|  | /* | 
|  | * jquant1.c | 
|  | * | 
|  | * Copyright (C) 1991-1996, Thomas G. Lane. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains 1-pass color quantization (color mapping) routines. | 
|  | * These routines provide mapping to a fixed color map using equally spaced | 
|  | * color values.  Optional Floyd-Steinberg or ordered dithering is available. | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  |  | 
|  | #ifdef QUANT_1PASS_SUPPORTED | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The main purpose of 1-pass quantization is to provide a fast, if not very | 
|  | * high quality, colormapped output capability.  A 2-pass quantizer usually | 
|  | * gives better visual quality; however, for quantized grayscale output this | 
|  | * quantizer is perfectly adequate.  Dithering is highly recommended with this | 
|  | * quantizer, though you can turn it off if you really want to. | 
|  | * | 
|  | * In 1-pass quantization the colormap must be chosen in advance of seeing the | 
|  | * image.  We use a map consisting of all combinations of Ncolors[i] color | 
|  | * values for the i'th component.  The Ncolors[] values are chosen so that | 
|  | * their product, the total number of colors, is no more than that requested. | 
|  | * (In most cases, the product will be somewhat less.) | 
|  | * | 
|  | * Since the colormap is orthogonal, the representative value for each color | 
|  | * component can be determined without considering the other components; | 
|  | * then these indexes can be combined into a colormap index by a standard | 
|  | * N-dimensional-array-subscript calculation.  Most of the arithmetic involved | 
|  | * can be precalculated and stored in the lookup table colorindex[]. | 
|  | * colorindex[i][j] maps pixel value j in component i to the nearest | 
|  | * representative value (grid plane) for that component; this index is | 
|  | * multiplied by the array stride for component i, so that the | 
|  | * index of the colormap entry closest to a given pixel value is just | 
|  | *    sum( colorindex[component-number][pixel-component-value] ) | 
|  | * Aside from being fast, this scheme allows for variable spacing between | 
|  | * representative values with no additional lookup cost. | 
|  | * | 
|  | * If gamma correction has been applied in color conversion, it might be wise | 
|  | * to adjust the color grid spacing so that the representative colors are | 
|  | * equidistant in linear space.  At this writing, gamma correction is not | 
|  | * implemented by jdcolor, so nothing is done here. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* Declarations for ordered dithering. | 
|  | * | 
|  | * We use a standard 16x16 ordered dither array.  The basic concept of ordered | 
|  | * dithering is described in many references, for instance Dale Schumacher's | 
|  | * chapter II.2 of Graphics Gems II (James Arvo, ed. Academic Press, 1991). | 
|  | * In place of Schumacher's comparisons against a "threshold" value, we add a | 
|  | * "dither" value to the input pixel and then round the result to the nearest | 
|  | * output value.  The dither value is equivalent to (0.5 - threshold) times | 
|  | * the distance between output values.  For ordered dithering, we assume that | 
|  | * the output colors are equally spaced; if not, results will probably be | 
|  | * worse, since the dither may be too much or too little at a given point. | 
|  | * | 
|  | * The normal calculation would be to form pixel value + dither, range-limit | 
|  | * this to 0..MAXJSAMPLE, and then index into the colorindex table as usual. | 
|  | * We can skip the separate range-limiting step by extending the colorindex | 
|  | * table in both directions. | 
|  | */ | 
|  |  | 
|  | #define ODITHER_SIZE  16	/* dimension of dither matrix */ | 
|  | /* NB: if ODITHER_SIZE is not a power of 2, ODITHER_MASK uses will break */ | 
|  | #define ODITHER_CELLS (ODITHER_SIZE*ODITHER_SIZE)	/* # cells in matrix */ | 
|  | #define ODITHER_MASK  (ODITHER_SIZE-1) /* mask for wrapping around counters */ | 
|  |  | 
|  | typedef int ODITHER_MATRIX[ODITHER_SIZE][ODITHER_SIZE]; | 
|  | typedef int (*ODITHER_MATRIX_PTR)[ODITHER_SIZE]; | 
|  |  | 
|  | static const UINT8 base_dither_matrix[ODITHER_SIZE][ODITHER_SIZE] = { | 
|  | /* Bayer's order-4 dither array.  Generated by the code given in | 
|  | * Stephen Hawley's article "Ordered Dithering" in Graphics Gems I. | 
|  | * The values in this array must range from 0 to ODITHER_CELLS-1. | 
