| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| // TODO(vtl): I currently potentially overflow in doing index calculations. |
| // E.g., |start_index_| and |current_num_bytes_| fit into a |uint32_t|, but |
| // their sum may not. This is bad and poses a security risk. (We're currently |
| // saved by the limit on capacity -- the maximum size of the buffer, checked in |
| // |DataPipe::ValidateOptions()|, is currently sufficiently small.) |
| |
| #include "mojo/edk/system/local_data_pipe_impl.h" |
| |
| #include <string.h> |
| |
| #include <algorithm> |
| #include <utility> |
| |
| #include "base/logging.h" |
| #include "mojo/edk/system/channel.h" |
| #include "mojo/edk/system/configuration.h" |
| #include "mojo/edk/system/data_pipe.h" |
| #include "mojo/edk/system/message_in_transit.h" |
| #include "mojo/edk/system/message_in_transit_queue.h" |
| #include "mojo/edk/system/remote_consumer_data_pipe_impl.h" |
| #include "mojo/edk/system/remote_producer_data_pipe_impl.h" |
| #include "mojo/edk/util/make_unique.h" |
| |
| using mojo::platform::ScopedPlatformHandle; |
| using mojo::util::MakeUnique; |
| using mojo::util::RefPtr; |
| |
| namespace mojo { |
| namespace system { |
| |
| // Assert some things about some things defined in data_pipe_impl.h (don't make |
| // the assertions there, to avoid including message_in_transit.h). |
| static_assert(MOJO_ALIGNOF(SerializedDataPipeConsumerDispatcher) == |
| MessageInTransit::kMessageAlignment, |
| "Wrong alignment"); |
| static_assert(sizeof(SerializedDataPipeConsumerDispatcher) % |
| MessageInTransit::kMessageAlignment == |
| 0, |
| "Wrong size"); |
| |
| LocalDataPipeImpl::LocalDataPipeImpl() |
| : start_index_(0), current_num_bytes_(0) { |
| // Note: |buffer_| is lazily allocated, since a common case will be that one |
| // of the handles is immediately passed off to another process. |
| } |
| |
| LocalDataPipeImpl::~LocalDataPipeImpl() { |
| } |
| |
| void LocalDataPipeImpl::ProducerClose() { |
| // If the consumer is still open and we still have data, we have to keep the |
| // buffer around. Currently, we won't free it even if it empties later. (We |
| // could do this -- requiring a check on every read -- but that seems to be |
| // optimizing for the uncommon case.) |
| if (!consumer_open() || !current_num_bytes_) { |
| // Note: There can only be a two-phase *read* (by the consumer) if we still |
| // have data. |
| DCHECK(!consumer_in_two_phase_read()); |
| DestroyBuffer(); |
| } |
| } |
| |
| MojoResult LocalDataPipeImpl::ProducerWriteData( |
| UserPointer<const void> elements, |
| UserPointer<uint32_t> num_bytes, |
| uint32_t max_num_bytes_to_write, |
| uint32_t min_num_bytes_to_write) { |
| DCHECK_EQ(max_num_bytes_to_write % element_num_bytes(), 0u); |
| DCHECK_EQ(min_num_bytes_to_write % element_num_bytes(), 0u); |
| DCHECK_GT(max_num_bytes_to_write, 0u); |
| DCHECK_GE(max_num_bytes_to_write, min_num_bytes_to_write); |
| DCHECK(consumer_open()); |
| |
| if (min_num_bytes_to_write > capacity_num_bytes() - current_num_bytes_) { |
| // Don't return "should wait" since you can't wait for a specified amount |
| // of data. |
| return MOJO_RESULT_OUT_OF_RANGE; |
| } |
| |
| size_t num_bytes_to_write = |
| std::min(static_cast<size_t>(max_num_bytes_to_write), |
