|  | /* | 
|  | * jdsample.c | 
|  | * | 
|  | * Copyright (C) 1991-1996, Thomas G. Lane. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains upsampling routines. | 
|  | * | 
|  | * Upsampling input data is counted in "row groups".  A row group | 
|  | * is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size) | 
|  | * sample rows of each component.  Upsampling will normally produce | 
|  | * max_v_samp_factor pixel rows from each row group (but this could vary | 
|  | * if the upsampler is applying a scale factor of its own). | 
|  | * | 
|  | * An excellent reference for image resampling is | 
|  | *   Digital Image Warping, George Wolberg, 1990. | 
|  | *   Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7. | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  |  | 
|  |  | 
|  | /* Pointer to routine to upsample a single component */ | 
|  | typedef JMETHOD(void, upsample1_ptr, | 
|  | (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr)); | 
|  |  | 
|  | /* Private subobject */ | 
|  |  | 
|  | typedef struct { | 
|  | struct jpeg_upsampler pub;	/* public fields */ | 
|  |  | 
|  | /* Color conversion buffer.  When using separate upsampling and color | 
|  | * conversion steps, this buffer holds one upsampled row group until it | 
|  | * has been color converted and output. | 
|  | * Note: we do not allocate any storage for component(s) which are full-size, | 
|  | * ie do not need rescaling.  The corresponding entry of color_buf[] is | 
|  | * simply set to point to the input data array, thereby avoiding copying. | 
|  | */ | 
|  | JSAMPARRAY color_buf[MAX_COMPONENTS]; | 
|  |  | 
|  | /* Per-component upsampling method pointers */ | 
|  | upsample1_ptr methods[MAX_COMPONENTS]; | 
|  |  | 
|  | int next_row_out;		/* counts rows emitted from color_buf */ | 
|  | JDIMENSION rows_to_go;	/* counts rows remaining in image */ | 
|  |  | 
|  | /* Height of an input row group for each component. */ | 
|  | int rowgroup_height[MAX_COMPONENTS]; | 
|  |  | 
|  | /* These arrays save pixel expansion factors so that int_expand need not | 
|  | * recompute them each time.  They are unused for other upsampling methods. | 
|  | */ | 
|  | UINT8 h_expand[MAX_COMPONENTS]; | 
|  | UINT8 v_expand[MAX_COMPONENTS]; | 
|  | } my_upsampler; | 
|  |  | 
|  | typedef my_upsampler * my_upsample_ptr; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize for an upsampling pass. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | start_pass_upsample (j_decompress_ptr cinfo) | 
|  | { | 
|  | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | 
|  |  | 
|  | /* Mark the conversion buffer empty */ | 
|  | upsample->next_row_out = cinfo->max_v_samp_factor; | 
|  | /* Initialize total-height counter for detecting bottom of image */ | 
|  | upsample->rows_to_go = cinfo->output_height; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Control routine to do upsampling (and color conversion). | 
|  | * | 
|  | * In this version we upsample each component independently. | 
|  | * We upsample one row group into the conversion buffer, then apply | 
|  | * color conversion a row at a time. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | sep_upsample (j_decompress_ptr cinfo, | 
|  | JSAMPIMAGE input_buf, JDIMENSION *in_row_group_ctr, | 
|  | JDIMENSION in_row_groups_avail, | 
|  | JSAMPARRAY output_buf, JDIMENSION *out_row_ctr, | 
|  | JDIMENSION out_rows_avail) | 
|  | { | 
|  | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | 
|  | int ci; | 
|  | jpeg_component_info * compptr; | 
|  | JDIMENSION num_rows; | 
|  |  | 
|  | /* Fill the conversion buffer, if it's empty */ | 
|  | if (upsample->next_row_out >= cinfo->max_v_samp_factor) { | 
|  | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 
|  | ci++, compptr++) { | 
|  | /* Invoke per-component upsample method.  Notice we pass a POINTER | 
|  | * to color_buf[ci], so that fullsize_upsample can change it. | 
|  | */ | 
|  | (*upsample->methods[ci]) (cinfo, compptr, | 
|  | input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]), | 
|  | upsample->color_buf + ci); | 
|  | } | 
|  | upsample->next_row_out = 0; | 
|  | } | 
|  |  | 
|  | /* Color-convert and emit rows */ | 
|  |  | 
|  | /* How many we have in the buffer: */ | 
|  | num_rows = (JDIMENSION) (cinfo->max_v_samp_factor - upsample->next_row_out); | 
|  | /* Not more than the distance to the end of the image.  Need this test | 
|  | * in case the image height is not a multiple of max_v_samp_factor: | 
|  | */ | 
|  | if (num_rows > upsample->rows_to_go) | 
