| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include <algorithm> |
| |
| #include "base/logging.h" |
| #include "base/memory/scoped_ptr.h" |
| #include "net/quic/congestion_control/rtt_stats.h" |
| #include "net/quic/congestion_control/tcp_cubic_sender.h" |
| #include "net/quic/congestion_control/tcp_receiver.h" |
| #include "net/quic/crypto/crypto_protocol.h" |
| #include "net/quic/quic_utils.h" |
| #include "net/quic/test_tools/mock_clock.h" |
| #include "net/quic/test_tools/quic_config_peer.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| using std::make_pair; |
| using std::min; |
| |
| namespace net { |
| namespace test { |
| |
| // TODO(ianswett): A number of theses tests were written with the assumption of |
| // an initial CWND of 10. They have carefully calculated values which should be |
| // updated to be based on kInitialCongestionWindowInsecure. |
| const uint32 kInitialCongestionWindowPackets = 10; |
| const uint32 kDefaultWindowTCP = |
| kInitialCongestionWindowPackets * kDefaultTCPMSS; |
| const float kRenoBeta = 0.7f; // Reno backoff factor. |
| |
| class TcpCubicSenderPeer : public TcpCubicSender { |
| public: |
| TcpCubicSenderPeer(const QuicClock* clock, |
| bool reno, |
| QuicPacketCount max_tcp_congestion_window) |
| : TcpCubicSender( |
| clock, &rtt_stats_, reno, kInitialCongestionWindowPackets, |
| max_tcp_congestion_window, &stats_) { |
| } |
| |
| QuicPacketCount congestion_window() { |
| return congestion_window_; |
| } |
| |
| QuicPacketCount slowstart_threshold() { |
| return slowstart_threshold_; |
| } |
| |
| const HybridSlowStart& hybrid_slow_start() const { |
| return hybrid_slow_start_; |
| } |
| |
| float GetRenoBeta() const { |
| return RenoBeta(); |
| } |
| |
| RttStats rtt_stats_; |
| QuicConnectionStats stats_; |
| }; |
| |
| class TcpCubicSenderTest : public ::testing::Test { |
| protected: |
| TcpCubicSenderTest() |
| : one_ms_(QuicTime::Delta::FromMilliseconds(1)), |
| sender_(new TcpCubicSenderPeer(&clock_, true, |
| kMaxTcpCongestionWindow)), |
| receiver_(new TcpReceiver()), |
| sequence_number_(1), |
| acked_sequence_number_(0), |
| bytes_in_flight_(0) { |
| standard_packet_.bytes_sent = kDefaultTCPMSS; |
| } |
| |
| int SendAvailableSendWindow() { |
| // Send as long as TimeUntilSend returns Zero. |
| int packets_sent = 0; |
| bool can_send = sender_->TimeUntilSend( |
| clock_.Now(), bytes_in_flight_, HAS_RETRANSMITTABLE_DATA).IsZero(); |
| while (can_send) { |
| sender_->OnPacketSent(clock_.Now(), bytes_in_flight_, sequence_number_++, |
| kDefaultTCPMSS, HAS_RETRANSMITTABLE_DATA); |
| ++packets_sent; |
| bytes_in_flight_ += kDefaultTCPMSS; |
| can_send = sender_->TimeUntilSend( |
| clock_.Now(), bytes_in_flight_, HAS_RETRANSMITTABLE_DATA).IsZero(); |
| } |
| return packets_sent; |
| } |
| |
| // Normal is that TCP acks every other segment. |
| void AckNPackets(int n) { |
| sender_->rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(60), |
| QuicTime::Delta::Zero(), |
| clock_.Now()); |
| SendAlgorithmInterface::CongestionVector acked_packets; |
| SendAlgorithmInterface::CongestionVector lost_packets; |
| for (int i = 0; i < n; ++i) { |
| ++acked_sequence_number_; |
| acked_packets.push_back( |
| make_pair(acked_sequence_number_, standard_packet_)); |
| } |
| sender_->OnCongestionEvent( |
| true, bytes_in_flight_, acked_packets, lost_packets); |
| bytes_in_flight_ -= n * kDefaultTCPMSS; |
| clock_.AdvanceTime(one_ms_); |
| } |
| |
| void LoseNPackets(int n) { |
| SendAlgorithmInterface::CongestionVector acked_packets; |
| SendAlgorithmInterface::CongestionVector lost_packets; |
| for (int i = 0; i < n; ++i) { |
| ++acked_sequence_number_; |
| lost_packets.push_back( |
| make_pair(acked_sequence_number_, standard_packet_)); |
| } |
| sender_->OnCongestionEvent( |
| false, bytes_in_flight_, acked_packets, lost_packets); |
| bytes_in_flight_ -= n * kDefaultTCPMSS; |
| } |
| |
| // Does not increment acked_sequence_number_. |
| void LosePacket(QuicPacketSequenceNumber sequence_number) { |
| SendAlgorithmInterface::CongestionVector acked_packets; |
| SendAlgorithmInterface::CongestionVector lost_packets; |
| lost_packets.push_back( |