| capacity_num_bytes() - current_num_bytes_); |
| if (num_bytes_to_write == 0) |
| return MOJO_RESULT_SHOULD_WAIT; |
| |
| // The amount we can write in our first copy. |
| size_t num_bytes_to_write_first = |
| std::min(num_bytes_to_write, GetMaxNumBytesToWrite()); |
| // Do the first (and possibly only) copy. |
| size_t first_write_index = |
| (start_index_ + current_num_bytes_) % capacity_num_bytes(); |
| EnsureBuffer(); |
| elements.GetArray(buffer_.get() + first_write_index, |
| num_bytes_to_write_first); |
| |
| if (num_bytes_to_write_first < num_bytes_to_write) { |
| // The "second write index" is zero. |
| elements.At(num_bytes_to_write_first) |
| .GetArray(buffer_.get(), num_bytes_to_write - num_bytes_to_write_first); |
| } |
| |
| current_num_bytes_ += num_bytes_to_write; |
| DCHECK_LE(current_num_bytes_, capacity_num_bytes()); |
| num_bytes.Put(static_cast<uint32_t>(num_bytes_to_write)); |
| return MOJO_RESULT_OK; |
| } |
| |
| MojoResult LocalDataPipeImpl::ProducerBeginWriteData( |
| UserPointer<void*> buffer, |
| UserPointer<uint32_t> buffer_num_bytes) { |
| DCHECK(consumer_open()); |
| |
| // The index we need to start writing at. |
| size_t write_index = |
| (start_index_ + current_num_bytes_) % capacity_num_bytes(); |
| |
| size_t max_num_bytes_to_write = GetMaxNumBytesToWrite(); |
| // Don't go into a two-phase write if there's no room. |
| if (max_num_bytes_to_write == 0) |
| return MOJO_RESULT_SHOULD_WAIT; |
| |
| EnsureBuffer(); |
| buffer.Put(buffer_.get() + write_index); |
| buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_write)); |
| set_producer_two_phase_max_num_bytes_written( |
| static_cast<uint32_t>(max_num_bytes_to_write)); |
| return MOJO_RESULT_OK; |
| } |
| |
| MojoResult LocalDataPipeImpl::ProducerEndWriteData(uint32_t num_bytes_written) { |
| DCHECK_LE(num_bytes_written, producer_two_phase_max_num_bytes_written()); |
| DCHECK_EQ(num_bytes_written % element_num_bytes(), 0u); |
| current_num_bytes_ += num_bytes_written; |
| DCHECK_LE(current_num_bytes_, capacity_num_bytes()); |
| set_producer_two_phase_max_num_bytes_written(0); |
| return MOJO_RESULT_OK; |
| } |
| |
| HandleSignalsState LocalDataPipeImpl::ProducerGetHandleSignalsState() const { |
| HandleSignalsState rv; |
| if (consumer_open()) { |
| if (current_num_bytes_ < capacity_num_bytes() && |
| !producer_in_two_phase_write()) |
| rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_WRITABLE; |
| rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_WRITABLE; |
| } else { |
| rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; |
| } |
| rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; |
| return rv; |
| } |
| |
| void LocalDataPipeImpl::ProducerStartSerialize(Channel* channel, |
| size_t* max_size, |
| size_t* max_platform_handles) { |
| *max_size = sizeof(SerializedDataPipeProducerDispatcher) + |
| channel->GetSerializedEndpointSize(); |
| *max_platform_handles = 0; |
| } |
| |
| bool LocalDataPipeImpl::ProducerEndSerialize( |
| Channel* channel, |
| void* destination, |
| size_t* actual_size, |
| std::vector<ScopedPlatformHandle>* /*platform_handles*/) { |
| SerializedDataPipeProducerDispatcher* s = |
| static_cast<SerializedDataPipeProducerDispatcher*>(destination); |
| s->validated_options = validated_options(); |