|  | num_rows = upsample->rows_to_go; | 
|  | /* And not more than what the client can accept: */ | 
|  | out_rows_avail -= *out_row_ctr; | 
|  | if (num_rows > out_rows_avail) | 
|  | num_rows = out_rows_avail; | 
|  |  | 
|  | (*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf, | 
|  | (JDIMENSION) upsample->next_row_out, | 
|  | output_buf + *out_row_ctr, | 
|  | (int) num_rows); | 
|  |  | 
|  | /* Adjust counts */ | 
|  | *out_row_ctr += num_rows; | 
|  | upsample->rows_to_go -= num_rows; | 
|  | upsample->next_row_out += num_rows; | 
|  | /* When the buffer is emptied, declare this input row group consumed */ | 
|  | if (upsample->next_row_out >= cinfo->max_v_samp_factor) | 
|  | (*in_row_group_ctr)++; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * These are the routines invoked by sep_upsample to upsample pixel values | 
|  | * of a single component.  One row group is processed per call. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * For full-size components, we just make color_buf[ci] point at the | 
|  | * input buffer, and thus avoid copying any data.  Note that this is | 
|  | * safe only because sep_upsample doesn't declare the input row group | 
|  | * "consumed" until we are done color converting and emitting it. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | fullsize_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | 
|  | { | 
|  | *output_data_ptr = input_data; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is a no-op version used for "uninteresting" components. | 
|  | * These components will not be referenced by color conversion. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | noop_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | 
|  | { | 
|  | *output_data_ptr = NULL;	/* safety check */ | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This version handles any integral sampling ratios. | 
|  | * This is not used for typical JPEG files, so it need not be fast. | 
|  | * Nor, for that matter, is it particularly accurate: the algorithm is | 
|  | * simple replication of the input pixel onto the corresponding output | 
|  | * pixels.  The hi-falutin sampling literature refers to this as a | 
|  | * "box filter".  A box filter tends to introduce visible artifacts, | 
|  | * so if you are actually going to use 3:1 or 4:1 sampling ratios | 
|  | * you would be well advised to improve this code. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | int_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | 
|  | { | 
|  | my_upsample_ptr upsample = (my_upsample_ptr) cinfo->upsample; | 
|  | JSAMPARRAY output_data = *output_data_ptr; | 
|  | register JSAMPROW inptr, outptr; | 
|  | register JSAMPLE invalue; | 
|  | register int h; | 
|  | JSAMPROW outend; | 
|  | int h_expand, v_expand; | 
|  | int inrow, outrow; | 
|  |  | 
|  | h_expand = upsample->h_expand[compptr->component_index]; | 
|  | v_expand = upsample->v_expand[compptr->component_index]; | 
|  |  | 
|  | inrow = outrow = 0; | 
|  | while (outrow < cinfo->max_v_samp_factor) { | 
|  | /* Generate one output row with proper horizontal expansion */ | 
|  | inptr = input_data[inrow]; | 
|  | outptr = output_data[outrow]; | 
|  | outend = outptr + cinfo->output_width; | 
|  | while (outptr < outend) { | 
|  | invalue = *inptr++;	/* don't need GETJSAMPLE() here */ | 
|  | for (h = h_expand; h > 0; h--) { | 
|  | *outptr++ = invalue; | 
|  | } | 
|  | } | 
|  | /* Generate any additional output rows by duplicating the first one */ | 
|  | if (v_expand > 1) { | 
|  | jcopy_sample_rows(output_data, outrow, output_data, outrow+1, | 
|  | v_expand-1, cinfo->output_width); | 
|  | } | 
|  | inrow++; | 
|  | outrow += v_expand; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Fast processing for the common case of 2:1 horizontal and 1:1 vertical. | 
|  | * It's still a box filter. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | h2v1_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | 
|  | { | 
|  | JSAMPARRAY output_data = *output_data_ptr; | 
|  | register JSAMPROW inptr, outptr; | 
|  | register JSAMPLE invalue; | 
|  | JSAMPROW outend; | 
|  | int inrow; | 
|  |  | 
|  | for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | 
|  | inptr = input_data[inrow]; | 
|  | outptr = output_data[inrow]; | 
|  | outend = outptr + cinfo->output_width; | 
|  | while (outptr < outend) { | 
|  | invalue = *inptr++;	/* don't need GETJSAMPLE() here */ | 
|  | *outptr++ = invalue; | 
|  | *outptr++ = invalue; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Fast processing for the common case of 2:1 horizontal and 2:1 vertical. | 
