|  | /* | 
|  | * jmemmgr.c | 
|  | * | 
|  | * Copyright (C) 1991-1997, Thomas G. Lane. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains the JPEG system-independent memory management | 
|  | * routines.  This code is usable across a wide variety of machines; most | 
|  | * of the system dependencies have been isolated in a separate file. | 
|  | * The major functions provided here are: | 
|  | *   * pool-based allocation and freeing of memory; | 
|  | *   * policy decisions about how to divide available memory among the | 
|  | *     virtual arrays; | 
|  | *   * control logic for swapping virtual arrays between main memory and | 
|  | *     backing storage. | 
|  | * The separate system-dependent file provides the actual backing-storage | 
|  | * access code, and it contains the policy decision about how much total | 
|  | * main memory to use. | 
|  | * This file is system-dependent in the sense that some of its functions | 
|  | * are unnecessary in some systems.  For example, if there is enough virtual | 
|  | * memory so that backing storage will never be used, much of the virtual | 
|  | * array control logic could be removed.  (Of course, if you have that much | 
|  | * memory then you shouldn't care about a little bit of unused code...) | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #define AM_MEMORY_MANAGER	/* we define jvirt_Xarray_control structs */ | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  | #include "jmemsys.h"		/* import the system-dependent declarations */ | 
|  |  | 
|  | #ifndef NO_GETENV | 
|  | #ifndef HAVE_STDLIB_H		/* <stdlib.h> should declare getenv() */ | 
|  | extern char * getenv JPP((const char * name)); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Some important notes: | 
|  | *   The allocation routines provided here must never return NULL. | 
|  | *   They should exit to error_exit if unsuccessful. | 
|  | * | 
|  | *   It's not a good idea to try to merge the sarray and barray routines, | 
|  | *   even though they are textually almost the same, because samples are | 
|  | *   usually stored as bytes while coefficients are shorts or ints.  Thus, | 
|  | *   in machines where byte pointers have a different representation from | 
|  | *   word pointers, the resulting machine code could not be the same. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Many machines require storage alignment: longs must start on 4-byte | 
|  | * boundaries, doubles on 8-byte boundaries, etc.  On such machines, malloc() | 
|  | * always returns pointers that are multiples of the worst-case alignment | 
|  | * requirement, and we had better do so too. | 
|  | * There isn't any really portable way to determine the worst-case alignment | 
|  | * requirement.  This module assumes that the alignment requirement is | 
|  | * multiples of sizeof(ALIGN_TYPE). | 
|  | * By default, we define ALIGN_TYPE as double.  This is necessary on some | 
|  | * workstations (where doubles really do need 8-byte alignment) and will work | 
|  | * fine on nearly everything.  If your machine has lesser alignment needs, | 
|  | * you can save a few bytes by making ALIGN_TYPE smaller. | 
|  | * The only place I know of where this will NOT work is certain Macintosh | 
|  | * 680x0 compilers that define double as a 10-byte IEEE extended float. | 
|  | * Doing 10-byte alignment is counterproductive because longwords won't be | 
|  | * aligned well.  Put "#define ALIGN_TYPE long" in jconfig.h if you have | 
|  | * such a compiler. | 
|  | */ | 
|  |  | 
|  | #ifndef ALIGN_TYPE		/* so can override from jconfig.h */ | 
|  | #define ALIGN_TYPE  double | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * We allocate objects from "pools", where each pool is gotten with a single | 
|  | * request to jpeg_get_small() or jpeg_get_large().  There is no per-object | 
|  | * overhead within a pool, except for alignment padding.  Each pool has a | 
|  | * header with a link to the next pool of the same class. | 
|  | * Small and large pool headers are identical except that the latter's | 
|  | * link pointer must be FAR on 80x86 machines. | 
|  | * Notice that the "real" header fields are union'ed with a dummy ALIGN_TYPE | 
|  | * field.  This forces the compiler to make SIZEOF(small_pool_hdr) a multiple | 
|  | * of the alignment requirement of ALIGN_TYPE. | 
|  | */ | 
|  |  | 
|  | typedef union small_pool_struct * small_pool_ptr; | 
|  |  | 
|  | typedef union small_pool_struct { | 
|  | struct { | 
|  | small_pool_ptr next;	/* next in list of pools */ | 
|  | size_t bytes_used;		/* how many bytes already used within pool */ | 
|  | size_t bytes_left;		/* bytes still available in this pool */ | 
|  | } hdr; | 
|  | ALIGN_TYPE dummy;		/* included in union to ensure alignment */ | 
|  | } small_pool_hdr; | 
|  |  | 
|  | typedef union large_pool_struct FAR * large_pool_ptr; | 
|  |  | 
|  | typedef union large_pool_struct { | 
|  | struct { | 
|  | large_pool_ptr next;	/* next in list of pools */ | 
|  | size_t bytes_used;		/* how many bytes already used within pool */ | 
|  | size_t bytes_left;		/* bytes still available in this pool */ | 
|  | } hdr; | 
|  | ALIGN_TYPE dummy;		/* included in union to ensure alignment */ | 
|  | } large_pool_hdr; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Here is the full definition of a memory manager object. | 
|  | */ | 
|  |  | 
|  | typedef struct { | 
|  | struct jpeg_memory_mgr pub;	/* public fields */ | 
|  |  | 
|  | /* Each pool identifier (lifetime class) names a linked list of pools. */ | 
|  | small_pool_ptr small_list[JPOOL_NUMPOOLS]; | 
|  | large_pool_ptr large_list[JPOOL_NUMPOOLS]; | 
|  |  | 
|  | /* Since we only have one lifetime class of virtual arrays, only one | 
|  | * linked list is necessary (for each datatype).  Note that the virtual | 
|  | * array control blocks being linked together are actually stored somewhere | 
