| // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include "net/quic/quic_connection.h" | 
 |  | 
 | #include "base/basictypes.h" | 
 | #include "base/bind.h" | 
 | #include "base/stl_util.h" | 
 | #include "net/base/net_errors.h" | 
 | #include "net/quic/congestion_control/loss_detection_interface.h" | 
 | #include "net/quic/congestion_control/receive_algorithm_interface.h" | 
 | #include "net/quic/congestion_control/send_algorithm_interface.h" | 
 | #include "net/quic/crypto/null_encrypter.h" | 
 | #include "net/quic/crypto/quic_decrypter.h" | 
 | #include "net/quic/crypto/quic_encrypter.h" | 
 | #include "net/quic/quic_ack_notifier.h" | 
 | #include "net/quic/quic_flags.h" | 
 | #include "net/quic/quic_protocol.h" | 
 | #include "net/quic/quic_utils.h" | 
 | #include "net/quic/test_tools/mock_clock.h" | 
 | #include "net/quic/test_tools/mock_random.h" | 
 | #include "net/quic/test_tools/quic_config_peer.h" | 
 | #include "net/quic/test_tools/quic_connection_peer.h" | 
 | #include "net/quic/test_tools/quic_framer_peer.h" | 
 | #include "net/quic/test_tools/quic_packet_creator_peer.h" | 
 | #include "net/quic/test_tools/quic_packet_generator_peer.h" | 
 | #include "net/quic/test_tools/quic_sent_packet_manager_peer.h" | 
 | #include "net/quic/test_tools/quic_test_utils.h" | 
 | #include "net/quic/test_tools/simple_quic_framer.h" | 
 | #include "net/test/gtest_util.h" | 
 | #include "testing/gmock/include/gmock/gmock.h" | 
 | #include "testing/gtest/include/gtest/gtest.h" | 
 |  | 
 | using base::StringPiece; | 
 | using std::map; | 
 | using std::string; | 
 | using std::vector; | 
 | using testing::AnyNumber; | 
 | using testing::AtLeast; | 
 | using testing::ContainerEq; | 
 | using testing::Contains; | 
 | using testing::DoAll; | 
 | using testing::InSequence; | 
 | using testing::InvokeWithoutArgs; | 
 | using testing::NiceMock; | 
 | using testing::Ref; | 
 | using testing::Return; | 
 | using testing::SaveArg; | 
 | using testing::StrictMock; | 
 | using testing::_; | 
 |  | 
 | namespace net { | 
 | namespace test { | 
 | namespace { | 
 |  | 
 | const char data1[] = "foo"; | 
 | const char data2[] = "bar"; | 
 |  | 
 | const bool kFin = true; | 
 | const bool kEntropyFlag = true; | 
 |  | 
 | const QuicPacketEntropyHash kTestEntropyHash = 76; | 
 |  | 
 | const int kDefaultRetransmissionTimeMs = 500; | 
 |  | 
 | class TestReceiveAlgorithm : public ReceiveAlgorithmInterface { | 
 |  public: | 
 |   TestReceiveAlgorithm() {} | 
 |  | 
 |   MOCK_METHOD3(RecordIncomingPacket, | 
 |                void(QuicByteCount, QuicPacketSequenceNumber, QuicTime)); | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(TestReceiveAlgorithm); | 
 | }; | 
 |  | 
 | // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message. | 
 | class TaggingEncrypter : public QuicEncrypter { | 
 |  public: | 
 |   explicit TaggingEncrypter(uint8 tag) | 
 |       : tag_(tag) { | 
 |   } | 
 |  | 
 |   ~TaggingEncrypter() override {} | 
 |  | 
 |   // QuicEncrypter interface. | 
 |   bool SetKey(StringPiece key) override { return true; } | 
 |  | 
 |   bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; } | 
 |  | 
 |   bool Encrypt(StringPiece nonce, | 
 |                StringPiece associated_data, | 
 |                StringPiece plaintext, | 
 |                unsigned char* output) override { | 
 |     memcpy(output, plaintext.data(), plaintext.size()); | 
 |     output += plaintext.size(); | 
 |     memset(output, tag_, kTagSize); | 
 |     return true; | 
 |   } | 
 |  | 
 |   QuicData* EncryptPacket(QuicPacketSequenceNumber sequence_number, | 
 |                           StringPiece associated_data, | 
 |                           StringPiece plaintext) override { | 
 |     const size_t len = plaintext.size() + kTagSize; | 
 |     uint8* buffer = new uint8[len]; | 
 |     Encrypt(StringPiece(), associated_data, plaintext, buffer); | 
 |     return new QuicData(reinterpret_cast<char*>(buffer), len, true); | 
 |   } | 
 |  | 
 |   size_t GetKeySize() const override { return 0; } | 
 |   size_t GetNoncePrefixSize() const override { return 0; } | 
 |  | 
 |   size_t GetMaxPlaintextSize(size_t ciphertext_size) const override { | 
 |     return ciphertext_size - kTagSize; | 
 |   } | 
 |  | 
 |   size_t GetCiphertextSize(size_t plaintext_size) const override { | 
 |     return plaintext_size + kTagSize; | 
 |   } | 
 |  | 
 |   StringPiece GetKey() const override { return StringPiece(); } | 
 |  | 
 |   StringPiece GetNoncePrefix() const override { return StringPiece(); } | 
 |  | 
 |  private: | 
 |   enum { | 
 |     kTagSize = 12, | 
 |   }; | 
 |  | 
 |   const uint8 tag_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter); | 
 | }; | 
 |  | 
 | // TaggingDecrypter ensures that the final kTagSize bytes of the message all | 
 | // have the same value and then removes them. | 
 | class TaggingDecrypter : public QuicDecrypter { | 
 |  public: | 
 |   ~TaggingDecrypter() override {} | 
 |  | 
 |   // QuicDecrypter interface | 
 |   bool SetKey(StringPiece key) override { return true; } | 
 |  | 
 |   bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; } | 
 |  | 
 |   QuicData* DecryptPacket(QuicPacketSequenceNumber sequence_number, | 
 |                           StringPiece associated_data, | 
 |                           StringPiece ciphertext) override { | 
 |     if (ciphertext.size() < kTagSize) { | 
 |       return nullptr; | 
 |     } | 
 |     if (!CheckTag(ciphertext, GetTag(ciphertext))) { | 
 |       return nullptr; | 
 |     } | 
 |     const size_t len = ciphertext.size() - kTagSize; | 
 |     uint8* buf = new uint8[len]; | 
 |     memcpy(buf, ciphertext.data(), len); | 
 |     return new QuicData(reinterpret_cast<char*>(buf), len, | 
 |                         true /* owns buffer */); | 
 |   } | 
 |  | 
 |   StringPiece GetKey() const override { return StringPiece(); } | 
 |   StringPiece GetNoncePrefix() const override { return StringPiece(); } | 
 |  | 
 |  protected: | 
 |   virtual uint8 GetTag(StringPiece ciphertext) { | 
 |     return ciphertext.data()[ciphertext.size()-1]; | 
 |   } | 
 |  | 
 |  private: | 
 |   enum { | 
 |     kTagSize = 12, | 
 |   }; | 
 |  | 
 |   bool CheckTag(StringPiece ciphertext, uint8 tag) { | 
 |     for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) { | 
 |       if (ciphertext.data()[i] != tag) { | 
 |         return false; | 
 |       } | 
 |     } | 
 |  | 
 |     return true; | 
 |   } | 
 | }; | 
 |  | 
 | // StringTaggingDecrypter ensures that the final kTagSize bytes of the message | 
 | // match the expected value. | 
 | class StrictTaggingDecrypter : public TaggingDecrypter { | 
 |  public: | 
 |   explicit StrictTaggingDecrypter(uint8 tag) : tag_(tag) {} | 
 |   ~StrictTaggingDecrypter() override {} | 
 |  | 
 |   // TaggingQuicDecrypter | 
 |   uint8 GetTag(StringPiece ciphertext) override { return tag_; } | 
 |  | 
 |  private: | 
 |   const uint8 tag_; | 
 | }; | 
 |  | 
 | class TestConnectionHelper : public QuicConnectionHelperInterface { | 
 |  public: | 
 |   class TestAlarm : public QuicAlarm { | 
 |    public: | 
 |     explicit TestAlarm(QuicAlarm::Delegate* delegate) | 
 |         : QuicAlarm(delegate) { | 
 |     } | 
 |  | 
 |     void SetImpl() override {} | 
 |     void CancelImpl() override {} | 
 |     using QuicAlarm::Fire; | 
 |   }; | 
 |  | 
 |   TestConnectionHelper(MockClock* clock, MockRandom* random_generator) | 
 |       : clock_(clock), | 
 |         random_generator_(random_generator) { | 
 |     clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); | 
 |   } | 
 |  | 
 |   // QuicConnectionHelperInterface | 
 |   const QuicClock* GetClock() const override { return clock_; } | 
 |  | 
 |   QuicRandom* GetRandomGenerator() override { return random_generator_; } | 
 |  | 
 |   QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) override { | 
 |     return new TestAlarm(delegate); | 
 |   } | 
 |  | 
 |  private: | 
 |   MockClock* clock_; | 
 |   MockRandom* random_generator_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper); | 
 | }; | 
 |  | 
 | class TestPacketWriter : public QuicPacketWriter { | 
 |  public: | 
 |   TestPacketWriter(QuicVersion version, MockClock *clock) | 
 |       : version_(version), | 
 |         framer_(SupportedVersions(version_)), | 
 |         last_packet_size_(0), | 
 |         write_blocked_(false), | 
 |         block_on_next_write_(false), | 
 |         is_write_blocked_data_buffered_(false), | 
 |         final_bytes_of_last_packet_(0), | 
 |         final_bytes_of_previous_packet_(0), | 
 |         use_tagging_decrypter_(false), | 
 |         packets_write_attempts_(0), | 
 |         clock_(clock), | 
 |         write_pause_time_delta_(QuicTime::Delta::Zero()) { | 
 |   } | 
 |  | 
 |   // QuicPacketWriter interface | 
 |   WriteResult WritePacket(const char* buffer, | 
 |                           size_t buf_len, | 
 |                           const IPAddressNumber& self_address, | 
 |                           const IPEndPoint& peer_address) override { | 
 |     QuicEncryptedPacket packet(buffer, buf_len); | 
 |     ++packets_write_attempts_; | 
 |  | 
 |     if (packet.length() >= sizeof(final_bytes_of_last_packet_)) { | 
 |       final_bytes_of_previous_packet_ = final_bytes_of_last_packet_; | 
 |       memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4, | 
 |              sizeof(final_bytes_of_last_packet_)); | 
 |     } | 
 |  | 
 |     if (use_tagging_decrypter_) { | 
 |       framer_.framer()->SetDecrypter(new TaggingDecrypter, ENCRYPTION_NONE); | 
 |     } | 
 |     EXPECT_TRUE(framer_.ProcessPacket(packet)); | 
 |     if (block_on_next_write_) { | 
 |       write_blocked_ = true; | 
 |       block_on_next_write_ = false; | 
 |     } | 
 |     if (IsWriteBlocked()) { | 
 |       return WriteResult(WRITE_STATUS_BLOCKED, -1); | 
 |     } | 
 |     last_packet_size_ = packet.length(); | 
 |  | 
 |     if (!write_pause_time_delta_.IsZero()) { | 
 |       clock_->AdvanceTime(write_pause_time_delta_); | 
 |     } | 
 |     return WriteResult(WRITE_STATUS_OK, last_packet_size_); | 
 |   } | 
 |  | 
 |   bool IsWriteBlockedDataBuffered() const override { | 
 |     return is_write_blocked_data_buffered_; | 
 |   } | 
 |  | 
 |   bool IsWriteBlocked() const override { return write_blocked_; } | 
 |  | 
 |   void SetWritable() override { write_blocked_ = false; } | 
 |  | 
 |   void BlockOnNextWrite() { block_on_next_write_ = true; } | 
 |  | 
 |   // Sets the amount of time that the writer should before the actual write. | 
 |   void SetWritePauseTimeDelta(QuicTime::Delta delta) { | 
 |     write_pause_time_delta_ = delta; | 
 |   } | 
 |  | 
 |   const QuicPacketHeader& header() { return framer_.header(); } | 
 |  | 
 |   size_t frame_count() const { return framer_.num_frames(); } | 
 |  | 
 |   const vector<QuicAckFrame>& ack_frames() const { | 
 |     return framer_.ack_frames(); | 
 |   } | 
 |  | 
 |   const vector<QuicStopWaitingFrame>& stop_waiting_frames() const { | 
 |     return framer_.stop_waiting_frames(); | 
 |   } | 
 |  | 
 |   const vector<QuicConnectionCloseFrame>& connection_close_frames() const { | 
 |     return framer_.connection_close_frames(); | 
 |   } | 
 |  | 
 |   const vector<QuicStreamFrame>& stream_frames() const { | 
 |     return framer_.stream_frames(); | 
 |   } | 
 |  | 
 |   const vector<QuicPingFrame>& ping_frames() const { | 
 |     return framer_.ping_frames(); | 
 |   } | 
 |  | 
 |   size_t last_packet_size() { | 
 |     return last_packet_size_; | 
 |   } | 
 |  | 
 |   const QuicVersionNegotiationPacket* version_negotiation_packet() { | 
 |     return framer_.version_negotiation_packet(); | 
 |   } | 
 |  | 
 |   void set_is_write_blocked_data_buffered(bool buffered) { | 
 |     is_write_blocked_data_buffered_ = buffered; | 
 |   } | 
 |  | 
 |   void set_is_server(bool is_server) { | 
 |     // We invert is_server here, because the framer needs to parse packets | 
 |     // we send. | 
 |     QuicFramerPeer::SetIsServer(framer_.framer(), !is_server); | 
 |   } | 
 |  | 
 |   // final_bytes_of_last_packet_ returns the last four bytes of the previous | 
 |   // packet as a little-endian, uint32. This is intended to be used with a | 
 |   // TaggingEncrypter so that tests can determine which encrypter was used for | 
 |   // a given packet. | 
 |   uint32 final_bytes_of_last_packet() { return final_bytes_of_last_packet_; } | 
 |  | 
 |   // Returns the final bytes of the second to last packet. | 
 |   uint32 final_bytes_of_previous_packet() { | 
 |     return final_bytes_of_previous_packet_; | 
 |   } | 
 |  | 
 |   void use_tagging_decrypter() { | 
 |     use_tagging_decrypter_ = true; | 
 |   } | 
 |  | 
 |   uint32 packets_write_attempts() { return packets_write_attempts_; } | 
 |  | 
 |   void Reset() { framer_.Reset(); } | 
 |  | 
 |   void SetSupportedVersions(const QuicVersionVector& versions) { | 
 |     framer_.SetSupportedVersions(versions); | 
 |   } | 
 |  | 
 |  private: | 
 |   QuicVersion version_; | 
 |   SimpleQuicFramer framer_; | 
 |   size_t last_packet_size_; | 
 |   bool write_blocked_; | 
 |   bool block_on_next_write_; | 
 |   bool is_write_blocked_data_buffered_; | 
 |   uint32 final_bytes_of_last_packet_; | 
 |   uint32 final_bytes_of_previous_packet_; | 
 |   bool use_tagging_decrypter_; | 
 |   uint32 packets_write_attempts_; | 
 |   MockClock *clock_; | 
 |   // If non-zero, the clock will pause during WritePacket for this amount of | 
 |   // time. | 
 |   QuicTime::Delta write_pause_time_delta_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(TestPacketWriter); | 
 | }; | 
 |  | 
 | class TestConnection : public QuicConnection { | 
 |  public: | 
 |   TestConnection(QuicConnectionId connection_id, | 
 |                  IPEndPoint address, | 
 |                  TestConnectionHelper* helper, | 
 |                  const PacketWriterFactory& factory, | 
 |                  bool is_server, | 
 |                  QuicVersion version) | 
 |       : QuicConnection(connection_id, | 
 |                        address, | 
 |                        helper, | 
 |                        factory, | 
 |                        /* owns_writer= */ false, | 
 |                        is_server, | 
 |                        /* is_secure= */ false, | 
 |                        SupportedVersions(version)) { | 
 |     // Disable tail loss probes for most tests. | 
 |     QuicSentPacketManagerPeer::SetMaxTailLossProbes( | 
 |         QuicConnectionPeer::GetSentPacketManager(this), 0); | 
 |     writer()->set_is_server(is_server); | 
 |   } | 
 |  | 
 |   void SendAck() { | 
 |     QuicConnectionPeer::SendAck(this); | 
 |   } | 
 |  | 
 |   void SetReceiveAlgorithm(TestReceiveAlgorithm* receive_algorithm) { | 
 |      QuicConnectionPeer::SetReceiveAlgorithm(this, receive_algorithm); | 
 |   } | 
 |  | 
 |   void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) { | 
 |     QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm); | 
 |   } | 
 |  | 
 |   void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) { | 
 |     QuicSentPacketManagerPeer::SetLossAlgorithm( | 
 |         QuicConnectionPeer::GetSentPacketManager(this), loss_algorithm); | 
 |   } | 
 |  | 
 |   void SendPacket(EncryptionLevel level, | 
 |                   QuicPacketSequenceNumber sequence_number, | 
 |                   QuicPacket* packet, | 
 |                   QuicPacketEntropyHash entropy_hash, | 
 |                   HasRetransmittableData retransmittable) { | 
 |     RetransmittableFrames* retransmittable_frames = | 
 |         retransmittable == HAS_RETRANSMITTABLE_DATA | 
 |             ? new RetransmittableFrames() | 
 |             : nullptr; | 
 |     OnSerializedPacket( | 
 |         SerializedPacket(sequence_number, PACKET_6BYTE_SEQUENCE_NUMBER, | 
 |                          packet, entropy_hash, retransmittable_frames)); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendStreamDataWithString( | 
 |       QuicStreamId id, | 
 |       StringPiece data, | 
 |       QuicStreamOffset offset, | 
 |       bool fin, | 
 |       QuicAckNotifier::DelegateInterface* delegate) { | 
 |     return SendStreamDataWithStringHelper(id, data, offset, fin, | 
 |                                           MAY_FEC_PROTECT, delegate); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendStreamDataWithStringWithFec( | 
 |       QuicStreamId id, | 
 |       StringPiece data, | 
 |       QuicStreamOffset offset, | 
 |       bool fin, | 
 |       QuicAckNotifier::DelegateInterface* delegate) { | 
 |     return SendStreamDataWithStringHelper(id, data, offset, fin, | 
 |                                           MUST_FEC_PROTECT, delegate); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendStreamDataWithStringHelper( | 
 |       QuicStreamId id, | 
 |       StringPiece data, | 
 |       QuicStreamOffset offset, | 
 |       bool fin, | 
 |       FecProtection fec_protection, | 
 |       QuicAckNotifier::DelegateInterface* delegate) { | 
 |     IOVector data_iov; | 
 |     if (!data.empty()) { | 
 |       data_iov.Append(const_cast<char*>(data.data()), data.size()); | 
 |     } | 
 |     return QuicConnection::SendStreamData(id, data_iov, offset, fin, | 
 |                                           fec_protection, delegate); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendStreamData3() { | 
 |     return SendStreamDataWithString(kClientDataStreamId1, "food", 0, !kFin, | 
 |                                     nullptr); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendStreamData3WithFec() { | 
 |     return SendStreamDataWithStringWithFec(kClientDataStreamId1, "food", 0, | 
 |                                            !kFin, nullptr); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendStreamData5() { | 
 |     return SendStreamDataWithString(kClientDataStreamId2, "food2", 0, !kFin, | 
 |                                     nullptr); | 
 |   } | 
 |  | 
 |   QuicConsumedData SendStreamData5WithFec() { | 
 |     return SendStreamDataWithStringWithFec(kClientDataStreamId2, "food2", 0, | 
 |                                            !kFin, nullptr); | 
 |   } | 
 |   // Ensures the connection can write stream data before writing. | 
 |   QuicConsumedData EnsureWritableAndSendStreamData5() { | 
 |     EXPECT_TRUE(CanWriteStreamData()); | 
 |     return SendStreamData5(); | 
 |   } | 
 |  | 
 |   // The crypto stream has special semantics so that it is not blocked by a | 
 |   // congestion window limitation, and also so that it gets put into a separate | 
 |   // packet (so that it is easier to reason about a crypto frame not being | 
 |   // split needlessly across packet boundaries).  As a result, we have separate | 
 |   // tests for some cases for this stream. | 
 |   QuicConsumedData SendCryptoStreamData() { | 
 |     return SendStreamDataWithString(kCryptoStreamId, "chlo", 0, !kFin, nullptr); | 
 |   } | 
 |  | 
 |   bool is_server() { | 
 |     return QuicConnectionPeer::IsServer(this); | 
 |   } | 
 |  | 
 |   void set_version(QuicVersion version) { | 
 |     QuicConnectionPeer::GetFramer(this)->set_version(version); | 
 |   } | 
 |  | 
 |   void SetSupportedVersions(const QuicVersionVector& versions) { | 
 |     QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions); | 
 |     writer()->SetSupportedVersions(versions); | 
 |   } | 
 |  | 
 |   void set_is_server(bool is_server) { | 
 |     writer()->set_is_server(is_server); | 
 |     QuicConnectionPeer::SetIsServer(this, is_server); | 
 |   } | 
 |  | 
 |   TestConnectionHelper::TestAlarm* GetAckAlarm() { | 
 |     return reinterpret_cast<TestConnectionHelper::TestAlarm*>( | 
 |         QuicConnectionPeer::GetAckAlarm(this)); | 
 |   } | 
 |  | 
 |   TestConnectionHelper::TestAlarm* GetPingAlarm() { | 
 |     return reinterpret_cast<TestConnectionHelper::TestAlarm*>( | 
 |         QuicConnectionPeer::GetPingAlarm(this)); | 
 |   } | 
 |  | 
 |   TestConnectionHelper::TestAlarm* GetFecAlarm() { | 
 |     return reinterpret_cast<TestConnectionHelper::TestAlarm*>( | 
 |         QuicConnectionPeer::GetFecAlarm(this)); | 
 |   } | 
 |  | 
 |   TestConnectionHelper::TestAlarm* GetResumeWritesAlarm() { | 
 |     return reinterpret_cast<TestConnectionHelper::TestAlarm*>( | 
 |         QuicConnectionPeer::GetResumeWritesAlarm(this)); | 
 |   } | 
 |  | 
 |   TestConnectionHelper::TestAlarm* GetRetransmissionAlarm() { | 
 |     return reinterpret_cast<TestConnectionHelper::TestAlarm*>( | 
 |         QuicConnectionPeer::GetRetransmissionAlarm(this)); | 
 |   } | 
 |  | 
 |   TestConnectionHelper::TestAlarm* GetSendAlarm() { | 
 |     return reinterpret_cast<TestConnectionHelper::TestAlarm*>( | 
 |         QuicConnectionPeer::GetSendAlarm(this)); | 
 |   } | 
 |  | 
 |   TestConnectionHelper::TestAlarm* GetTimeoutAlarm() { | 
 |     return reinterpret_cast<TestConnectionHelper::TestAlarm*>( | 
 |         QuicConnectionPeer::GetTimeoutAlarm(this)); | 
 |   } | 
 |  | 
 |   using QuicConnection::SelectMutualVersion; | 
 |  | 
 |  private: | 
 |   TestPacketWriter* writer() { | 
 |     return static_cast<TestPacketWriter*>(QuicConnection::writer()); | 
 |   } | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(TestConnection); | 
 | }; | 
 |  | 
 | // Used for testing packets revived from FEC packets. | 
 | class FecQuicConnectionDebugVisitor | 
 |     : public QuicConnectionDebugVisitor { | 
 |  public: | 
 |   void OnRevivedPacket(const QuicPacketHeader& header, | 
 |                        StringPiece data) override { | 
 |     revived_header_ = header; | 
 |   } | 
 |  | 
 |   // Public accessor method. | 
 |   QuicPacketHeader revived_header() const { | 
 |     return revived_header_; | 
 |   } | 
 |  | 
 |  private: | 
 |   QuicPacketHeader revived_header_; | 
 | }; | 
 |  | 
