 
|  | ASSIGN_STATE(entropy->saved, state); | 
|  | } | 
|  |  | 
|  | /* Account for restart interval (no-op if not using restarts) */ | 
|  | entropy->restarts_to_go--; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU decoding for AC initial scan (either spectral selection, | 
|  | * or first pass of successive approximation). | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | decode_mcu_AC_first (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | int Se = cinfo->Se; | 
|  | int Al = cinfo->Al; | 
|  | register int s, k, r; | 
|  | unsigned int EOBRUN; | 
|  | JBLOCKROW block; | 
|  | BITREAD_STATE_VARS; | 
|  | d_derived_tbl * tbl; | 
|  |  | 
|  | /* Process restart marker if needed; may have to suspend */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) | 
|  | if (! process_restart(cinfo)) | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | /* If we've run out of data, just leave the MCU set to zeroes. | 
|  | * This way, we return uniform gray for the remainder of the segment. | 
|  | */ | 
|  | if (! entropy->pub.insufficient_data) { | 
|  |  | 
|  | /* Load up working state. | 
|  | * We can avoid loading/saving bitread state if in an EOB run. | 
|  | */ | 
|  | EOBRUN = entropy->saved.EOBRUN;	/* only part of saved state we need */ | 
|  |  | 
|  | /* There is always only one block per MCU */ | 
|  |  | 
|  | if (EOBRUN > 0)		/* if it's a band of zeroes... */ | 
|  | EOBRUN--;			/* ...process it now (we do nothing) */ | 
|  | else { | 
|  | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | 
|  | block = MCU_data[0]; | 
|  | tbl = entropy->ac_derived_tbl; | 
|  |  | 
|  | for (k = cinfo->Ss; k <= Se; k++) { | 
|  | HUFF_DECODE(s, br_state, tbl, return FALSE, label2); | 
|  | r = s >> 4; | 
|  | s &= 15; | 
|  | if (s) { | 
|  | k += r; | 
|  | CHECK_BIT_BUFFER(br_state, s, return FALSE); | 
|  | r = GET_BITS(s); | 
|  | s = HUFF_EXTEND(r, s); | 
|  | /* Scale and output coefficient in natural (dezigzagged) order */ | 
|  | (*block)[jpeg_natural_order[k]] = (JCOEF) (s << Al); | 
|  | } else { | 
|  | if (r == 15) {	/* ZRL */ | 
|  | k += 15;		/* skip 15 zeroes in band */ | 
|  | } else {		/* EOBr, run length is 2^r + appended bits */ | 
|  | EOBRUN = 1 << r; | 
|  | if (r) {		/* EOBr, r > 0 */ | 
|  | CHECK_BIT_BUFFER(br_state, r, return FALSE); | 
|  | r = GET_BITS(r); | 
|  | EOBRUN += r; | 
|  | } | 
|  | EOBRUN--;		/* this band is processed at this moment */ | 
|  | break;		/* force end-of-band */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | 
|  | } | 
|  |  | 
|  | /* Completed MCU, so update state */ | 
|  | entropy->saved.EOBRUN = EOBRUN;	/* only part of saved state we need */ | 
|  | } | 
|  |  | 
|  | /* Account for restart interval (no-op if not using restarts) */ | 
|  | entropy->restarts_to_go--; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU decoding for DC successive approximation refinement scan. | 
|  | * Note: we assume such scans can be multi-component, although the spec | 
|  | * is not very clear on the point. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | decode_mcu_DC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */ | 
|  | int blkn; | 
|  | JBLOCKROW block; | 
|  | BITREAD_STATE_VARS; | 
|  |  | 
|  | /* Process restart marker if needed; may have to suspend */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) | 
|  | if (! process_restart(cinfo)) | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | /* Not worth the cycles to check insufficient_data here, | 