|  | * It's still a box filter. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | h2v2_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | 
|  | { | 
|  | JSAMPARRAY output_data = *output_data_ptr; | 
|  | register JSAMPROW inptr, outptr; | 
|  | register JSAMPLE invalue; | 
|  | JSAMPROW outend; | 
|  | int inrow, outrow; | 
|  |  | 
|  | inrow = outrow = 0; | 
|  | while (outrow < cinfo->max_v_samp_factor) { | 
|  | inptr = input_data[inrow]; | 
|  | outptr = output_data[outrow]; | 
|  | outend = outptr + cinfo->output_width; | 
|  | while (outptr < outend) { | 
|  | invalue = *inptr++;	/* don't need GETJSAMPLE() here */ | 
|  | *outptr++ = invalue; | 
|  | *outptr++ = invalue; | 
|  | } | 
|  | jcopy_sample_rows(output_data, outrow, output_data, outrow+1, | 
|  | 1, cinfo->output_width); | 
|  | inrow++; | 
|  | outrow += 2; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Fancy processing for the common case of 2:1 horizontal and 1:1 vertical. | 
|  | * | 
|  | * The upsampling algorithm is linear interpolation between pixel centers, | 
|  | * also known as a "triangle filter".  This is a good compromise between | 
|  | * speed and visual quality.  The centers of the output pixels are 1/4 and 3/4 | 
|  | * of the way between input pixel centers. | 
|  | * | 
|  | * A note about the "bias" calculations: when rounding fractional values to | 
|  | * integer, we do not want to always round 0.5 up to the next integer. | 
|  | * If we did that, we'd introduce a noticeable bias towards larger values. | 
|  | * Instead, this code is arranged so that 0.5 will be rounded up or down at | 
|  | * alternate pixel locations (a simple ordered dither pattern). | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | h2v1_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | 
|  | { | 
|  | JSAMPARRAY output_data = *output_data_ptr; | 
|  | register JSAMPROW inptr, outptr; | 
|  | register int invalue; | 
|  | register JDIMENSION colctr; | 
|  | int inrow; | 
|  |  | 
|  | for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) { | 
|  | inptr = input_data[inrow]; | 
|  | outptr = output_data[inrow]; | 
|  | /* Special case for first column */ | 
|  | invalue = GETJSAMPLE(*inptr++); | 
|  | *outptr++ = (JSAMPLE) invalue; | 
|  | *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2); | 
|  |  | 
|  | for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { | 
|  | /* General case: 3/4 * nearer pixel + 1/4 * further pixel */ | 
|  | invalue = GETJSAMPLE(*inptr++) * 3; | 
|  | *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2); | 
|  | *outptr++ = (JSAMPLE) ((invalue + GETJSAMPLE(*inptr) + 2) >> 2); | 
|  | } | 
|  |  | 
|  | /* Special case for last column */ | 
|  | invalue = GETJSAMPLE(*inptr); | 
|  | *outptr++ = (JSAMPLE) ((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2); | 
|  | *outptr++ = (JSAMPLE) invalue; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Fancy processing for the common case of 2:1 horizontal and 2:1 vertical. | 
|  | * Again a triangle filter; see comments for h2v1 case, above. | 
|  | * | 
|  | * It is OK for us to reference the adjacent input rows because we demanded | 
|  | * context from the main buffer controller (see initialization code). | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | h2v2_fancy_upsample (j_decompress_ptr cinfo, jpeg_component_info * compptr, | 
|  | JSAMPARRAY input_data, JSAMPARRAY * output_data_ptr) | 
|  | { | 
|  | JSAMPARRAY output_data = *output_data_ptr; | 
|  | register JSAMPROW inptr0, inptr1, outptr; | 
|  | #if BITS_IN_JSAMPLE == 8 | 
|  | register int thiscolsum, lastcolsum, nextcolsum; | 
|  | #else | 
|  | register INT32 thiscolsum, lastcolsum, nextcolsum; | 
|  | #endif | 
|  | register JDIMENSION colctr; | 
|  | int inrow, outrow, v; | 
|  |  | 
|  | inrow = outrow = 0; | 
|  | while (outrow < cinfo->max_v_samp_factor) { | 
|  | for (v = 0; v < 2; v++) { | 
|  | /* inptr0 points to nearest input row, inptr1 points to next nearest */ | 
|  | inptr0 = input_data[inrow]; | 
|  | if (v == 0)		/* next nearest is row above */ | 
|  | inptr1 = input_data[inrow-1]; | 
|  | else			/* next nearest is row below */ | 
|  | inptr1 = input_data[inrow+1]; | 
|  | outptr = output_data[outrow++]; | 
|  |  | 
|  | /* Special case for first column */ | 
|  | thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); | 
|  | nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); | 
|  | *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 8) >> 4); | 