 | class MockPacketWriterFactory : public QuicConnection::PacketWriterFactory { | 
 |  public: | 
 |   explicit MockPacketWriterFactory(QuicPacketWriter* writer) { | 
 |     ON_CALL(*this, Create(_)).WillByDefault(Return(writer)); | 
 |   } | 
 |   ~MockPacketWriterFactory() override {} | 
 |  | 
 |   MOCK_CONST_METHOD1(Create, QuicPacketWriter*(QuicConnection* connection)); | 
 | }; | 
 |  | 
 | class QuicConnectionTest : public ::testing::TestWithParam<QuicVersion> { | 
 |  protected: | 
 |   QuicConnectionTest() | 
 |       : connection_id_(42), | 
 |         framer_(SupportedVersions(version()), QuicTime::Zero(), false), | 
 |         peer_creator_(connection_id_, &framer_, &random_generator_), | 
 |         send_algorithm_(new StrictMock<MockSendAlgorithm>), | 
 |         loss_algorithm_(new MockLossAlgorithm()), | 
 |         receive_algorithm_(new TestReceiveAlgorithm), | 
 |         helper_(new TestConnectionHelper(&clock_, &random_generator_)), | 
 |         writer_(new TestPacketWriter(version(), &clock_)), | 
 |         factory_(writer_.get()), | 
 |         connection_(connection_id_, | 
 |                     IPEndPoint(), | 
 |                     helper_.get(), | 
 |                     factory_, | 
 |                     false, | 
 |                     version()), | 
 |         creator_(QuicConnectionPeer::GetPacketCreator(&connection_)), | 
 |         generator_(QuicConnectionPeer::GetPacketGenerator(&connection_)), | 
 |         manager_(QuicConnectionPeer::GetSentPacketManager(&connection_)), | 
 |         frame1_(1, false, 0, MakeIOVector(data1)), | 
 |         frame2_(1, false, 3, MakeIOVector(data2)), | 
 |         sequence_number_length_(PACKET_6BYTE_SEQUENCE_NUMBER), | 
 |         connection_id_length_(PACKET_8BYTE_CONNECTION_ID) { | 
 |     connection_.set_visitor(&visitor_); | 
 |     connection_.SetSendAlgorithm(send_algorithm_); | 
 |     connection_.SetLossAlgorithm(loss_algorithm_); | 
 |     framer_.set_received_entropy_calculator(&entropy_calculator_); | 
 |     connection_.SetReceiveAlgorithm(receive_algorithm_); | 
 |     EXPECT_CALL( | 
 |         *send_algorithm_, TimeUntilSend(_, _, _)).WillRepeatedly(Return( | 
 |             QuicTime::Delta::Zero())); | 
 |     EXPECT_CALL(*receive_algorithm_, | 
 |                 RecordIncomingPacket(_, _, _)).Times(AnyNumber()); | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .Times(AnyNumber()); | 
 |     EXPECT_CALL(*send_algorithm_, RetransmissionDelay()).WillRepeatedly( | 
 |         Return(QuicTime::Delta::Zero())); | 
 |     EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( | 
 |         Return(kMaxPacketSize)); | 
 |     ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .WillByDefault(Return(true)); | 
 |     EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate()) | 
 |         .Times(AnyNumber()); | 
 |     EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) | 
 |         .Times(AnyNumber()) | 
 |         .WillRepeatedly(Return(QuicBandwidth::Zero())); | 
 |     EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); | 
 |     EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); | 
 |     EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber()); | 
 |     EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber()); | 
 |     EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber()); | 
 |     EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(false)); | 
 |     EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber()); | 
 |  | 
 |     EXPECT_CALL(*loss_algorithm_, GetLossTimeout()) | 
 |         .WillRepeatedly(Return(QuicTime::Zero())); | 
 |     EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |         .WillRepeatedly(Return(SequenceNumberSet())); | 
 |   } | 
 |  | 
 |   QuicVersion version() { | 
 |     return GetParam(); | 
 |   } | 
 |  | 
 |   QuicAckFrame* outgoing_ack() { | 
 |     outgoing_ack_.reset(QuicConnectionPeer::CreateAckFrame(&connection_)); | 
 |     return outgoing_ack_.get(); | 
 |   } | 
 |  | 
 |   QuicStopWaitingFrame* stop_waiting() { | 
 |     stop_waiting_.reset( | 
 |         QuicConnectionPeer::CreateStopWaitingFrame(&connection_)); | 
 |     return stop_waiting_.get(); | 
 |   } | 
 |  | 
 |   QuicPacketSequenceNumber least_unacked() { | 
 |     if (writer_->stop_waiting_frames().empty()) { | 
 |       return 0; | 
 |     } | 
 |     return writer_->stop_waiting_frames()[0].least_unacked; | 
 |   } | 
 |  | 
 |   void use_tagging_decrypter() { | 
 |     writer_->use_tagging_decrypter(); | 
 |   } | 
 |  | 
 |   void ProcessPacket(QuicPacketSequenceNumber number) { | 
 |     EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); | 
 |     ProcessDataPacket(number, 0, !kEntropyFlag); | 
 |   } | 
 |  | 
 |   QuicPacketEntropyHash ProcessFramePacket(QuicFrame frame) { | 
 |     QuicFrames frames; | 
 |     frames.push_back(QuicFrame(frame)); | 
 |     QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_, | 
 |                                                   connection_.is_server()); | 
 |     SerializedPacket serialized_packet = | 
 |         peer_creator_.SerializeAllFrames(frames); | 
 |     scoped_ptr<QuicPacket> packet(serialized_packet.packet); | 
 |     scoped_ptr<QuicEncryptedPacket> encrypted( | 
 |         framer_.EncryptPacket(ENCRYPTION_NONE, | 
 |                               serialized_packet.sequence_number, *packet)); | 
 |     connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 |     return serialized_packet.entropy_hash; | 
 |   } | 
 |  | 
 |   size_t ProcessDataPacket(QuicPacketSequenceNumber number, | 
 |                            QuicFecGroupNumber fec_group, | 
 |                            bool entropy_flag) { | 
 |     return ProcessDataPacketAtLevel(number, fec_group, entropy_flag, | 
 |                                     ENCRYPTION_NONE); | 
 |   } | 
 |  | 
 |   size_t ProcessDataPacketAtLevel(QuicPacketSequenceNumber number, | 
 |                                   QuicFecGroupNumber fec_group, | 
 |                                   bool entropy_flag, | 
 |                                   EncryptionLevel level) { | 
 |     scoped_ptr<QuicPacket> packet(ConstructDataPacket(number, fec_group, | 
 |                                                       entropy_flag)); | 
 |     scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( | 
 |         level, number, *packet)); | 
 |     connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 |     return encrypted->length(); | 
 |   } | 
 |  | 
 |   void ProcessPingPacket(QuicPacketSequenceNumber number) { | 
 |     scoped_ptr<QuicPacket> packet(ConstructPingPacket(number)); | 
 |     scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( | 
 |         ENCRYPTION_NONE, number, *packet)); | 
 |     connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 |   } | 
 |  | 
 |   void ProcessClosePacket(QuicPacketSequenceNumber number, | 
 |                           QuicFecGroupNumber fec_group) { | 
 |     scoped_ptr<QuicPacket> packet(ConstructClosePacket(number, fec_group)); | 
 |     scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( | 
 |         ENCRYPTION_NONE, number, *packet)); | 
 |     connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 |   } | 
 |  | 
 |   size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number, | 
 |                                    bool expect_revival, bool entropy_flag) { | 
 |     if (expect_revival) { | 
 |       EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); | 
 |     } | 
 |     EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1). | 
 |           RetiresOnSaturation(); | 
 |     return ProcessDataPacket(number, 1, entropy_flag); | 
 |   } | 
 |  | 
 |   // Processes an FEC packet that covers the packets that would have been | 
 |   // received. | 
 |   size_t ProcessFecPacket(QuicPacketSequenceNumber number, | 
 |                           QuicPacketSequenceNumber min_protected_packet, | 
 |                           bool expect_revival, | 
 |                           bool entropy_flag, | 
 |                           QuicPacket* packet) { | 
 |     if (expect_revival) { | 
 |       EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); | 
 |     } | 
 |  | 
 |     // Construct the decrypted data packet so we can compute the correct | 
 |     // redundancy. If |packet| has been provided then use that, otherwise | 
 |     // construct a default data packet. | 
 |     scoped_ptr<QuicPacket> data_packet; | 
 |     if (packet) { | 
 |       data_packet.reset(packet); | 
 |     } else { | 
 |       data_packet.reset(ConstructDataPacket(number, 1, !kEntropyFlag)); | 
 |     } | 
 |  | 
 |     header_.public_header.connection_id = connection_id_; | 
 |     header_.public_header.reset_flag = false; | 
 |     header_.public_header.version_flag = false; | 
 |     header_.public_header.sequence_number_length = sequence_number_length_; | 
 |     header_.public_header.connection_id_length = connection_id_length_; | 
 |     header_.packet_sequence_number = number; | 
 |     header_.entropy_flag = entropy_flag; | 
 |     header_.fec_flag = true; | 
 |     header_.is_in_fec_group = IN_FEC_GROUP; | 
 |     header_.fec_group = min_protected_packet; | 
 |     QuicFecData fec_data; | 
 |     fec_data.fec_group = header_.fec_group; | 
 |  | 
 |     // Since all data packets in this test have the same payload, the | 
 |     // redundancy is either equal to that payload or the xor of that payload | 
 |     // with itself, depending on the number of packets. | 
 |     if (((number - min_protected_packet) % 2) == 0) { | 
 |       for (size_t i = GetStartOfFecProtectedData( | 
 |                header_.public_header.connection_id_length, | 
 |                header_.public_header.version_flag, | 
 |                header_.public_header.sequence_number_length); | 
 |            i < data_packet->length(); ++i) { | 
 |         data_packet->mutable_data()[i] ^= data_packet->data()[i]; | 
 |       } | 
 |     } | 
 |     fec_data.redundancy = data_packet->FecProtectedData(); | 
 |  | 
 |     scoped_ptr<QuicPacket> fec_packet( | 
 |         framer_.BuildFecPacket(header_, fec_data).packet); | 
 |     scoped_ptr<QuicEncryptedPacket> encrypted( | 
 |         framer_.EncryptPacket(ENCRYPTION_NONE, number, *fec_packet)); | 
 |  | 
 |     connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 |     return encrypted->length(); | 
 |   } | 
 |  | 
 |   QuicByteCount SendStreamDataToPeer(QuicStreamId id, | 
 |                                      StringPiece data, | 
 |                                      QuicStreamOffset offset, | 
 |                                      bool fin, | 
 |                                      QuicPacketSequenceNumber* last_packet) { | 
 |     QuicByteCount packet_size; | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true))); | 
 |     connection_.SendStreamDataWithString(id, data, offset, fin, nullptr); | 
 |     if (last_packet != nullptr) { | 
 |       *last_packet = creator_->sequence_number(); | 
 |     } | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .Times(AnyNumber()); | 
 |     return packet_size; | 
 |   } | 
 |  | 
 |   void SendAckPacketToPeer() { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendAck(); | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |         .Times(AnyNumber()); | 
 |   } | 
 |  | 
 |   QuicPacketEntropyHash ProcessAckPacket(QuicAckFrame* frame) { | 
 |     return ProcessFramePacket(QuicFrame(frame)); | 
 |   } | 
 |  | 
 |   QuicPacketEntropyHash ProcessStopWaitingPacket(QuicStopWaitingFrame* frame) { | 
 |     return ProcessFramePacket(QuicFrame(frame)); | 
 |   } | 
 |  | 
 |   QuicPacketEntropyHash ProcessGoAwayPacket(QuicGoAwayFrame* frame) { | 
 |     return ProcessFramePacket(QuicFrame(frame)); | 
 |   } | 
 |  | 
 |   bool IsMissing(QuicPacketSequenceNumber number) { | 
 |     return IsAwaitingPacket(*outgoing_ack(), number); | 
 |   } | 
 |  | 
 |   QuicPacket* ConstructDataPacket(QuicPacketSequenceNumber number, | 
 |                                   QuicFecGroupNumber fec_group, | 
 |                                   bool entropy_flag) { | 
 |     header_.public_header.connection_id = connection_id_; | 
 |     header_.public_header.reset_flag = false; | 
 |     header_.public_header.version_flag = false; | 
 |     header_.public_header.sequence_number_length = sequence_number_length_; | 
 |     header_.public_header.connection_id_length = connection_id_length_; | 
 |     header_.entropy_flag = entropy_flag; | 
 |     header_.fec_flag = false; | 
 |     header_.packet_sequence_number = number; | 
 |     header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP; | 
 |     header_.fec_group = fec_group; | 
 |  | 
 |     QuicFrames frames; | 
 |     QuicFrame frame(&frame1_); | 
 |     frames.push_back(frame); | 
 |     QuicPacket* packet = | 
 |         BuildUnsizedDataPacket(&framer_, header_, frames).packet; | 
 |     EXPECT_TRUE(packet != nullptr); | 
 |     return packet; | 
 |   } | 
 |  | 
 |   QuicPacket* ConstructPingPacket(QuicPacketSequenceNumber number) { | 
 |     header_.public_header.connection_id = connection_id_; | 
 |     header_.packet_sequence_number = number; | 
 |     header_.public_header.reset_flag = false; | 
 |     header_.public_header.version_flag = false; | 
 |     header_.entropy_flag = false; | 
 |     header_.fec_flag = false; | 
 |     header_.is_in_fec_group = NOT_IN_FEC_GROUP; | 
 |     header_.fec_group = 0; | 
 |  | 
 |     QuicPingFrame ping; | 
 |  | 
 |     QuicFrames frames; | 
 |     QuicFrame frame(&ping); | 
 |     frames.push_back(frame); | 
 |     QuicPacket* packet = | 
 |         BuildUnsizedDataPacket(&framer_, header_, frames).packet; | 
 |     EXPECT_TRUE(packet != nullptr); | 
 |     return packet; | 
 |   } | 
 |  | 
 |   QuicPacket* ConstructClosePacket(QuicPacketSequenceNumber number, | 
 |                                    QuicFecGroupNumber fec_group) { | 
 |     header_.public_header.connection_id = connection_id_; | 
 |     header_.packet_sequence_number = number; | 
 |     header_.public_header.reset_flag = false; | 
 |     header_.public_header.version_flag = false; | 
 |     header_.entropy_flag = false; | 
 |     header_.fec_flag = false; | 
 |     header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP; | 
 |     header_.fec_group = fec_group; | 
 |  | 
 |     QuicConnectionCloseFrame qccf; | 
 |     qccf.error_code = QUIC_PEER_GOING_AWAY; | 
 |  | 
 |     QuicFrames frames; | 
 |     QuicFrame frame(&qccf); | 
 |     frames.push_back(frame); | 
 |     QuicPacket* packet = | 
 |         BuildUnsizedDataPacket(&framer_, header_, frames).packet; | 
 |     EXPECT_TRUE(packet != nullptr); | 
 |     return packet; | 
 |   } | 
 |  | 
 |   QuicTime::Delta DefaultRetransmissionTime() { | 
 |     return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); | 
 |   } | 
 |  | 
 |   QuicTime::Delta DefaultDelayedAckTime() { | 
 |     return QuicTime::Delta::FromMilliseconds(kMaxDelayedAckTimeMs); | 
 |   } | 
 |  | 
 |   // Initialize a frame acknowledging all packets up to largest_observed. | 
 |   const QuicAckFrame InitAckFrame(QuicPacketSequenceNumber largest_observed) { | 
 |     QuicAckFrame frame(MakeAckFrame(largest_observed)); | 
 |     if (largest_observed > 0) { | 
 |       frame.entropy_hash = | 
 |           QuicConnectionPeer::GetSentEntropyHash(&connection_, | 
 |                                                  largest_observed); | 
 |     } | 
 |     return frame; | 
 |   } | 
 |  | 
 |   const QuicStopWaitingFrame InitStopWaitingFrame( | 
 |       QuicPacketSequenceNumber least_unacked) { | 
 |     QuicStopWaitingFrame frame; | 
 |     frame.least_unacked = least_unacked; | 
 |     return frame; | 
 |   } | 
 |  | 
 |   // Explicitly nack a packet. | 
 |   void NackPacket(QuicPacketSequenceNumber missing, QuicAckFrame* frame) { | 
 |     frame->missing_packets.insert(missing); | 
 |     frame->entropy_hash ^= | 
 |         QuicConnectionPeer::PacketEntropy(&connection_, missing); | 
 |   } | 
 |  | 
 |   // Undo nacking a packet within the frame. | 
 |   void AckPacket(QuicPacketSequenceNumber arrived, QuicAckFrame* frame) { | 
 |     EXPECT_THAT(frame->missing_packets, Contains(arrived)); | 
 |     frame->missing_packets.erase(arrived); | 
 |     frame->entropy_hash ^= | 
 |         QuicConnectionPeer::PacketEntropy(&connection_, arrived); | 
 |   } | 
 |  | 
 |   void TriggerConnectionClose() { | 
 |     // Send an erroneous packet to close the connection. | 
 |     EXPECT_CALL(visitor_, | 
 |                 OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); | 
 |     // Call ProcessDataPacket rather than ProcessPacket, as we should not get a | 
 |     // packet call to the visitor. | 
 |     ProcessDataPacket(6000, 0, !kEntropyFlag); | 
 |     EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == | 
 |                  nullptr); | 
 |   } | 
 |  | 
 |   void BlockOnNextWrite() { | 
 |     writer_->BlockOnNextWrite(); | 
 |     EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); | 
 |   } | 
 |  | 
 |   void SetWritePauseTimeDelta(QuicTime::Delta delta) { | 
 |     writer_->SetWritePauseTimeDelta(delta); | 
 |   } | 
 |  | 
 |   void CongestionBlockWrites() { | 
 |     EXPECT_CALL(*send_algorithm_, | 
 |                 TimeUntilSend(_, _, _)).WillRepeatedly( | 
 |                     testing::Return(QuicTime::Delta::FromSeconds(1))); | 
 |   } | 
 |  | 
 |   void CongestionUnblockWrites() { | 
 |     EXPECT_CALL(*send_algorithm_, | 
 |                 TimeUntilSend(_, _, _)).WillRepeatedly( | 
 |                     testing::Return(QuicTime::Delta::Zero())); | 
 |   } | 
 |  | 
 |   QuicConnectionId connection_id_; | 
 |   QuicFramer framer_; | 
 |   QuicPacketCreator peer_creator_; | 
 |   MockEntropyCalculator entropy_calculator_; | 
 |  | 
 |   MockSendAlgorithm* send_algorithm_; | 
 |   MockLossAlgorithm* loss_algorithm_; | 
 |   TestReceiveAlgorithm* receive_algorithm_; | 
 |   MockClock clock_; | 
 |   MockRandom random_generator_; | 
 |   scoped_ptr<TestConnectionHelper> helper_; | 
 |   scoped_ptr<TestPacketWriter> writer_; | 
 |   NiceMock<MockPacketWriterFactory> factory_; | 
 |   TestConnection connection_; | 
 |   QuicPacketCreator* creator_; | 
 |   QuicPacketGenerator* generator_; | 
 |   QuicSentPacketManager* manager_; | 
 |   StrictMock<MockConnectionVisitor> visitor_; | 
 |  | 
 |   QuicPacketHeader header_; | 
 |   QuicStreamFrame frame1_; | 
 |   QuicStreamFrame frame2_; | 
 |   scoped_ptr<QuicAckFrame> outgoing_ack_; | 
 |   scoped_ptr<QuicStopWaitingFrame> stop_waiting_; | 
 |   QuicSequenceNumberLength sequence_number_length_; | 
 |   QuicConnectionIdLength connection_id_length_; | 
 |  | 
 |  private: | 
 |   DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest); | 
 | }; | 
 |  | 
 | // Run all end to end tests with all supported versions. | 
 | INSTANTIATE_TEST_CASE_P(SupportedVersion, | 
 |                         QuicConnectionTest, | 
 |                         ::testing::ValuesIn(QuicSupportedVersions())); | 
 |  | 
 | TEST_P(QuicConnectionTest, PacketsInOrder) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(1); | 
 |   EXPECT_EQ(1u, outgoing_ack()->largest_observed); | 
 |   EXPECT_EQ(0u, outgoing_ack()->missing_packets.size()); | 
 |  | 
 |   ProcessPacket(2); | 
 |   EXPECT_EQ(2u, outgoing_ack()->largest_observed); | 
 |   EXPECT_EQ(0u, outgoing_ack()->missing_packets.size()); | 
 |  | 
 |   ProcessPacket(3); | 
 |   EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
 |   EXPECT_EQ(0u, outgoing_ack()->missing_packets.size()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PacketsOutOfOrder) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(3); | 
 |   EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
 |   EXPECT_TRUE(IsMissing(2)); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |  | 
 |   ProcessPacket(2); | 
 |   EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
 |   EXPECT_FALSE(IsMissing(2)); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |  | 
 |   ProcessPacket(1); | 
 |   EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
 |   EXPECT_FALSE(IsMissing(2)); | 
 |   EXPECT_FALSE(IsMissing(1)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DuplicatePacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(3); | 
 |   EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
 |   EXPECT_TRUE(IsMissing(2)); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |  | 
 |   // Send packet 3 again, but do not set the expectation that | 
 |   // the visitor OnStreamFrames() will be called. | 
 |   ProcessDataPacket(3, 0, !kEntropyFlag); | 
 |   EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
 |   EXPECT_TRUE(IsMissing(2)); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(3); | 
 |   EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
 |   EXPECT_TRUE(IsMissing(2)); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |  | 
 |   ProcessPacket(2); | 
 |   EXPECT_EQ(3u, outgoing_ack()->largest_observed); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |  | 
 |   ProcessPacket(5); | 
 |   EXPECT_EQ(5u, outgoing_ack()->largest_observed); | 
 |   EXPECT_TRUE(IsMissing(1)); | 
 |   EXPECT_TRUE(IsMissing(4)); | 
 |  | 
 |   // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a | 
 |   // packet the peer will not retransmit.  It indicates this by sending 'least | 
 |   // awaiting' is 4.  The connection should then realize 1 will not be | 
 |   // retransmitted, and will remove it from the missing list. | 
 |   peer_creator_.set_sequence_number(5); | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _)); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   // Force an ack to be sent. | 
 |   SendAckPacketToPeer(); | 
 |   EXPECT_TRUE(IsMissing(4)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RejectPacketTooFarOut) { | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); | 
