| // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include <malloc.h> | 
 | #include <new.h> | 
 | #include <windows.h> | 
 |  | 
 | #include "base/basictypes.h" | 
 |  | 
 | // This shim make it possible to perform additional checks on allocations | 
 | // before passing them to the Heap functions. | 
 |  | 
 | // Heap functions are stripped from libcmt.lib using the prep_libc.py | 
 | // for each object file stripped, we re-implement them here to allow us to | 
 | // perform additional checks: | 
 | // 1. Enforcing the maximum size that can be allocated to 2Gb. | 
 | // 2. Calling new_handler if malloc fails. | 
 |  | 
 | extern "C" { | 
 | // We set this to 1 because part of the CRT uses a check of _crtheap != 0 | 
 | // to test whether the CRT has been initialized.  Once we've ripped out | 
 | // the allocators from libcmt, we need to provide this definition so that | 
 | // the rest of the CRT is still usable. | 
 | // heapinit.c | 
 | void* _crtheap = reinterpret_cast<void*>(1); | 
 | } | 
 |  | 
 | namespace { | 
 |  | 
 | const size_t kWindowsPageSize = 4096; | 
 | const size_t kMaxWindowsAllocation = INT_MAX - kWindowsPageSize; | 
 | int new_mode = 0; | 
 |  | 
 | // VS2013 crt uses the process heap as its heap, so we do the same here. | 
 | // See heapinit.c in VS CRT sources. | 
 | bool win_heap_init() { | 
 |   // Set the _crtheap global here.  THis allows us to offload most of the | 
 |   // memory management to the CRT, except the functions we need to shim. | 
 |   _crtheap = GetProcessHeap(); | 
 |   if (_crtheap == NULL) | 
 |     return false; | 
 |  | 
 |   ULONG enable_lfh = 2; | 
 |   // NOTE: Setting LFH may fail.  Vista already has it enabled. | 
 |   //       And under the debugger, it won't use LFH.  So we | 
 |   //       ignore any errors. | 
 |   HeapSetInformation(_crtheap, HeapCompatibilityInformation, &enable_lfh, | 
 |                      sizeof(enable_lfh)); | 
 |  | 
 |   return true; | 
 | } | 
 |  | 
 | void* win_heap_malloc(size_t size) { | 
 |   if (size < kMaxWindowsAllocation) | 
 |     return HeapAlloc(_crtheap, 0, size); | 
 |   return NULL; | 
 | } | 
 |  | 
 | void win_heap_free(void* size) { | 
 |   HeapFree(_crtheap, 0, size); | 
 | } | 
 |  | 
 | void* win_heap_realloc(void* ptr, size_t size) { | 
 |   if (!ptr) | 
 |     return win_heap_malloc(size); | 
 |   if (!size) { | 
 |     win_heap_free(ptr); | 
 |     return NULL; | 
 |   } | 
 |   if (size < kMaxWindowsAllocation) | 
 |     return HeapReAlloc(_crtheap, 0, ptr, size); | 
 |   return NULL; | 
 | } | 
 |  | 
 | void win_heap_term() { | 
 |   _crtheap = NULL; | 
 | } | 
 |  | 
 | // Call the new handler, if one has been set. | 
 | // Returns true on successfully calling the handler, false otherwise. | 
 | inline bool call_new_handler(bool nothrow, size_t size) { | 
 |   // Get the current new handler. | 
 |   _PNH nh = _query_new_handler(); | 
 | #if defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS | 
 |   if (!nh) | 
 |     return false; | 
 |   // Since exceptions are disabled, we don't really know if new_handler | 
 |   // failed.  Assume it will abort if it fails. | 
 |   return nh(size); | 
 | #else | 
 | #error "Exceptions in allocator shim are not supported!" | 
 | #endif  // defined(_HAS_EXCEPTIONS) && !_HAS_EXCEPTIONS | 
 |   return false; | 
 | } | 
 |  | 
 | // Implement a C++ style allocation, which always calls the new_handler | 
 | // on failure. | 
 | inline void* generic_cpp_alloc(size_t size, bool nothrow) { | 
 |   void* ptr; | 
 |   for (;;) { | 
 |     ptr = malloc(size); | 
 |     if (ptr) | 
 |       return ptr; | 
 |     if (!call_new_handler(nothrow, size)) | 
 |       break; | 
 |   } | 
 |   return ptr; | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | // new.cpp | 
 | void* operator new(size_t size) { | 
 |   return generic_cpp_alloc(size, false); | 
 | } | 
 |  | 
 | // delete.cpp | 
 | void operator delete(void* p) throw() { | 
 |   free(p); | 
 | } | 
 |  | 
 | // new2.cpp | 
 | void* operator new[](size_t size) { | 
 |   return generic_cpp_alloc(size, false); | 
 | } | 
 |  | 
 | // delete2.cpp | 
 | void operator delete[](void* p) throw() { | 
 |   free(p); | 
 | } | 
 |  | 
 | // newopnt.cpp | 
 | void* operator new(size_t size, const std::nothrow_t& nt) { | 
 |   return generic_cpp_alloc(size, true); | 
 | } | 
 |  | 
 | // newaopnt.cpp | 
 | void* operator new[](size_t size, const std::nothrow_t& nt) { | 
 |   return generic_cpp_alloc(size, true); | 
 | } | 
 |  | 
 | // This function behaves similarly to MSVC's _set_new_mode. | 
 | // If flag is 0 (default), calls to malloc will behave normally. | 
 | // If flag is 1, calls to malloc will behave like calls to new, | 