|  | * in the small-pool list. | 
|  | */ | 
|  | jvirt_sarray_ptr virt_sarray_list; | 
|  | jvirt_barray_ptr virt_barray_list; | 
|  |  | 
|  | /* This counts total space obtained from jpeg_get_small/large */ | 
|  | long total_space_allocated; | 
|  |  | 
|  | /* alloc_sarray and alloc_barray set this value for use by virtual | 
|  | * array routines. | 
|  | */ | 
|  | JDIMENSION last_rowsperchunk;	/* from most recent alloc_sarray/barray */ | 
|  | } my_memory_mgr; | 
|  |  | 
|  | typedef my_memory_mgr * my_mem_ptr; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The control blocks for virtual arrays. | 
|  | * Note that these blocks are allocated in the "small" pool area. | 
|  | * System-dependent info for the associated backing store (if any) is hidden | 
|  | * inside the backing_store_info struct. | 
|  | */ | 
|  |  | 
|  | struct jvirt_sarray_control { | 
|  | JSAMPARRAY mem_buffer;	/* => the in-memory buffer */ | 
|  | JDIMENSION rows_in_array;	/* total virtual array height */ | 
|  | JDIMENSION samplesperrow;	/* width of array (and of memory buffer) */ | 
|  | JDIMENSION maxaccess;		/* max rows accessed by access_virt_sarray */ | 
|  | JDIMENSION rows_in_mem;	/* height of memory buffer */ | 
|  | JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */ | 
|  | JDIMENSION cur_start_row;	/* first logical row # in the buffer */ | 
|  | JDIMENSION first_undef_row;	/* row # of first uninitialized row */ | 
|  | boolean pre_zero;		/* pre-zero mode requested? */ | 
|  | boolean dirty;		/* do current buffer contents need written? */ | 
|  | boolean b_s_open;		/* is backing-store data valid? */ | 
|  | jvirt_sarray_ptr next;	/* link to next virtual sarray control block */ | 
|  | backing_store_info b_s_info;	/* System-dependent control info */ | 
|  | }; | 
|  |  | 
|  | struct jvirt_barray_control { | 
|  | JBLOCKARRAY mem_buffer;	/* => the in-memory buffer */ | 
|  | JDIMENSION rows_in_array;	/* total virtual array height */ | 
|  | JDIMENSION blocksperrow;	/* width of array (and of memory buffer) */ | 
|  | JDIMENSION maxaccess;		/* max rows accessed by access_virt_barray */ | 
|  | JDIMENSION rows_in_mem;	/* height of memory buffer */ | 
|  | JDIMENSION rowsperchunk;	/* allocation chunk size in mem_buffer */ | 
|  | JDIMENSION cur_start_row;	/* first logical row # in the buffer */ | 
|  | JDIMENSION first_undef_row;	/* row # of first uninitialized row */ | 
|  | boolean pre_zero;		/* pre-zero mode requested? */ | 
|  | boolean dirty;		/* do current buffer contents need written? */ | 
|  | boolean b_s_open;		/* is backing-store data valid? */ | 
|  | jvirt_barray_ptr next;	/* link to next virtual barray control block */ | 
|  | backing_store_info b_s_info;	/* System-dependent control info */ | 
|  | }; | 
|  |  | 
|  |  | 
|  | #ifdef MEM_STATS		/* optional extra stuff for statistics */ | 
|  |  | 
|  | LOCAL(void) | 
|  | print_mem_stats (j_common_ptr cinfo, int pool_id) | 
|  | { | 
|  | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 
|  | small_pool_ptr shdr_ptr; | 
|  | large_pool_ptr lhdr_ptr; | 
|  |  | 
|  | /* Since this is only a debugging stub, we can cheat a little by using | 
|  | * fprintf directly rather than going through the trace message code. | 
|  | * This is helpful because message parm array can't handle longs. | 
|  | */ | 
|  | fprintf(stderr, "Freeing pool %d, total space = %ld\n", | 
|  | pool_id, mem->total_space_allocated); | 
|  |  | 
|  | for (lhdr_ptr = mem->large_list[pool_id]; lhdr_ptr != NULL; | 
|  | lhdr_ptr = lhdr_ptr->hdr.next) { | 
|  | fprintf(stderr, "  Large chunk used %ld\n", | 
|  | (long) lhdr_ptr->hdr.bytes_used); | 
|  | } | 
|  |  | 
|  | for (shdr_ptr = mem->small_list[pool_id]; shdr_ptr != NULL; | 
|  | shdr_ptr = shdr_ptr->hdr.next) { | 
|  | fprintf(stderr, "  Small chunk used %ld free %ld\n", | 
|  | (long) shdr_ptr->hdr.bytes_used, | 
|  | (long) shdr_ptr->hdr.bytes_left); | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif /* MEM_STATS */ | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | out_of_memory (j_common_ptr cinfo, int which) | 
|  | /* Report an out-of-memory error and stop execution */ | 
|  | /* If we compiled MEM_STATS support, report alloc requests before dying */ | 
|  | { | 
|  | #ifdef MEM_STATS | 
|  | cinfo->err->trace_level = 2;	/* force self_destruct to report stats */ | 
|  | #endif | 
|  | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, which); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Allocation of "small" objects. | 
|  | * | 
|  | * For these, we use pooled storage.  When a new pool must be created, | 
|  | * we try to get enough space for the current request plus a "slop" factor, | 
|  | * where the slop will be the amount of leftover space in the new pool. | 
|  | * The speed vs. space tradeoff is largely determined by the slop values. | 
|  | * A different slop value is provided for each pool class (lifetime), | 
|  | * and we also distinguish the first pool of a class from later ones. | 
|  | * NOTE: the values given work fairly well on both 16- and 32-bit-int | 
|  | * machines, but may be too small if longs are 64 bits or more. | 
|  | */ | 
|  |  | 
|  | static const size_t first_pool_slop[JPOOL_NUMPOOLS] = | 
|  | { | 
|  | 1600,			/* first PERMANENT pool */ | 
|  | 16000			/* first IMAGE pool */ | 
|  | }; | 
|  |  | 
|  | static const size_t extra_pool_slop[JPOOL_NUMPOOLS] = | 
|  | { | 
|  | 0,			/* additional PERMANENT pools */ | 
|  | 5000			/* additional IMAGE pools */ | 
|  | }; | 
|  |  | 
|  | #define MIN_SLOP  50		/* greater than 0 to avoid futile looping */ | 
|  |  | 
|  |  | 
|  | METHODDEF(void *) | 
|  | alloc_small (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | 
|  | /* Allocate a "small" object */ | 
|  | { | 
|  | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 
|  | small_pool_ptr hdr_ptr, prev_hdr_ptr; | 