| make_pair(sequence_number, standard_packet_)); |
| sender_->OnCongestionEvent( |
| false, bytes_in_flight_, acked_packets, lost_packets); |
| bytes_in_flight_ -= kDefaultTCPMSS; |
| } |
| |
| const QuicTime::Delta one_ms_; |
| MockClock clock_; |
| scoped_ptr<TcpCubicSenderPeer> sender_; |
| scoped_ptr<TcpReceiver> receiver_; |
| QuicPacketSequenceNumber sequence_number_; |
| QuicPacketSequenceNumber acked_sequence_number_; |
| QuicByteCount bytes_in_flight_; |
| TransmissionInfo standard_packet_; |
| }; |
| |
| TEST_F(TcpCubicSenderTest, SimpleSender) { |
| // At startup make sure we are at the default. |
| EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); |
| // At startup make sure we can send. |
| EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), |
| 0, |
| HAS_RETRANSMITTABLE_DATA).IsZero()); |
| // Make sure we can send. |
| EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), |
| 0, |
| HAS_RETRANSMITTABLE_DATA).IsZero()); |
| // And that window is un-affected. |
| EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); |
| |
| // Fill the send window with data, then verify that we can't send. |
| SendAvailableSendWindow(); |
| EXPECT_FALSE(sender_->TimeUntilSend(clock_.Now(), |
| sender_->GetCongestionWindow(), |
| HAS_RETRANSMITTABLE_DATA).IsZero()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, ApplicationLimitedSlowStart) { |
| // Send exactly 10 packets and ensure the CWND ends at 14 packets. |
| const int kNumberOfAcks = 5; |
| // At startup make sure we can send. |
| EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), |
| 0, |
| HAS_RETRANSMITTABLE_DATA).IsZero()); |
| // Make sure we can send. |
| EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), |
| 0, |
| HAS_RETRANSMITTABLE_DATA).IsZero()); |
| |
| SendAvailableSendWindow(); |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| AckNPackets(2); |
| } |
| QuicByteCount bytes_to_send = sender_->GetCongestionWindow(); |
| // It's expected 2 acks will arrive when the bytes_in_flight are greater than |
| // half the CWND. |
| EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * 2, |
| bytes_to_send); |
| } |
| |
| TEST_F(TcpCubicSenderTest, ExponentialSlowStart) { |
| const int kNumberOfAcks = 20; |
| // At startup make sure we can send. |
| EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), |
| 0, |
| HAS_RETRANSMITTABLE_DATA).IsZero()); |
| EXPECT_FALSE(sender_->HasReliableBandwidthEstimate()); |
| EXPECT_EQ(QuicBandwidth::Zero(), sender_->BandwidthEstimate()); |
| // Make sure we can send. |
| EXPECT_TRUE(sender_->TimeUntilSend(clock_.Now(), |
| 0, |
| HAS_RETRANSMITTABLE_DATA).IsZero()); |
| |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| } |
| const QuicByteCount cwnd = sender_->GetCongestionWindow(); |
| EXPECT_EQ(kDefaultWindowTCP + kDefaultTCPMSS * 2 * kNumberOfAcks, cwnd); |
| EXPECT_FALSE(sender_->HasReliableBandwidthEstimate()); |
| EXPECT_EQ(QuicBandwidth::FromBytesAndTimeDelta( |
| cwnd, sender_->rtt_stats_.smoothed_rtt()), |
| sender_->BandwidthEstimate()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, SlowStartAckTrain) { |
| sender_->SetNumEmulatedConnections(1); |
| EXPECT_EQ(kMaxTcpCongestionWindow * kDefaultTCPMSS, |
| sender_->GetSlowStartThreshold()); |
| |
| // Make sure that we fall out of slow start when we send ACK train longer |
| // than half the RTT, in this test case 30ms, which is more than 30 calls to |
| // Ack2Packets in one round. |
| // Since we start at 10 packet first round will be 5 second round 10 etc |
| // Hence we should pass 30 at 65 = 5 + 10 + 20 + 30 |
| const int kNumberOfAcks = 65; |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| } |
| QuicByteCount expected_send_window = |
| kDefaultWindowTCP + (kDefaultTCPMSS * 2 * kNumberOfAcks); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // We should now have fallen out of slow start. |
| // Testing Reno phase. |
| // We should need 140(65*2+10) ACK:ed packets before increasing window by |
| // one. |
| for (int i = 0; i < 69; ++i) { |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| QuicByteCount expected_ss_tresh = expected_send_window; |
| expected_send_window += kDefaultTCPMSS; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| EXPECT_EQ(expected_ss_tresh, sender_->GetSlowStartThreshold()); |
| EXPECT_EQ(140u, sender_->slowstart_threshold()); |
| |
| // Now RTO and ensure slow start gets reset. |
| EXPECT_TRUE(sender_->hybrid_slow_start().started()); |
| sender_->OnRetransmissionTimeout(true); |
| EXPECT_FALSE(sender_->hybrid_slow_start().started()); |
| EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow()); |
| EXPECT_EQ(expected_send_window / 2 / kDefaultTCPMSS, |
| sender_->slowstart_threshold()); |
| |
| // Now revert the RTO and ensure the CWND and slowstart threshold revert. |
| sender_->RevertRetransmissionTimeout(); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| EXPECT_EQ(140u, sender_->slowstart_threshold()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, SlowStartPacketLoss) { |
| sender_->SetNumEmulatedConnections(1); |
| const int kNumberOfAcks = 10; |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| } |
| SendAvailableSendWindow(); |
| QuicByteCount expected_send_window = kDefaultWindowTCP + |
| (kDefaultTCPMSS * 2 * kNumberOfAcks); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // Lose a packet to exit slow start. |
| LoseNPackets(1); |
| size_t packets_in_recovery_window = expected_send_window / kDefaultTCPMSS; |
| |
| // We should now have fallen out of slow start with a reduced window. |
| expected_send_window *= kRenoBeta; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // Recovery phase. We need to ack every packet in the recovery window before |
| // we exit recovery. |
| size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS; |
| DVLOG(1) << "number_packets: " << number_of_packets_in_window; |
| AckNPackets(packets_in_recovery_window); |
| SendAvailableSendWindow(); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // We need to ack an entire window before we increase CWND by 1. |
| AckNPackets(number_of_packets_in_window - 2); |
| SendAvailableSendWindow(); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // Next ack should increase cwnd by 1. |
| AckNPackets(1); |
| expected_send_window += kDefaultTCPMSS; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // Now RTO and ensure slow start gets reset. |
| EXPECT_TRUE(sender_->hybrid_slow_start().started()); |
| sender_->OnRetransmissionTimeout(true); |
| EXPECT_FALSE(sender_->hybrid_slow_start().started()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, NoPRRWhenLessThanOnePacketInFlight) { |
| SendAvailableSendWindow(); |
| LoseNPackets(kInitialCongestionWindowPackets - 1); |
| AckNPackets(1); |
| // PRR will allow 2 packets for every ack during recovery. |
| EXPECT_EQ(2, SendAvailableSendWindow()); |
| // Simulate abandoning all packets by supplying a bytes_in_flight of 0. |
| // PRR should now allow a packet to be sent, even though prr's state |
| // variables believe it has sent enough packets. |
| EXPECT_EQ(QuicTime::Delta::Zero(), |
| sender_->TimeUntilSend(clock_.Now(), 0, HAS_RETRANSMITTABLE_DATA)); |
| } |
| |
| TEST_F(TcpCubicSenderTest, SlowStartPacketLossPRR) { |
| sender_->SetNumEmulatedConnections(1); |
| // Test based on the first example in RFC6937. |
| // Ack 10 packets in 5 acks to raise the CWND to 20, as in the example. |
| const int kNumberOfAcks = 5; |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| } |
| SendAvailableSendWindow(); |
| QuicByteCount expected_send_window = kDefaultWindowTCP + |
| (kDefaultTCPMSS * 2 * kNumberOfAcks); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| LoseNPackets(1); |
| |
| // We should now have fallen out of slow start with a reduced window. |
| size_t send_window_before_loss = expected_send_window; |
| expected_send_window *= kRenoBeta; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // Testing TCP proportional rate reduction. |
| // We should send packets paced over the received acks for the remaining |
| // outstanding packets. The number of packets before we exit recovery is the |
| // original CWND minus the packet that has been lost and the one which |
| // triggered the loss. |
| size_t remaining_packets_in_recovery = |
| send_window_before_loss / kDefaultTCPMSS - 2; |
| |
| for (size_t i = 0; i < remaining_packets_in_recovery; ++i) { |
| AckNPackets(1); |
| SendAvailableSendWindow(); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| |
| // We need to ack another window before we increase CWND by 1. |
| size_t number_of_packets_in_window = expected_send_window / kDefaultTCPMSS; |
| for (size_t i = 0; i < number_of_packets_in_window; ++i) { |
| AckNPackets(1); |
| EXPECT_EQ(1, SendAvailableSendWindow()); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| |
| AckNPackets(1); |
| expected_send_window += kDefaultTCPMSS; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, SlowStartBurstPacketLossPRR) { |
| sender_->SetNumEmulatedConnections(1); |
| // Test based on the second example in RFC6937, though we also implement |
| // forward acknowledgements, so the first two incoming acks will trigger |
| // PRR immediately. |
| // Ack 20 packets in 10 acks to raise the CWND to 30. |
| const int kNumberOfAcks = 10; |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| } |
| SendAvailableSendWindow(); |
| QuicByteCount expected_send_window = kDefaultWindowTCP + |
| (kDefaultTCPMSS * 2 * kNumberOfAcks); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // Lose one more than the congestion window reduction, so that after loss, |
| // bytes_in_flight is lesser than the congestion window. |
| size_t send_window_after_loss = kRenoBeta * expected_send_window; |
| size_t num_packets_to_lose = |
| (expected_send_window - send_window_after_loss) / kDefaultTCPMSS + 1; |
| LoseNPackets(num_packets_to_lose); |
| // Immediately after the loss, ensure at least one packet can be sent. |
| // Losses without subsequent acks can occur with timer based loss detection. |
| EXPECT_TRUE(sender_->TimeUntilSend( |
| clock_.Now(), bytes_in_flight_, HAS_RETRANSMITTABLE_DATA).IsZero()); |
| AckNPackets(1); |
| |
| // We should now have fallen out of slow start with a reduced window. |
| expected_send_window *= kRenoBeta; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // Only 2 packets should be allowed to be sent, per PRR-SSRB |
| EXPECT_EQ(2, SendAvailableSendWindow()); |
| |
| // Ack the next packet, which triggers another loss. |
| LoseNPackets(1); |
| AckNPackets(1); |
| |
| // Send 2 packets to simulate PRR-SSRB. |
| EXPECT_EQ(2, SendAvailableSendWindow()); |
| |
| // Ack the next packet, which triggers another loss. |
| LoseNPackets(1); |
| AckNPackets(1); |
| |
| // Send 2 packets to simulate PRR-SSRB. |
| EXPECT_EQ(2, SendAvailableSendWindow()); |
| |
| // Exit recovery and return to sending at the new rate. |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| AckNPackets(1); |
| EXPECT_EQ(1, SendAvailableSendWindow()); |
| } |
| } |
| |
| TEST_F(TcpCubicSenderTest, RTOCongestionWindowAndRevert) { |
| EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); |
| EXPECT_EQ(kMaxTcpCongestionWindow, sender_->slowstart_threshold()); |
| |
| // Expect the window to decrease to the minimum once the RTO fires |
| // and slow start threshold to be set to 1/2 of the CWND. |
| sender_->OnRetransmissionTimeout(true); |
| EXPECT_EQ(2 * kDefaultTCPMSS, sender_->GetCongestionWindow()); |
| EXPECT_EQ(5u, sender_->slowstart_threshold()); |
| |
| // Now repair the RTO and ensure the slowstart threshold reverts. |
| sender_->RevertRetransmissionTimeout(); |
| EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); |
| EXPECT_EQ(kMaxTcpCongestionWindow, sender_->slowstart_threshold()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, RTOCongestionWindowNoRetransmission) { |
| EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); |
| |
| // Expect the window to remain unchanged if the RTO fires but no |
| // packets are retransmitted. |
| sender_->OnRetransmissionTimeout(false); |
| EXPECT_EQ(kDefaultWindowTCP, sender_->GetCongestionWindow()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, RetransmissionDelay) { |
| const int64 kRttMs = 10; |
| const int64 kDeviationMs = 3; |
| EXPECT_EQ(QuicTime::Delta::Zero(), sender_->RetransmissionDelay()); |
| |
| sender_->rtt_stats_.UpdateRtt(QuicTime::Delta::FromMilliseconds(kRttMs), |
| QuicTime::Delta::Zero(), clock_.Now()); |
| |
| // Initial value is to set the median deviation to half of the initial |
| // rtt, the median in then multiplied by a factor of 4 and finally the |
| // smoothed rtt is added which is the initial rtt. |
| QuicTime::Delta expected_delay = |
| QuicTime::Delta::FromMilliseconds(kRttMs + kRttMs / 2 * 4); |
| EXPECT_EQ(expected_delay, sender_->RetransmissionDelay()); |
| |
| for (int i = 0; i < 100; ++i) { |
| // Run to make sure that we converge. |
| sender_->rtt_stats_.UpdateRtt( |
| QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs), |
| QuicTime::Delta::Zero(), clock_.Now()); |
| sender_->rtt_stats_.UpdateRtt( |
| QuicTime::Delta::FromMilliseconds(kRttMs - kDeviationMs), |
| QuicTime::Delta::Zero(), clock_.Now()); |
| } |
| expected_delay = QuicTime::Delta::FromMilliseconds(kRttMs + kDeviationMs * 4); |
| |
| EXPECT_NEAR(kRttMs, sender_->rtt_stats_.smoothed_rtt().ToMilliseconds(), 1); |
| EXPECT_NEAR(expected_delay.ToMilliseconds(), |
| sender_->RetransmissionDelay().ToMilliseconds(), |
| 1); |
| EXPECT_EQ(static_cast<int64>( |
| sender_->GetCongestionWindow() * kNumMicrosPerSecond / |
| sender_->rtt_stats_.smoothed_rtt().ToMicroseconds()), |
| sender_->BandwidthEstimate().ToBytesPerSecond()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, SlowStartMaxSendWindow) { |
| const QuicPacketCount kMaxCongestionWindowTCP = 50; |
| const int kNumberOfAcks = 100; |
| sender_.reset( |
| new TcpCubicSenderPeer(&clock_, false, kMaxCongestionWindowTCP)); |
| |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| } |
| QuicByteCount expected_send_window = |
| kMaxCongestionWindowTCP * kDefaultTCPMSS; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, TcpRenoMaxCongestionWindow) { |
| const QuicPacketCount kMaxCongestionWindowTCP = 50; |
| const int kNumberOfAcks = 1000; |
| sender_.reset( |
| new TcpCubicSenderPeer(&clock_, true, kMaxCongestionWindowTCP)); |
| |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| // Make sure we fall out of slow start. |
| LoseNPackets(1); |
| |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| } |
| |
| QuicByteCount expected_send_window = |
| kMaxCongestionWindowTCP * kDefaultTCPMSS; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, TcpCubicMaxCongestionWindow) { |
| const QuicPacketCount kMaxCongestionWindowTCP = 50; |
| // Set to 10000 to compensate for small cubic alpha. |
| const int kNumberOfAcks = 10000; |
| |
| sender_.reset( |
| new TcpCubicSenderPeer(&clock_, false, kMaxCongestionWindowTCP)); |
| |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| // Make sure we fall out of slow start. |
| LoseNPackets(1); |
| |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| } |
| |
| QuicByteCount expected_send_window = |
| kMaxCongestionWindowTCP * kDefaultTCPMSS; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, MultipleLossesInOneWindow) { |
| SendAvailableSendWindow(); |
| const QuicByteCount initial_window = sender_->GetCongestionWindow(); |
| LosePacket(acked_sequence_number_ + 1); |
| const QuicByteCount post_loss_window = sender_->GetCongestionWindow(); |
| EXPECT_GT(initial_window, post_loss_window); |
| LosePacket(acked_sequence_number_ + 3); |
| EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow()); |
| LosePacket(sequence_number_ - 1); |
| EXPECT_EQ(post_loss_window, sender_->GetCongestionWindow()); |
| |
| // Lose a later packet and ensure the window decreases. |
| LosePacket(sequence_number_); |
| EXPECT_GT(post_loss_window, sender_->GetCongestionWindow()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, DontTrackAckPackets) { |
| // Send a packet with no retransmittable data, and ensure it's not tracked. |
| EXPECT_FALSE(sender_->OnPacketSent(clock_.Now(), bytes_in_flight_, |
| sequence_number_++, kDefaultTCPMSS, |
| NO_RETRANSMITTABLE_DATA)); |
| |
| // Send a data packet with retransmittable data, and ensure it is tracked. |
| EXPECT_TRUE(sender_->OnPacketSent(clock_.Now(), bytes_in_flight_, |
| sequence_number_++, kDefaultTCPMSS, |
| HAS_RETRANSMITTABLE_DATA)); |
| } |
| |
| TEST_F(TcpCubicSenderTest, ConfigureMaxInitialWindow) { |
| QuicConfig config; |
| |
| // Verify that kCOPT: kIW10 forces the congestion window to the default of 10. |
| QuicTagVector options; |
| options.push_back(kIW10); |
| QuicConfigPeer::SetReceivedConnectionOptions(&config, options); |
| sender_->SetFromConfig(config, |
| /* is_server= */ true, |
| /* using_pacing= */ false); |
| EXPECT_EQ(10u, sender_->congestion_window()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, DisableAckTrainDetectionWithPacing) { |
| EXPECT_TRUE(sender_->hybrid_slow_start().ack_train_detection()); |
| |
| QuicConfig config; |
| sender_->SetFromConfig(config, |
| /* is_server= */ true, |
| /* using_pacing= */ true); |
| EXPECT_FALSE(sender_->hybrid_slow_start().ack_train_detection()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, 2ConnectionCongestionAvoidanceAtEndOfRecovery) { |
| sender_->SetNumEmulatedConnections(2); |
| // Ack 10 packets in 5 acks to raise the CWND to 20. |
| const int kNumberOfAcks = 5; |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| } |
| SendAvailableSendWindow(); |
| QuicByteCount expected_send_window = kDefaultWindowTCP + |
| (kDefaultTCPMSS * 2 * kNumberOfAcks); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| LoseNPackets(1); |
| |
| // We should now have fallen out of slow start with a reduced window. |
| expected_send_window = expected_send_window * sender_->GetRenoBeta(); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // No congestion window growth should occur in recovery phase, i.e., until the |
| // currently outstanding 20 packets are acked. |
| for (int i = 0; i < 10; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| EXPECT_TRUE(sender_->InRecovery()); |
| AckNPackets(2); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| EXPECT_FALSE(sender_->InRecovery()); |
| |
| // Out of recovery now. Congestion window should not grow for half an RTT. |
| size_t packets_in_send_window = expected_send_window / kDefaultTCPMSS; |
| SendAvailableSendWindow(); |
| AckNPackets(packets_in_send_window / 2 - 2); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // Next ack should increase congestion window by 1MSS. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| expected_send_window += kDefaultTCPMSS; |
| packets_in_send_window += 1; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // Congestion window should remain steady again for half an RTT. |
| SendAvailableSendWindow(); |
| AckNPackets(packets_in_send_window / 2 - 1); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // Next ack should cause congestion window to grow by 1MSS. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| expected_send_window += kDefaultTCPMSS; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| |
| TEST_F(TcpCubicSenderTest, 1ConnectionCongestionAvoidanceAtEndOfRecovery) { |
| sender_->SetNumEmulatedConnections(1); |
| // Ack 10 packets in 5 acks to raise the CWND to 20. |
| const int kNumberOfAcks = 5; |
| for (int i = 0; i < kNumberOfAcks; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| } |
| SendAvailableSendWindow(); |
| QuicByteCount expected_send_window = kDefaultWindowTCP + |
| (kDefaultTCPMSS * 2 * kNumberOfAcks); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| LoseNPackets(1); |
| |
| // We should now have fallen out of slow start with a reduced window. |
| expected_send_window *= kRenoBeta; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| |
| // No congestion window growth should occur in recovery phase, i.e., until the |
| // currently outstanding 20 packets are acked. |
| for (int i = 0; i < 10; ++i) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| EXPECT_TRUE(sender_->InRecovery()); |
| AckNPackets(2); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| EXPECT_FALSE(sender_->InRecovery()); |
| |
| // Out of recovery now. Congestion window should not grow during RTT. |
| for (uint64 i = 0; i < expected_send_window / kDefaultTCPMSS - 2; i += 2) { |
| // Send our full send window. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| |
| // Next ack should cause congestion window to grow by 1MSS. |
| SendAvailableSendWindow(); |
| AckNPackets(2); |
| expected_send_window += kDefaultTCPMSS; |
| EXPECT_EQ(expected_send_window, sender_->GetCongestionWindow()); |
| } |
| |
| } // namespace test |
| } // namespace net |