 | // and the std_new_handler will be invoked on failure. | 
 | // Returns the previous mode. | 
 | // new_mode.cpp | 
 | int _set_new_mode(int flag) throw() { | 
 |   int old_mode = new_mode; | 
 |   new_mode = flag; | 
 |   return old_mode; | 
 | } | 
 |  | 
 | // new_mode.cpp | 
 | int _query_new_mode() { | 
 |   return new_mode; | 
 | } | 
 |  | 
 | extern "C" { | 
 | // malloc.c | 
 | void* malloc(size_t size) { | 
 |   void* ptr; | 
 |   for (;;) { | 
 |     ptr = win_heap_malloc(size); | 
 |     if (ptr) | 
 |       return ptr; | 
 |  | 
 |     if (!new_mode || !call_new_handler(true, size)) | 
 |       break; | 
 |   } | 
 |   return ptr; | 
 | } | 
 |  | 
 | // free.c | 
 | void free(void* p) { | 
 |   win_heap_free(p); | 
 |   return; | 
 | } | 
 |  | 
 | // realloc.c | 
 | void* realloc(void* ptr, size_t size) { | 
 |   // Webkit is brittle for allocators that return NULL for malloc(0).  The | 
 |   // realloc(0, 0) code path does not guarantee a non-NULL return, so be sure | 
 |   // to call malloc for this case. | 
 |   if (!ptr) | 
 |     return malloc(size); | 
 |  | 
 |   void* new_ptr; | 
 |   for (;;) { | 
 |     new_ptr = win_heap_realloc(ptr, size); | 
 |  | 
 |     // Subtle warning:  NULL return does not alwas indicate out-of-memory.  If | 
 |     // the requested new size is zero, realloc should free the ptr and return | 
 |     // NULL. | 
 |     if (new_ptr || !size) | 
 |       return new_ptr; | 
 |     if (!new_mode || !call_new_handler(true, size)) | 
 |       break; | 
 |   } | 
 |   return new_ptr; | 
 | } | 
 |  | 
 | // heapinit.c | 
 | intptr_t _get_heap_handle() { | 
 |   return reinterpret_cast<intptr_t>(_crtheap); | 
 | } | 
 |  | 
 | // heapinit.c | 
 | int _heap_init() { | 
 |   return win_heap_init() ? 1 : 0; | 
 | } | 
 |  | 
 | // heapinit.c | 
 | void _heap_term() { | 
 |   win_heap_term(); | 
 | } | 
 |  | 
 | // calloc.c | 
 | void* calloc(size_t n, size_t elem_size) { | 
 |   // Overflow check. | 
 |   const size_t size = n * elem_size; | 
 |   if (elem_size != 0 && size / elem_size != n) | 
 |     return NULL; | 
 |  | 
 |   void* result = malloc(size); | 
 |   if (result != NULL) { | 
 |     memset(result, 0, size); | 
 |   } | 
 |   return result; | 
 | } | 
 |  | 
 | // recalloc.c | 
 | void* _recalloc(void* p, size_t n, size_t elem_size) { | 
 |   if (!p) | 
 |     return calloc(n, elem_size); | 
 |  | 
 |   // This API is a bit odd. | 
 |   // Note: recalloc only guarantees zeroed memory when p is NULL. | 
 |   //   Generally, calls to malloc() have padding.  So a request | 
 |   //   to malloc N bytes actually malloc's N+x bytes.  Later, if | 
 |   //   that buffer is passed to recalloc, we don't know what N | 
 |   //   was anymore.  We only know what N+x is.  As such, there is | 
 |   //   no way to know what to zero out. | 
 |   const size_t size = n * elem_size; | 
 |   if (elem_size != 0 && size / elem_size != n) | 
 |     return NULL; | 
 |   return realloc(p, size); | 
 | } | 
 |  | 
 | // calloc_impl.c | 
 | void* _calloc_impl(size_t n, size_t size) { | 
 |   return calloc(n, size); | 
 | } | 
 |  | 
 | #ifndef NDEBUG | 
 | #undef malloc | 
 | #undef free | 
 | #undef calloc | 
 |  | 
 | static int error_handler(int reportType) { | 
 |   switch (reportType) { | 
 |     case 0:  // _CRT_WARN | 
 |       __debugbreak(); | 
 |       return 0; | 
 |  | 
 |     case 1:  // _CRT_ERROR | 
 |       __debugbreak(); | 
 |       return 0; | 
 |  | 
 |     case 2:  // _CRT_ASSERT | 
 |       __debugbreak(); | 
 |       return 0; | 
 |   } | 
 |   char* p = NULL; | 
 |   *p = '\0'; | 
 |   return 0; | 
 | } | 
 |  | 
 | int _CrtDbgReport(int reportType, | 
 |                   const char*, | 
 |                   int, | 
 |                   const char*, | 
 |                   const char*, | 
 |                   ...) { | 
 |   return error_handler(reportType); | 
 | } | 
 |  | 
 | int _CrtDbgReportW(int reportType, | 
 |                    const wchar_t*, | 
 |                    int, | 
 |                    const wchar_t*, | 
 |                    const wchar_t*, | 
 |                    ...) { | 
 |   return error_handler(reportType); | 
 | } | 
 |  | 
 | int _CrtSetReportMode(int, int) { | 
 |   return 0; | 
 | } | 
 |  | 
 | void* _malloc_dbg(size_t size, int, const char*, int) { | 
 |   return malloc(size); | 
 | } | 
 |  | 
 | void* _realloc_dbg(void* ptr, size_t size, int, const char*, int) { | 
 |   return realloc(ptr, size); | 
 | } | 
 |  | 
 | void _free_dbg(void* ptr, int) { | 
 |   free(ptr); | 
 | } | 
 |  | 
 | void* _calloc_dbg(size_t n, size_t size, int, const char*, int) { | 
 |   return calloc(n, size); | 
 | } | 
 | #endif  // NDEBUG | 
 |  | 
 | }  // extern C |