 |   // Call ProcessDataPacket rather than ProcessPacket, as we should not get a | 
 |   // packet call to the visitor. | 
 |   ProcessDataPacket(6000, 0, !kEntropyFlag); | 
 |   EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == | 
 |                nullptr); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) { | 
 |   // Process an unencrypted packet from the non-crypto stream. | 
 |   frame1_.stream_id = 3; | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA, | 
 |                                            false)); | 
 |   ProcessDataPacket(1, 0, !kEntropyFlag); | 
 |   EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == | 
 |                nullptr); | 
 |   const vector<QuicConnectionCloseFrame>& connection_close_frames = | 
 |       writer_->connection_close_frames(); | 
 |   EXPECT_EQ(1u, connection_close_frames.size()); | 
 |   EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA, | 
 |             connection_close_frames[0].error_code); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TruncatedAck) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   QuicPacketSequenceNumber num_packets = 256 * 2 + 1; | 
 |   for (QuicPacketSequenceNumber i = 0; i < num_packets; ++i) { | 
 |     SendStreamDataToPeer(3, "foo", i * 3, !kFin, nullptr); | 
 |   } | 
 |  | 
 |   QuicAckFrame frame = InitAckFrame(num_packets); | 
 |   SequenceNumberSet lost_packets; | 
 |   // Create an ack with 256 nacks, none adjacent to one another. | 
 |   for (QuicPacketSequenceNumber i = 1; i <= 256; ++i) { | 
 |     NackPacket(i * 2, &frame); | 
 |     if (i < 256) {  // Last packet is nacked, but not lost. | 
 |       lost_packets.insert(i * 2); | 
 |     } | 
 |   } | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(entropy_calculator_, EntropyHash(511)) | 
 |       .WillOnce(Return(static_cast<QuicPacketEntropyHash>(0))); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   // A truncated ack will not have the true largest observed. | 
 |   EXPECT_GT(num_packets, manager_->largest_observed()); | 
 |  | 
 |   AckPacket(192, &frame); | 
 |  | 
 |   // Removing one missing packet allows us to ack 192 and one more range, but | 
 |   // 192 has already been declared lost, so it doesn't register as an ack. | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(SequenceNumberSet())); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_EQ(num_packets, manager_->largest_observed()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckReceiptCausesAckSendBadEntropy) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(1); | 
 |   // Delay sending, then queue up an ack. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               TimeUntilSend(_, _, _)).WillOnce( | 
 |                   testing::Return(QuicTime::Delta::FromMicroseconds(1))); | 
 |   QuicConnectionPeer::SendAck(&connection_); | 
 |  | 
 |   // Process an ack with a least unacked of the received ack. | 
 |   // This causes an ack to be sent when TimeUntilSend returns 0. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               TimeUntilSend(_, _, _)).WillRepeatedly( | 
 |                   testing::Return(QuicTime::Delta::Zero())); | 
 |   // Skip a packet and then record an ack. | 
 |   peer_creator_.set_sequence_number(2); | 
 |   QuicAckFrame frame = InitAckFrame(0); | 
 |   ProcessAckPacket(&frame); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessPacket(3); | 
 |   // Should ack immediately since we have missing packets. | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |  | 
 |   ProcessPacket(2); | 
 |   // Should ack immediately since we have missing packets. | 
 |   EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 |  | 
 |   ProcessPacket(1); | 
 |   // Should ack immediately, since this fills the last hole. | 
 |   EXPECT_EQ(3u, writer_->packets_write_attempts()); | 
 |  | 
 |   ProcessPacket(4); | 
 |   // Should not cause an ack. | 
 |   EXPECT_EQ(3u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   QuicPacketSequenceNumber original; | 
 |   QuicByteCount packet_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(DoAll(SaveArg<2>(&original), SaveArg<3>(&packet_size), | 
 |                       Return(true))); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
 |   QuicAckFrame frame = InitAckFrame(original); | 
 |   NackPacket(original, &frame); | 
 |   // First nack triggers early retransmit. | 
 |   SequenceNumberSet lost_packets; | 
 |   lost_packets.insert(1); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicPacketSequenceNumber retransmission; | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _)) | 
 |       .WillOnce(DoAll(SaveArg<2>(&retransmission), Return(true))); | 
 |  | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   QuicAckFrame frame2 = InitAckFrame(retransmission); | 
 |   NackPacket(original, &frame2); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(SequenceNumberSet())); | 
 |   ProcessAckPacket(&frame2); | 
 |  | 
 |   // Now if the peer sends an ack which still reports the retransmitted packet | 
 |   // as missing, that will bundle an ack with data after two acks in a row | 
 |   // indicate the high water mark needs to be raised. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, | 
 |                                              HAS_RETRANSMITTABLE_DATA)); | 
 |   connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr); | 
 |   // No ack sent. | 
 |   EXPECT_EQ(1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |  | 
 |   // No more packet loss for the rest of the test. | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillRepeatedly(Return(SequenceNumberSet())); | 
 |   ProcessAckPacket(&frame2); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, | 
 |                                              HAS_RETRANSMITTABLE_DATA)); | 
 |   connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr); | 
 |   // Ack bundled. | 
 |   EXPECT_EQ(3u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |  | 
 |   // But an ack with no missing packets will not send an ack. | 
 |   AckPacket(original, &frame2); | 
 |   ProcessAckPacket(&frame2); | 
 |   ProcessAckPacket(&frame2); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, 20AcksCausesAckSend) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); | 
 |  | 
 |   QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); | 
 |   // But an ack with no missing packets will not send an ack. | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillRepeatedly(Return(SequenceNumberSet())); | 
 |   for (int i = 0; i < 20; ++i) { | 
 |     EXPECT_FALSE(ack_alarm->IsSet()); | 
 |     ProcessAckPacket(&frame); | 
 |   } | 
 |   EXPECT_TRUE(ack_alarm->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LeastUnackedLower) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); | 
 |   SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr); | 
 |   SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr); | 
 |  | 
 |   // Start out saying the least unacked is 2. | 
 |   peer_creator_.set_sequence_number(5); | 
 |   QuicStopWaitingFrame frame = InitStopWaitingFrame(2); | 
 |   ProcessStopWaitingPacket(&frame); | 
 |  | 
 |   // Change it to 1, but lower the sequence number to fake out-of-order packets. | 
 |   // This should be fine. | 
 |   peer_creator_.set_sequence_number(1); | 
 |   // The scheduler will not process out of order acks, but all packet processing | 
 |   // causes the connection to try to write. | 
 |   EXPECT_CALL(visitor_, OnCanWrite()); | 
 |   QuicStopWaitingFrame frame2 = InitStopWaitingFrame(1); | 
 |   ProcessStopWaitingPacket(&frame2); | 
 |  | 
 |   // Now claim it's one, but set the ordering so it was sent "after" the first | 
 |   // one.  This should cause a connection error. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   peer_creator_.set_sequence_number(7); | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA, false)); | 
 |   QuicStopWaitingFrame frame3 = InitStopWaitingFrame(1); | 
 |   ProcessStopWaitingPacket(&frame3); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TooManySentPackets) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   for (int i = 0; i < 1100; ++i) { | 
 |     SendStreamDataToPeer(1, "foo", 3 * i, !kFin, nullptr); | 
 |   } | 
 |  | 
 |   // Ack packet 1, which leaves more than the limit outstanding. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed( | 
 |                             QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS, false)); | 
 |   // We're receive buffer limited, so the connection won't try to write more. | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).Times(0); | 
 |  | 
 |   // Nack every packet except the last one, leaving a huge gap. | 
 |   QuicAckFrame frame1 = InitAckFrame(1100); | 
 |   for (QuicPacketSequenceNumber i = 1; i < 1100; ++i) { | 
 |     NackPacket(i, &frame1); | 
 |   } | 
 |   ProcessAckPacket(&frame1); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TooManyReceivedPackets) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed( | 
 |                             QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS, false)); | 
 |  | 
 |   // Miss every other packet for 1000 packets. | 
 |   for (QuicPacketSequenceNumber i = 1; i < 1000; ++i) { | 
 |     ProcessPacket(i * 2); | 
 |     if (!connection_.connected()) { | 
 |       break; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LargestObservedLower) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); | 
 |   SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr); | 
 |   SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |  | 
 |   // Start out saying the largest observed is 2. | 
 |   QuicAckFrame frame1 = InitAckFrame(1); | 
 |   QuicAckFrame frame2 = InitAckFrame(2); | 
 |   ProcessAckPacket(&frame2); | 
 |  | 
 |   // Now change it to 1, and it should cause a connection error. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false)); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).Times(0); | 
 |   ProcessAckPacket(&frame1); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckUnsentData) { | 
 |   // Ack a packet which has not been sent. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   QuicAckFrame frame(MakeAckFrame(1)); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).Times(0); | 
 |   ProcessAckPacket(&frame); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckAll) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessPacket(1); | 
 |  | 
 |   peer_creator_.set_sequence_number(1); | 
 |   QuicAckFrame frame1 = InitAckFrame(0); | 
 |   ProcessAckPacket(&frame1); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendingDifferentSequenceNumberLengthsBandwidth) { | 
 |   QuicPacketSequenceNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); | 
 |   EXPECT_EQ(1u, last_packet); | 
 |   EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, | 
 |             creator_->next_sequence_number_length()); | 
 |   EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, | 
 |             writer_->header().public_header.sequence_number_length); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( | 
 |       Return(kMaxPacketSize * 256)); | 
 |  | 
 |   SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); | 
 |   EXPECT_EQ(2u, last_packet); | 
 |   EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, | 
 |             creator_->next_sequence_number_length()); | 
 |   // The 1 packet lag is due to the sequence number length being recalculated in | 
 |   // QuicConnection after a packet is sent. | 
 |   EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, | 
 |             writer_->header().public_header.sequence_number_length); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( | 
 |       Return(kMaxPacketSize * 256 * 256)); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); | 
 |   EXPECT_EQ(3u, last_packet); | 
 |   EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, | 
 |             creator_->next_sequence_number_length()); | 
 |   EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, | 
 |             writer_->header().public_header.sequence_number_length); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( | 
 |       Return(kMaxPacketSize * 256 * 256 * 256)); | 
 |  | 
 |   SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet); | 
 |   EXPECT_EQ(4u, last_packet); | 
 |   EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, | 
 |             creator_->next_sequence_number_length()); | 
 |   EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, | 
 |             writer_->header().public_header.sequence_number_length); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( | 
 |       Return(kMaxPacketSize * 256 * 256 * 256 * 256)); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet); | 
 |   EXPECT_EQ(5u, last_packet); | 
 |   EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER, | 
 |             creator_->next_sequence_number_length()); | 
 |   EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, | 
 |             writer_->header().public_header.sequence_number_length); | 
 | } | 
 |  | 
 | // TODO(ianswett): Re-enable this test by finding a good way to test different | 
 | // sequence number lengths without sending packets with giant gaps. | 
 | TEST_P(QuicConnectionTest, | 
 |        DISABLED_SendingDifferentSequenceNumberLengthsUnackedDelta) { | 
 |   QuicPacketSequenceNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); | 
 |   EXPECT_EQ(1u, last_packet); | 
 |   EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, | 
 |             creator_->next_sequence_number_length()); | 
 |   EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, | 
 |             writer_->header().public_header.sequence_number_length); | 
 |  | 
 |   creator_->set_sequence_number(100); | 
 |  | 
 |   SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); | 
 |   EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, | 
 |             creator_->next_sequence_number_length()); | 
 |   EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, | 
 |             writer_->header().public_header.sequence_number_length); | 
 |  | 
 |   creator_->set_sequence_number(100 * 256); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); | 
 |   EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, | 
 |             creator_->next_sequence_number_length()); | 
 |   EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, | 
 |             writer_->header().public_header.sequence_number_length); | 
 |  | 
 |   creator_->set_sequence_number(100 * 256 * 256); | 
 |  | 
 |   SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet); | 
 |   EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, | 
 |             creator_->next_sequence_number_length()); | 
 |   EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, | 
 |             writer_->header().public_header.sequence_number_length); | 
 |  | 
 |   creator_->set_sequence_number(100 * 256 * 256 * 256); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet); | 
 |   EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER, | 
 |             creator_->next_sequence_number_length()); | 
 |   EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, | 
 |             writer_->header().public_header.sequence_number_length); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BasicSending) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   QuicPacketSequenceNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);  // Packet 1 | 
 |   EXPECT_EQ(1u, last_packet); | 
 |   SendAckPacketToPeer();  // Packet 2 | 
 |  | 
 |   EXPECT_EQ(1u, least_unacked()); | 
 |  | 
 |   SendAckPacketToPeer();  // Packet 3 | 
 |   EXPECT_EQ(1u, least_unacked()); | 
 |  | 
 |   SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet);  // Packet 4 | 
 |   EXPECT_EQ(4u, last_packet); | 
 |   SendAckPacketToPeer();  // Packet 5 | 
 |   EXPECT_EQ(1u, least_unacked()); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |  | 
 |   // Peer acks up to packet 3. | 
 |   QuicAckFrame frame = InitAckFrame(3); | 
 |   ProcessAckPacket(&frame); | 
 |   SendAckPacketToPeer();  // Packet 6 | 
 |  | 
 |   // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of | 
 |   // ack for 4. | 
 |   EXPECT_EQ(4u, least_unacked()); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |  | 
 |   // Peer acks up to packet 4, the last packet. | 
 |   QuicAckFrame frame2 = InitAckFrame(6); | 
 |   ProcessAckPacket(&frame2);  // Acks don't instigate acks. | 
 |  | 
 |   // Verify that we did not send an ack. | 
 |   EXPECT_EQ(6u, writer_->header().packet_sequence_number); | 
 |  | 
 |   // So the last ack has not changed. | 
 |   EXPECT_EQ(4u, least_unacked()); | 
 |  | 
 |   // If we force an ack, we shouldn't change our retransmit state. | 
 |   SendAckPacketToPeer();  // Packet 7 | 
 |   EXPECT_EQ(7u, least_unacked()); | 
 |  | 
 |   // But if we send more data it should. | 
 |   SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet);  // Packet 8 | 
 |   EXPECT_EQ(8u, last_packet); | 
 |   SendAckPacketToPeer();  // Packet 9 | 
 |   EXPECT_EQ(7u, least_unacked()); | 
 | } | 
 |  | 
 | // If FLAGS_quic_record_send_time_before_write is disabled, QuicConnection | 
 | // should record the packet sen-tdime after the packet is sent. | 
 | TEST_P(QuicConnectionTest, RecordSentTimeAfterPacketSent) { | 
 |   ValueRestore<bool> old_flag(&FLAGS_quic_record_send_time_before_write, false); | 
 |   // We're using a MockClock for the tests, so we have complete control over the | 
 |   // time. | 
 |   // Our recorded timestamp for the last packet sent time will be passed in to | 
 |   // the send_algorithm.  Make sure that it is set to the correct value. | 
 |   QuicTime actual_recorded_send_time = QuicTime::Zero(); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); | 
 |  | 
 |   // First send without any pause and check the result. | 
 |   QuicTime expected_recorded_send_time = clock_.Now(); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) | 
 |       << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() | 
 |       << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue(); | 
 |  | 
 |   // Now pause during the write, and check the results. | 
 |   actual_recorded_send_time = QuicTime::Zero(); | 
 |   const QuicTime::Delta kWritePauseTimeDelta = | 
 |       QuicTime::Delta::FromMilliseconds(5000); | 
 |   SetWritePauseTimeDelta(kWritePauseTimeDelta); | 
 |   expected_recorded_send_time = clock_.Now().Add(kWritePauseTimeDelta); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); | 
 |   connection_.SendStreamDataWithString(2, "baz", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) | 
 |       << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() | 
 |       << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue(); | 
 | } | 
 |  | 
 | // If FLAGS_quic_record_send_time_before_write is enabled, QuicConnection should | 
 | // record the the packet sent-time prior to sending the packet. | 
 | TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) { | 
 |   ValueRestore<bool> old_flag(&FLAGS_quic_record_send_time_before_write, true); | 
 |   // We're using a MockClock for the tests, so we have complete control over the | 
 |   // time. | 
 |   // Our recorded timestamp for the last packet sent time will be passed in to | 
 |   // the send_algorithm.  Make sure that it is set to the correct value. | 
 |   QuicTime actual_recorded_send_time = QuicTime::Zero(); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); | 
 |  | 
 |   // First send without any pause and check the result. | 
 |   QuicTime expected_recorded_send_time = clock_.Now(); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) | 
 |       << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() | 
 |       << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue(); | 
 |  | 
 |   // Now pause during the write, and check the results. | 
 |   actual_recorded_send_time = QuicTime::Zero(); | 
 |   const QuicTime::Delta kWritePauseTimeDelta = | 
 |       QuicTime::Delta::FromMilliseconds(5000); | 
 |   SetWritePauseTimeDelta(kWritePauseTimeDelta); | 
 |   expected_recorded_send_time = clock_.Now(); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); | 
 |   connection_.SendStreamDataWithString(2, "baz", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) | 
 |       << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() | 
 |       << ".  Actual time = " << actual_recorded_send_time.ToDebuggingValue(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FECSending) { | 
 |   // All packets carry version info till version is negotiated. | 
 |   size_t payload_length; | 
 |   // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining | 
 |   // packet length. The size of the offset field in a stream frame is 0 for | 
 |   // offset 0, and 2 for non-zero offsets up through 64K. Increase | 
 |   // max_packet_length by 2 so that subsequent packets containing subsequent | 
 |   // stream frames with non-zero offets will fit within the packet length. | 
 |   size_t length = 2 + GetPacketLengthForOneStream( | 
 |           connection_.version(), kIncludeVersion, | 
 |           PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER, | 
 |           IN_FEC_GROUP, &payload_length); | 
 |   creator_->set_max_packet_length(length); | 
 |  | 
 |   // Send 4 protected data packets, which should also trigger 1 FEC packet. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(5); | 
 |   // The first stream frame will have 2 fewer overhead bytes than the other 3. | 
 |   const string payload(payload_length * 4 + 2, 'a'); | 
 |   connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, nullptr); | 
 |   // Expect the FEC group to be closed after SendStreamDataWithString. | 