|  | */ | 
|  | {   0,192, 48,240, 12,204, 60,252,  3,195, 51,243, 15,207, 63,255 }, | 
|  | { 128, 64,176,112,140, 76,188,124,131, 67,179,115,143, 79,191,127 }, | 
|  | {  32,224, 16,208, 44,236, 28,220, 35,227, 19,211, 47,239, 31,223 }, | 
|  | { 160, 96,144, 80,172,108,156, 92,163, 99,147, 83,175,111,159, 95 }, | 
|  | {   8,200, 56,248,  4,196, 52,244, 11,203, 59,251,  7,199, 55,247 }, | 
|  | { 136, 72,184,120,132, 68,180,116,139, 75,187,123,135, 71,183,119 }, | 
|  | {  40,232, 24,216, 36,228, 20,212, 43,235, 27,219, 39,231, 23,215 }, | 
|  | { 168,104,152, 88,164,100,148, 84,171,107,155, 91,167,103,151, 87 }, | 
|  | {   2,194, 50,242, 14,206, 62,254,  1,193, 49,241, 13,205, 61,253 }, | 
|  | { 130, 66,178,114,142, 78,190,126,129, 65,177,113,141, 77,189,125 }, | 
|  | {  34,226, 18,210, 46,238, 30,222, 33,225, 17,209, 45,237, 29,221 }, | 
|  | { 162, 98,146, 82,174,110,158, 94,161, 97,145, 81,173,109,157, 93 }, | 
|  | {  10,202, 58,250,  6,198, 54,246,  9,201, 57,249,  5,197, 53,245 }, | 
|  | { 138, 74,186,122,134, 70,182,118,137, 73,185,121,133, 69,181,117 }, | 
|  | {  42,234, 26,218, 38,230, 22,214, 41,233, 25,217, 37,229, 21,213 }, | 
|  | { 170,106,154, 90,166,102,150, 86,169,105,153, 89,165,101,149, 85 } | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* Declarations for Floyd-Steinberg dithering. | 
|  | * | 
|  | * Errors are accumulated into the array fserrors[], at a resolution of | 
|  | * 1/16th of a pixel count.  The error at a given pixel is propagated | 
|  | * to its not-yet-processed neighbors using the standard F-S fractions, | 
|  | *		...	(here)	7/16 | 
|  | *		3/16	5/16	1/16 | 
|  | * We work left-to-right on even rows, right-to-left on odd rows. | 
|  | * | 
|  | * We can get away with a single array (holding one row's worth of errors) | 
|  | * by using it to store the current row's errors at pixel columns not yet | 
|  | * processed, but the next row's errors at columns already processed.  We | 
|  | * need only a few extra variables to hold the errors immediately around the | 
|  | * current column.  (If we are lucky, those variables are in registers, but | 
|  | * even if not, they're probably cheaper to access than array elements are.) | 
|  | * | 
|  | * The fserrors[] array is indexed [component#][position]. | 
|  | * We provide (#columns + 2) entries per component; the extra entry at each | 
|  | * end saves us from special-casing the first and last pixels. | 
|  | * | 
|  | * Note: on a wide image, we might not have enough room in a PC's near data | 
|  | * segment to hold the error array; so it is allocated with alloc_large. | 
|  | */ | 
|  |  | 
|  | #if BITS_IN_JSAMPLE == 8 | 
|  | typedef INT16 FSERROR;		/* 16 bits should be enough */ | 
|  | typedef int LOCFSERROR;		/* use 'int' for calculation temps */ | 
|  | #else | 
|  | typedef INT32 FSERROR;		/* may need more than 16 bits */ | 
|  | typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */ | 
|  | #endif | 
|  |  | 
|  | typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */ | 
|  |  | 
|  |  | 
|  | /* Private subobject */ | 
|  |  | 
|  | #define MAX_Q_COMPS 4		/* max components I can handle */ | 
|  |  | 
|  | typedef struct { | 
|  | struct jpeg_color_quantizer pub; /* public fields */ | 
|  |  | 
|  | /* Initially allocated colormap is saved here */ | 
|  | JSAMPARRAY sv_colormap;	/* The color map as a 2-D pixel array */ | 
|  | int sv_actual;		/* number of entries in use */ | 
|  |  | 
|  | JSAMPARRAY colorindex;	/* Precomputed mapping for speed */ | 
|  | /* colorindex[i][j] = index of color closest to pixel value j in component i, | 
|  | * premultiplied as described above.  Since colormap indexes must fit into | 
|  | * JSAMPLEs, the entries of this array will too. | 
|  | */ | 
|  | boolean is_padded;		/* is the colorindex padded for odither? */ | 
|  |  | 
|  | int Ncolors[MAX_Q_COMPS];	/* # of values alloced to each component */ | 
|  |  | 
|  | /* Variables for ordered dithering */ | 
|  | int row_index;		/* cur row's vertical index in dither matrix */ | 
|  | ODITHER_MATRIX_PTR odither[MAX_Q_COMPS]; /* one dither array per component */ | 
|  |  | 
|  | /* Variables for Floyd-Steinberg dithering */ | 
|  | FSERRPTR fserrors[MAX_Q_COMPS]; /* accumulated errors */ | 
|  | boolean on_odd_row;		/* flag to remember which row we are on */ | 
|  | } my_cquantizer; | 
|  |  | 
|  | typedef my_cquantizer * my_cquantize_ptr; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Policy-making subroutines for create_colormap and create_colorindex. | 