|  | * since we will not change the data anyway if we read zeroes. | 
|  | */ | 
|  |  | 
|  | /* Load up working state */ | 
|  | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | 
|  |  | 
|  | /* Outer loop handles each block in the MCU */ | 
|  |  | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | block = MCU_data[blkn]; | 
|  |  | 
|  | /* Encoded data is simply the next bit of the two's-complement DC value */ | 
|  | CHECK_BIT_BUFFER(br_state, 1, return FALSE); | 
|  | if (GET_BITS(1)) | 
|  | (*block)[0] |= p1; | 
|  | /* Note: since we use |=, repeating the assignment later is safe */ | 
|  | } | 
|  |  | 
|  | /* Completed MCU, so update state */ | 
|  | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | 
|  |  | 
|  | /* Account for restart interval (no-op if not using restarts) */ | 
|  | entropy->restarts_to_go--; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * MCU decoding for AC successive approximation refinement scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | decode_mcu_AC_refine (j_decompress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | phuff_entropy_ptr entropy = (phuff_entropy_ptr) cinfo->entropy; | 
|  | int Se = cinfo->Se; | 
|  | int p1 = 1 << cinfo->Al;	/* 1 in the bit position being coded */ | 
|  | int m1 = (-1) << cinfo->Al;	/* -1 in the bit position being coded */ | 
|  | register int s, k, r; | 
|  | unsigned int EOBRUN; | 
|  | JBLOCKROW block; | 
|  | JCOEFPTR thiscoef; | 
|  | BITREAD_STATE_VARS; | 
|  | d_derived_tbl * tbl; | 
|  | int num_newnz; | 
|  | int newnz_pos[DCTSIZE2]; | 
|  |  | 
|  | /* Process restart marker if needed; may have to suspend */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) | 
|  | if (! process_restart(cinfo)) | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | /* If we've run out of data, don't modify the MCU. | 
|  | */ | 
|  | if (! entropy->pub.insufficient_data) { | 
|  |  | 
|  | /* Load up working state */ | 
|  | BITREAD_LOAD_STATE(cinfo,entropy->bitstate); | 
|  | EOBRUN = entropy->saved.EOBRUN; /* only part of saved state we need */ | 
|  |  | 
|  | /* There is always only one block per MCU */ | 
|  | block = MCU_data[0]; | 
|  | tbl = entropy->ac_derived_tbl; | 
|  |  | 
|  | /* If we are forced to suspend, we must undo the assignments to any newly | 
|  | * nonzero coefficients in the block, because otherwise we'd get confused | 
|  | * next time about which coefficients were already nonzero. | 
|  | * But we need not undo addition of bits to already-nonzero coefficients; | 
|  | * instead, we can test the current bit to see if we already did it. | 
|  | */ | 
|  | num_newnz = 0; | 
|  |  | 
|  | /* initialize coefficient loop counter to start of band */ | 
|  | k = cinfo->Ss; | 
|  |  | 
|  | if (EOBRUN == 0) { | 
|  | for (; k <= Se; k++) { | 
|  | HUFF_DECODE(s, br_state, tbl, goto undoit, label3); | 
|  | r = s >> 4; | 
|  | s &= 15; | 
|  | if (s) { | 
|  | if (s != 1)		/* size of new coef should always be 1 */ | 
|  | WARNMS(cinfo, JWRN_HUFF_BAD_CODE); | 
|  | CHECK_BIT_BUFFER(br_state, 1, goto undoit); | 
|  | if (GET_BITS(1)) | 
|  | s = p1;		/* newly nonzero coef is positive */ | 
|  | else | 
|  | s = m1;		/* newly nonzero coef is negative */ | 
|  | } else { | 
|  | if (r != 15) { | 
|  | EOBRUN = 1 << r;	/* EOBr, run length is 2^r + appended bits */ | 
|  | if (r) { | 
|  | CHECK_BIT_BUFFER(br_state, r, goto undoit); | 
|  | r = GET_BITS(r); | 
|  | EOBRUN += r; | 
|  | } | 
|  | break;		/* rest of block is handled by EOB logic */ | 
|  | } | 
|  | /* note s = 0 for processing ZRL */ | 