 |   EXPECT_FALSE(creator_->IsFecGroupOpen()); | 
 |   EXPECT_FALSE(creator_->IsFecProtected()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FECQueueing) { | 
 |   // All packets carry version info till version is negotiated. | 
 |   size_t payload_length; | 
 |   size_t length = GetPacketLengthForOneStream( | 
 |       connection_.version(), kIncludeVersion, | 
 |       PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER, | 
 |       IN_FEC_GROUP, &payload_length); | 
 |   creator_->set_max_packet_length(length); | 
 |   EXPECT_TRUE(creator_->IsFecEnabled()); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   BlockOnNextWrite(); | 
 |   const string payload(payload_length, 'a'); | 
 |   connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, nullptr); | 
 |   EXPECT_FALSE(creator_->IsFecGroupOpen()); | 
 |   EXPECT_FALSE(creator_->IsFecProtected()); | 
 |   // Expect the first data packet and the fec packet to be queued. | 
 |   EXPECT_EQ(2u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FECAlarmStoppedWhenFECPacketSent) { | 
 |   EXPECT_TRUE(creator_->IsFecEnabled()); | 
 |   EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 |  | 
 |   creator_->set_max_packets_per_fec_group(2); | 
 |  | 
 |   // 1 Data packet. FEC alarm should be set. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, 1u, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.SendStreamDataWithStringWithFec(3, "foo", 0, true, nullptr); | 
 |   EXPECT_TRUE(connection_.GetFecAlarm()->IsSet()); | 
 |  | 
 |   // Second data packet triggers FEC packet out. FEC alarm should not be set. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(2); | 
 |   connection_.SendStreamDataWithStringWithFec(5, "foo", 0, true, nullptr); | 
 |   EXPECT_TRUE(writer_->header().fec_flag); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FECAlarmStoppedOnConnectionClose) { | 
 |   EXPECT_TRUE(creator_->IsFecEnabled()); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 |   creator_->set_max_packets_per_fec_group(100); | 
 |  | 
 |   // 1 Data packet. FEC alarm should be set. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, 1u, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.SendStreamDataWithStringWithFec(3, "foo", 0, kFin, nullptr); | 
 |   EXPECT_TRUE(connection_.GetFecAlarm()->IsSet()); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_NO_ERROR, false)); | 
 |   // Closing connection should stop the FEC alarm. | 
 |   connection_.CloseConnection(QUIC_NO_ERROR, /*from_peer=*/false); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RemoveFECFromInflightOnRetransmissionTimeout) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_TRUE(creator_->IsFecEnabled()); | 
 |   EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 |  | 
 |   // 1 Data packet. FEC alarm should be set. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, 1u, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_TRUE(connection_.GetFecAlarm()->IsSet()); | 
 |   size_t protected_packet = | 
 |       QuicSentPacketManagerPeer::GetBytesInFlight(manager_); | 
 |  | 
 |   // Force FEC timeout to send FEC packet out. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, 2u, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.GetFecAlarm()->Fire(); | 
 |   EXPECT_TRUE(writer_->header().fec_flag); | 
 |  | 
 |   size_t fec_packet = protected_packet; | 
 |   EXPECT_EQ(protected_packet + fec_packet, | 
 |             QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |  | 
 |   // On RTO, both data and FEC packets are removed from inflight, only the data | 
 |   // packet is retransmitted, and this retransmission (but not FEC) gets added | 
 |   // back into the inflight. | 
 |   EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // The retransmission of packet 1 will be 3 bytes smaller than packet 1, since | 
 |   // the first transmission will have 1 byte for FEC group number and 2 bytes of | 
 |   // stream frame size, which are absent in the retransmission. | 
 |   size_t retransmitted_packet = protected_packet - 3; | 
 |   if (FLAGS_quic_use_new_rto) { | 
 |     EXPECT_EQ(protected_packet + retransmitted_packet, | 
 |               QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |   } else { | 
 |     EXPECT_EQ(retransmitted_packet, | 
 |               QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |   } | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 |  | 
 |   // Receive ack for the retransmission. No data should be outstanding. | 
 |   QuicAckFrame ack = InitAckFrame(3); | 
 |   NackPacket(1, &ack); | 
 |   NackPacket(2, &ack); | 
 |   SequenceNumberSet lost_packets; | 
 |   if (FLAGS_quic_use_new_rto) { | 
 |     lost_packets.insert(1); | 
 |   } | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   // Ensure the alarm is not set since all packets have been acked or abandoned. | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RemoveFECFromInflightOnLossRetransmission) { | 
 |   EXPECT_TRUE(creator_->IsFecEnabled()); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 |  | 
 |   // 1 FEC-protected data packet. FEC alarm should be set. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.SendStreamDataWithStringWithFec(3, "foo", 0, kFin, nullptr); | 
 |   EXPECT_TRUE(connection_.GetFecAlarm()->IsSet()); | 
 |   size_t protected_packet = | 
 |       QuicSentPacketManagerPeer::GetBytesInFlight(manager_); | 
 |  | 
 |   // Force FEC timeout to send FEC packet out. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.GetFecAlarm()->Fire(); | 
 |   EXPECT_TRUE(writer_->header().fec_flag); | 
 |   size_t fec_packet = protected_packet; | 
 |   EXPECT_EQ(protected_packet + fec_packet, | 
 |             QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |  | 
 |   // Send more data to trigger NACKs. Note that all data starts at stream offset | 
 |   // 0 to ensure the same packet size, for ease of testing. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(4); | 
 |   connection_.SendStreamDataWithString(5, "foo", 0, kFin, nullptr); | 
 |   connection_.SendStreamDataWithString(7, "foo", 0, kFin, nullptr); | 
 |   connection_.SendStreamDataWithString(9, "foo", 0, kFin, nullptr); | 
 |   connection_.SendStreamDataWithString(11, "foo", 0, kFin, nullptr); | 
 |  | 
 |   // An unprotected packet will be 3 bytes smaller than an FEC-protected packet, | 
 |   // since the protected packet will have 1 byte for FEC group number and | 
 |   // 2 bytes of stream frame size, which are absent in the unprotected packet. | 
 |   size_t unprotected_packet = protected_packet - 3; | 
 |   EXPECT_EQ(protected_packet + fec_packet + 4 * unprotected_packet, | 
 |             QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 |  | 
 |   // Ack data packets, and NACK FEC packet and one data packet. Triggers | 
 |   // NACK-based loss detection of both packets, but only data packet is | 
 |   // retransmitted and considered oustanding. | 
 |   QuicAckFrame ack = InitAckFrame(6); | 
 |   NackPacket(2, &ack); | 
 |   NackPacket(3, &ack); | 
 |   SequenceNumberSet lost_packets; | 
 |   lost_packets.insert(2); | 
 |   lost_packets.insert(3); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessAckPacket(&ack); | 
 |   // On receiving this ack from the server, the client will no longer send | 
 |   // version number in subsequent packets, including in this retransmission. | 
 |   size_t unprotected_packet_no_version = unprotected_packet - 4; | 
 |   EXPECT_EQ(unprotected_packet_no_version, | 
 |             QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |  | 
 |   // Receive ack for the retransmission. No data should be outstanding. | 
 |   QuicAckFrame ack2 = InitAckFrame(7); | 
 |   NackPacket(2, &ack2); | 
 |   NackPacket(3, &ack2); | 
 |   SequenceNumberSet lost_packets2; | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets2)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   ProcessAckPacket(&ack2); | 
 |   EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FECRemainsInflightOnTLPOfEarlierData) { | 
 |   // This test checks if TLP is sent correctly when a data and an FEC packet | 
 |   // are outstanding. TLP should be sent for the data packet when the | 
 |   // retransmission alarm fires. | 
 |   // Turn on TLP for this test. | 
 |   QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_, 1); | 
 |   EXPECT_TRUE(creator_->IsFecEnabled()); | 
 |   EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 |  | 
 |   // 1 Data packet. FEC alarm should be set. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, 1u, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.SendStreamDataWithStringWithFec(3, "foo", 0, kFin, nullptr); | 
 |   EXPECT_TRUE(connection_.GetFecAlarm()->IsSet()); | 
 |   size_t protected_packet = | 
 |       QuicSentPacketManagerPeer::GetBytesInFlight(manager_); | 
 |   EXPECT_LT(0u, protected_packet); | 
 |  | 
 |   // Force FEC timeout to send FEC packet out. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, 2u, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.GetFecAlarm()->Fire(); | 
 |   EXPECT_TRUE(writer_->header().fec_flag); | 
 |   size_t fec_packet = protected_packet; | 
 |   EXPECT_EQ(protected_packet + fec_packet, | 
 |             QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |  | 
 |   // TLP alarm should be set. | 
 |   QuicTime retransmission_time = | 
 |       connection_.GetRetransmissionAlarm()->deadline(); | 
 |   EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
 |   // Simulate the retransmission alarm firing and sending a TLP, so send | 
 |   // algorithm's OnRetransmissionTimeout is not called. | 
 |   clock_.AdvanceTime(retransmission_time.Subtract(clock_.Now())); | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, 3u, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   // The TLP retransmission of packet 1 will be 3 bytes smaller than packet 1, | 
 |   // since packet 1 will have 1 byte for FEC group number and 2 bytes of stream | 
 |   // frame size, which are absent in the the TLP retransmission. | 
 |   size_t tlp_packet = protected_packet - 3; | 
 |   EXPECT_EQ(protected_packet + fec_packet + tlp_packet, | 
 |             QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FECRemainsInflightOnTLPOfLaterData) { | 
 |   // Tests if TLP is sent correctly when data packet 1 and an FEC packet are | 
 |   // sent followed by data packet 2, and data packet 1 is acked. TLP should be | 
 |   // sent for data packet 2 when the retransmission alarm fires. Turn on TLP for | 
 |   // this test. | 
 |   QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_, 1); | 
 |   EXPECT_TRUE(creator_->IsFecEnabled()); | 
 |   EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 |  | 
 |   // 1 Data packet. FEC alarm should be set. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, 1u, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.SendStreamDataWithStringWithFec(3, "foo", 0, kFin, nullptr); | 
 |   EXPECT_TRUE(connection_.GetFecAlarm()->IsSet()); | 
 |   size_t protected_packet = | 
 |       QuicSentPacketManagerPeer::GetBytesInFlight(manager_); | 
 |   EXPECT_LT(0u, protected_packet); | 
 |  | 
 |   // Force FEC timeout to send FEC packet out. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, 2u, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.GetFecAlarm()->Fire(); | 
 |   EXPECT_TRUE(writer_->header().fec_flag); | 
 |   // Protected data packet and FEC packet oustanding. | 
 |   size_t fec_packet = protected_packet; | 
 |   EXPECT_EQ(protected_packet + fec_packet, | 
 |             QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |  | 
 |   // Send 1 unprotected data packet. No FEC alarm should be set. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, 3u, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.SendStreamDataWithString(5, "foo", 0, kFin, nullptr); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 |   // Protected data packet, FEC packet, and unprotected data packet oustanding. | 
 |   // An unprotected packet will be 3 bytes smaller than an FEC-protected packet, | 
 |   // since the protected packet will have 1 byte for FEC group number and | 
 |   // 2 bytes of stream frame size, which are absent in the unprotected packet. | 
 |   size_t unprotected_packet = protected_packet - 3; | 
 |   EXPECT_EQ(protected_packet + fec_packet + unprotected_packet, | 
 |             QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |  | 
 |   // Receive ack for first data packet. FEC and second data packet are still | 
 |   // outstanding. | 
 |   QuicAckFrame ack = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessAckPacket(&ack); | 
 |   // FEC packet and unprotected data packet oustanding. | 
 |   EXPECT_EQ(fec_packet + unprotected_packet, | 
 |             QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |  | 
 |   // TLP alarm should be set. | 
 |   QuicTime retransmission_time = | 
 |       connection_.GetRetransmissionAlarm()->deadline(); | 
 |   EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
 |   // Simulate the retransmission alarm firing and sending a TLP, so send | 
 |   // algorithm's OnRetransmissionTimeout is not called. | 
 |   clock_.AdvanceTime(retransmission_time.Subtract(clock_.Now())); | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, 4u, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // Having received an ack from the server, the client will no longer send | 
 |   // version number in subsequent packets, including in this retransmission. | 
 |   size_t tlp_packet_no_version = unprotected_packet - 4; | 
 |   EXPECT_EQ(fec_packet + unprotected_packet + tlp_packet_no_version, | 
 |             QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoTLPForFECPacket) { | 
 |   // Turn on TLP for this test. | 
 |   QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_, 1); | 
 |   EXPECT_TRUE(creator_->IsFecEnabled()); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Send 1 FEC-protected data packet. FEC alarm should be set. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_TRUE(connection_.GetFecAlarm()->IsSet()); | 
 |   // Force FEC timeout to send FEC packet out. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(1); | 
 |   connection_.GetFecAlarm()->Fire(); | 
 |   EXPECT_TRUE(writer_->header().fec_flag); | 
 |  | 
 |   // Ack data packet, but not FEC packet. | 
 |   QuicAckFrame ack = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   // No TLP alarm for FEC, but retransmission alarm should be set for an RTO. | 
 |   EXPECT_LT(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   QuicTime rto_time = connection_.GetRetransmissionAlarm()->deadline(); | 
 |   EXPECT_NE(QuicTime::Zero(), rto_time); | 
 |  | 
 |   // Simulate the retransmission alarm firing. FEC packet is no longer | 
 |   // outstanding. | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(false)); | 
 |   } | 
 |   clock_.AdvanceTime(rto_time.Subtract(clock_.Now())); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_EQ(0u, QuicSentPacketManagerPeer::GetBytesInFlight(manager_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePacking) { | 
 |   CongestionBlockWrites(); | 
 |  | 
 |   // Send an ack and two stream frames in 1 packet by queueing them. | 
 |   connection_.SendAck(); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( | 
 |       IgnoreResult(InvokeWithoutArgs(&connection_, | 
 |                                      &TestConnection::SendStreamData3)), | 
 |       IgnoreResult(InvokeWithoutArgs(&connection_, | 
 |                                      &TestConnection::SendStreamData5)))); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   CongestionUnblockWrites(); | 
 |   connection_.GetSendAlarm()->Fire(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure it's an ack and two stream frames from | 
 |   // two different streams. | 
 |   EXPECT_EQ(4u, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   ASSERT_EQ(2u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); | 
 |   EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) { | 
 |   CongestionBlockWrites(); | 
 |  | 
 |   // Send an ack and two stream frames (one non-crypto, then one crypto) in 2 | 
 |   // packets by queueing them. | 
 |   connection_.SendAck(); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( | 
 |       IgnoreResult(InvokeWithoutArgs(&connection_, | 
 |                                      &TestConnection::SendStreamData3)), | 
 |       IgnoreResult(InvokeWithoutArgs(&connection_, | 
 |                                      &TestConnection::SendCryptoStreamData)))); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   CongestionUnblockWrites(); | 
 |   connection_.GetSendAlarm()->Fire(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure it's the crypto stream frame. | 
 |   EXPECT_EQ(1u, writer_->frame_count()); | 
 |   ASSERT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(kCryptoStreamId, writer_->stream_frames()[0].stream_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) { | 
 |   CongestionBlockWrites(); | 
 |  | 
 |   // Send an ack and two stream frames (one crypto, then one non-crypto) in 2 | 
 |   // packets by queueing them. | 
 |   connection_.SendAck(); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( | 
 |       IgnoreResult(InvokeWithoutArgs(&connection_, | 
 |                                      &TestConnection::SendCryptoStreamData)), | 
 |       IgnoreResult(InvokeWithoutArgs(&connection_, | 
 |                                      &TestConnection::SendStreamData3)))); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   CongestionUnblockWrites(); | 
 |   connection_.GetSendAlarm()->Fire(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure it's the stream frame from stream 3. | 
 |   EXPECT_EQ(1u, writer_->frame_count()); | 
 |   ASSERT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePackingFEC) { | 
 |   EXPECT_TRUE(creator_->IsFecEnabled()); | 
 |  | 
 |   CongestionBlockWrites(); | 
 |  | 
 |   // Queue an ack and two stream frames. Ack gets flushed when FEC is turned on | 
 |   // for sending protected data; two stream frames are packed in 1 packet. | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( | 
 |       IgnoreResult(InvokeWithoutArgs( | 
 |           &connection_, &TestConnection::SendStreamData3WithFec)), | 
 |       IgnoreResult(InvokeWithoutArgs( | 
 |           &connection_, &TestConnection::SendStreamData5WithFec)))); | 
 |   connection_.SendAck(); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   CongestionUnblockWrites(); | 
 |   connection_.GetSendAlarm()->Fire(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure it's in an fec group. | 
 |   EXPECT_EQ(2u, writer_->header().fec_group); | 
 |   EXPECT_EQ(2u, writer_->frame_count()); | 
 |  | 
 |   // FEC alarm should be set. | 
 |   EXPECT_TRUE(connection_.GetFecAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePackingAckResponse) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   // Process a data packet to queue up a pending ack. | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); | 
 |   ProcessDataPacket(1, 1, kEntropyFlag); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( | 
 |       IgnoreResult(InvokeWithoutArgs(&connection_, | 
 |                                      &TestConnection::SendStreamData3)), | 
 |       IgnoreResult(InvokeWithoutArgs(&connection_, | 
 |                                      &TestConnection::SendStreamData5)))); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |  | 
 |   // Process an ack to cause the visitor's OnCanWrite to be invoked. | 
 |   peer_creator_.set_sequence_number(2); | 
 |   QuicAckFrame ack_one = InitAckFrame(0); | 
 |   ProcessAckPacket(&ack_one); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure it's an ack and two stream frames from | 
 |   // two different streams. | 
 |   EXPECT_EQ(4u, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   ASSERT_EQ(2u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); | 
 |   EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePackingSendv) { | 
 |   // Send data in 1 packet by writing multiple blocks in a single iovector | 
 |   // using writev. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |  | 
 |   char data[] = "ABCD"; | 
 |   IOVector data_iov; | 
 |   data_iov.AppendNoCoalesce(data, 2); | 
 |   data_iov.AppendNoCoalesce(data + 2, 2); | 
 |   connection_.SendStreamData(1, data_iov, 0, !kFin, MAY_FEC_PROTECT, nullptr); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure multiple iovector blocks have | 
 |   // been packed into a single stream frame from one stream. | 
 |   EXPECT_EQ(1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   QuicStreamFrame frame = writer_->stream_frames()[0]; | 
 |   EXPECT_EQ(1u, frame.stream_id); | 
 |   EXPECT_EQ("ABCD", string(static_cast<char*> | 
 |                            (frame.data.iovec()[0].iov_base), | 
 |                            (frame.data.iovec()[0].iov_len))); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, FramePackingSendvQueued) { | 
 |   // Try to send two stream frames in 1 packet by using writev. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |  | 
 |   BlockOnNextWrite(); | 
 |   char data[] = "ABCD"; | 
 |   IOVector data_iov; | 
 |   data_iov.AppendNoCoalesce(data, 2); | 
 |   data_iov.AppendNoCoalesce(data + 2, 2); | 
 |   connection_.SendStreamData(1, data_iov, 0, !kFin, MAY_FEC_PROTECT, nullptr); | 
 |  | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |   EXPECT_TRUE(connection_.HasQueuedData()); | 
 |  | 
 |   // Unblock the writes and actually send. | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Parse the last packet and ensure it's one stream frame from one stream. | 
 |   EXPECT_EQ(1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendingZeroBytes) { | 