|  | * These routines determine the colormap to be used.  The rest of the module | 
|  | * only assumes that the colormap is orthogonal. | 
|  | * | 
|  | *  * select_ncolors decides how to divvy up the available colors | 
|  | *    among the components. | 
|  | *  * output_value defines the set of representative values for a component. | 
|  | *  * largest_input_value defines the mapping from input values to | 
|  | *    representative values for a component. | 
|  | * Note that the latter two routines may impose different policies for | 
|  | * different components, though this is not currently done. | 
|  | */ | 
|  |  | 
|  |  | 
|  | LOCAL(int) | 
|  | select_ncolors (j_decompress_ptr cinfo, int Ncolors[]) | 
|  | /* Determine allocation of desired colors to components, */ | 
|  | /* and fill in Ncolors[] array to indicate choice. */ | 
|  | /* Return value is total number of colors (product of Ncolors[] values). */ | 
|  | { | 
|  | int nc = cinfo->out_color_components; /* number of color components */ | 
|  | int max_colors = cinfo->desired_number_of_colors; | 
|  | int total_colors, iroot, i, j; | 
|  | boolean changed; | 
|  | long temp; | 
|  | static const int RGB_order[3] = { RGB_GREEN, RGB_RED, RGB_BLUE }; | 
|  |  | 
|  | /* We can allocate at least the nc'th root of max_colors per component. */ | 
|  | /* Compute floor(nc'th root of max_colors). */ | 
|  | iroot = 1; | 
|  | do { | 
|  | iroot++; | 
|  | temp = iroot;		/* set temp = iroot ** nc */ | 
|  | for (i = 1; i < nc; i++) | 
|  | temp *= iroot; | 
|  | } while (temp <= (long) max_colors); /* repeat till iroot exceeds root */ | 
|  | iroot--;			/* now iroot = floor(root) */ | 
|  |  | 
|  | /* Must have at least 2 color values per component */ | 
|  | if (iroot < 2) | 
|  | ERREXIT1(cinfo, JERR_QUANT_FEW_COLORS, (int) temp); | 
|  |  | 
|  | /* Initialize to iroot color values for each component */ | 
|  | total_colors = 1; | 
|  | for (i = 0; i < nc; i++) { | 
|  | Ncolors[i] = iroot; | 
|  | total_colors *= iroot; | 
|  | } | 
|  | /* We may be able to increment the count for one or more components without | 
|  | * exceeding max_colors, though we know not all can be incremented. | 
|  | * Sometimes, the first component can be incremented more than once! | 
|  | * (Example: for 16 colors, we start at 2*2*2, go to 3*2*2, then 4*2*2.) | 
|  | * In RGB colorspace, try to increment G first, then R, then B. | 
|  | */ | 
|  | do { | 
|  | changed = FALSE; | 
|  | for (i = 0; i < nc; i++) { | 
|  | j = (cinfo->out_color_space == JCS_RGB ? RGB_order[i] : i); | 
|  | /* calculate new total_colors if Ncolors[j] is incremented */ | 
|  | temp = total_colors / Ncolors[j]; | 
|  | temp *= Ncolors[j]+1;	/* done in long arith to avoid oflo */ | 
|  | if (temp > (long) max_colors) | 
|  | break;			/* won't fit, done with this pass */ | 
|  | Ncolors[j]++;		/* OK, apply the increment */ | 
|  | total_colors = (int) temp; | 
|  | changed = TRUE; | 
|  | } | 
|  | } while (changed); | 
|  |  | 
|  | return total_colors; | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(int) | 
|  | output_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | 
|  | /* Return j'th output value, where j will range from 0 to maxj */ | 
|  | /* The output values must fall in 0..MAXJSAMPLE in increasing order */ | 
|  | { | 
|  | /* We always provide values 0 and MAXJSAMPLE for each component; | 
|  | * any additional values are equally spaced between these limits. | 
|  | * (Forcing the upper and lower values to the limits ensures that | 
|  | * dithering can't produce a color outside the selected gamut.) | 
|  | */ | 
|  | return (int) (((INT32) j * MAXJSAMPLE + maxj/2) / maxj); | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(int) | 
|  | largest_input_value (j_decompress_ptr cinfo, int ci, int j, int maxj) | 
|  | /* Return largest input value that should map to j'th output value */ | 
|  | /* Must have largest(j=0) >= 0, and largest(j=maxj) >= MAXJSAMPLE */ | 
|  | { | 
|  | /* Breakpoints are halfway between values returned by output_value */ | 
|  | return (int) (((INT32) (2*j + 1) * MAXJSAMPLE + maxj) / (2*maxj)); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Create the colormap. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | create_colormap (j_decompress_ptr cinfo) | 
|  | { | 
|  | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|  | JSAMPARRAY colormap;		/* Created colormap */ | 
|  | int total_colors;		/* Number of distinct output colors */ | 