|  | char * data_ptr; | 
|  | size_t odd_bytes, min_request, slop; | 
|  |  | 
|  | /* Check for unsatisfiable request (do now to ensure no overflow below) */ | 
|  | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(small_pool_hdr))) | 
|  | out_of_memory(cinfo, 1);	/* request exceeds malloc's ability */ | 
|  |  | 
|  | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | 
|  | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); | 
|  | if (odd_bytes > 0) | 
|  | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; | 
|  |  | 
|  | /* See if space is available in any existing pool */ | 
|  | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | 
|  | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */ | 
|  | prev_hdr_ptr = NULL; | 
|  | hdr_ptr = mem->small_list[pool_id]; | 
|  | while (hdr_ptr != NULL) { | 
|  | if (hdr_ptr->hdr.bytes_left >= sizeofobject) | 
|  | break;			/* found pool with enough space */ | 
|  | prev_hdr_ptr = hdr_ptr; | 
|  | hdr_ptr = hdr_ptr->hdr.next; | 
|  | } | 
|  |  | 
|  | /* Time to make a new pool? */ | 
|  | if (hdr_ptr == NULL) { | 
|  | /* min_request is what we need now, slop is what will be leftover */ | 
|  | min_request = sizeofobject + SIZEOF(small_pool_hdr); | 
|  | if (prev_hdr_ptr == NULL)	/* first pool in class? */ | 
|  | slop = first_pool_slop[pool_id]; | 
|  | else | 
|  | slop = extra_pool_slop[pool_id]; | 
|  | /* Don't ask for more than MAX_ALLOC_CHUNK */ | 
|  | if (slop > (size_t) (MAX_ALLOC_CHUNK-min_request)) | 
|  | slop = (size_t) (MAX_ALLOC_CHUNK-min_request); | 
|  | /* Try to get space, if fail reduce slop and try again */ | 
|  | for (;;) { | 
|  | hdr_ptr = (small_pool_ptr) jpeg_get_small(cinfo, min_request + slop); | 
|  | if (hdr_ptr != NULL) | 
|  | break; | 
|  | slop /= 2; | 
|  | if (slop < MIN_SLOP)	/* give up when it gets real small */ | 
|  | out_of_memory(cinfo, 2); /* jpeg_get_small failed */ | 
|  | } | 
|  | mem->total_space_allocated += min_request + slop; | 
|  | /* Success, initialize the new pool header and add to end of list */ | 
|  | hdr_ptr->hdr.next = NULL; | 
|  | hdr_ptr->hdr.bytes_used = 0; | 
|  | hdr_ptr->hdr.bytes_left = sizeofobject + slop; | 
|  | if (prev_hdr_ptr == NULL)	/* first pool in class? */ | 
|  | mem->small_list[pool_id] = hdr_ptr; | 
|  | else | 
|  | prev_hdr_ptr->hdr.next = hdr_ptr; | 
|  | } | 
|  |  | 
|  | /* OK, allocate the object from the current pool */ | 
|  | data_ptr = (char *) (hdr_ptr + 1); /* point to first data byte in pool */ | 
|  | data_ptr += hdr_ptr->hdr.bytes_used; /* point to place for object */ | 
|  | hdr_ptr->hdr.bytes_used += sizeofobject; | 
|  | hdr_ptr->hdr.bytes_left -= sizeofobject; | 
|  |  | 
|  | return (void *) data_ptr; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Allocation of "large" objects. | 
|  | * | 
|  | * The external semantics of these are the same as "small" objects, | 
|  | * except that FAR pointers are used on 80x86.  However the pool | 
|  | * management heuristics are quite different.  We assume that each | 
|  | * request is large enough that it may as well be passed directly to | 
|  | * jpeg_get_large; the pool management just links everything together | 
|  | * so that we can free it all on demand. | 
|  | * Note: the major use of "large" objects is in JSAMPARRAY and JBLOCKARRAY | 
|  | * structures.  The routines that create these structures (see below) | 
|  | * deliberately bunch rows together to ensure a large request size. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void FAR *) | 
|  | alloc_large (j_common_ptr cinfo, int pool_id, size_t sizeofobject) | 
|  | /* Allocate a "large" object */ | 
|  | { | 
|  | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 
|  | large_pool_ptr hdr_ptr; | 
|  | size_t odd_bytes; | 
|  |  | 
|  | /* Check for unsatisfiable request (do now to ensure no overflow below) */ | 
|  | if (sizeofobject > (size_t) (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr))) | 
|  | out_of_memory(cinfo, 3);	/* request exceeds malloc's ability */ | 
|  |  | 
|  | /* Round up the requested size to a multiple of SIZEOF(ALIGN_TYPE) */ | 
|  | odd_bytes = sizeofobject % SIZEOF(ALIGN_TYPE); | 
|  | if (odd_bytes > 0) | 
|  | sizeofobject += SIZEOF(ALIGN_TYPE) - odd_bytes; | 
|  |  | 
|  | /* Always make a new pool */ | 
|  | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | 
|  | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */ | 
|  |  | 
|  | hdr_ptr = (large_pool_ptr) jpeg_get_large(cinfo, sizeofobject + | 
|  | SIZEOF(large_pool_hdr)); | 
|  | if (hdr_ptr == NULL) | 
|  | out_of_memory(cinfo, 4);	/* jpeg_get_large failed */ | 
|  | mem->total_space_allocated += sizeofobject + SIZEOF(large_pool_hdr); | 
|  |  | 
|  | /* Success, initialize the new pool header and add to list */ | 
|  | hdr_ptr->hdr.next = mem->large_list[pool_id]; | 
|  | /* We maintain space counts in each pool header for statistical purposes, | 
|  | * even though they are not needed for allocation. | 
|  | */ | 
|  | hdr_ptr->hdr.bytes_used = sizeofobject; | 
|  | hdr_ptr->hdr.bytes_left = 0; | 
|  | mem->large_list[pool_id] = hdr_ptr; | 
|  |  | 
|  | return (void FAR *) (hdr_ptr + 1); /* point to first data byte in pool */ | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Creation of 2-D sample arrays. | 
|  | * The pointers are in near heap, the samples themselves in FAR heap. | 
|  | * | 
|  | * To minimize allocation overhead and to allow I/O of large contiguous | 
|  | * blocks, we allocate the sample rows in groups of as many rows as possible | 
|  | * without exceeding MAX_ALLOC_CHUNK total bytes per allocation request. | 
|  | * NB: the virtual array control routines, later in this file, know about | 
|  | * this chunking of rows.  The rowsperchunk value is left in the mem manager | 
|  | * object so that it can be saved away if this sarray is the workspace for | 
|  | * a virtual array. | 