 |   // Send a zero byte write with a fin using writev. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   IOVector empty_iov; | 
 |   connection_.SendStreamData(1, empty_iov, 0, kFin, MAY_FEC_PROTECT, nullptr); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |  | 
 |   // Parse the last packet and ensure it's one stream frame from one stream. | 
 |   EXPECT_EQ(1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id); | 
 |   EXPECT_TRUE(writer_->stream_frames()[0].fin); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, OnCanWrite) { | 
 |   // Visitor's OnCanWrite will send data, but will have more pending writes. | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( | 
 |       IgnoreResult(InvokeWithoutArgs(&connection_, | 
 |                                      &TestConnection::SendStreamData3)), | 
 |       IgnoreResult(InvokeWithoutArgs(&connection_, | 
 |                                      &TestConnection::SendStreamData5)))); | 
 |   EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true)); | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               TimeUntilSend(_, _, _)).WillRepeatedly( | 
 |                   testing::Return(QuicTime::Delta::Zero())); | 
 |  | 
 |   connection_.OnCanWrite(); | 
 |  | 
 |   // Parse the last packet and ensure it's the two stream frames from | 
 |   // two different streams. | 
 |   EXPECT_EQ(2u, writer_->frame_count()); | 
 |   EXPECT_EQ(2u, writer_->stream_frames().size()); | 
 |   EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); | 
 |   EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmitOnNack) { | 
 |   QuicPacketSequenceNumber last_packet; | 
 |   QuicByteCount second_packet_size; | 
 |   SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet);  // Packet 1 | 
 |   second_packet_size = | 
 |       SendStreamDataToPeer(3, "foos", 3, !kFin, &last_packet);  // Packet 2 | 
 |   SendStreamDataToPeer(3, "fooos", 7, !kFin, &last_packet);  // Packet 3 | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Don't lose a packet on an ack, and nothing is retransmitted. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicAckFrame ack_one = InitAckFrame(1); | 
 |   ProcessAckPacket(&ack_one); | 
 |  | 
 |   // Lose a packet and ensure it triggers retransmission. | 
 |   QuicAckFrame nack_two = InitAckFrame(3); | 
 |   NackPacket(2, &nack_two); | 
 |   SequenceNumberSet lost_packets; | 
 |   lost_packets.insert(2); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, second_packet_size - kQuicVersionSize, _)). | 
 |                   Times(1); | 
 |   ProcessAckPacket(&nack_two); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DiscardRetransmit) { | 
 |   QuicPacketSequenceNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);  // Packet 1 | 
 |   SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet);  // Packet 2 | 
 |   SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet);  // Packet 3 | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Instigate a loss with an ack. | 
 |   QuicAckFrame nack_two = InitAckFrame(3); | 
 |   NackPacket(2, &nack_two); | 
 |   // The first nack should trigger a fast retransmission, but we'll be | 
 |   // write blocked, so the packet will be queued. | 
 |   BlockOnNextWrite(); | 
 |   SequenceNumberSet lost_packets; | 
 |   lost_packets.insert(2); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   ProcessAckPacket(&nack_two); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Now, ack the previous transmission. | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(SequenceNumberSet())); | 
 |   QuicAckFrame ack_all = InitAckFrame(3); | 
 |   ProcessAckPacket(&ack_all); | 
 |  | 
 |   // Unblock the socket and attempt to send the queued packets.  However, | 
 |   // since the previous transmission has been acked, we will not | 
 |   // send the retransmission. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, _, _)).Times(0); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |  | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   QuicPacketSequenceNumber largest_observed; | 
 |   QuicByteCount packet_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .WillOnce(DoAll(SaveArg<2>(&largest_observed), SaveArg<3>(&packet_size), | 
 |                       Return(true))); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
 |  | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   NackPacket(largest_observed, &frame); | 
 |   // The first nack should retransmit the largest observed packet. | 
 |   SequenceNumberSet lost_packets; | 
 |   lost_packets.insert(1); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _)); | 
 |   ProcessAckPacket(&frame); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) { | 
 |   for (int i = 0; i < 10; ++i) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |     connection_.SendStreamDataWithString(3, "foo", i * 3, !kFin, nullptr); | 
 |   } | 
 |  | 
 |   // Block the writer and ensure they're queued. | 
 |   BlockOnNextWrite(); | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   // Only one packet should be retransmitted. | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
 |   } | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_TRUE(connection_.HasQueuedData()); | 
 |  | 
 |   // Unblock the writer. | 
 |   writer_->SetWritable(); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( | 
 |       2 * DefaultRetransmissionTime().ToMicroseconds())); | 
 |   // Retransmit already retransmitted packets event though the sequence number | 
 |   // greater than the largest observed. | 
 |   if (FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   } else { | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(10); | 
 |   } | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   connection_.OnCanWrite(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WriteBlockedThenSent) { | 
 |   BlockOnNextWrite(); | 
 |   writer_->set_is_write_blocked_data_buffered(true); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   BlockOnNextWrite(); | 
 |   writer_->set_is_write_blocked_data_buffered(true); | 
 |   // Simulate the retransmission alarm firing. | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(_)); | 
 |   } | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // Ack the sent packet before the callback returns, which happens in | 
 |   // rare circumstances with write blocked sockets. | 
 |   QuicAckFrame ack = InitAckFrame(1); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); | 
 |   } | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   // There is now a pending packet, but with no retransmittable frames. | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.sent_packet_manager().HasRetransmittableFrames(2)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) { | 
 |   // Block the connection. | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |  | 
 |   // Set the send and resumption alarms. Fire the alarms and ensure they don't | 
 |   // attempt to write. | 
 |   connection_.GetResumeWritesAlarm()->Set(clock_.ApproximateNow()); | 
 |   connection_.GetSendAlarm()->Set(clock_.ApproximateNow()); | 
 |   connection_.GetResumeWritesAlarm()->Fire(); | 
 |   connection_.GetSendAlarm()->Fire(); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   int offset = 0; | 
 |   // Send packets 1 to 15. | 
 |   for (int i = 0; i < 15; ++i) { | 
 |     SendStreamDataToPeer(1, "foo", offset, !kFin, nullptr); | 
 |     offset += 3; | 
 |   } | 
 |  | 
 |   // Ack 15, nack 1-14. | 
 |   SequenceNumberSet lost_packets; | 
 |   QuicAckFrame nack = InitAckFrame(15); | 
 |   for (int i = 1; i < 15; ++i) { | 
 |     NackPacket(i, &nack); | 
 |     lost_packets.insert(i); | 
 |   } | 
 |  | 
 |   // 14 packets have been NACK'd and lost.  In TCP cubic, PRR limits | 
 |   // the retransmission rate in the case of burst losses. | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(14); | 
 |   ProcessAckPacket(&nack); | 
 | } | 
 |  | 
 | // Test sending multiple acks from the connection to the session. | 
 | TEST_P(QuicConnectionTest, MultipleAcks) { | 
 |   QuicPacketSequenceNumber last_packet; | 
 |   SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);  // Packet 1 | 
 |   EXPECT_EQ(1u, last_packet); | 
 |   SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet);  // Packet 2 | 
 |   EXPECT_EQ(2u, last_packet); | 
 |   SendAckPacketToPeer();  // Packet 3 | 
 |   SendStreamDataToPeer(5, "foo", 0, !kFin, &last_packet);  // Packet 4 | 
 |   EXPECT_EQ(4u, last_packet); | 
 |   SendStreamDataToPeer(1, "foo", 3, !kFin, &last_packet);  // Packet 5 | 
 |   EXPECT_EQ(5u, last_packet); | 
 |   SendStreamDataToPeer(3, "foo", 3, !kFin, &last_packet);  // Packet 6 | 
 |   EXPECT_EQ(6u, last_packet); | 
 |  | 
 |   // Client will ack packets 1, 2, [!3], 4, 5. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicAckFrame frame1 = InitAckFrame(5); | 
 |   NackPacket(3, &frame1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessAckPacket(&frame1); | 
 |  | 
 |   // Now the client implicitly acks 3, and explicitly acks 6. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicAckFrame frame2 = InitAckFrame(6); | 
 |   ProcessAckPacket(&frame2); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DontLatchUnackedPacket) { | 
 |   SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr);  // Packet 1; | 
 |   // From now on, we send acks, so the send algorithm won't mark them pending. | 
 |   ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |               .WillByDefault(Return(false)); | 
 |   SendAckPacketToPeer();  // Packet 2 | 
 |  | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   // Verify that our internal state has least-unacked as 2, because we're still | 
 |   // waiting for a potential ack for 2. | 
 |  | 
 |   EXPECT_EQ(2u, stop_waiting()->least_unacked); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   frame = InitAckFrame(2); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_EQ(3u, stop_waiting()->least_unacked); | 
 |  | 
 |   // When we send an ack, we make sure our least-unacked makes sense.  In this | 
 |   // case since we're not waiting on an ack for 2 and all packets are acked, we | 
 |   // set it to 3. | 
 |   SendAckPacketToPeer();  // Packet 3 | 
 |   // Least_unacked remains at 3 until another ack is received. | 
 |   EXPECT_EQ(3u, stop_waiting()->least_unacked); | 
 |   // Check that the outgoing ack had its sequence number as least_unacked. | 
 |   EXPECT_EQ(3u, least_unacked()); | 
 |  | 
 |   // Ack the ack, which updates the rtt and raises the least unacked. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   frame = InitAckFrame(3); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |               .WillByDefault(Return(true)); | 
 |   SendStreamDataToPeer(1, "bar", 3, false, nullptr);  // Packet 4 | 
 |   EXPECT_EQ(4u, stop_waiting()->least_unacked); | 
 |   ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |               .WillByDefault(Return(false)); | 
 |   SendAckPacketToPeer();  // Packet 5 | 
 |   EXPECT_EQ(4u, least_unacked()); | 
 |  | 
 |   // Send two data packets at the end, and ensure if the last one is acked, | 
 |   // the least unacked is raised above the ack packets. | 
 |   ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |               .WillByDefault(Return(true)); | 
 |   SendStreamDataToPeer(1, "bar", 6, false, nullptr);  // Packet 6 | 
 |   SendStreamDataToPeer(1, "bar", 9, false, nullptr);  // Packet 7 | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   frame = InitAckFrame(7); | 
 |   NackPacket(5, &frame); | 
 |   NackPacket(6, &frame); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   EXPECT_EQ(6u, stop_waiting()->least_unacked); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReviveMissingPacketAfterFecPacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Don't send missing packet 1. | 
 |   ProcessFecPacket(2, 1, true, !kEntropyFlag, nullptr); | 
 |   // Entropy flag should be false, so entropy should be 0. | 
 |   EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingSeqNumLengths) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Set up a debug visitor to the connection. | 
 |   FecQuicConnectionDebugVisitor* fec_visitor = | 
 |       new FecQuicConnectionDebugVisitor(); | 
 |   connection_.set_debug_visitor(fec_visitor); | 
 |  | 
 |   QuicPacketSequenceNumber fec_packet = 0; | 
 |   QuicSequenceNumberLength lengths[] = {PACKET_6BYTE_SEQUENCE_NUMBER, | 
 |                                         PACKET_4BYTE_SEQUENCE_NUMBER, | 
 |                                         PACKET_2BYTE_SEQUENCE_NUMBER, | 
 |                                         PACKET_1BYTE_SEQUENCE_NUMBER}; | 
 |   // For each sequence number length size, revive a packet and check sequence | 
 |   // number length in the revived packet. | 
 |   for (size_t i = 0; i < arraysize(lengths); ++i) { | 
 |     // Set sequence_number_length_ (for data and FEC packets). | 
 |     sequence_number_length_ = lengths[i]; | 
 |     fec_packet += 2; | 
 |     // Don't send missing packet, but send fec packet right after it. | 
 |     ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, nullptr); | 
 |     // Sequence number length in the revived header should be the same as | 
 |     // in the original data/fec packet headers. | 
 |     EXPECT_EQ(sequence_number_length_, fec_visitor->revived_header(). | 
 |                                        public_header.sequence_number_length); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingConnectionIdLengths) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Set up a debug visitor to the connection. | 
 |   FecQuicConnectionDebugVisitor* fec_visitor = | 
 |       new FecQuicConnectionDebugVisitor(); | 
 |   connection_.set_debug_visitor(fec_visitor); | 
 |  | 
 |   QuicPacketSequenceNumber fec_packet = 0; | 
 |   QuicConnectionIdLength lengths[] = {PACKET_8BYTE_CONNECTION_ID, | 
 |                                       PACKET_4BYTE_CONNECTION_ID, | 
 |                                       PACKET_1BYTE_CONNECTION_ID, | 
 |                                       PACKET_0BYTE_CONNECTION_ID}; | 
 |   // For each connection id length size, revive a packet and check connection | 
 |   // id length in the revived packet. | 
 |   for (size_t i = 0; i < arraysize(lengths); ++i) { | 
 |     // Set connection id length (for data and FEC packets). | 
 |     connection_id_length_ = lengths[i]; | 
 |     fec_packet += 2; | 
 |     // Don't send missing packet, but send fec packet right after it. | 
 |     ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, nullptr); | 
 |     // Connection id length in the revived header should be the same as | 
 |     // in the original data/fec packet headers. | 
 |     EXPECT_EQ(connection_id_length_, | 
 |               fec_visitor->revived_header().public_header.connection_id_length); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketThenFecPacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessFecProtectedPacket(1, false, kEntropyFlag); | 
 |   // Don't send missing packet 2. | 
 |   ProcessFecPacket(3, 1, true, !kEntropyFlag, nullptr); | 
 |   // Entropy flag should be true, so entropy should not be 0. | 
 |   EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketsThenFecPacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessFecProtectedPacket(1, false, !kEntropyFlag); | 
 |   // Don't send missing packet 2. | 
 |   ProcessFecProtectedPacket(3, false, !kEntropyFlag); | 
 |   ProcessFecPacket(4, 1, true, kEntropyFlag, nullptr); | 
 |   // Ensure QUIC no longer revives entropy for lost packets. | 
 |   EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); | 
 |   EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 4)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Don't send missing packet 1. | 
 |   ProcessFecPacket(3, 1, false, !kEntropyFlag, nullptr); | 
 |   // Out of order. | 
 |   ProcessFecProtectedPacket(2, true, !kEntropyFlag); | 
 |   // Entropy flag should be false, so entropy should be 0. | 
 |   EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPackets) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   ProcessFecProtectedPacket(1, false, !kEntropyFlag); | 
 |   // Don't send missing packet 2. | 
 |   ProcessFecPacket(6, 1, false, kEntropyFlag, nullptr); | 
 |   ProcessFecProtectedPacket(3, false, kEntropyFlag); | 
 |   ProcessFecProtectedPacket(4, false, kEntropyFlag); | 
 |   ProcessFecProtectedPacket(5, true, !kEntropyFlag); | 
 |   // Ensure entropy is not revived for the missing packet. | 
 |   EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); | 
 |   EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 3)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TLP) { | 
 |   QuicSentPacketManagerPeer::SetMaxTailLossProbes(manager_, 1); | 
 |  | 
 |   SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
 |   QuicTime retransmission_time = | 
 |       connection_.GetRetransmissionAlarm()->deadline(); | 
 |   EXPECT_NE(QuicTime::Zero(), retransmission_time); | 
 |  | 
 |   EXPECT_EQ(1u, writer_->header().packet_sequence_number); | 
 |   // Simulate the retransmission alarm firing and sending a tlp, | 
 |   // so send algorithm's OnRetransmissionTimeout is not called. | 
 |   clock_.AdvanceTime(retransmission_time.Subtract(clock_.Now())); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(2u, writer_->header().packet_sequence_number); | 
 |   // We do not raise the high water mark yet. | 
 |   EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RTO) { | 
 |   QuicTime default_retransmission_time = clock_.ApproximateNow().Add( | 
 |       DefaultRetransmissionTime()); | 
 |   SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
 |  | 
 |   EXPECT_EQ(1u, writer_->header().packet_sequence_number); | 
 |   EXPECT_EQ(default_retransmission_time, | 
 |             connection_.GetRetransmissionAlarm()->deadline()); | 
 |   // Simulate the retransmission alarm firing. | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(2u, writer_->header().packet_sequence_number); | 
 |   // We do not raise the high water mark yet. | 
 |   EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RTOWithSameEncryptionLevel) { | 
 |   QuicTime default_retransmission_time = clock_.ApproximateNow().Add( | 
 |       DefaultRetransmissionTime()); | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at | 
 |   // the end of the packet. We can test this to check which encrypter was used. | 
 |   connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); | 
 |   SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
 |  | 
 |   EXPECT_EQ(default_retransmission_time, | 
 |             connection_.GetRetransmissionAlarm()->deadline()); | 
 |   { | 
 |     InSequence s; | 
 |     if (!FLAGS_quic_use_new_rto) { | 
 |       EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
 |     } | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 3, _, _)); | 
 |     EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 4, _, _)); | 
 |   } | 
 |  | 
 |   // Simulate the retransmission alarm firing. | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // Packet should have been sent with ENCRYPTION_NONE. | 
 |   EXPECT_EQ(0x01010101u, writer_->final_bytes_of_previous_packet()); | 
 |  | 
 |   // Packet should have been sent with ENCRYPTION_INITIAL. | 
 |   EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendHandshakeMessages) { | 
 |   use_tagging_decrypter(); | 
 |   // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at | 
 |   // the end of the packet. We can test this to check which encrypter was used. | 
 |   connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); | 
 |  | 
 |   // Attempt to send a handshake message and have the socket block. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               TimeUntilSend(_, _, _)).WillRepeatedly( | 
 |                   testing::Return(QuicTime::Delta::Zero())); | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
 |   // The packet should be serialized, but not queued. | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Switch to the new encrypter. | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |  | 
 |   // Now become writeable and flush the packets. | 
 |   writer_->SetWritable(); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Verify that the handshake packet went out at the null encryption. | 
 |   EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        DropRetransmitsForNullEncryptedPacketAfterForwardSecure) { | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); | 
 |   QuicPacketSequenceNumber sequence_number; | 
 |   SendStreamDataToPeer(3, "foo", 0, !kFin, &sequence_number); | 
 |  | 
 |   // Simulate the retransmission alarm firing and the socket blocking. | 
 |   BlockOnNextWrite(); | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
 |   } | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // Go forward secure. | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            new TaggingEncrypter(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); | 
 |   connection_.NeuterUnencryptedPackets(); | 
 |  | 
 |   EXPECT_EQ(QuicTime::Zero(), | 
 |             connection_.GetRetransmissionAlarm()->deadline()); | 
 |   // Unblock the socket and ensure that no packets are sent. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) { | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE); | 
 |  | 
 |   SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); | 
 |  | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |  | 
 |   SendStreamDataToPeer(2, "bar", 0, !kFin, nullptr); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); | 
 |  | 
 |   connection_.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DelayForwardSecureEncryptionUntilClientIsReady) { | 