|  | int i,j,k, nci, blksize, blkdist, ptr, val; | 
|  |  | 
|  | /* Select number of colors for each component */ | 
|  | total_colors = select_ncolors(cinfo, cquantize->Ncolors); | 
|  |  | 
|  | /* Report selected color counts */ | 
|  | if (cinfo->out_color_components == 3) | 
|  | TRACEMS4(cinfo, 1, JTRC_QUANT_3_NCOLORS, | 
|  | total_colors, cquantize->Ncolors[0], | 
|  | cquantize->Ncolors[1], cquantize->Ncolors[2]); | 
|  | else | 
|  | TRACEMS1(cinfo, 1, JTRC_QUANT_NCOLORS, total_colors); | 
|  |  | 
|  | /* Allocate and fill in the colormap. */ | 
|  | /* The colors are ordered in the map in standard row-major order, */ | 
|  | /* i.e. rightmost (highest-indexed) color changes most rapidly. */ | 
|  |  | 
|  | colormap = (*cinfo->mem->alloc_sarray) | 
|  | ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | (JDIMENSION) total_colors, (JDIMENSION) cinfo->out_color_components); | 
|  |  | 
|  | /* blksize is number of adjacent repeated entries for a component */ | 
|  | /* blkdist is distance between groups of identical entries for a component */ | 
|  | blkdist = total_colors; | 
|  |  | 
|  | for (i = 0; i < cinfo->out_color_components; i++) { | 
|  | /* fill in colormap entries for i'th color component */ | 
|  | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | 
|  | blksize = blkdist / nci; | 
|  | for (j = 0; j < nci; j++) { | 
|  | /* Compute j'th output value (out of nci) for component */ | 
|  | val = output_value(cinfo, i, j, nci-1); | 
|  | /* Fill in all colormap entries that have this value of this component */ | 
|  | for (ptr = j * blksize; ptr < total_colors; ptr += blkdist) { | 
|  | /* fill in blksize entries beginning at ptr */ | 
|  | for (k = 0; k < blksize; k++) | 
|  | colormap[i][ptr+k] = (JSAMPLE) val; | 
|  | } | 
|  | } | 
|  | blkdist = blksize;		/* blksize of this color is blkdist of next */ | 
|  | } | 
|  |  | 
|  | /* Save the colormap in private storage, | 
|  | * where it will survive color quantization mode changes. | 
|  | */ | 
|  | cquantize->sv_colormap = colormap; | 
|  | cquantize->sv_actual = total_colors; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Create the color index table. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | create_colorindex (j_decompress_ptr cinfo) | 
|  | { | 
|  | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|  | JSAMPROW indexptr; | 
|  | int i,j,k, nci, blksize, val, pad; | 
|  |  | 
|  | /* For ordered dither, we pad the color index tables by MAXJSAMPLE in | 
|  | * each direction (input index values can be -MAXJSAMPLE .. 2*MAXJSAMPLE). | 
|  | * This is not necessary in the other dithering modes.  However, we | 
|  | * flag whether it was done in case user changes dithering mode. | 
|  | */ | 
|  | if (cinfo->dither_mode == JDITHER_ORDERED) { | 
|  | pad = MAXJSAMPLE*2; | 
|  | cquantize->is_padded = TRUE; | 
|  | } else { | 
|  | pad = 0; | 
|  | cquantize->is_padded = FALSE; | 
|  | } | 
|  |  | 
|  | cquantize->colorindex = (*cinfo->mem->alloc_sarray) | 
|  | ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | (JDIMENSION) (MAXJSAMPLE+1 + pad), | 
|  | (JDIMENSION) cinfo->out_color_components); | 
|  |  | 
|  | /* blksize is number of adjacent repeated entries for a component */ | 
|  | blksize = cquantize->sv_actual; | 
|  |  | 
|  | for (i = 0; i < cinfo->out_color_components; i++) { | 
|  | /* fill in colorindex entries for i'th color component */ | 
|  | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | 
|  | blksize = blksize / nci; | 
|  |  | 
|  | /* adjust colorindex pointers to provide padding at negative indexes. */ | 
|  | if (pad) | 
|  | cquantize->colorindex[i] += MAXJSAMPLE; | 
|  |  | 
|  | /* in loop, val = index of current output value, */ | 
|  | /* and k = largest j that maps to current val */ | 
|  | indexptr = cquantize->colorindex[i]; | 
|  | val = 0; | 
|  | k = largest_input_value(cinfo, i, 0, nci-1); | 
|  | for (j = 0; j <= MAXJSAMPLE; j++) { | 
|  | while (j > k)		/* advance val if past boundary */ | 
|  | k = largest_input_value(cinfo, i, ++val, nci-1); | 
|  | /* premultiply so that no multiplication needed in main processing */ | 
|  | indexptr[j] = (JSAMPLE) (val * blksize); | 
|  | } | 
|  | /* Pad at both ends if necessary */ | 
|  | if (pad) | 
|  | for (j = 1; j <= MAXJSAMPLE; j++) { | 
|  | indexptr[-j] = indexptr[0]; | 
|  | indexptr[MAXJSAMPLE+j] = indexptr[MAXJSAMPLE]; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Create an ordered-dither array for a component having ncolors | 