|  | */ | 
|  |  | 
|  | METHODDEF(JSAMPARRAY) | 
|  | alloc_sarray (j_common_ptr cinfo, int pool_id, | 
|  | JDIMENSION samplesperrow, JDIMENSION numrows) | 
|  | /* Allocate a 2-D sample array */ | 
|  | { | 
|  | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 
|  | JSAMPARRAY result; | 
|  | JSAMPROW workspace; | 
|  | JDIMENSION rowsperchunk, currow, i; | 
|  | long ltemp; | 
|  |  | 
|  | /* Calculate max # of rows allowed in one allocation chunk */ | 
|  | ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / | 
|  | ((long) samplesperrow * SIZEOF(JSAMPLE)); | 
|  | if (ltemp <= 0) | 
|  | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | 
|  | if (ltemp < (long) numrows) | 
|  | rowsperchunk = (JDIMENSION) ltemp; | 
|  | else | 
|  | rowsperchunk = numrows; | 
|  | mem->last_rowsperchunk = rowsperchunk; | 
|  |  | 
|  | /* Get space for row pointers (small object) */ | 
|  | result = (JSAMPARRAY) alloc_small(cinfo, pool_id, | 
|  | (size_t) (numrows * SIZEOF(JSAMPROW))); | 
|  |  | 
|  | /* Get the rows themselves (large objects) */ | 
|  | currow = 0; | 
|  | while (currow < numrows) { | 
|  | rowsperchunk = MIN(rowsperchunk, numrows - currow); | 
|  | workspace = (JSAMPROW) alloc_large(cinfo, pool_id, | 
|  | (size_t) ((size_t) rowsperchunk * (size_t) samplesperrow | 
|  | * SIZEOF(JSAMPLE))); | 
|  | for (i = rowsperchunk; i > 0; i--) { | 
|  | result[currow++] = workspace; | 
|  | workspace += samplesperrow; | 
|  | } | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Creation of 2-D coefficient-block arrays. | 
|  | * This is essentially the same as the code for sample arrays, above. | 
|  | */ | 
|  |  | 
|  | METHODDEF(JBLOCKARRAY) | 
|  | alloc_barray (j_common_ptr cinfo, int pool_id, | 
|  | JDIMENSION blocksperrow, JDIMENSION numrows) | 
|  | /* Allocate a 2-D coefficient-block array */ | 
|  | { | 
|  | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 
|  | JBLOCKARRAY result; | 
|  | JBLOCKROW workspace; | 
|  | JDIMENSION rowsperchunk, currow, i; | 
|  | long ltemp; | 
|  |  | 
|  | /* Calculate max # of rows allowed in one allocation chunk */ | 
|  | ltemp = (MAX_ALLOC_CHUNK-SIZEOF(large_pool_hdr)) / | 
|  | ((long) blocksperrow * SIZEOF(JBLOCK)); | 
|  | if (ltemp <= 0) | 
|  | ERREXIT(cinfo, JERR_WIDTH_OVERFLOW); | 
|  | if (ltemp < (long) numrows) | 
|  | rowsperchunk = (JDIMENSION) ltemp; | 
|  | else | 
|  | rowsperchunk = numrows; | 
|  | mem->last_rowsperchunk = rowsperchunk; | 
|  |  | 
|  | /* Get space for row pointers (small object) */ | 
|  | result = (JBLOCKARRAY) alloc_small(cinfo, pool_id, | 
|  | (size_t) (numrows * SIZEOF(JBLOCKROW))); | 
|  |  | 
|  | /* Get the rows themselves (large objects) */ | 
|  | currow = 0; | 
|  | while (currow < numrows) { | 
|  | rowsperchunk = MIN(rowsperchunk, numrows - currow); | 
|  | workspace = (JBLOCKROW) alloc_large(cinfo, pool_id, | 
|  | (size_t) ((size_t) rowsperchunk * (size_t) blocksperrow | 
|  | * SIZEOF(JBLOCK))); | 
|  | for (i = rowsperchunk; i > 0; i--) { | 
|  | result[currow++] = workspace; | 
|  | workspace += blocksperrow; | 
|  | } | 
|  | } | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * About virtual array management: | 
|  | * | 
|  | * The above "normal" array routines are only used to allocate strip buffers | 
|  | * (as wide as the image, but just a few rows high).  Full-image-sized buffers | 
|  | * are handled as "virtual" arrays.  The array is still accessed a strip at a | 
|  | * time, but the memory manager must save the whole array for repeated | 
|  | * accesses.  The intended implementation is that there is a strip buffer in | 
|  | * memory (as high as is possible given the desired memory limit), plus a | 
|  | * backing file that holds the rest of the array. | 
|  | * | 
|  | * The request_virt_array routines are told the total size of the image and | 
|  | * the maximum number of rows that will be accessed at once.  The in-memory | 
|  | * buffer must be at least as large as the maxaccess value. | 
|  | * | 
|  | * The request routines create control blocks but not the in-memory buffers. | 
|  | * That is postponed until realize_virt_arrays is called.  At that time the | 
|  | * total amount of space needed is known (approximately, anyway), so free | 
|  | * memory can be divided up fairly. | 
|  | * | 
|  | * The access_virt_array routines are responsible for making a specific strip | 
|  | * area accessible (after reading or writing the backing file, if necessary). | 
|  | * Note that the access routines are told whether the caller intends to modify | 
|  | * the accessed strip; during a read-only pass this saves having to rewrite | 
|  | * data to disk.  The access routines are also responsible for pre-zeroing | 
|  | * any newly accessed rows, if pre-zeroing was requested. | 
|  | * | 
|  | * In current usage, the access requests are usually for nonoverlapping | 
|  | * strips; that is, successive access start_row numbers differ by exactly | 
|  | * num_rows = maxaccess.  This means we can get good performance with simple | 
|  | * buffer dump/reload logic, by making the in-memory buffer be a multiple | 
|  | * of the access height; then there will never be accesses across bufferload | 
|  | * boundaries.  The code will still work with overlapping access requests, | 
|  | * but it doesn't handle bufferload overlaps very efficiently. | 
|  | */ | 
|  |  | 
|  |  | 
|  | METHODDEF(jvirt_sarray_ptr) | 
|  | request_virt_sarray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | 
|  | JDIMENSION samplesperrow, JDIMENSION numrows, | 
|  | JDIMENSION maxaccess) | 
|  | /* Request a virtual 2-D sample array */ | 
|  | { | 
|  | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 
|  | jvirt_sarray_ptr result; | 
|  |  | 
|  | /* Only IMAGE-lifetime virtual arrays are currently supported */ | 
|  | if (pool_id != JPOOL_IMAGE) | 