|  | } | 
|  | /* Advance over already-nonzero coefs and r still-zero coefs, | 
|  | * appending correction bits to the nonzeroes.  A correction bit is 1 | 
|  | * if the absolute value of the coefficient must be increased. | 
|  | */ | 
|  | do { | 
|  | thiscoef = *block + jpeg_natural_order[k]; | 
|  | if (*thiscoef != 0) { | 
|  | CHECK_BIT_BUFFER(br_state, 1, goto undoit); | 
|  | if (GET_BITS(1)) { | 
|  | if ((*thiscoef & p1) == 0) { /* do nothing if already set it */ | 
|  | if (*thiscoef >= 0) | 
|  | *thiscoef += p1; | 
|  | else | 
|  | *thiscoef += m1; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (--r < 0) | 
|  | break;		/* reached target zero coefficient */ | 
|  | } | 
|  | k++; | 
|  | } while (k <= Se); | 
|  | if (s) { | 
|  | int pos = jpeg_natural_order[k]; | 
|  | /* Output newly nonzero coefficient */ | 
|  | (*block)[pos] = (JCOEF) s; | 
|  | /* Remember its position in case we have to suspend */ | 
|  | newnz_pos[num_newnz++] = pos; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (EOBRUN > 0) { | 
|  | /* Scan any remaining coefficient positions after the end-of-band | 
|  | * (the last newly nonzero coefficient, if any).  Append a correction | 
|  | * bit to each already-nonzero coefficient.  A correction bit is 1 | 
|  | * if the absolute value of the coefficient must be increased. | 
|  | */ | 
|  | for (; k <= Se; k++) { | 
|  | thiscoef = *block + jpeg_natural_order[k]; | 
|  | if (*thiscoef != 0) { | 
|  | CHECK_BIT_BUFFER(br_state, 1, goto undoit); | 
|  | if (GET_BITS(1)) { | 
|  | if ((*thiscoef & p1) == 0) { /* do nothing if already changed it */ | 
|  | if (*thiscoef >= 0) | 
|  | *thiscoef += p1; | 
|  | else | 
|  | *thiscoef += m1; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | /* Count one block completed in EOB run */ | 
|  | EOBRUN--; | 
|  | } | 
|  |  | 
|  | /* Completed MCU, so update state */ | 
|  | BITREAD_SAVE_STATE(cinfo,entropy->bitstate); | 
|  | entropy->saved.EOBRUN = EOBRUN; /* only part of saved state we need */ | 
|  | } | 
|  |  | 
|  | /* Account for restart interval (no-op if not using restarts) */ | 
|  | entropy->restarts_to_go--; | 
|  |  | 
|  | return TRUE; | 
|  |  | 
|  | undoit: | 
|  | /* Re-zero any output coefficients that we made newly nonzero */ | 
|  | while (num_newnz > 0) | 
|  | (*block)[newnz_pos[--num_newnz]] = 0; | 
|  |  | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Module initialization routine for progressive Huffman entropy decoding. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jinit_phuff_decoder (j_decompress_ptr cinfo) | 
|  | { | 
|  | phuff_entropy_ptr entropy; | 
|  | int *coef_bit_ptr; | 
|  | int ci, i; | 
|  |  | 
|  | entropy = (phuff_entropy_ptr) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | SIZEOF(phuff_entropy_decoder)); | 
|  | cinfo->entropy = (struct jpeg_entropy_decoder *) entropy; | 
|  | entropy->pub.start_pass = start_pass_phuff_decoder; | 
|  |  | 
|  | /* Mark derived tables unallocated */ | 
|  | for (i = 0; i < NUM_HUFF_TBLS; i++) { | 
|  | entropy->derived_tbls[i] = NULL; | 
|  | } | 
|  |  | 
|  | /* Create progression status table */ | 
|  | cinfo->coef_bits = (int (*)[DCTSIZE2]) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | cinfo->num_components*DCTSIZE2*SIZEOF(int)); | 
|  | coef_bit_ptr = & cinfo->coef_bits[0][0]; | 
|  | for (ci = 0; ci < cinfo->num_components; ci++) | 
|  | for (i = 0; i < DCTSIZE2; i++) | 
|  | *coef_bit_ptr++ = -1; | 
|  | } | 
|  |  | 
|  | #endif /* D_PROGRESSIVE_SUPPORTED */ |