|  | * distinct output values. | 
|  | */ | 
|  |  | 
|  | LOCAL(ODITHER_MATRIX_PTR) | 
|  | make_odither_array (j_decompress_ptr cinfo, int ncolors) | 
|  | { | 
|  | ODITHER_MATRIX_PTR odither; | 
|  | int j,k; | 
|  | INT32 num,den; | 
|  |  | 
|  | odither = (ODITHER_MATRIX_PTR) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | SIZEOF(ODITHER_MATRIX)); | 
|  | /* The inter-value distance for this color is MAXJSAMPLE/(ncolors-1). | 
|  | * Hence the dither value for the matrix cell with fill order f | 
|  | * (f=0..N-1) should be (N-1-2*f)/(2*N) * MAXJSAMPLE/(ncolors-1). | 
|  | * On 16-bit-int machine, be careful to avoid overflow. | 
|  | */ | 
|  | den = 2 * ODITHER_CELLS * ((INT32) (ncolors - 1)); | 
|  | for (j = 0; j < ODITHER_SIZE; j++) { | 
|  | for (k = 0; k < ODITHER_SIZE; k++) { | 
|  | num = ((INT32) (ODITHER_CELLS-1 - 2*((int)base_dither_matrix[j][k]))) | 
|  | * MAXJSAMPLE; | 
|  | /* Ensure round towards zero despite C's lack of consistency | 
|  | * about rounding negative values in integer division... | 
|  | */ | 
|  | odither[j][k] = (int) (num<0 ? -((-num)/den) : num/den); | 
|  | } | 
|  | } | 
|  | return odither; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Create the ordered-dither tables. | 
|  | * Components having the same number of representative colors may | 
|  | * share a dither table. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | create_odither_tables (j_decompress_ptr cinfo) | 
|  | { | 
|  | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|  | ODITHER_MATRIX_PTR odither; | 
|  | int i, j, nci; | 
|  |  | 
|  | for (i = 0; i < cinfo->out_color_components; i++) { | 
|  | nci = cquantize->Ncolors[i]; /* # of distinct values for this color */ | 
|  | odither = NULL;		/* search for matching prior component */ | 
|  | for (j = 0; j < i; j++) { | 
|  | if (nci == cquantize->Ncolors[j]) { | 
|  | odither = cquantize->odither[j]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (odither == NULL)	/* need a new table? */ | 
|  | odither = make_odither_array(cinfo, nci); | 
|  | cquantize->odither[i] = odither; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Map some rows of pixels to the output colormapped representation. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | color_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | 
|  | JSAMPARRAY output_buf, int num_rows) | 
|  | /* General case, no dithering */ | 
|  | { | 
|  | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|  | JSAMPARRAY colorindex = cquantize->colorindex; | 
|  | register int pixcode, ci; | 
|  | register JSAMPROW ptrin, ptrout; | 
|  | int row; | 
|  | JDIMENSION col; | 
|  | JDIMENSION width = cinfo->output_width; | 
|  | register int nc = cinfo->out_color_components; | 
|  |  | 
|  | for (row = 0; row < num_rows; row++) { | 
|  | ptrin = input_buf[row]; | 
|  | ptrout = output_buf[row]; | 
|  | for (col = width; col > 0; col--) { | 
|  | pixcode = 0; | 
|  | for (ci = 0; ci < nc; ci++) { | 
|  | pixcode += GETJSAMPLE(colorindex[ci][GETJSAMPLE(*ptrin++)]); | 
|  | } | 
|  | *ptrout++ = (JSAMPLE) pixcode; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | METHODDEF(void) | 
|  | color_quantize3 (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | 
|  | JSAMPARRAY output_buf, int num_rows) | 
|  | /* Fast path for out_color_components==3, no dithering */ | 
|  | { | 
|  | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|  | register int pixcode; | 
|  | register JSAMPROW ptrin, ptrout; | 
|  | JSAMPROW colorindex0 = cquantize->colorindex[0]; | 
|  | JSAMPROW colorindex1 = cquantize->colorindex[1]; | 
|  | JSAMPROW colorindex2 = cquantize->colorindex[2]; | 
|  | int row; | 
|  | JDIMENSION col; | 
|  | JDIMENSION width = cinfo->output_width; | 
|  |  | 
|  | for (row = 0; row < num_rows; row++) { | 
|  | ptrin = input_buf[row]; | 
|  | ptrout = output_buf[row]; | 
|  | for (col = width; col > 0; col--) { | 
|  | pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*ptrin++)]); | 
|  | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*ptrin++)]); | 
|  | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*ptrin++)]); | 
|  | *ptrout++ = (JSAMPLE) pixcode; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | METHODDEF(void) | 
|  | quantize_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | 
|  | JSAMPARRAY output_buf, int num_rows) | 
|  | /* General case, with ordered dithering */ | 
|  | { | 