|  | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */ | 
|  |  | 
|  | /* get control block */ | 
|  | result = (jvirt_sarray_ptr) alloc_small(cinfo, pool_id, | 
|  | SIZEOF(struct jvirt_sarray_control)); | 
|  |  | 
|  | result->mem_buffer = NULL;	/* marks array not yet realized */ | 
|  | result->rows_in_array = numrows; | 
|  | result->samplesperrow = samplesperrow; | 
|  | result->maxaccess = maxaccess; | 
|  | result->pre_zero = pre_zero; | 
|  | result->b_s_open = FALSE;	/* no associated backing-store object */ | 
|  | result->next = mem->virt_sarray_list; /* add to list of virtual arrays */ | 
|  | mem->virt_sarray_list = result; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | METHODDEF(jvirt_barray_ptr) | 
|  | request_virt_barray (j_common_ptr cinfo, int pool_id, boolean pre_zero, | 
|  | JDIMENSION blocksperrow, JDIMENSION numrows, | 
|  | JDIMENSION maxaccess) | 
|  | /* Request a virtual 2-D coefficient-block array */ | 
|  | { | 
|  | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 
|  | jvirt_barray_ptr result; | 
|  |  | 
|  | /* Only IMAGE-lifetime virtual arrays are currently supported */ | 
|  | if (pool_id != JPOOL_IMAGE) | 
|  | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */ | 
|  |  | 
|  | /* get control block */ | 
|  | result = (jvirt_barray_ptr) alloc_small(cinfo, pool_id, | 
|  | SIZEOF(struct jvirt_barray_control)); | 
|  |  | 
|  | result->mem_buffer = NULL;	/* marks array not yet realized */ | 
|  | result->rows_in_array = numrows; | 
|  | result->blocksperrow = blocksperrow; | 
|  | result->maxaccess = maxaccess; | 
|  | result->pre_zero = pre_zero; | 
|  | result->b_s_open = FALSE;	/* no associated backing-store object */ | 
|  | result->next = mem->virt_barray_list; /* add to list of virtual arrays */ | 
|  | mem->virt_barray_list = result; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  |  | 
|  | METHODDEF(void) | 
|  | realize_virt_arrays (j_common_ptr cinfo) | 
|  | /* Allocate the in-memory buffers for any unrealized virtual arrays */ | 
|  | { | 
|  | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 
|  | long space_per_minheight, maximum_space, avail_mem; | 
|  | long minheights, max_minheights; | 
|  | jvirt_sarray_ptr sptr; | 
|  | jvirt_barray_ptr bptr; | 
|  |  | 
|  | /* Compute the minimum space needed (maxaccess rows in each buffer) | 
|  | * and the maximum space needed (full image height in each buffer). | 
|  | * These may be of use to the system-dependent jpeg_mem_available routine. | 
|  | */ | 
|  | space_per_minheight = 0; | 
|  | maximum_space = 0; | 
|  | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 
|  | if (sptr->mem_buffer == NULL) { /* if not realized yet */ | 
|  | space_per_minheight += (long) sptr->maxaccess * | 
|  | (long) sptr->samplesperrow * SIZEOF(JSAMPLE); | 
|  | maximum_space += (long) sptr->rows_in_array * | 
|  | (long) sptr->samplesperrow * SIZEOF(JSAMPLE); | 
|  | } | 
|  | } | 
|  | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 
|  | if (bptr->mem_buffer == NULL) { /* if not realized yet */ | 
|  | space_per_minheight += (long) bptr->maxaccess * | 
|  | (long) bptr->blocksperrow * SIZEOF(JBLOCK); | 
|  | maximum_space += (long) bptr->rows_in_array * | 
|  | (long) bptr->blocksperrow * SIZEOF(JBLOCK); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (space_per_minheight <= 0) | 
|  | return;			/* no unrealized arrays, no work */ | 
|  |  | 
|  | /* Determine amount of memory to actually use; this is system-dependent. */ | 
|  | avail_mem = jpeg_mem_available(cinfo, space_per_minheight, maximum_space, | 
|  | mem->total_space_allocated); | 
|  |  | 
|  | /* If the maximum space needed is available, make all the buffers full | 
|  | * height; otherwise parcel it out with the same number of minheights | 
|  | * in each buffer. | 
|  | */ | 
|  | if (avail_mem >= maximum_space) | 
|  | max_minheights = 1000000000L; | 
|  | else { | 
|  | max_minheights = avail_mem / space_per_minheight; | 
|  | /* If there doesn't seem to be enough space, try to get the minimum | 
|  | * anyway.  This allows a "stub" implementation of jpeg_mem_available(). | 
|  | */ | 
|  | if (max_minheights <= 0) | 
|  | max_minheights = 1; | 
|  | } | 
|  |  | 
|  | /* Allocate the in-memory buffers and initialize backing store as needed. */ | 
|  |  | 
|  | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 
|  | if (sptr->mem_buffer == NULL) { /* if not realized yet */ | 
|  | minheights = ((long) sptr->rows_in_array - 1L) / sptr->maxaccess + 1L; | 
|  | if (minheights <= max_minheights) { | 
|  | /* This buffer fits in memory */ | 
|  | sptr->rows_in_mem = sptr->rows_in_array; | 
|  | } else { | 
|  | /* It doesn't fit in memory, create backing store. */ | 
|  | sptr->rows_in_mem = (JDIMENSION) (max_minheights * sptr->maxaccess); | 
|  | jpeg_open_backing_store(cinfo, & sptr->b_s_info, | 
|  | (long) sptr->rows_in_array * | 
|  | (long) sptr->samplesperrow * | 
|  | (long) SIZEOF(JSAMPLE)); | 
|  | sptr->b_s_open = TRUE; | 
|  | } | 
|  | sptr->mem_buffer = alloc_sarray(cinfo, JPOOL_IMAGE, | 
|  | sptr->samplesperrow, sptr->rows_in_mem); | 
|  | sptr->rowsperchunk = mem->last_rowsperchunk; | 
|  | sptr->cur_start_row = 0; | 
|  | sptr->first_undef_row = 0; | 
|  | sptr->dirty = FALSE; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 
|  | if (bptr->mem_buffer == NULL) { /* if not realized yet */ | 
|  | minheights = ((long) bptr->rows_in_array - 1L) / bptr->maxaccess + 1L; | 
|  | if (minheights <= max_minheights) { | 
|  | /* This buffer fits in memory */ | 
|  | bptr->rows_in_mem = bptr->rows_in_array; | 
|  | } else { | 
|  | /* It doesn't fit in memory, create backing store. */ | 
|  | bptr->rows_in_mem = (JDIMENSION) (max_minheights * bptr->maxaccess); | 
|  | jpeg_open_backing_store(cinfo, & bptr->b_s_info, | 
|  | (long) bptr->rows_in_array * | 
|  | (long) bptr->blocksperrow * | 
|  | (long) SIZEOF(JBLOCK)); | 