| void* destination_for_endpoint = static_cast<char*>(destination) + |
| sizeof(SerializedDataPipeProducerDispatcher); |
| |
| if (!consumer_open()) { |
| // Case 1: The consumer is closed. |
| s->consumer_num_bytes = static_cast<size_t>(-1); |
| *actual_size = sizeof(SerializedDataPipeProducerDispatcher); |
| return true; |
| } |
| |
| // Case 2: The consumer isn't closed. We'll replace ourselves with a |
| // |RemoteProducerDataPipeImpl|. |
| |
| s->consumer_num_bytes = current_num_bytes_; |
| // Note: We don't use |port|. |
| RefPtr<ChannelEndpoint> channel_endpoint = |
| channel->SerializeEndpointWithLocalPeer( |
| destination_for_endpoint, nullptr, |
| RefPtr<ChannelEndpointClient>(channel_endpoint_client()), 0); |
| // Note: Keep |*this| alive until the end of this method, to make things |
| // slightly easier on ourselves. |
| std::unique_ptr<DataPipeImpl> self( |
| ReplaceImpl(MakeUnique<RemoteProducerDataPipeImpl>( |
| std::move(channel_endpoint), std::move(buffer_), start_index_, |
| current_num_bytes_))); |
| |
| *actual_size = sizeof(SerializedDataPipeProducerDispatcher) + |
| channel->GetSerializedEndpointSize(); |
| return true; |
| } |
| |
| void LocalDataPipeImpl::ConsumerClose() { |
| // If the producer is around and in a two-phase write, we have to keep the |
| // buffer around. (We then don't free it until the producer is closed. This |
| // could be rectified, but again seems like optimizing for the uncommon case.) |
| if (!producer_open() || !producer_in_two_phase_write()) |
| DestroyBuffer(); |
| current_num_bytes_ = 0; |
| } |
| |
| MojoResult LocalDataPipeImpl::ConsumerReadData(UserPointer<void> elements, |
| UserPointer<uint32_t> num_bytes, |
| uint32_t max_num_bytes_to_read, |
| uint32_t min_num_bytes_to_read, |
| bool peek) { |
| DCHECK_EQ(max_num_bytes_to_read % element_num_bytes(), 0u); |
| DCHECK_EQ(min_num_bytes_to_read % element_num_bytes(), 0u); |
| DCHECK_GT(max_num_bytes_to_read, 0u); |
| |
| if (min_num_bytes_to_read > current_num_bytes_) { |
| // Don't return "should wait" since you can't wait for a specified amount of |
| // data. |
| return producer_open() ? MOJO_RESULT_OUT_OF_RANGE |
| : MOJO_RESULT_FAILED_PRECONDITION; |
| } |
| |
| size_t num_bytes_to_read = |
| std::min(static_cast<size_t>(max_num_bytes_to_read), current_num_bytes_); |
| if (num_bytes_to_read == 0) { |
| return producer_open() ? MOJO_RESULT_SHOULD_WAIT |
| : MOJO_RESULT_FAILED_PRECONDITION; |
| } |
| |
| // The amount we can read in our first copy. |
| size_t num_bytes_to_read_first = |
| std::min(num_bytes_to_read, GetMaxNumBytesToRead()); |
| elements.PutArray(buffer_.get() + start_index_, num_bytes_to_read_first); |
| |
| if (num_bytes_to_read_first < num_bytes_to_read) { |
| // The "second read index" is zero. |
| elements.At(num_bytes_to_read_first) |
| .PutArray(buffer_.get(), num_bytes_to_read - num_bytes_to_read_first); |
| } |
| |
| if (!peek) |
| MarkDataAsConsumed(num_bytes_to_read); |
| num_bytes.Put(static_cast<uint32_t>(num_bytes_to_read)); |
| return MOJO_RESULT_OK; |
| } |
| |
| MojoResult LocalDataPipeImpl::ConsumerDiscardData( |
| UserPointer<uint32_t> num_bytes, |
| uint32_t max_num_bytes_to_discard, |
| uint32_t min_num_bytes_to_discard) { |
| DCHECK_EQ(max_num_bytes_to_discard % element_num_bytes(), 0u); |
| DCHECK_EQ(min_num_bytes_to_discard % element_num_bytes(), 0u); |
| DCHECK_GT(max_num_bytes_to_discard, 0u); |
| |
| if (min_num_bytes_to_discard > current_num_bytes_) { |
| // Don't return "should wait" since you can't wait for a specified amount of |
| // data. |
| return producer_open() ? MOJO_RESULT_OUT_OF_RANGE |
| : MOJO_RESULT_FAILED_PRECONDITION; |
| } |
| |
| // Be consistent with other operations; error if no data available. |
| if (current_num_bytes_ == 0) { |
| return producer_open() ? MOJO_RESULT_SHOULD_WAIT |
| : MOJO_RESULT_FAILED_PRECONDITION; |
| } |
| |
| size_t num_bytes_to_discard = std::min( |
| static_cast<size_t>(max_num_bytes_to_discard), current_num_bytes_); |
| MarkDataAsConsumed(num_bytes_to_discard); |
| num_bytes.Put(static_cast<uint32_t>(num_bytes_to_discard)); |
| return MOJO_RESULT_OK; |
| } |
| |
| MojoResult LocalDataPipeImpl::ConsumerQueryData( |
| UserPointer<uint32_t> num_bytes) { |
| // Note: This cast is safe, since the capacity fits into a |uint32_t|. |
| num_bytes.Put(static_cast<uint32_t>(current_num_bytes_)); |
| return MOJO_RESULT_OK; |
| } |
| |
| MojoResult LocalDataPipeImpl::ConsumerBeginReadData( |
| UserPointer<const void*> buffer, |
| UserPointer<uint32_t> buffer_num_bytes) { |
| size_t max_num_bytes_to_read = GetMaxNumBytesToRead(); |
| // Don't go into a two-phase read if there's no data. |
| if (max_num_bytes_to_read == 0) { |
| return producer_open() ? MOJO_RESULT_SHOULD_WAIT |
| : MOJO_RESULT_FAILED_PRECONDITION; |
| } |
| |
| buffer.Put(buffer_.get() + start_index_); |
| buffer_num_bytes.Put(static_cast<uint32_t>(max_num_bytes_to_read)); |
| set_consumer_two_phase_max_num_bytes_read( |
| static_cast<uint32_t>(max_num_bytes_to_read)); |
| return MOJO_RESULT_OK; |
| } |
| |
| MojoResult LocalDataPipeImpl::ConsumerEndReadData(uint32_t num_bytes_read) { |
| DCHECK_LE(num_bytes_read, consumer_two_phase_max_num_bytes_read()); |
| DCHECK_EQ(num_bytes_read % element_num_bytes(), 0u); |
| DCHECK_LE(start_index_ + num_bytes_read, capacity_num_bytes()); |
| MarkDataAsConsumed(num_bytes_read); |
| set_consumer_two_phase_max_num_bytes_read(0); |
| return MOJO_RESULT_OK; |
| } |
| |
| HandleSignalsState LocalDataPipeImpl::ConsumerGetHandleSignalsState() const { |
| HandleSignalsState rv; |
| if (current_num_bytes_ > 0) { |
| if (!consumer_in_two_phase_read()) |
| rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_READABLE; |
| rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE; |
| } else if (producer_open()) { |
| rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_READABLE; |
| } |
| if (!producer_open()) |
| rv.satisfied_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; |
| rv.satisfiable_signals |= MOJO_HANDLE_SIGNAL_PEER_CLOSED; |
| return rv; |
| } |
| |
| void LocalDataPipeImpl::ConsumerStartSerialize(Channel* channel, |
| size_t* max_size, |
| size_t* max_platform_handles) { |
| *max_size = sizeof(SerializedDataPipeConsumerDispatcher) + |
| channel->GetSerializedEndpointSize(); |
| *max_platform_handles = 0; |
| } |
| |
| bool LocalDataPipeImpl::ConsumerEndSerialize( |
| Channel* channel, |
| void* destination, |
| size_t* actual_size, |
| std::vector<ScopedPlatformHandle>* /*platform_handles*/) { |
| SerializedDataPipeConsumerDispatcher* s = |
| static_cast<SerializedDataPipeConsumerDispatcher*>(destination); |
| s->validated_options = validated_options(); |
| void* destination_for_endpoint = static_cast<char*>(destination) + |
| sizeof(SerializedDataPipeConsumerDispatcher); |
| |
| size_t old_num_bytes = current_num_bytes_; |
| MessageInTransitQueue message_queue; |
| ConvertDataToMessages(buffer_.get(), &start_index_, ¤t_num_bytes_, |
| &message_queue); |
| |
| if (!producer_open()) { |
| // Case 1: The producer is closed. |
| DestroyBuffer(); |
| channel->SerializeEndpointWithClosedPeer(destination_for_endpoint, |
| &message_queue); |
| *actual_size = sizeof(SerializedDataPipeConsumerDispatcher) + |
| channel->GetSerializedEndpointSize(); |
| return true; |
| } |
| |
| // Case 2: The producer isn't closed. We'll replace ourselves with a |
| // |RemoteConsumerDataPipeImpl|. |
| |
| // Note: We don't use |port|. |
| RefPtr<ChannelEndpoint> channel_endpoint = |
| channel->SerializeEndpointWithLocalPeer( |
| destination_for_endpoint, &message_queue, |
| RefPtr<ChannelEndpointClient>(channel_endpoint_client()), 0); |
| // Note: Keep |*this| alive until the end of this method, to make things |
| // slightly easier on ourselves. |
| std::unique_ptr<DataPipeImpl> self( |
| ReplaceImpl(MakeUnique<RemoteConsumerDataPipeImpl>( |
| std::move(channel_endpoint), old_num_bytes, std::move(buffer_), |
| start_index_))); |
| DestroyBuffer(); |
| |
| *actual_size = sizeof(SerializedDataPipeConsumerDispatcher) + |
| channel->GetSerializedEndpointSize(); |
| return true; |
| } |
| |
| bool LocalDataPipeImpl::OnReadMessage(unsigned /*port*/, |
| MessageInTransit* /*message*/) { |
| NOTREACHED(); |
| return false; |
| } |
| |
| void LocalDataPipeImpl::OnDetachFromChannel(unsigned /*port*/) { |
| NOTREACHED(); |
| } |
| |
| void LocalDataPipeImpl::EnsureBuffer() { |
| DCHECK(producer_open()); |
| if (buffer_) |
| return; |
| buffer_.reset(static_cast<char*>( |
| base::AlignedAlloc(capacity_num_bytes(), |
| GetConfiguration().data_pipe_buffer_alignment_bytes))); |
| } |
| |
| void LocalDataPipeImpl::DestroyBuffer() { |
| #ifndef NDEBUG |
| // Scribble on the buffer to help detect use-after-frees. (This also helps the |
| // unit test detect certain bugs without needing ASAN or similar.) |
| if (buffer_) |
| memset(buffer_.get(), 0xcd, capacity_num_bytes()); |
| #endif |
| buffer_.reset(); |
| start_index_ = 0; |
| current_num_bytes_ = 0; |
| } |
| |
| size_t LocalDataPipeImpl::GetMaxNumBytesToWrite() { |
| size_t next_index = start_index_ + current_num_bytes_; |
| if (next_index >= capacity_num_bytes()) { |
| next_index %= capacity_num_bytes(); |
| DCHECK_GE(start_index_, next_index); |
| DCHECK_EQ(start_index_ - next_index, |
| capacity_num_bytes() - current_num_bytes_); |
| return start_index_ - next_index; |
| } |
| return capacity_num_bytes() - next_index; |
| } |
| |
| size_t LocalDataPipeImpl::GetMaxNumBytesToRead() { |
| if (start_index_ + current_num_bytes_ > capacity_num_bytes()) |
| return capacity_num_bytes() - start_index_; |
| return current_num_bytes_; |
| } |
| |
| void LocalDataPipeImpl::MarkDataAsConsumed(size_t num_bytes) { |
| DCHECK_LE(num_bytes, current_num_bytes_); |
| start_index_ += num_bytes; |
| start_index_ %= capacity_num_bytes(); |
| current_num_bytes_ -= num_bytes; |
| } |
| |
| } // namespace system |
| } // namespace mojo |