|  | *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); | 
|  | lastcolsum = thiscolsum; thiscolsum = nextcolsum; | 
|  |  | 
|  | for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) { | 
|  | /* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */ | 
|  | /* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */ | 
|  | nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++); | 
|  | *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); | 
|  | *outptr++ = (JSAMPLE) ((thiscolsum * 3 + nextcolsum + 7) >> 4); | 
|  | lastcolsum = thiscolsum; thiscolsum = nextcolsum; | 
|  | } | 
|  |  | 
|  | /* Special case for last column */ | 
|  | *outptr++ = (JSAMPLE) ((thiscolsum * 3 + lastcolsum + 8) >> 4); | 
|  | *outptr++ = (JSAMPLE) ((thiscolsum * 4 + 7) >> 4); | 
|  | } | 
|  | inrow++; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Module initialization routine for upsampling. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jinit_upsampler (j_decompress_ptr cinfo) | 
|  | { | 
|  | my_upsample_ptr upsample; | 
|  | int ci; | 
|  | jpeg_component_info * compptr; | 
|  | boolean need_buffer, do_fancy; | 
|  | int h_in_group, v_in_group, h_out_group, v_out_group; | 
|  |  | 
|  | upsample = (my_upsample_ptr) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | SIZEOF(my_upsampler)); | 
|  | cinfo->upsample = (struct jpeg_upsampler *) upsample; | 
|  | upsample->pub.start_pass = start_pass_upsample; | 
|  | upsample->pub.upsample = sep_upsample; | 
|  | upsample->pub.need_context_rows = FALSE; /* until we find out differently */ | 
|  |  | 
|  | if (cinfo->CCIR601_sampling)	/* this isn't supported */ | 
|  | ERREXIT(cinfo, JERR_CCIR601_NOTIMPL); | 
|  |  | 
|  | /* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1, | 
|  | * so don't ask for it. | 
|  | */ | 
|  | do_fancy = cinfo->do_fancy_upsampling && cinfo->min_DCT_scaled_size > 1; | 
|  |  | 
|  | /* Verify we can handle the sampling factors, select per-component methods, | 
|  | * and create storage as needed. | 
|  | */ | 
|  | for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components; | 
|  | ci++, compptr++) { | 
|  | /* Compute size of an "input group" after IDCT scaling.  This many samples | 
|  | * are to be converted to max_h_samp_factor * max_v_samp_factor pixels. | 
|  | */ | 
|  | h_in_group = (compptr->h_samp_factor * compptr->DCT_scaled_size) / | 
|  | cinfo->min_DCT_scaled_size; | 
|  | v_in_group = (compptr->v_samp_factor * compptr->DCT_scaled_size) / | 
|  | cinfo->min_DCT_scaled_size; | 
|  | h_out_group = cinfo->max_h_samp_factor; | 
|  | v_out_group = cinfo->max_v_samp_factor; | 
|  | upsample->rowgroup_height[ci] = v_in_group; /* save for use later */ | 
|  | need_buffer = TRUE; | 
|  | if (! compptr->component_needed) { | 
|  | /* Don't bother to upsample an uninteresting component. */ | 
|  | upsample->methods[ci] = noop_upsample; | 
|  | need_buffer = FALSE; | 
|  | } else if (h_in_group == h_out_group && v_in_group == v_out_group) { | 
|  | /* Fullsize components can be processed without any work. */ | 
|  | upsample->methods[ci] = fullsize_upsample; | 
|  | need_buffer = FALSE; | 
|  | } else if (h_in_group * 2 == h_out_group && | 
|  | v_in_group == v_out_group) { | 
|  | /* Special cases for 2h1v upsampling */ | 
|  | if (do_fancy && compptr->downsampled_width > 2) | 
|  | upsample->methods[ci] = h2v1_fancy_upsample; | 
|  | else | 
|  | upsample->methods[ci] = h2v1_upsample; | 
|  | } else if (h_in_group * 2 == h_out_group && | 
|  | v_in_group * 2 == v_out_group) { | 
|  | /* Special cases for 2h2v upsampling */ | 
|  | if (do_fancy && compptr->downsampled_width > 2) { | 
|  | upsample->methods[ci] = h2v2_fancy_upsample; | 
|  | upsample->pub.need_context_rows = TRUE; | 
|  | } else | 
|  | upsample->methods[ci] = h2v2_upsample; | 
|  | } else if ((h_out_group % h_in_group) == 0 && | 
|  | (v_out_group % v_in_group) == 0) { | 
|  | /* Generic integral-factors upsampling method */ | 
|  | upsample->methods[ci] = int_upsample; | 
|  | upsample->h_expand[ci] = (UINT8) (h_out_group / h_in_group); | 
|  | upsample->v_expand[ci] = (UINT8) (v_out_group / v_in_group); | 
|  | } else | 
|  | ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL); | 
|  | if (need_buffer) { | 
|  | upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray) | 
|  | ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | (JDIMENSION) jround_up((long) cinfo->output_width, | 
|  | (long) cinfo->max_h_samp_factor), | 
|  | (JDIMENSION) cinfo->max_v_samp_factor); | 
|  | } | 
|  | } | 
|  | } |