|  | bptr->b_s_open = TRUE; | 
|  | } | 
|  | bptr->mem_buffer = alloc_barray(cinfo, JPOOL_IMAGE, | 
|  | bptr->blocksperrow, bptr->rows_in_mem); | 
|  | bptr->rowsperchunk = mem->last_rowsperchunk; | 
|  | bptr->cur_start_row = 0; | 
|  | bptr->first_undef_row = 0; | 
|  | bptr->dirty = FALSE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | do_sarray_io (j_common_ptr cinfo, jvirt_sarray_ptr ptr, boolean writing) | 
|  | /* Do backing store read or write of a virtual sample array */ | 
|  | { | 
|  | long bytesperrow, file_offset, byte_count, rows, thisrow, i; | 
|  |  | 
|  | bytesperrow = (long) ptr->samplesperrow * SIZEOF(JSAMPLE); | 
|  | file_offset = ptr->cur_start_row * bytesperrow; | 
|  | /* Loop to read or write each allocation chunk in mem_buffer */ | 
|  | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | 
|  | /* One chunk, but check for short chunk at end of buffer */ | 
|  | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); | 
|  | /* Transfer no more than is currently defined */ | 
|  | thisrow = (long) ptr->cur_start_row + i; | 
|  | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); | 
|  | /* Transfer no more than fits in file */ | 
|  | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); | 
|  | if (rows <= 0)		/* this chunk might be past end of file! */ | 
|  | break; | 
|  | byte_count = rows * bytesperrow; | 
|  | if (writing) | 
|  | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | 
|  | (void FAR *) ptr->mem_buffer[i], | 
|  | file_offset, byte_count); | 
|  | else | 
|  | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | 
|  | (void FAR *) ptr->mem_buffer[i], | 
|  | file_offset, byte_count); | 
|  | file_offset += byte_count; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(void) | 
|  | do_barray_io (j_common_ptr cinfo, jvirt_barray_ptr ptr, boolean writing) | 
|  | /* Do backing store read or write of a virtual coefficient-block array */ | 
|  | { | 
|  | long bytesperrow, file_offset, byte_count, rows, thisrow, i; | 
|  |  | 
|  | bytesperrow = (long) ptr->blocksperrow * SIZEOF(JBLOCK); | 
|  | file_offset = ptr->cur_start_row * bytesperrow; | 
|  | /* Loop to read or write each allocation chunk in mem_buffer */ | 
|  | for (i = 0; i < (long) ptr->rows_in_mem; i += ptr->rowsperchunk) { | 
|  | /* One chunk, but check for short chunk at end of buffer */ | 
|  | rows = MIN((long) ptr->rowsperchunk, (long) ptr->rows_in_mem - i); | 
|  | /* Transfer no more than is currently defined */ | 
|  | thisrow = (long) ptr->cur_start_row + i; | 
|  | rows = MIN(rows, (long) ptr->first_undef_row - thisrow); | 
|  | /* Transfer no more than fits in file */ | 
|  | rows = MIN(rows, (long) ptr->rows_in_array - thisrow); | 
|  | if (rows <= 0)		/* this chunk might be past end of file! */ | 
|  | break; | 
|  | byte_count = rows * bytesperrow; | 
|  | if (writing) | 
|  | (*ptr->b_s_info.write_backing_store) (cinfo, & ptr->b_s_info, | 
|  | (void FAR *) ptr->mem_buffer[i], | 
|  | file_offset, byte_count); | 
|  | else | 
|  | (*ptr->b_s_info.read_backing_store) (cinfo, & ptr->b_s_info, | 
|  | (void FAR *) ptr->mem_buffer[i], | 
|  | file_offset, byte_count); | 
|  | file_offset += byte_count; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | METHODDEF(JSAMPARRAY) | 
|  | access_virt_sarray (j_common_ptr cinfo, jvirt_sarray_ptr ptr, | 
|  | JDIMENSION start_row, JDIMENSION num_rows, | 
|  | boolean writable) | 
|  | /* Access the part of a virtual sample array starting at start_row */ | 
|  | /* and extending for num_rows rows.  writable is true if  */ | 
|  | /* caller intends to modify the accessed area. */ | 
|  | { | 
|  | JDIMENSION end_row = start_row + num_rows; | 
|  | JDIMENSION undef_row; | 
|  |  | 
|  | /* debugging check */ | 
|  | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | 
|  | ptr->mem_buffer == NULL) | 
|  | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|  |  | 
|  | /* Make the desired part of the virtual array accessible */ | 
|  | if (start_row < ptr->cur_start_row || | 
|  | end_row > ptr->cur_start_row+ptr->rows_in_mem) { | 
|  | if (! ptr->b_s_open) | 
|  | ERREXIT(cinfo, JERR_VIRTUAL_BUG); | 
|  | /* Flush old buffer contents if necessary */ | 
|  | if (ptr->dirty) { | 
|  | do_sarray_io(cinfo, ptr, TRUE); | 
|  | ptr->dirty = FALSE; | 
|  | } | 
|  | /* Decide what part of virtual array to access. | 
|  | * Algorithm: if target address > current window, assume forward scan, | 
|  | * load starting at target address.  If target address < current window, | 
|  | * assume backward scan, load so that target area is top of window. | 
|  | * Note that when switching from forward write to forward read, will have | 
|  | * start_row = 0, so the limiting case applies and we load from 0 anyway. | 
|  | */ | 
|  | if (start_row > ptr->cur_start_row) { | 
|  | ptr->cur_start_row = start_row; | 
|  | } else { | 
|  | /* use long arithmetic here to avoid overflow & unsigned problems */ | 
|  | long ltemp; | 
|  |  | 
|  | ltemp = (long) end_row - (long) ptr->rows_in_mem; | 
|  | if (ltemp < 0) | 
|  | ltemp = 0;		/* don't fall off front end of file */ | 
|  | ptr->cur_start_row = (JDIMENSION) ltemp; | 
|  | } | 
|  | /* Read in the selected part of the array. | 
|  | * During the initial write pass, we will do no actual read | 
|  | * because the selected part is all undefined. | 
|  | */ | 
|  | do_sarray_io(cinfo, ptr, FALSE); | 
|  | } | 
|  | /* Ensure the accessed part of the array is defined; prezero if needed. | 
|  | * To improve locality of access, we only prezero the part of the array | 
|  | * that the caller is about to access, not the entire in-memory array. | 
|  | */ | 
|  | if (ptr->first_undef_row < end_row) { | 
|  | if (ptr->first_undef_row < start_row) { | 
|  | if (writable)		/* writer skipped over a section of array */ | 