|  | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|  | register JSAMPROW input_ptr; | 
|  | register JSAMPROW output_ptr; | 
|  | JSAMPROW colorindex_ci; | 
|  | int * dither;			/* points to active row of dither matrix */ | 
|  | int row_index, col_index;	/* current indexes into dither matrix */ | 
|  | int nc = cinfo->out_color_components; | 
|  | int ci; | 
|  | int row; | 
|  | JDIMENSION col; | 
|  | JDIMENSION width = cinfo->output_width; | 
|  |  | 
|  | for (row = 0; row < num_rows; row++) { | 
|  | /* Initialize output values to 0 so can process components separately */ | 
|  | jzero_far((void FAR *) output_buf[row], | 
|  | (size_t) (width * SIZEOF(JSAMPLE))); | 
|  | row_index = cquantize->row_index; | 
|  | for (ci = 0; ci < nc; ci++) { | 
|  | input_ptr = input_buf[row] + ci; | 
|  | output_ptr = output_buf[row]; | 
|  | colorindex_ci = cquantize->colorindex[ci]; | 
|  | dither = cquantize->odither[ci][row_index]; | 
|  | col_index = 0; | 
|  |  | 
|  | for (col = width; col > 0; col--) { | 
|  | /* Form pixel value + dither, range-limit to 0..MAXJSAMPLE, | 
|  | * select output value, accumulate into output code for this pixel. | 
|  | * Range-limiting need not be done explicitly, as we have extended | 
|  | * the colorindex table to produce the right answers for out-of-range | 
|  | * inputs.  The maximum dither is +- MAXJSAMPLE; this sets the | 
|  | * required amount of padding. | 
|  | */ | 
|  | *output_ptr += colorindex_ci[GETJSAMPLE(*input_ptr)+dither[col_index]]; | 
|  | input_ptr += nc; | 
|  | output_ptr++; | 
|  | col_index = (col_index + 1) & ODITHER_MASK; | 
|  | } | 
|  | } | 
|  | /* Advance row index for next row */ | 
|  | row_index = (row_index + 1) & ODITHER_MASK; | 
|  | cquantize->row_index = row_index; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | METHODDEF(void) | 
|  | quantize3_ord_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | 
|  | JSAMPARRAY output_buf, int num_rows) | 
|  | /* Fast path for out_color_components==3, with ordered dithering */ | 
|  | { | 
|  | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|  | register int pixcode; | 
|  | register JSAMPROW input_ptr; | 
|  | register JSAMPROW output_ptr; | 
|  | JSAMPROW colorindex0 = cquantize->colorindex[0]; | 
|  | JSAMPROW colorindex1 = cquantize->colorindex[1]; | 
|  | JSAMPROW colorindex2 = cquantize->colorindex[2]; | 
|  | int * dither0;		/* points to active row of dither matrix */ | 
|  | int * dither1; | 
|  | int * dither2; | 
|  | int row_index, col_index;	/* current indexes into dither matrix */ | 
|  | int row; | 
|  | JDIMENSION col; | 
|  | JDIMENSION width = cinfo->output_width; | 
|  |  | 
|  | for (row = 0; row < num_rows; row++) { | 
|  | row_index = cquantize->row_index; | 
|  | input_ptr = input_buf[row]; | 
|  | output_ptr = output_buf[row]; | 
|  | dither0 = cquantize->odither[0][row_index]; | 
|  | dither1 = cquantize->odither[1][row_index]; | 
|  | dither2 = cquantize->odither[2][row_index]; | 
|  | col_index = 0; | 
|  |  | 
|  | for (col = width; col > 0; col--) { | 
|  | pixcode  = GETJSAMPLE(colorindex0[GETJSAMPLE(*input_ptr++) + | 
|  | dither0[col_index]]); | 
|  | pixcode += GETJSAMPLE(colorindex1[GETJSAMPLE(*input_ptr++) + | 
|  | dither1[col_index]]); | 
|  | pixcode += GETJSAMPLE(colorindex2[GETJSAMPLE(*input_ptr++) + | 
|  | dither2[col_index]]); | 
|  | *output_ptr++ = (JSAMPLE) pixcode; | 
|  | col_index = (col_index + 1) & ODITHER_MASK; | 
|  | } | 
|  | row_index = (row_index + 1) & ODITHER_MASK; | 
|  | cquantize->row_index = row_index; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | METHODDEF(void) | 
|  | quantize_fs_dither (j_decompress_ptr cinfo, JSAMPARRAY input_buf, | 
|  | JSAMPARRAY output_buf, int num_rows) | 
|  | /* General case, with Floyd-Steinberg dithering */ | 
|  | { | 
|  | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|  | register LOCFSERROR cur;	/* current error or pixel value */ | 
|  | LOCFSERROR belowerr;		/* error for pixel below cur */ | 
|  | LOCFSERROR bpreverr;		/* error for below/prev col */ | 
|  | LOCFSERROR bnexterr;		/* error for below/next col */ | 
|  | LOCFSERROR delta; | 
|  | register FSERRPTR errorptr;	/* => fserrors[] at column before current */ | 
|  | register JSAMPROW input_ptr; | 
|  | register JSAMPROW output_ptr; | 
|  | JSAMPROW colorindex_ci; | 
|  | JSAMPROW colormap_ci; | 
|  | int pixcode; | 
|  | int nc = cinfo->out_color_components; | 
|  | int dir;			/* 1 for left-to-right, -1 for right-to-left */ | 
|  | int dirnc;			/* dir * nc */ | 
|  | int ci; | 
|  | int row; | 
|  | JDIMENSION col; | 
|  | JDIMENSION width = cinfo->output_width; | 
|  | JSAMPLE *range_limit = cinfo->sample_range_limit; | 
|  | SHIFT_TEMPS | 
|  |  | 
|  | for (row = 0; row < num_rows; row++) { | 
|  | /* Initialize output values to 0 so can process components separately */ | 
|  | jzero_far((void FAR *) output_buf[row], | 
|  | (size_t) (width * SIZEOF(JSAMPLE))); | 
|  | for (ci = 0; ci < nc; ci++) { | 
|  | input_ptr = input_buf[row] + ci; | 
|  | output_ptr = output_buf[row]; | 
|  | if (cquantize->on_odd_row) { | 
|  | /* work right to left in this row */ | 
|  | input_ptr += (width-1) * nc; /* so point to rightmost pixel */ | 
|  | output_ptr += width-1; | 
|  | dir = -1; | 
|  | dirnc = -nc; | 
|  | errorptr = cquantize->fserrors[ci] + (width+1); /* => entry after last column */ | 
|  | } else { | 
|  | /* work left to right in this row */ | 
|  | dir = 1; | 
|  | dirnc = nc; | 
|  | errorptr = cquantize->fserrors[ci]; /* => entry before first column */ | 
|  | } | 
|  | colorindex_ci = cquantize->colorindex[ci]; | 
|  | colormap_ci = cquantize->sv_colormap[ci]; | 
|  | /* Preset error values: no error propagated to first pixel from left */ | 
|  | cur = 0; | 
|  | /* and no error propagated to row below yet */ | 
|  | belowerr = bpreverr = 0; | 
|  |  | 
|  | for (col = width; col > 0; col--) { | 
|  | /* cur holds the error propagated from the previous pixel on the | 
|  | * current line.  Add the error propagated from the previous line | 
|  | * to form the complete error correction term for this pixel, and | 
|  | * round the error term (which is expressed * 16) to an integer. | 
|  | * RIGHT_SHIFT rounds towards minus infinity, so adding 8 is correct | 
|  | * for either sign of the error value. | 
|  | * Note: errorptr points to *previous* column's array entry. | 
|  | */ | 
|  | cur = RIGHT_SHIFT(cur + errorptr[dir] + 8, 4); | 
|  | /* Form pixel value + error, and range-limit to 0..MAXJSAMPLE. | 
|  | * The maximum error is +- MAXJSAMPLE; this sets the required size | 
|  | * of the range_limit array. | 
|  | */ | 
|  | cur += GETJSAMPLE(*input_ptr); | 
|  | cur = GETJSAMPLE(range_limit[cur]); | 
|  | /* Select output value, accumulate into output code for this pixel */ | 
|  | pixcode = GETJSAMPLE(colorindex_ci[cur]); | 
|  | *output_ptr += (JSAMPLE) pixcode; | 
|  | /* Compute actual representation error at this pixel */ | 
|  | /* Note: we can do this even though we don't have the final */ | 
|  | /* pixel code, because the colormap is orthogonal. */ | 
|  | cur -= GETJSAMPLE(colormap_ci[pixcode]); | 
|  | /* Compute error fractions to be propagated to adjacent pixels. | 
|  | * Add these into the running sums, and simultaneously shift the | 
|  | * next-line error sums left by 1 column. | 
|  | */ | 
|  | bnexterr = cur; | 
|  | delta = cur * 2; | 
|  | cur += delta;		/* form error * 3 */ | 
|  | errorptr[0] = (FSERROR) (bpreverr + cur); | 
|  | cur += delta;		/* form error * 5 */ | 
|  | bpreverr = belowerr + cur; | 
|  | belowerr = bnexterr; | 
|  | cur += delta;		/* form error * 7 */ | 
|  | /* At this point cur contains the 7/16 error value to be propagated | 
|  | * to the next pixel on the current line, and all the errors for the | 
|  | * next line have been shifted over. We are therefore ready to move on. | 
|  | */ | 
|  | input_ptr += dirnc;	/* advance input ptr to next column */ | 
|  | output_ptr += dir;	/* advance output ptr to next column */ | 
|  | errorptr += dir;	/* advance errorptr to current column */ | 
|  | } | 
|  | /* Post-loop cleanup: we must unload the final error value into the | 
|  | * final fserrors[] entry.  Note we need not unload belowerr because | 
|  | * it is for the dummy column before or after the actual array. | 
|  | */ | 
|  | errorptr[0] = (FSERROR) bpreverr; /* unload prev err into array */ | 
|  | } | 
|  | cquantize->on_odd_row = (cquantize->on_odd_row ? FALSE : TRUE); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Allocate workspace for Floyd-Steinberg errors. | 
|  | */ | 
|  |  | 
|  | LOCAL(void) | 
|  | alloc_fs_workspace (j_decompress_ptr cinfo) | 
|  | { | 
|  | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|  | size_t arraysize; | 
|  | int i; | 
|  |  | 
|  | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); | 
|  | for (i = 0; i < cinfo->out_color_components; i++) { | 
|  | cquantize->fserrors[i] = (FSERRPTR) | 
|  | (*cinfo->mem->alloc_large)((j_common_ptr) cinfo, JPOOL_IMAGE, arraysize); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize for one-pass color quantization. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | start_pass_1_quant (j_decompress_ptr cinfo, boolean is_pre_scan) | 
|  | { | 
|  | my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize; | 
|  | size_t arraysize; | 
|  | int i; | 
|  |  | 
|  | /* Install my colormap. */ | 
|  | cinfo->colormap = cquantize->sv_colormap; | 
|  | cinfo->actual_number_of_colors = cquantize->sv_actual; | 
|  |  | 
|  | /* Initialize for desired dithering mode. */ | 
|  | switch (cinfo->dither_mode) { | 
|  | case JDITHER_NONE: | 
|  | if (cinfo->out_color_components == 3) | 
|  | cquantize->pub.color_quantize = color_quantize3; | 
|  | else | 
|  | cquantize->pub.color_quantize = color_quantize; | 
|  | break; | 
|  | case JDITHER_ORDERED: | 
|  | if (cinfo->out_color_components == 3) | 
|  | cquantize->pub.color_quantize = quantize3_ord_dither; | 
|  | else | 
|  | cquantize->pub.color_quantize = quantize_ord_dither; | 
|  | cquantize->row_index = 0;	/* initialize state for ordered dither */ | 
|  | /* If user changed to ordered dither from another mode, | 
|  | * we must recreate the color index table with padding. | 
|  | * This will cost extra space, but probably isn't very likely. | 
|  | */ | 
|  | if (! cquantize->is_padded) | 
|  | create_colorindex(cinfo); | 
|  | /* Create ordered-dither tables if we didn't already. */ | 
|  | if (cquantize->odither[0] == NULL) | 
|  | create_odither_tables(cinfo); | 
|  | break; | 
|  | case JDITHER_FS: | 
|  | cquantize->pub.color_quantize = quantize_fs_dither; | 
|  | cquantize->on_odd_row = FALSE; /* initialize state for F-S dither */ | 
|  | /* Allocate Floyd-Steinberg workspace if didn't already. */ | 
|  | if (cquantize->fserrors[0] == NULL) | 
|  | alloc_fs_workspace(cinfo); | 
|  | /* Initialize the propagated errors to zero. */ | 
|  | arraysize = (size_t) ((cinfo->output_width + 2) * SIZEOF(FSERROR)); | 
|  | for (i = 0; i < cinfo->out_color_components; i++) | 
|  | jzero_far((void FAR *) cquantize->fserrors[i], arraysize); | 
|  | break; | 
|  | default: | 
|  | ERREXIT(cinfo, JERR_NOT_COMPILED); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Finish up at the end of the pass. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | finish_pass_1_quant (j_decompress_ptr cinfo) | 
|  | { | 
|  | /* no work in 1-pass case */ | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Switch to a new external colormap between output passes. | 
|  | * Shouldn't get to this module! | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | new_color_map_1_quant (j_decompress_ptr cinfo) | 
|  | { | 
|  | ERREXIT(cinfo, JERR_MODE_CHANGE); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Module initialization routine for 1-pass color quantization. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jinit_1pass_quantizer (j_decompress_ptr cinfo) | 
|  | { | 
|  | my_cquantize_ptr cquantize; | 
|  |  | 
|  | cquantize = (my_cquantize_ptr) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | SIZEOF(my_cquantizer)); | 
|  | cinfo->cquantize = (struct jpeg_color_quantizer *) cquantize; | 
|  | cquantize->pub.start_pass = start_pass_1_quant; | 
|  | cquantize->pub.finish_pass = finish_pass_1_quant; | 
|  | cquantize->pub.new_color_map = new_color_map_1_quant; | 
|  | cquantize->fserrors[0] = NULL; /* Flag FS workspace not allocated */ | 
|  | cquantize->odither[0] = NULL;	/* Also flag odither arrays not allocated */ | 
|  |  | 
|  | /* Make sure my internal arrays won't overflow */ | 
|  | if (cinfo->out_color_components > MAX_Q_COMPS) | 
|  | ERREXIT1(cinfo, JERR_QUANT_COMPONENTS, MAX_Q_COMPS); | 
|  | /* Make sure colormap indexes can be represented by JSAMPLEs */ | 
|  | if (cinfo->desired_number_of_colors > (MAXJSAMPLE+1)) | 
|  | ERREXIT1(cinfo, JERR_QUANT_MANY_COLORS, MAXJSAMPLE+1); | 
|  |  | 
|  | /* Create the colormap and color index table. */ | 
|  | create_colormap(cinfo); | 
|  | create_colorindex(cinfo); | 
|  |  | 
|  | /* Allocate Floyd-Steinberg workspace now if requested. | 
|  | * We do this now since it is FAR storage and may affect the memory | 
|  | * manager's space calculations.  If the user changes to FS dither | 
|  | * mode in a later pass, we will allocate the space then, and will | 
|  | * possibly overrun the max_memory_to_use setting. | 
|  | */ | 
|  | if (cinfo->dither_mode == JDITHER_FS) | 
|  | alloc_fs_workspace(cinfo); | 
|  | } | 
|  |  | 
|  | #endif /* QUANT_1PASS_SUPPORTED */ |