 |   // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at | 
 |   // the end of the packet. We can test this to check which encrypter was used. | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   SendAckPacketToPeer(); | 
 |   EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
 |  | 
 |   // Set a forward-secure encrypter but do not make it the default, and verify | 
 |   // that it is not yet used. | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            new TaggingEncrypter(0x03)); | 
 |   SendAckPacketToPeer(); | 
 |   EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
 |  | 
 |   // Now simulate receipt of a forward-secure packet and verify that the | 
 |   // forward-secure encrypter is now used. | 
 |   connection_.OnDecryptedPacket(ENCRYPTION_FORWARD_SECURE); | 
 |   SendAckPacketToPeer(); | 
 |   EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DelayForwardSecureEncryptionUntilManyPacketSent) { | 
 |   // Set a congestion window of 10 packets. | 
 |   QuicPacketCount congestion_window = 10; | 
 |   EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( | 
 |       Return(congestion_window * kDefaultMaxPacketSize)); | 
 |  | 
 |   // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at | 
 |   // the end of the packet. We can test this to check which encrypter was used. | 
 |   use_tagging_decrypter(); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   SendAckPacketToPeer(); | 
 |   EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
 |  | 
 |   // Set a forward-secure encrypter but do not make it the default, and | 
 |   // verify that it is not yet used. | 
 |   connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, | 
 |                            new TaggingEncrypter(0x03)); | 
 |   SendAckPacketToPeer(); | 
 |   EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
 |  | 
 |   // Now send a packet "Far enough" after the encrypter was set and verify that | 
 |   // the forward-secure encrypter is now used. | 
 |   for (uint64 i = 0; i < 3 * congestion_window - 1; ++i) { | 
 |     EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); | 
 |     SendAckPacketToPeer(); | 
 |   } | 
 |   EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) { | 
 |   // SetFromConfig is always called after construction from InitializeSession. | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   const uint8 tag = 0x07; | 
 |   framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
 |  | 
 |   // Process an encrypted packet which can not yet be decrypted which should | 
 |   // result in the packet being buffered. | 
 |   ProcessDataPacketAtLevel(1, 0, kEntropyFlag, ENCRYPTION_INITIAL); | 
 |  | 
 |   // Transition to the new encryption state and process another encrypted packet | 
 |   // which should result in the original packet being processed. | 
 |   connection_.SetDecrypter(new StrictTaggingDecrypter(tag), | 
 |                            ENCRYPTION_INITIAL); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(2); | 
 |   ProcessDataPacketAtLevel(2, 0, kEntropyFlag, ENCRYPTION_INITIAL); | 
 |  | 
 |   // Finally, process a third packet and note that we do not reprocess the | 
 |   // buffered packet. | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(3, 0, kEntropyFlag, ENCRYPTION_INITIAL); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, Buffer100NonDecryptablePackets) { | 
 |   // SetFromConfig is always called after construction from InitializeSession. | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); | 
 |   QuicConfig config; | 
 |   config.set_max_undecryptable_packets(100); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   use_tagging_decrypter(); | 
 |  | 
 |   const uint8 tag = 0x07; | 
 |   framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
 |  | 
 |   // Process an encrypted packet which can not yet be decrypted which should | 
 |   // result in the packet being buffered. | 
 |   for (QuicPacketSequenceNumber i = 1; i <= 100; ++i) { | 
 |     ProcessDataPacketAtLevel(i, 0, kEntropyFlag, ENCRYPTION_INITIAL); | 
 |   } | 
 |  | 
 |   // Transition to the new encryption state and process another encrypted packet | 
 |   // which should result in the original packets being processed. | 
 |   connection_.SetDecrypter(new StrictTaggingDecrypter(tag), ENCRYPTION_INITIAL); | 
 |   connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); | 
 |   connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(101); | 
 |   ProcessDataPacketAtLevel(101, 0, kEntropyFlag, ENCRYPTION_INITIAL); | 
 |  | 
 |   // Finally, process a third packet and note that we do not reprocess the | 
 |   // buffered packet. | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(102, 0, kEntropyFlag, ENCRYPTION_INITIAL); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TestRetransmitOrder) { | 
 |   QuicByteCount first_packet_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce( | 
 |       DoAll(SaveArg<3>(&first_packet_size), Return(true))); | 
 |  | 
 |   connection_.SendStreamDataWithString(3, "first_packet", 0, !kFin, nullptr); | 
 |   QuicByteCount second_packet_size; | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce( | 
 |       DoAll(SaveArg<3>(&second_packet_size), Return(true))); | 
 |   connection_.SendStreamDataWithString(3, "second_packet", 12, !kFin, nullptr); | 
 |   EXPECT_NE(first_packet_size, second_packet_size); | 
 |   // Advance the clock by huge time to make sure packets will be retransmitted. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
 |   } | 
 |   { | 
 |     InSequence s; | 
 |     EXPECT_CALL(*send_algorithm_, | 
 |                 OnPacketSent(_, _, _, first_packet_size, _)); | 
 |     EXPECT_CALL(*send_algorithm_, | 
 |                 OnPacketSent(_, _, _, second_packet_size, _)); | 
 |   } | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // Advance again and expect the packets to be sent again in the same order. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20)); | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
 |   } | 
 |   { | 
 |     InSequence s; | 
 |     EXPECT_CALL(*send_algorithm_, | 
 |                 OnPacketSent(_, _, _, first_packet_size, _)); | 
 |     EXPECT_CALL(*send_algorithm_, | 
 |                 OnPacketSent(_, _, _, second_packet_size, _)); | 
 |   } | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) { | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
 |   // Make sure that RTO is not started when the packet is queued. | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |  | 
 |   // Test that RTO is started once we write to the socket. | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) | 
 |       .Times(2); | 
 |   connection_.SendStreamDataWithString(2, "foo", 0, !kFin, nullptr); | 
 |   connection_.SendStreamDataWithString(3, "bar", 0, !kFin, nullptr); | 
 |   QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm(); | 
 |   EXPECT_TRUE(retransmission_alarm->IsSet()); | 
 |   EXPECT_EQ(clock_.Now().Add(DefaultRetransmissionTime()), | 
 |             retransmission_alarm->deadline()); | 
 |  | 
 |   // Advance the time right before the RTO, then receive an ack for the first | 
 |   // packet to delay the RTO. | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicAckFrame ack = InitAckFrame(1); | 
 |   ProcessAckPacket(&ack); | 
 |   EXPECT_TRUE(retransmission_alarm->IsSet()); | 
 |   EXPECT_GT(retransmission_alarm->deadline(), clock_.Now()); | 
 |  | 
 |   // Move forward past the original RTO and ensure the RTO is still pending. | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime().Multiply(2)); | 
 |  | 
 |   // Ensure the second packet gets retransmitted when it finally fires. | 
 |   EXPECT_TRUE(retransmission_alarm->IsSet()); | 
 |   EXPECT_LT(retransmission_alarm->deadline(), clock_.ApproximateNow()); | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   // Manually cancel the alarm to simulate a real test. | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // The new retransmitted sequence number should set the RTO to a larger value | 
 |   // than previously. | 
 |   EXPECT_TRUE(retransmission_alarm->IsSet()); | 
 |   QuicTime next_rto_time = retransmission_alarm->deadline(); | 
 |   QuicTime expected_rto_time = | 
 |       connection_.sent_packet_manager().GetRetransmissionTime(); | 
 |   EXPECT_EQ(next_rto_time, expected_rto_time); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TestQueued) { | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |  | 
 |   // Unblock the writes and actually send. | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CloseFecGroup) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   // Don't send missing packet 1. | 
 |   // Don't send missing packet 2. | 
 |   ProcessFecProtectedPacket(3, false, !kEntropyFlag); | 
 |   // Don't send missing FEC packet 3. | 
 |   ASSERT_EQ(1u, connection_.NumFecGroups()); | 
 |  | 
 |   // Now send non-fec protected ack packet and close the group. | 
 |   peer_creator_.set_sequence_number(4); | 
 |   QuicStopWaitingFrame frame = InitStopWaitingFrame(5); | 
 |   ProcessStopWaitingPacket(&frame); | 
 |   ASSERT_EQ(0u, connection_.NumFecGroups()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, InitialTimeout) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |  | 
 |   // SetFromConfig sets the initial timeouts before negotiation. | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |   // Subtract a second from the idle timeout on the client side. | 
 |   QuicTime default_timeout = clock_.ApproximateNow().Add( | 
 |       QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1)); | 
 |   EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false)); | 
 |   // Simulate the timeout alarm firing. | 
 |   clock_.AdvanceTime( | 
 |       QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1)); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, OverallTimeout) { | 
 |   // Use a shorter overall connection timeout than idle timeout for this test. | 
 |   const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5); | 
 |   connection_.SetNetworkTimeouts(timeout, timeout); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); | 
 |  | 
 |   QuicTime overall_timeout = clock_.ApproximateNow().Add(timeout).Subtract( | 
 |       QuicTime::Delta::FromSeconds(1)); | 
 |   EXPECT_EQ(overall_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   // Send and ack new data 3 seconds later to lengthen the idle timeout. | 
 |   SendStreamDataToPeer(1, "GET /", 0, kFin, nullptr); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3)); | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   // Fire early to verify it wouldn't timeout yet. | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |  | 
 |   clock_.AdvanceTime(timeout.Subtract(QuicTime::Delta::FromSeconds(2))); | 
 |  | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(QUIC_CONNECTION_OVERALL_TIMED_OUT, false)); | 
 |   // Simulate the timeout alarm firing. | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetFecAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PingAfterSend) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(true)); | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 |  | 
 |   // Advance to 5ms, and send a packet to the peer, which will set | 
 |   // the ping alarm. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); | 
 |   SendStreamDataToPeer(1, "GET /", 0, kFin, nullptr); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   EXPECT_EQ(clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)), | 
 |             connection_.GetPingAlarm()->deadline()); | 
 |  | 
 |   // Now recevie and ACK of the previous packet, which will move the | 
 |   // ping alarm forward. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   ProcessAckPacket(&frame); | 
 |   EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); | 
 |   // The ping timer is set slightly less than 15 seconds in the future, because | 
 |   // of the 1s ping timer alarm granularity. | 
 |   EXPECT_EQ(clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)) | 
 |                 .Subtract(QuicTime::Delta::FromMilliseconds(5)), | 
 |             connection_.GetPingAlarm()->deadline()); | 
 |  | 
 |   writer_->Reset(); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15)); | 
 |   connection_.GetPingAlarm()->Fire(); | 
 |   EXPECT_EQ(1u, writer_->frame_count()); | 
 |   ASSERT_EQ(1u, writer_->ping_frames().size()); | 
 |   writer_->Reset(); | 
 |  | 
 |   EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(false)); | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); | 
 |   SendAckPacketToPeer(); | 
 |  | 
 |   EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TimeoutAfterSend) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); | 
 |   QuicConfig config; | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_FALSE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); | 
 |  | 
 |   const QuicTime::Delta initial_idle_timeout = | 
 |       QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); | 
 |   const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
 |   QuicTime default_timeout = clock_.ApproximateNow().Add(initial_idle_timeout); | 
 |  | 
 |   // When we send a packet, the timeout will change to 5ms + | 
 |   // kInitialIdleTimeoutSecs. | 
 |   clock_.AdvanceTime(five_ms); | 
 |  | 
 |   // Send an ack so we don't set the retransmission alarm. | 
 |   SendAckPacketToPeer(); | 
 |   EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // The original alarm will fire.  We should not time out because we had a | 
 |   // network event at t=5ms.  The alarm will reregister. | 
 |   clock_.AdvanceTime(initial_idle_timeout.Subtract(five_ms)); | 
 |   EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_EQ(default_timeout.Add(five_ms), | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // This time, we should time out. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   clock_.AdvanceTime(five_ms); | 
 |   EXPECT_EQ(default_timeout.Add(five_ms), clock_.ApproximateNow()); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TimeoutAfterSendSilentClose) { | 
 |   // Same test as above, but complete a handshake which enables silent close, | 
 |   // causing no connection close packet to be sent. | 
 |   ValueRestore<bool> old_flag(&FLAGS_quic_allow_silent_close, true); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); | 
 |   QuicConfig config; | 
 |  | 
 |   // Create a handshake message that also enables silent close. | 
 |   CryptoHandshakeMessage msg; | 
 |   string error_details; | 
 |   QuicConfig client_config; | 
 |   client_config.SetInitialStreamFlowControlWindowToSend( | 
 |       kInitialStreamFlowControlWindowForTest); | 
 |   client_config.SetInitialSessionFlowControlWindowToSend( | 
 |       kInitialSessionFlowControlWindowForTest); | 
 |   client_config.SetIdleConnectionStateLifetime( | 
 |       QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs), | 
 |       QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs)); | 
 |   client_config.ToHandshakeMessage(&msg); | 
 |   const QuicErrorCode error = | 
 |       config.ProcessPeerHello(msg, CLIENT, &error_details); | 
 |   EXPECT_EQ(QUIC_NO_ERROR, error); | 
 |  | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_TRUE(QuicConnectionPeer::IsSilentCloseEnabled(&connection_)); | 
 |  | 
 |   const QuicTime::Delta default_idle_timeout = | 
 |       QuicTime::Delta::FromSeconds(kDefaultIdleTimeoutSecs - 1); | 
 |   const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); | 
 |   QuicTime default_timeout = clock_.ApproximateNow().Add(default_idle_timeout); | 
 |  | 
 |   // When we send a packet, the timeout will change to 5ms + | 
 |   // kInitialIdleTimeoutSecs. | 
 |   clock_.AdvanceTime(five_ms); | 
 |  | 
 |   // Send an ack so we don't set the retransmission alarm. | 
 |   SendAckPacketToPeer(); | 
 |   EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // The original alarm will fire.  We should not time out because we had a | 
 |   // network event at t=5ms.  The alarm will reregister. | 
 |   clock_.AdvanceTime(default_idle_timeout.Subtract(five_ms)); | 
 |   EXPECT_EQ(default_timeout, clock_.ApproximateNow()); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_EQ(default_timeout.Add(five_ms), | 
 |             connection_.GetTimeoutAlarm()->deadline()); | 
 |  | 
 |   // This time, we should time out. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false)); | 
 |   clock_.AdvanceTime(five_ms); | 
 |   EXPECT_EQ(default_timeout.Add(five_ms), clock_.ApproximateNow()); | 
 |   connection_.GetTimeoutAlarm()->Fire(); | 
 |   EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendScheduler) { | 
 |   // Test that if we send a packet without delay, it is not queued. | 
 |   QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   connection_.SendPacket( | 
 |       ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) { | 
 |   QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); | 
 |   BlockOnNextWrite(); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0); | 
 |   connection_.SendPacket( | 
 |       ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) { | 
 |   // All packets carry version info till version is negotiated. | 
 |   size_t payload_length; | 
 |   size_t length = GetPacketLengthForOneStream( | 
 |       connection_.version(), kIncludeVersion, | 
 |       PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER, | 
 |       NOT_IN_FEC_GROUP, &payload_length); | 
 |   creator_->set_max_packet_length(length); | 
 |  | 
 |   // Queue the first packet. | 
 |   EXPECT_CALL(*send_algorithm_, | 
 |               TimeUntilSend(_, _, _)).WillOnce( | 
 |                   testing::Return(QuicTime::Delta::FromMicroseconds(10))); | 
 |   const string payload(payload_length, 'a'); | 
 |   EXPECT_EQ(0u, connection_.SendStreamDataWithString(3, payload, 0, !kFin, | 
 |                                                      nullptr).bytes_consumed); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LoopThroughSendingPackets) { | 
 |   // All packets carry version info till version is negotiated. | 
 |   size_t payload_length; | 
 |   // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining | 
 |   // packet length. The size of the offset field in a stream frame is 0 for | 
 |   // offset 0, and 2 for non-zero offsets up through 16K. Increase | 
 |   // max_packet_length by 2 so that subsequent packets containing subsequent | 
 |   // stream frames with non-zero offets will fit within the packet length. | 
 |   size_t length = 2 + GetPacketLengthForOneStream( | 
 |           connection_.version(), kIncludeVersion, | 
 |           PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER, | 
 |           NOT_IN_FEC_GROUP, &payload_length); | 
 |   creator_->set_max_packet_length(length); | 
 |  | 
 |   // Queue the first packet. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(7); | 
 |   // The first stream frame will have 2 fewer overhead bytes than the other six. | 
 |   const string payload(payload_length * 7 + 2, 'a'); | 
 |   EXPECT_EQ(payload.size(), | 
 |             connection_.SendStreamDataWithString(1, payload, 0, !kFin, nullptr) | 
 |                 .bytes_consumed); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) { | 
 |   // Set up a larger payload than will fit in one packet. | 
 |   const string payload(connection_.max_packet_length(), 'a'); | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)).Times(AnyNumber()); | 
 |  | 
 |   // Now send some packets with no truncation. | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   EXPECT_EQ(payload.size(), | 
 |             connection_.SendStreamDataWithString( | 
 |                 3, payload, 0, !kFin, nullptr).bytes_consumed); | 
 |   // Track the size of the second packet here.  The overhead will be the largest | 
 |   // we see in this test, due to the non-truncated CID. | 
 |   size_t non_truncated_packet_size = writer_->last_packet_size(); | 
 |  | 
 |   // Change to a 4 byte CID. | 
 |   QuicConfig config; | 
 |   QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 4); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   EXPECT_EQ(payload.size(), | 
 |             connection_.SendStreamDataWithString( | 
 |                 3, payload, 0, !kFin, nullptr).bytes_consumed); | 
 |   // Verify that we have 8 fewer bytes than in the non-truncated case.  The | 
 |   // first packet got 4 bytes of extra payload due to the truncation, and the | 
 |   // headers here are also 4 byte smaller. | 
 |   EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 8); | 
 |  | 
 |  | 
 |   // Change to a 1 byte CID. | 
 |   QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 1); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   EXPECT_EQ(payload.size(), | 
 |             connection_.SendStreamDataWithString( | 
 |                 3, payload, 0, !kFin, nullptr).bytes_consumed); | 
 |   // Just like above, we save 7 bytes on payload, and 7 on truncation. | 
 |   EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 7 * 2); | 
 |  | 
 |   // Change to a 0 byte CID. | 
 |   QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); | 
 |   EXPECT_EQ(payload.size(), | 
 |             connection_.SendStreamDataWithString( | 
 |                 3, payload, 0, !kFin, nullptr).bytes_consumed); | 
 |   // Just like above, we save 8 bytes on payload, and 8 on truncation. | 
 |   EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 8 * 2); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAck) { | 
 |   QuicTime ack_time = clock_.ApproximateNow().Add(DefaultDelayedAckTime()); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
 |   const uint8 tag = 0x07; | 
 |   connection_.SetDecrypter(new StrictTaggingDecrypter(tag), | 
 |                            ENCRYPTION_INITIAL); | 
 |   framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); | 
 |   // Process a packet from the non-crypto stream. | 
 |   frame1_.stream_id = 3; | 
 |  | 
 |   // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used | 
 |   // instead of ENCRYPTION_NONE. | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); | 
 |   ProcessDataPacketAtLevel(1, 0, !kEntropyFlag, ENCRYPTION_INITIAL); | 
 |  | 
 |   // Check if delayed ack timer is running for the expected interval. | 
 |   EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
 |   EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
 |   // Simulate delayed ack alarm firing. | 
 |   connection_.GetAckAlarm()->Fire(); | 
 |   // Check that ack is sent and that delayed ack alarm is reset. | 
 |   EXPECT_EQ(2u, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessPacket(1); | 
 |   // Check that ack is sent and that delayed ack alarm is set. | 
 |   EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
 |   QuicTime ack_time = clock_.ApproximateNow().Add(DefaultDelayedAckTime()); | 
 |   EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
 |  | 
 |   // Completing the handshake as the server does nothing. | 
 |   QuicConnectionPeer::SetIsServer(&connection_, true); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
 |   EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); | 
 |  | 
 |   // Complete the handshake as the client decreases the delayed ack time to 0ms. | 
 |   QuicConnectionPeer::SetIsServer(&connection_, false); | 
 |   connection_.OnHandshakeComplete(); | 
 |   EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
 |   EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessPacket(1); | 
 |   ProcessPacket(2); | 
 |   // Check that ack is sent and that delayed ack alarm is reset. | 
 |   EXPECT_EQ(2u, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoAckOnOldNacks) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   // Drop one packet, triggering a sequence of acks. | 
 |   ProcessPacket(2); | 
 |   size_t frames_per_ack = 2; | 
 |   EXPECT_EQ(frames_per_ack, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   writer_->Reset(); | 
 |   ProcessPacket(3); | 
 |   EXPECT_EQ(frames_per_ack, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   writer_->Reset(); | 
 |   ProcessPacket(4); | 
 |   EXPECT_EQ(frames_per_ack, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   writer_->Reset(); | 
 |   ProcessPacket(5); | 
 |   EXPECT_EQ(frames_per_ack, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   writer_->Reset(); | 
 |   // Now only set the timer on the 6th packet, instead of sending another ack. | 
 |   ProcessPacket(6); | 
 |   EXPECT_EQ(0u, writer_->frame_count()); | 
 |   EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessPacket(1); | 
 |   connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, | 
 |                                        nullptr); | 
 |   // Check that ack is bundled with outgoing data and that delayed ack | 
 |   // alarm is reset. | 
 |   EXPECT_EQ(3u, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessPacket(1); | 
 |   connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, | 
 |                                        nullptr); | 
 |   // Check that ack is bundled with outgoing crypto data. | 
 |   EXPECT_EQ(3u, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessPacket(1); | 
 |   BlockOnNextWrite(); | 
 |   writer_->set_is_write_blocked_data_buffered(true); | 
 |   connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, | 
 |                                        nullptr); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 |   connection_.SendStreamDataWithString(kCryptoStreamId, "bar", 3, !kFin, | 
 |                                        nullptr); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |   EXPECT_TRUE(connection_.HasQueuedData()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).WillOnce( | 
 |       IgnoreResult(InvokeWithoutArgs(&connection_, | 
 |                                      &TestConnection::SendCryptoStreamData))); | 
 |   // Process a packet from the crypto stream, which is frame1_'s default. | 
 |   // Receiving the CHLO as packet 2 first will cause the connection to | 
 |   // immediately send an ack, due to the packet gap. | 
 |   ProcessPacket(2); | 
 |   // Check that ack is sent and that delayed ack alarm is reset. | 
 |   EXPECT_EQ(3u, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, | 
 |                                        nullptr); | 
 |   connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin, | 
 |                                        nullptr); | 
 |   // Ack the second packet, which will retransmit the first packet. | 
 |   QuicAckFrame ack = InitAckFrame(2); | 
 |   NackPacket(1, &ack); | 
 |   SequenceNumberSet lost_packets; | 
 |   lost_packets.insert(1); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   ProcessAckPacket(&ack); | 
 |   EXPECT_EQ(1u, writer_->frame_count()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   writer_->Reset(); | 
 |  | 
 |   // Now ack the retransmission, which will both raise the high water mark | 
 |   // and see if there is more data to send. | 
 |   ack = InitAckFrame(3); | 
 |   NackPacket(1, &ack); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(SequenceNumberSet())); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   // Check that no packet is sent and the ack alarm isn't set. | 
 |   EXPECT_EQ(0u, writer_->frame_count()); | 
 |   EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
 |   writer_->Reset(); | 
 |  | 
 |   // Send the same ack, but send both data and an ack together. | 
 |   ack = InitAckFrame(3); | 
 |   NackPacket(1, &ack); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(SequenceNumberSet())); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).WillOnce( | 
 |       IgnoreResult(InvokeWithoutArgs( | 
 |           &connection_, | 
 |           &TestConnection::EnsureWritableAndSendStreamData5))); | 
 |   ProcessAckPacket(&ack); | 
 |  | 
 |   // Check that ack is bundled with outgoing data and the delayed ack | 
 |   // alarm is reset. | 
 |   EXPECT_EQ(3u, writer_->frame_count()); | 
 |   EXPECT_FALSE(writer_->stop_waiting_frames().empty()); | 
 |   EXPECT_FALSE(writer_->ack_frames().empty()); | 
 |   EXPECT_EQ(1u, writer_->stream_frames().size()); | 
 |   EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoAckSentForClose) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessPacket(1); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); | 
 |   ProcessClosePacket(2, 0); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SendWhenDisconnected) { | 
 |   EXPECT_TRUE(connection_.connected()); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, false)); | 
 |   connection_.CloseConnection(QUIC_PEER_GOING_AWAY, false); | 
 |   EXPECT_FALSE(connection_.connected()); | 
 |   EXPECT_FALSE(connection_.CanWriteStreamData()); | 
 |   QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0); | 
 |   connection_.SendPacket( | 
 |       ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, PublicReset) { | 
 |   QuicPublicResetPacket header; | 
 |   header.public_header.connection_id = connection_id_; | 
 |   header.public_header.reset_flag = true; | 
 |   header.public_header.version_flag = false; | 
 |   header.rejected_sequence_number = 10101; | 
 |   scoped_ptr<QuicEncryptedPacket> packet( | 
 |       framer_.BuildPublicResetPacket(header)); | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PUBLIC_RESET, true)); | 
 |   connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *packet); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, GoAway) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   QuicGoAwayFrame goaway; | 
 |   goaway.last_good_stream_id = 1; | 
 |   goaway.error_code = QUIC_PEER_GOING_AWAY; | 
 |   goaway.reason_phrase = "Going away."; | 
 |   EXPECT_CALL(visitor_, OnGoAway(_)); | 
 |   ProcessGoAwayPacket(&goaway); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, WindowUpdate) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   QuicWindowUpdateFrame window_update; | 
 |   window_update.stream_id = 3; | 
 |   window_update.byte_offset = 1234; | 
 |   EXPECT_CALL(visitor_, OnWindowUpdateFrames(_)); | 
 |   ProcessFramePacket(QuicFrame(&window_update)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, Blocked) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   QuicBlockedFrame blocked; | 
 |   blocked.stream_id = 3; | 
 |   EXPECT_CALL(visitor_, OnBlockedFrames(_)); | 
 |   ProcessFramePacket(QuicFrame(&blocked)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ZeroBytePacket) { | 
 |   // Don't close the connection for zero byte packets. | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); | 
 |   QuicEncryptedPacket encrypted(nullptr, 0); | 
 |   connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), encrypted); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) { | 
 |   // Set the sequence number of the ack packet to be least unacked (4). | 
 |   peer_creator_.set_sequence_number(3); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   QuicStopWaitingFrame frame = InitStopWaitingFrame(4); | 
 |   ProcessStopWaitingPacket(&frame); | 
 |   EXPECT_TRUE(outgoing_ack()->missing_packets.empty()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculation) { | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessDataPacket(1, 1, kEntropyFlag); | 
 |   ProcessDataPacket(4, 1, kEntropyFlag); | 
 |   ProcessDataPacket(3, 1, !kEntropyFlag); | 
 |   ProcessDataPacket(7, 1, kEntropyFlag); | 
 |   EXPECT_EQ(146u, outgoing_ack()->entropy_hash); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculationHalfFEC) { | 
 |   // FEC packets should not change the entropy hash calculation. | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessDataPacket(1, 1, kEntropyFlag); | 
 |   ProcessFecPacket(4, 1, false, kEntropyFlag, nullptr); | 
 |   ProcessDataPacket(3, 3, !kEntropyFlag); | 
 |   ProcessFecPacket(7, 3, false, kEntropyFlag, nullptr); | 
 |   EXPECT_EQ(146u, outgoing_ack()->entropy_hash); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, UpdateEntropyForReceivedPackets) { | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessDataPacket(1, 1, kEntropyFlag); | 
 |   ProcessDataPacket(5, 1, kEntropyFlag); | 
 |   ProcessDataPacket(4, 1, !kEntropyFlag); | 
 |   EXPECT_EQ(34u, outgoing_ack()->entropy_hash); | 
 |   // Make 4th packet my least unacked, and update entropy for 2, 3 packets. | 
 |   peer_creator_.set_sequence_number(5); | 
 |   QuicPacketEntropyHash six_packet_entropy_hash = 0; | 
 |   QuicPacketEntropyHash kRandomEntropyHash = 129u; | 
 |   QuicStopWaitingFrame frame = InitStopWaitingFrame(4); | 
 |   frame.entropy_hash = kRandomEntropyHash; | 
 |   if (ProcessStopWaitingPacket(&frame)) { | 
 |     six_packet_entropy_hash = 1 << 6; | 
 |   } | 
 |  | 
 |   EXPECT_EQ((kRandomEntropyHash + (1 << 5) + six_packet_entropy_hash), | 
 |             outgoing_ack()->entropy_hash); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, UpdateEntropyHashUptoCurrentPacket) { | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   ProcessDataPacket(1, 1, kEntropyFlag); | 
 |   ProcessDataPacket(5, 1, !kEntropyFlag); | 
 |   ProcessDataPacket(22, 1, kEntropyFlag); | 
 |   EXPECT_EQ(66u, outgoing_ack()->entropy_hash); | 
 |   peer_creator_.set_sequence_number(22); | 
 |   QuicPacketEntropyHash kRandomEntropyHash = 85u; | 
 |   // Current packet is the least unacked packet. | 
 |   QuicPacketEntropyHash ack_entropy_hash; | 
 |   QuicStopWaitingFrame frame = InitStopWaitingFrame(23); | 
 |   frame.entropy_hash = kRandomEntropyHash; | 
 |   ack_entropy_hash = ProcessStopWaitingPacket(&frame); | 
 |   EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash), | 
 |             outgoing_ack()->entropy_hash); | 
 |   ProcessDataPacket(25, 1, kEntropyFlag); | 
 |   EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash + (1 << (25 % 8))), | 
 |             outgoing_ack()->entropy_hash); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, EntropyCalculationForTruncatedAck) { | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   QuicPacketEntropyHash entropy[51]; | 
 |   entropy[0] = 0; | 
 |   for (int i = 1; i < 51; ++i) { | 
 |     bool should_send = i % 10 != 1; | 
 |     bool entropy_flag = (i & (i - 1)) != 0; | 
 |     if (!should_send) { | 
 |       entropy[i] = entropy[i - 1]; | 
 |       continue; | 
 |     } | 
 |     if (entropy_flag) { | 
 |       entropy[i] = entropy[i - 1] ^ (1 << (i % 8)); | 
 |     } else { | 
 |       entropy[i] = entropy[i - 1]; | 
 |     } | 
 |     ProcessDataPacket(i, 1, entropy_flag); | 
 |   } | 
 |   for (int i = 1; i < 50; ++i) { | 
 |     EXPECT_EQ(entropy[i], QuicConnectionPeer::ReceivedEntropyHash( | 
 |         &connection_, i)); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacket) { | 
 |   connection_.SetSupportedVersions(QuicSupportedVersions()); | 
 |   framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); | 
 |  | 
 |   QuicPacketHeader header; | 
 |   header.public_header.connection_id = connection_id_; | 
 |   header.public_header.reset_flag = false; | 
 |   header.public_header.version_flag = true; | 
 |   header.entropy_flag = false; | 
 |   header.fec_flag = false; | 
 |   header.packet_sequence_number = 12; | 
 |   header.fec_group = 0; | 
 |  | 
 |   QuicFrames frames; | 
 |   QuicFrame frame(&frame1_); | 
 |   frames.push_back(frame); | 
 |   scoped_ptr<QuicPacket> packet( | 
 |       BuildUnsizedDataPacket(&framer_, header, frames).packet); | 
 |   scoped_ptr<QuicEncryptedPacket> encrypted( | 
 |       framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); | 
 |  | 
 |   framer_.set_version(version()); | 
 |   connection_.set_is_server(true); | 
 |   connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 |   EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr); | 
 |  | 
 |   size_t num_versions = arraysize(kSupportedQuicVersions); | 
 |   ASSERT_EQ(num_versions, | 
 |             writer_->version_negotiation_packet()->versions.size()); | 
 |  | 
 |   // We expect all versions in kSupportedQuicVersions to be | 
 |   // included in the packet. | 
 |   for (size_t i = 0; i < num_versions; ++i) { | 
 |     EXPECT_EQ(kSupportedQuicVersions[i], | 
 |               writer_->version_negotiation_packet()->versions[i]); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlocked) { | 
 |   connection_.SetSupportedVersions(QuicSupportedVersions()); | 
 |   framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); | 
 |  | 
 |   QuicPacketHeader header; | 
 |   header.public_header.connection_id = connection_id_; | 
 |   header.public_header.reset_flag = false; | 
 |   header.public_header.version_flag = true; | 
 |   header.entropy_flag = false; | 
 |   header.fec_flag = false; | 
 |   header.packet_sequence_number = 12; | 
 |   header.fec_group = 0; | 
 |  | 
 |   QuicFrames frames; | 
 |   QuicFrame frame(&frame1_); | 
 |   frames.push_back(frame); | 
 |   scoped_ptr<QuicPacket> packet( | 
 |       BuildUnsizedDataPacket(&framer_, header, frames).packet); | 
 |   scoped_ptr<QuicEncryptedPacket> encrypted( | 
 |       framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); | 
 |  | 
 |   framer_.set_version(version()); | 
 |   connection_.set_is_server(true); | 
 |   BlockOnNextWrite(); | 
 |   connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 |   EXPECT_EQ(0u, writer_->last_packet_size()); | 
 |   EXPECT_TRUE(connection_.HasQueuedData()); | 
 |  | 
 |   writer_->SetWritable(); | 
 |   connection_.OnCanWrite(); | 
 |   EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr); | 
 |  | 
 |   size_t num_versions = arraysize(kSupportedQuicVersions); | 
 |   ASSERT_EQ(num_versions, | 
 |             writer_->version_negotiation_packet()->versions.size()); | 
 |  | 
 |   // We expect all versions in kSupportedQuicVersions to be | 
 |   // included in the packet. | 
 |   for (size_t i = 0; i < num_versions; ++i) { | 
 |     EXPECT_EQ(kSupportedQuicVersions[i], | 
 |               writer_->version_negotiation_packet()->versions[i]); | 
 |   } | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, | 
 |        ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered) { | 
 |   connection_.SetSupportedVersions(QuicSupportedVersions()); | 
 |   framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); | 
 |  | 
 |   QuicPacketHeader header; | 
 |   header.public_header.connection_id = connection_id_; | 
 |   header.public_header.reset_flag = false; | 
 |   header.public_header.version_flag = true; | 
 |   header.entropy_flag = false; | 
 |   header.fec_flag = false; | 
 |   header.packet_sequence_number = 12; | 
 |   header.fec_group = 0; | 
 |  | 
 |   QuicFrames frames; | 
 |   QuicFrame frame(&frame1_); | 
 |   frames.push_back(frame); | 
 |   scoped_ptr<QuicPacket> packet( | 
 |       BuildUnsizedDataPacket(&framer_, header, frames).packet); | 
 |   scoped_ptr<QuicEncryptedPacket> encrypted( | 
 |       framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); | 
 |  | 
 |   framer_.set_version(version()); | 
 |   connection_.set_is_server(true); | 
 |   BlockOnNextWrite(); | 
 |   writer_->set_is_write_blocked_data_buffered(true); | 
 |   connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 |   EXPECT_EQ(0u, writer_->last_packet_size()); | 
 |   EXPECT_FALSE(connection_.HasQueuedData()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) { | 
 |   // Start out with some unsupported version. | 
 |   QuicConnectionPeer::GetFramer(&connection_)->set_version_for_tests( | 
 |       QUIC_VERSION_UNSUPPORTED); | 
 |  | 
 |   QuicPacketHeader header; | 
 |   header.public_header.connection_id = connection_id_; | 
 |   header.public_header.reset_flag = false; | 
 |   header.public_header.version_flag = true; | 
 |   header.entropy_flag = false; | 
 |   header.fec_flag = false; | 
 |   header.packet_sequence_number = 12; | 
 |   header.fec_group = 0; | 
 |  | 
 |   QuicVersionVector supported_versions; | 
 |   for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { | 
 |     supported_versions.push_back(kSupportedQuicVersions[i]); | 
 |   } | 
 |  | 
 |   // Send a version negotiation packet. | 
 |   scoped_ptr<QuicEncryptedPacket> encrypted( | 
 |       framer_.BuildVersionNegotiationPacket( | 
 |           header.public_header, supported_versions)); | 
 |   connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 |  | 
 |   // Now force another packet.  The connection should transition into | 
 |   // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion. | 
 |   header.public_header.version_flag = false; | 
 |   QuicFrames frames; | 
 |   QuicFrame frame(&frame1_); | 
 |   frames.push_back(frame); | 
 |   scoped_ptr<QuicPacket> packet( | 
 |       BuildUnsizedDataPacket(&framer_, header, frames).packet); | 
 |   encrypted.reset(framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 |  | 
 |   ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket(creator_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, BadVersionNegotiation) { | 
 |   QuicPacketHeader header; | 
 |   header.public_header.connection_id = connection_id_; | 
 |   header.public_header.reset_flag = false; | 
 |   header.public_header.version_flag = true; | 
 |   header.entropy_flag = false; | 
 |   header.fec_flag = false; | 
 |   header.packet_sequence_number = 12; | 
 |   header.fec_group = 0; | 
 |  | 
 |   QuicVersionVector supported_versions; | 
 |   for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { | 
 |     supported_versions.push_back(kSupportedQuicVersions[i]); | 
 |   } | 
 |  | 
 |   // Send a version negotiation packet with the version the client started with. | 
 |   // It should be rejected. | 
 |   EXPECT_CALL(visitor_, | 
 |               OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, | 
 |                                  false)); | 
 |   scoped_ptr<QuicEncryptedPacket> encrypted( | 
 |       framer_.BuildVersionNegotiationPacket( | 
 |           header.public_header, supported_versions)); | 
 |   connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CheckSendStats) { | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   connection_.SendStreamDataWithString(3, "first", 0, !kFin, nullptr); | 
 |   size_t first_packet_size = writer_->last_packet_size(); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   connection_.SendStreamDataWithString(5, "second", 0, !kFin, nullptr); | 
 |   size_t second_packet_size = writer_->last_packet_size(); | 
 |  | 
 |   // 2 retransmissions due to rto, 1 due to explicit nack. | 
 |   EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); | 
 |  | 
 |   // Retransmit due to RTO. | 
 |   clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |  | 
 |   // Retransmit due to explicit nacks. | 
 |   QuicAckFrame nack_three = InitAckFrame(4); | 
 |   NackPacket(3, &nack_three); | 
 |   NackPacket(1, &nack_three); | 
 |   SequenceNumberSet lost_packets; | 
 |   lost_packets.insert(1); | 
 |   lost_packets.insert(3); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()).Times(2); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); | 
 |   } | 
 |   ProcessAckPacket(&nack_three); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce( | 
 |       Return(QuicBandwidth::Zero())); | 
 |  | 
 |   const QuicConnectionStats& stats = connection_.GetStats(); | 
 |   EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - kQuicVersionSize, | 
 |             stats.bytes_sent); | 
 |   EXPECT_EQ(5u, stats.packets_sent); | 
 |   EXPECT_EQ(2 * first_packet_size + second_packet_size - kQuicVersionSize, | 
 |             stats.bytes_retransmitted); | 
 |   EXPECT_EQ(3u, stats.packets_retransmitted); | 
 |   EXPECT_EQ(1u, stats.rto_count); | 
 |   EXPECT_EQ(kDefaultMaxPacketSize, stats.max_packet_size); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, CheckReceiveStats) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   size_t received_bytes = 0; | 
 |   received_bytes += ProcessFecProtectedPacket(1, false, !kEntropyFlag); | 
 |   received_bytes += ProcessFecProtectedPacket(3, false, !kEntropyFlag); | 
 |   // Should be counted against dropped packets. | 
 |   received_bytes += ProcessDataPacket(3, 1, !kEntropyFlag); | 
 |   received_bytes += ProcessFecPacket(4, 1, true, !kEntropyFlag, nullptr); | 
 |  | 
 |   EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce( | 
 |       Return(QuicBandwidth::Zero())); | 
 |  | 
 |   const QuicConnectionStats& stats = connection_.GetStats(); | 
 |   EXPECT_EQ(received_bytes, stats.bytes_received); | 
 |   EXPECT_EQ(4u, stats.packets_received); | 
 |  | 
 |   EXPECT_EQ(1u, stats.packets_revived); | 
 |   EXPECT_EQ(1u, stats.packets_dropped); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, TestFecGroupLimits) { | 
 |   // Create and return a group for 1. | 
 |   ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) != nullptr); | 
 |  | 
 |   // Create and return a group for 2. | 
 |   ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != nullptr); | 
 |  | 
 |   // Create and return a group for 4.  This should remove 1 but not 2. | 
 |   ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != nullptr); | 
 |   ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) == nullptr); | 
 |   ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != nullptr); | 
 |  | 
 |   // Create and return a group for 3.  This will kill off 2. | 
 |   ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) != nullptr); | 
 |   ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) == nullptr); | 
 |  | 
 |   // Verify that adding 5 kills off 3, despite 4 being created before 3. | 
 |   ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 5) != nullptr); | 
 |   ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != nullptr); | 
 |   ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) == nullptr); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) { | 
 |   // Construct a packet with stream frame and connection close frame. | 
 |   header_.public_header.connection_id = connection_id_; | 
 |   header_.packet_sequence_number = 1; | 
 |   header_.public_header.reset_flag = false; | 
 |   header_.public_header.version_flag = false; | 
 |   header_.entropy_flag = false; | 
 |   header_.fec_flag = false; | 
 |   header_.fec_group = 0; | 
 |  | 
 |   QuicConnectionCloseFrame qccf; | 
 |   qccf.error_code = QUIC_PEER_GOING_AWAY; | 
 |   QuicFrame close_frame(&qccf); | 
 |   QuicFrame stream_frame(&frame1_); | 
 |  | 
 |   QuicFrames frames; | 
 |   frames.push_back(stream_frame); | 
 |   frames.push_back(close_frame); | 
 |   scoped_ptr<QuicPacket> packet( | 
 |       BuildUnsizedDataPacket(&framer_, header_, frames).packet); | 
 |   EXPECT_TRUE(nullptr != packet.get()); | 
 |   scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( | 
 |       ENCRYPTION_NONE, 1, *packet)); | 
 |  | 
 |   EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true)); | 
 |   EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, SelectMutualVersion) { | 
 |   connection_.SetSupportedVersions(QuicSupportedVersions()); | 
 |   // Set the connection to speak the lowest quic version. | 
 |   connection_.set_version(QuicVersionMin()); | 
 |   EXPECT_EQ(QuicVersionMin(), connection_.version()); | 
 |  | 
 |   // Pass in available versions which includes a higher mutually supported | 
 |   // version.  The higher mutually supported version should be selected. | 
 |   QuicVersionVector supported_versions; | 
 |   for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { | 
 |     supported_versions.push_back(kSupportedQuicVersions[i]); | 
 |   } | 
 |   EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions)); | 
 |   EXPECT_EQ(QuicVersionMax(), connection_.version()); | 
 |  | 
 |   // Expect that the lowest version is selected. | 
 |   // Ensure the lowest supported version is less than the max, unless they're | 
 |   // the same. | 
 |   EXPECT_LE(QuicVersionMin(), QuicVersionMax()); | 
 |   QuicVersionVector lowest_version_vector; | 
 |   lowest_version_vector.push_back(QuicVersionMin()); | 
 |   EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector)); | 
 |   EXPECT_EQ(QuicVersionMin(), connection_.version()); | 
 |  | 
 |   // Shouldn't be able to find a mutually supported version. | 
 |   QuicVersionVector unsupported_version; | 
 |   unsupported_version.push_back(QUIC_VERSION_UNSUPPORTED); | 
 |   EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) { | 
 |   EXPECT_FALSE(writer_->IsWriteBlocked()); | 
 |  | 
 |   // Send a packet. | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(0u, connection_.NumQueuedPackets()); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |  | 
 |   TriggerConnectionClose(); | 
 |   EXPECT_EQ(2u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) { | 
 |   BlockOnNextWrite(); | 
 |   TriggerConnectionClose(); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) { | 
 |   BlockOnNextWrite(); | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
 |   EXPECT_EQ(1u, connection_.NumQueuedPackets()); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 |   EXPECT_TRUE(writer_->IsWriteBlocked()); | 
 |   TriggerConnectionClose(); | 
 |   EXPECT_EQ(1u, writer_->packets_write_attempts()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckNotifierTriggerCallback) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Create a delegate which we expect to be called. | 
 |   scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate); | 
 |   EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _)).Times(1); | 
 |  | 
 |   // Send some data, which will register the delegate to be notified. | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); | 
 |  | 
 |   // Process an ACK from the server which should trigger the callback. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicAckFrame frame = InitAckFrame(1); | 
 |   ProcessAckPacket(&frame); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckNotifierFailToTriggerCallback) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Create a delegate which we don't expect to be called. | 
 |   scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate); | 
 |   EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _)).Times(0); | 
 |  | 
 |   // Send some data, which will register the delegate to be notified. This will | 
 |   // not be ACKed and so the delegate should never be called. | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); | 
 |  | 
 |   // Send some other data which we will ACK. | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); | 
 |   connection_.SendStreamDataWithString(1, "bar", 0, !kFin, nullptr); | 
 |  | 
 |   // Now we receive ACK for packets 2 and 3, but importantly missing packet 1 | 
 |   // which we registered to be notified about. | 
 |   QuicAckFrame frame = InitAckFrame(3); | 
 |   NackPacket(1, &frame); | 
 |   SequenceNumberSet lost_packets; | 
 |   lost_packets.insert(1); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   ProcessAckPacket(&frame); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckNotifierCallbackAfterRetransmission) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Create a delegate which we expect to be called. | 
 |   scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate); | 
 |   EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _)).Times(1); | 
 |  | 
 |   // Send four packets, and register to be notified on ACK of packet 2. | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
 |   connection_.SendStreamDataWithString(3, "bar", 0, !kFin, delegate.get()); | 
 |   connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr); | 
 |   connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr); | 
 |  | 
 |   // Now we receive ACK for packets 1, 3, and 4 and lose 2. | 
 |   QuicAckFrame frame = InitAckFrame(4); | 
 |   NackPacket(2, &frame); | 
 |   SequenceNumberSet lost_packets; | 
 |   lost_packets.insert(2); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   // Now we get an ACK for packet 5 (retransmitted packet 2), which should | 
 |   // trigger the callback. | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillRepeatedly(Return(SequenceNumberSet())); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicAckFrame second_ack_frame = InitAckFrame(5); | 
 |   ProcessAckPacket(&second_ack_frame); | 
 | } | 
 |  | 
 | // AckNotifierCallback is triggered by the ack of a packet that timed | 
 | // out and was retransmitted, even though the retransmission has a | 
 | // different sequence number. | 
 | TEST_P(QuicConnectionTest, AckNotifierCallbackForAckAfterRTO) { | 
 |   InSequence s; | 
 |  | 
 |   // Create a delegate which we expect to be called. | 
 |   scoped_refptr<MockAckNotifierDelegate> delegate( | 
 |       new StrictMock<MockAckNotifierDelegate>); | 
 |  | 
 |   QuicTime default_retransmission_time = clock_.ApproximateNow().Add( | 
 |       DefaultRetransmissionTime()); | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, !kFin, delegate.get()); | 
 |   EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
 |  | 
 |   EXPECT_EQ(1u, writer_->header().packet_sequence_number); | 
 |   EXPECT_EQ(default_retransmission_time, | 
 |             connection_.GetRetransmissionAlarm()->deadline()); | 
 |   // Simulate the retransmission alarm firing. | 
 |   clock_.AdvanceTime(DefaultRetransmissionTime()); | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); | 
 |   connection_.GetRetransmissionAlarm()->Fire(); | 
 |   EXPECT_EQ(2u, writer_->header().packet_sequence_number); | 
 |   // We do not raise the high water mark yet. | 
 |   EXPECT_EQ(1u, stop_waiting()->least_unacked); | 
 |  | 
 |   // Ack the original packet, which will revert the RTO. | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*delegate.get(), OnAckNotification(1, _, _)); | 
 |   if (!FLAGS_quic_use_new_rto) { | 
 |     EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); | 
 |   } | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicAckFrame ack_frame = InitAckFrame(1); | 
 |   ProcessAckPacket(&ack_frame); | 
 |  | 
 |   // Delegate is not notified again when the retransmit is acked. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicAckFrame second_ack_frame = InitAckFrame(2); | 
 |   ProcessAckPacket(&second_ack_frame); | 
 | } | 
 |  | 
 | // AckNotifierCallback is triggered by the ack of a packet that was | 
 | // previously nacked, even though the retransmission has a different | 
 | // sequence number. | 
 | TEST_P(QuicConnectionTest, AckNotifierCallbackForAckOfNackedPacket) { | 
 |   InSequence s; | 
 |  | 
 |   // Create a delegate which we expect to be called. | 
 |   scoped_refptr<MockAckNotifierDelegate> delegate( | 
 |       new StrictMock<MockAckNotifierDelegate>); | 
 |  | 
 |   // Send four packets, and register to be notified on ACK of packet 2. | 
 |   connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); | 
 |   connection_.SendStreamDataWithString(3, "bar", 0, !kFin, delegate.get()); | 
 |   connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr); | 
 |   connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr); | 
 |  | 
 |   // Now we receive ACK for packets 1, 3, and 4 and lose 2. | 
 |   QuicAckFrame frame = InitAckFrame(4); | 
 |   NackPacket(2, &frame); | 
 |   SequenceNumberSet lost_packets; | 
 |   lost_packets.insert(2); | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); | 
 |   ProcessAckPacket(&frame); | 
 |  | 
 |   // Now we get an ACK for packet 2, which was previously nacked. | 
 |   SequenceNumberSet no_lost_packets; | 
 |   EXPECT_CALL(*delegate.get(), OnAckNotification(1, _, _)); | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(no_lost_packets)); | 
 |   QuicAckFrame second_ack_frame = InitAckFrame(4); | 
 |   ProcessAckPacket(&second_ack_frame); | 
 |  | 
 |   // Verify that the delegate is not notified again when the | 
 |   // retransmit is acked. | 
 |   EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) | 
 |       .WillOnce(Return(no_lost_packets)); | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicAckFrame third_ack_frame = InitAckFrame(5); | 
 |   ProcessAckPacket(&third_ack_frame); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckNotifierFECTriggerCallback) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Create a delegate which we expect to be called. | 
 |   scoped_refptr<MockAckNotifierDelegate> delegate( | 
 |       new MockAckNotifierDelegate); | 
 |   EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _)).Times(1); | 
 |  | 
 |   // Send some data, which will register the delegate to be notified. | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); | 
 |   connection_.SendStreamDataWithString(2, "bar", 0, !kFin, nullptr); | 
 |  | 
 |   // Process an ACK from the server with a revived packet, which should trigger | 
 |   // the callback. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |   QuicAckFrame frame = InitAckFrame(2); | 
 |   NackPacket(1, &frame); | 
 |   frame.revived_packets.insert(1); | 
 |   ProcessAckPacket(&frame); | 
 |   // If the ack is processed again, the notifier should not be called again. | 
 |   ProcessAckPacket(&frame); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, AckNotifierCallbackAfterFECRecovery) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |   EXPECT_CALL(visitor_, OnCanWrite()); | 
 |  | 
 |   // Create a delegate which we expect to be called. | 
 |   scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate); | 
 |   EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _)).Times(1); | 
 |  | 
 |   // Expect ACKs for 1 packet. | 
 |   EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); | 
 |  | 
 |   // Send one packet, and register to be notified on ACK. | 
 |   connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); | 
 |  | 
 |   // Ack packet gets dropped, but we receive an FEC packet that covers it. | 
 |   // Should recover the Ack packet and trigger the notification callback. | 
 |   QuicFrames frames; | 
 |  | 
 |   QuicAckFrame ack_frame = InitAckFrame(1); | 
 |   frames.push_back(QuicFrame(&ack_frame)); | 
 |  | 
 |   // Dummy stream frame to satisfy expectations set elsewhere. | 
 |   frames.push_back(QuicFrame(&frame1_)); | 
 |  | 
 |   QuicPacketHeader ack_header; | 
 |   ack_header.public_header.connection_id = connection_id_; | 
 |   ack_header.public_header.reset_flag = false; | 
 |   ack_header.public_header.version_flag = false; | 
 |   ack_header.entropy_flag = !kEntropyFlag; | 
 |   ack_header.fec_flag = true; | 
 |   ack_header.packet_sequence_number = 1; | 
 |   ack_header.is_in_fec_group = IN_FEC_GROUP; | 
 |   ack_header.fec_group = 1; | 
 |  | 
 |   QuicPacket* packet = | 
 |       BuildUnsizedDataPacket(&framer_, ack_header, frames).packet; | 
 |  | 
 |   // Take the packet which contains the ACK frame, and construct and deliver an | 
 |   // FEC packet which allows the ACK packet to be recovered. | 
 |   ProcessFecPacket(2, 1, true, !kEntropyFlag, packet); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NetworkChangeVisitorCwndCallbackChangesFecState) { | 
 |   size_t max_packets_per_fec_group = creator_->max_packets_per_fec_group(); | 
 |  | 
 |   QuicSentPacketManager::NetworkChangeVisitor* visitor = | 
 |       QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_); | 
 |   EXPECT_TRUE(visitor); | 
 |  | 
 |   // Increase FEC group size by increasing congestion window to a large number. | 
 |   EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( | 
 |       Return(1000 * kDefaultTCPMSS)); | 
 |   visitor->OnCongestionWindowChange(); | 
 |   EXPECT_LT(max_packets_per_fec_group, creator_->max_packets_per_fec_group()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NetworkChangeVisitorConfigCallbackChangesFecState) { | 
 |   QuicSentPacketManager::NetworkChangeVisitor* visitor = | 
 |       QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_); | 
 |   EXPECT_TRUE(visitor); | 
 |   EXPECT_EQ(QuicTime::Delta::Zero(), | 
 |             QuicPacketGeneratorPeer::GetFecTimeout(generator_)); | 
 |  | 
 |   // Verify that sending a config with a new initial rtt changes fec timeout. | 
 |   // Create and process a config with a non-zero initial RTT. | 
 |   EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); | 
 |   QuicConfig config; | 
 |   config.SetInitialRoundTripTimeUsToSend(300000); | 
 |   connection_.SetFromConfig(config); | 
 |   EXPECT_LT(QuicTime::Delta::Zero(), | 
 |             QuicPacketGeneratorPeer::GetFecTimeout(generator_)); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NetworkChangeVisitorRttCallbackChangesFecState) { | 
 |   // Verify that sending a config with a new initial rtt changes fec timeout. | 
 |   QuicSentPacketManager::NetworkChangeVisitor* visitor = | 
 |       QuicSentPacketManagerPeer::GetNetworkChangeVisitor(manager_); | 
 |   EXPECT_TRUE(visitor); | 
 |   EXPECT_EQ(QuicTime::Delta::Zero(), | 
 |             QuicPacketGeneratorPeer::GetFecTimeout(generator_)); | 
 |  | 
 |   // Increase FEC timeout by increasing RTT. | 
 |   RttStats* rtt_stats = QuicSentPacketManagerPeer::GetRttStats(manager_); | 
 |   rtt_stats->UpdateRtt(QuicTime::Delta::FromMilliseconds(300), | 
 |                        QuicTime::Delta::Zero(), QuicTime::Zero()); | 
 |   visitor->OnRttChange(); | 
 |   EXPECT_LT(QuicTime::Delta::Zero(), | 
 |             QuicPacketGeneratorPeer::GetFecTimeout(generator_)); | 
 | } | 
 |  | 
 | class MockQuicConnectionDebugVisitor | 
 |     : public QuicConnectionDebugVisitor { | 
 |  public: | 
 |   MOCK_METHOD1(OnFrameAddedToPacket, | 
 |                void(const QuicFrame&)); | 
 |  | 
 |   MOCK_METHOD6(OnPacketSent, | 
 |                void(const SerializedPacket&, | 
 |                     QuicPacketSequenceNumber, | 
 |                     EncryptionLevel, | 
 |                     TransmissionType, | 
 |                     const QuicEncryptedPacket&, | 
 |                     QuicTime)); | 
 |  | 
 |   MOCK_METHOD3(OnPacketReceived, | 
 |                void(const IPEndPoint&, | 
 |                     const IPEndPoint&, | 
 |                     const QuicEncryptedPacket&)); | 
 |  | 
 |   MOCK_METHOD1(OnProtocolVersionMismatch, | 
 |                void(QuicVersion)); | 
 |  | 
 |   MOCK_METHOD1(OnPacketHeader, | 
 |                void(const QuicPacketHeader& header)); | 
 |  | 
 |   MOCK_METHOD1(OnStreamFrame, | 
 |                void(const QuicStreamFrame&)); | 
 |  | 
 |   MOCK_METHOD1(OnAckFrame, | 
 |                void(const QuicAckFrame& frame)); | 
 |  | 
 |   MOCK_METHOD1(OnStopWaitingFrame, | 
 |                void(const QuicStopWaitingFrame&)); | 
 |  | 
 |   MOCK_METHOD1(OnRstStreamFrame, | 
 |                void(const QuicRstStreamFrame&)); | 
 |  | 
 |   MOCK_METHOD1(OnConnectionCloseFrame, | 
 |                void(const QuicConnectionCloseFrame&)); | 
 |  | 
 |   MOCK_METHOD1(OnPublicResetPacket, | 
 |                void(const QuicPublicResetPacket&)); | 
 |  | 
 |   MOCK_METHOD1(OnVersionNegotiationPacket, | 
 |                void(const QuicVersionNegotiationPacket&)); | 
 |  | 
 |   MOCK_METHOD2(OnRevivedPacket, | 
 |                void(const QuicPacketHeader&, StringPiece payload)); | 
 | }; | 
 |  | 
 | TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) { | 
 |   QuicPacketHeader header; | 
 |  | 
 |   MockQuicConnectionDebugVisitor* debug_visitor = | 
 |       new MockQuicConnectionDebugVisitor(); | 
 |   connection_.set_debug_visitor(debug_visitor); | 
 |   EXPECT_CALL(*debug_visitor, OnPacketHeader(Ref(header))).Times(1); | 
 |   connection_.OnPacketHeader(header); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, Pacing) { | 
 |   TestConnection server(connection_id_, IPEndPoint(), helper_.get(), | 
 |                         factory_, /* is_server= */ true, version()); | 
 |   TestConnection client(connection_id_, IPEndPoint(), helper_.get(), | 
 |                         factory_, /* is_server= */ false, version()); | 
 |   EXPECT_FALSE(client.sent_packet_manager().using_pacing()); | 
 |   EXPECT_FALSE(server.sent_packet_manager().using_pacing()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, ControlFramesInstigateAcks) { | 
 |   EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); | 
 |  | 
 |   // Send a WINDOW_UPDATE frame. | 
 |   QuicWindowUpdateFrame window_update; | 
 |   window_update.stream_id = 3; | 
 |   window_update.byte_offset = 1234; | 
 |   EXPECT_CALL(visitor_, OnWindowUpdateFrames(_)); | 
 |   ProcessFramePacket(QuicFrame(&window_update)); | 
 |  | 
 |   // Ensure that this has caused the ACK alarm to be set. | 
 |   QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); | 
 |   EXPECT_TRUE(ack_alarm->IsSet()); | 
 |  | 
 |   // Cancel alarm, and try again with BLOCKED frame. | 
 |   ack_alarm->Cancel(); | 
 |   QuicBlockedFrame blocked; | 
 |   blocked.stream_id = 3; | 
 |   EXPECT_CALL(visitor_, OnBlockedFrames(_)); | 
 |   ProcessFramePacket(QuicFrame(&blocked)); | 
 |   EXPECT_TRUE(ack_alarm->IsSet()); | 
 | } | 
 |  | 
 | TEST_P(QuicConnectionTest, NoDataNoFin) { | 
 |   // Make sure that a call to SendStreamWithData, with no data and no FIN, does | 
 |   // not result in a QuicAckNotifier being used-after-free (fail under ASAN). | 
 |   // Regression test for b/18594622 | 
 |   scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate); | 
 |   EXPECT_DFATAL( | 
 |       connection_.SendStreamDataWithString(3, "", 0, !kFin, delegate.get()), | 
 |       "Attempt to send empty stream frame"); | 
 | } | 
 |  | 
 | }  // namespace | 
 | }  // namespace test | 
 | }  // namespace net |