|  | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|  | undef_row = start_row;	/* but reader is allowed to read ahead */ | 
|  | } else { | 
|  | undef_row = ptr->first_undef_row; | 
|  | } | 
|  | if (writable) | 
|  | ptr->first_undef_row = end_row; | 
|  | if (ptr->pre_zero) { | 
|  | size_t bytesperrow = (size_t) ptr->samplesperrow * SIZEOF(JSAMPLE); | 
|  | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | 
|  | end_row -= ptr->cur_start_row; | 
|  | while (undef_row < end_row) { | 
|  | jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | 
|  | undef_row++; | 
|  | } | 
|  | } else { | 
|  | if (! writable)		/* reader looking at undefined data */ | 
|  | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|  | } | 
|  | } | 
|  | /* Flag the buffer dirty if caller will write in it */ | 
|  | if (writable) | 
|  | ptr->dirty = TRUE; | 
|  | /* Return address of proper part of the buffer */ | 
|  | return ptr->mem_buffer + (start_row - ptr->cur_start_row); | 
|  | } | 
|  |  | 
|  |  | 
|  | METHODDEF(JBLOCKARRAY) | 
|  | access_virt_barray (j_common_ptr cinfo, jvirt_barray_ptr ptr, | 
|  | JDIMENSION start_row, JDIMENSION num_rows, | 
|  | boolean writable) | 
|  | /* Access the part of a virtual block array starting at start_row */ | 
|  | /* and extending for num_rows rows.  writable is true if  */ | 
|  | /* caller intends to modify the accessed area. */ | 
|  | { | 
|  | JDIMENSION end_row = start_row + num_rows; | 
|  | JDIMENSION undef_row; | 
|  |  | 
|  | /* debugging check */ | 
|  | if (end_row > ptr->rows_in_array || num_rows > ptr->maxaccess || | 
|  | ptr->mem_buffer == NULL) | 
|  | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|  |  | 
|  | /* Make the desired part of the virtual array accessible */ | 
|  | if (start_row < ptr->cur_start_row || | 
|  | end_row > ptr->cur_start_row+ptr->rows_in_mem) { | 
|  | if (! ptr->b_s_open) | 
|  | ERREXIT(cinfo, JERR_VIRTUAL_BUG); | 
|  | /* Flush old buffer contents if necessary */ | 
|  | if (ptr->dirty) { | 
|  | do_barray_io(cinfo, ptr, TRUE); | 
|  | ptr->dirty = FALSE; | 
|  | } | 
|  | /* Decide what part of virtual array to access. | 
|  | * Algorithm: if target address > current window, assume forward scan, | 
|  | * load starting at target address.  If target address < current window, | 
|  | * assume backward scan, load so that target area is top of window. | 
|  | * Note that when switching from forward write to forward read, will have | 
|  | * start_row = 0, so the limiting case applies and we load from 0 anyway. | 
|  | */ | 
|  | if (start_row > ptr->cur_start_row) { | 
|  | ptr->cur_start_row = start_row; | 
|  | } else { | 
|  | /* use long arithmetic here to avoid overflow & unsigned problems */ | 
|  | long ltemp; | 
|  |  | 
|  | ltemp = (long) end_row - (long) ptr->rows_in_mem; | 
|  | if (ltemp < 0) | 
|  | ltemp = 0;		/* don't fall off front end of file */ | 
|  | ptr->cur_start_row = (JDIMENSION) ltemp; | 
|  | } | 
|  | /* Read in the selected part of the array. | 
|  | * During the initial write pass, we will do no actual read | 
|  | * because the selected part is all undefined. | 
|  | */ | 
|  | do_barray_io(cinfo, ptr, FALSE); | 
|  | } | 
|  | /* Ensure the accessed part of the array is defined; prezero if needed. | 
|  | * To improve locality of access, we only prezero the part of the array | 
|  | * that the caller is about to access, not the entire in-memory array. | 
|  | */ | 
|  | if (ptr->first_undef_row < end_row) { | 
|  | if (ptr->first_undef_row < start_row) { | 
|  | if (writable)		/* writer skipped over a section of array */ | 
|  | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|  | undef_row = start_row;	/* but reader is allowed to read ahead */ | 
|  | } else { | 
|  | undef_row = ptr->first_undef_row; | 
|  | } | 
|  | if (writable) | 
|  | ptr->first_undef_row = end_row; | 
|  | if (ptr->pre_zero) { | 
|  | size_t bytesperrow = (size_t) ptr->blocksperrow * SIZEOF(JBLOCK); | 
|  | undef_row -= ptr->cur_start_row; /* make indexes relative to buffer */ | 
|  | end_row -= ptr->cur_start_row; | 
|  | while (undef_row < end_row) { | 
|  | jzero_far((void FAR *) ptr->mem_buffer[undef_row], bytesperrow); | 
|  | undef_row++; | 
|  | } | 
|  | } else { | 
|  | if (! writable)		/* reader looking at undefined data */ | 
|  | ERREXIT(cinfo, JERR_BAD_VIRTUAL_ACCESS); | 
|  | } | 
|  | } | 
|  | /* Flag the buffer dirty if caller will write in it */ | 
|  | if (writable) | 
|  | ptr->dirty = TRUE; | 
|  | /* Return address of proper part of the buffer */ | 
|  | return ptr->mem_buffer + (start_row - ptr->cur_start_row); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Release all objects belonging to a specified pool. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | free_pool (j_common_ptr cinfo, int pool_id) | 
|  | { | 
|  | my_mem_ptr mem = (my_mem_ptr) cinfo->mem; | 
|  | small_pool_ptr shdr_ptr; | 
|  | large_pool_ptr lhdr_ptr; | 
|  | size_t space_freed; | 
|  |  | 
|  | if (pool_id < 0 || pool_id >= JPOOL_NUMPOOLS) | 
|  | ERREXIT1(cinfo, JERR_BAD_POOL_ID, pool_id);	/* safety check */ | 
|  |  | 
|  | #ifdef MEM_STATS | 
|  | if (cinfo->err->trace_level > 1) | 
|  | print_mem_stats(cinfo, pool_id); /* print pool's memory usage statistics */ | 
|  | #endif | 
|  |  | 
|  | /* If freeing IMAGE pool, close any virtual arrays first */ | 
|  | if (pool_id == JPOOL_IMAGE) { | 
|  | jvirt_sarray_ptr sptr; | 
|  | jvirt_barray_ptr bptr; | 
|  |  | 
|  | for (sptr = mem->virt_sarray_list; sptr != NULL; sptr = sptr->next) { | 
|  | if (sptr->b_s_open) {	/* there may be no backing store */ | 
|  | sptr->b_s_open = FALSE;	/* prevent recursive close if error */ | 
|  | (*sptr->b_s_info.close_backing_store) (cinfo, & sptr->b_s_info); | 
|  | } | 
|  | } | 
|  | mem->virt_sarray_list = NULL; | 
|  | for (bptr = mem->virt_barray_list; bptr != NULL; bptr = bptr->next) { | 
|  | if (bptr->b_s_open) {	/* there may be no backing store */ | 
|  | bptr->b_s_open = FALSE;	/* prevent recursive close if error */ | 
|  | (*bptr->b_s_info.close_backing_store) (cinfo, & bptr->b_s_info); | 
|  | } | 
|  | } | 
|  | mem->virt_barray_list = NULL; | 
|  | } | 
|  |  | 
|  | /* Release large objects */ | 
|  | lhdr_ptr = mem->large_list[pool_id]; | 
|  | mem->large_list[pool_id] = NULL; | 
|  |  | 
|  | while (lhdr_ptr != NULL) { | 
|  | large_pool_ptr next_lhdr_ptr = lhdr_ptr->hdr.next; | 
|  | space_freed = lhdr_ptr->hdr.bytes_used + | 
|  | lhdr_ptr->hdr.bytes_left + | 
|  | SIZEOF(large_pool_hdr); | 
|  | jpeg_free_large(cinfo, (void FAR *) lhdr_ptr, space_freed); | 
|  | mem->total_space_allocated -= space_freed; | 
|  | lhdr_ptr = next_lhdr_ptr; | 
|  | } | 
|  |  | 
|  | /* Release small objects */ | 
|  | shdr_ptr = mem->small_list[pool_id]; | 
|  | mem->small_list[pool_id] = NULL; | 
|  |  | 
|  | while (shdr_ptr != NULL) { | 
|  | small_pool_ptr next_shdr_ptr = shdr_ptr->hdr.next; | 
|  | space_freed = shdr_ptr->hdr.bytes_used + | 
|  | shdr_ptr->hdr.bytes_left + | 
|  | SIZEOF(small_pool_hdr); | 
|  | jpeg_free_small(cinfo, (void *) shdr_ptr, space_freed); | 
|  | mem->total_space_allocated -= space_freed; | 
|  | shdr_ptr = next_shdr_ptr; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Close up shop entirely. | 
|  | * Note that this cannot be called unless cinfo->mem is non-NULL. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | self_destruct (j_common_ptr cinfo) | 
|  | { | 
|  | int pool; | 
|  |  | 
|  | /* Close all backing store, release all memory. | 
|  | * Releasing pools in reverse order might help avoid fragmentation | 
|  | * with some (brain-damaged) malloc libraries. | 
|  | */ | 
|  | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | 
|  | free_pool(cinfo, pool); | 
|  | } | 
|  |  | 
|  | /* Release the memory manager control block too. */ | 
|  | jpeg_free_small(cinfo, (void *) cinfo->mem, SIZEOF(my_memory_mgr)); | 
|  | cinfo->mem = NULL;		/* ensures I will be called only once */ | 
|  |  | 
|  | jpeg_mem_term(cinfo);		/* system-dependent cleanup */ | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Memory manager initialization. | 
|  | * When this is called, only the error manager pointer is valid in cinfo! | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jinit_memory_mgr (j_common_ptr cinfo) | 
|  | { | 
|  | my_mem_ptr mem; | 
|  | long max_to_use; | 
|  | int pool; | 
|  | size_t test_mac; | 
|  |  | 
|  | cinfo->mem = NULL;		/* for safety if init fails */ | 
|  |  | 
|  | /* Check for configuration errors. | 
|  | * SIZEOF(ALIGN_TYPE) should be a power of 2; otherwise, it probably | 
|  | * doesn't reflect any real hardware alignment requirement. | 
|  | * The test is a little tricky: for X>0, X and X-1 have no one-bits | 
|  | * in common if and only if X is a power of 2, ie has only one one-bit. | 
|  | * Some compilers may give an "unreachable code" warning here; ignore it. | 
|  | */ | 
|  | if ((SIZEOF(ALIGN_TYPE) & (SIZEOF(ALIGN_TYPE)-1)) != 0) | 
|  | ERREXIT(cinfo, JERR_BAD_ALIGN_TYPE); | 
|  | /* MAX_ALLOC_CHUNK must be representable as type size_t, and must be | 
|  | * a multiple of SIZEOF(ALIGN_TYPE). | 
|  | * Again, an "unreachable code" warning may be ignored here. | 
|  | * But a "constant too large" warning means you need to fix MAX_ALLOC_CHUNK. | 
|  | */ | 
|  | test_mac = (size_t) MAX_ALLOC_CHUNK; | 
|  | if ((long) test_mac != MAX_ALLOC_CHUNK || | 
|  | (MAX_ALLOC_CHUNK % SIZEOF(ALIGN_TYPE)) != 0) | 
|  | ERREXIT(cinfo, JERR_BAD_ALLOC_CHUNK); | 
|  |  | 
|  | max_to_use = jpeg_mem_init(cinfo); /* system-dependent initialization */ | 
|  |  | 
|  | /* Attempt to allocate memory manager's control block */ | 
|  | mem = (my_mem_ptr) jpeg_get_small(cinfo, SIZEOF(my_memory_mgr)); | 
|  |  | 
|  | if (mem == NULL) { | 
|  | jpeg_mem_term(cinfo);	/* system-dependent cleanup */ | 
|  | ERREXIT1(cinfo, JERR_OUT_OF_MEMORY, 0); | 
|  | } | 
|  |  | 
|  | /* OK, fill in the method pointers */ | 
|  | mem->pub.alloc_small = alloc_small; | 
|  | mem->pub.alloc_large = alloc_large; | 
|  | mem->pub.alloc_sarray = alloc_sarray; | 
|  | mem->pub.alloc_barray = alloc_barray; | 
|  | mem->pub.request_virt_sarray = request_virt_sarray; | 
|  | mem->pub.request_virt_barray = request_virt_barray; | 
|  | mem->pub.realize_virt_arrays = realize_virt_arrays; | 
|  | mem->pub.access_virt_sarray = access_virt_sarray; | 
|  | mem->pub.access_virt_barray = access_virt_barray; | 
|  | mem->pub.free_pool = free_pool; | 
|  | mem->pub.self_destruct = self_destruct; | 
|  |  | 
|  | /* Make MAX_ALLOC_CHUNK accessible to other modules */ | 
|  | mem->pub.max_alloc_chunk = MAX_ALLOC_CHUNK; | 
|  |  | 
|  | /* Initialize working state */ | 
|  | mem->pub.max_memory_to_use = max_to_use; | 
|  |  | 
|  | for (pool = JPOOL_NUMPOOLS-1; pool >= JPOOL_PERMANENT; pool--) { | 
|  | mem->small_list[pool] = NULL; | 
|  | mem->large_list[pool] = NULL; | 
|  | } | 
|  | mem->virt_sarray_list = NULL; | 
|  | mem->virt_barray_list = NULL; | 
|  |  | 
|  | mem->total_space_allocated = SIZEOF(my_memory_mgr); | 
|  |  | 
|  | /* Declare ourselves open for business */ | 
|  | cinfo->mem = & mem->pub; | 
|  |  | 
|  | /* Check for an environment variable JPEGMEM; if found, override the | 
|  | * default max_memory setting from jpeg_mem_init.  Note that the | 
|  | * surrounding application may again override this value. | 
|  | * If your system doesn't support getenv(), define NO_GETENV to disable | 
|  | * this feature. | 
|  | */ | 
|  | #ifndef NO_GETENV | 
|  | { char * memenv; | 
|  |  | 
|  | if ((memenv = getenv("JPEGMEM")) != NULL) { | 
|  | char ch = 'x'; | 
|  |  | 
|  | if (sscanf(memenv, "%ld%c", &max_to_use, &ch) > 0) { | 
|  | if (ch == 'm' || ch == 'M') | 
|  | max_to_use *= 1000L; | 
|  | mem->pub.max_memory_to_use = max_to_use * 1000L; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | } |