| // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | // Scopers help you manage ownership of a pointer, helping you easily manage a | 
 | // pointer within a scope, and automatically destroying the pointer at the end | 
 | // of a scope.  There are two main classes you will use, which correspond to the | 
 | // operators new/delete and new[]/delete[]. | 
 | // | 
 | // Example usage (scoped_ptr<T>): | 
 | //   { | 
 | //     scoped_ptr<Foo> foo(new Foo("wee")); | 
 | //   }  // foo goes out of scope, releasing the pointer with it. | 
 | // | 
 | //   { | 
 | //     scoped_ptr<Foo> foo;          // No pointer managed. | 
 | //     foo.reset(new Foo("wee"));    // Now a pointer is managed. | 
 | //     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed. | 
 | //     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed. | 
 | //     foo->Method();                // Foo::Method() called. | 
 | //     foo.get()->Method();          // Foo::Method() called. | 
 | //     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer | 
 | //                                   // manages a pointer. | 
 | //     foo.reset(new Foo("wee4"));   // foo manages a pointer again. | 
 | //     foo.reset();                  // Foo("wee4") destroyed, foo no longer | 
 | //                                   // manages a pointer. | 
 | //   }  // foo wasn't managing a pointer, so nothing was destroyed. | 
 | // | 
 | // Example usage (scoped_ptr<T[]>): | 
 | //   { | 
 | //     scoped_ptr<Foo[]> foo(new Foo[100]); | 
 | //     foo.get()->Method();  // Foo::Method on the 0th element. | 
 | //     foo[10].Method();     // Foo::Method on the 10th element. | 
 | //   } | 
 | // | 
 | // These scopers also implement part of the functionality of C++11 unique_ptr | 
 | // in that they are "movable but not copyable."  You can use the scopers in | 
 | // the parameter and return types of functions to signify ownership transfer | 
 | // in to and out of a function.  When calling a function that has a scoper | 
 | // as the argument type, it must be called with the result of an analogous | 
 | // scoper's Pass() function or another function that generates a temporary; | 
 | // passing by copy will NOT work.  Here is an example using scoped_ptr: | 
 | // | 
 | //   void TakesOwnership(scoped_ptr<Foo> arg) { | 
 | //     // Do something with arg | 
 | //   } | 
 | //   scoped_ptr<Foo> CreateFoo() { | 
 | //     // No need for calling Pass() because we are constructing a temporary | 
 | //     // for the return value. | 
 | //     return scoped_ptr<Foo>(new Foo("new")); | 
 | //   } | 
 | //   scoped_ptr<Foo> PassThru(scoped_ptr<Foo> arg) { | 
 | //     return arg.Pass(); | 
 | //   } | 
 | // | 
 | //   { | 
 | //     scoped_ptr<Foo> ptr(new Foo("yay"));  // ptr manages Foo("yay"). | 
 | //     TakesOwnership(ptr.Pass());           // ptr no longer owns Foo("yay"). | 
 | //     scoped_ptr<Foo> ptr2 = CreateFoo();   // ptr2 owns the return Foo. | 
 | //     scoped_ptr<Foo> ptr3 =                // ptr3 now owns what was in ptr2. | 
 | //         PassThru(ptr2.Pass());            // ptr2 is correspondingly nullptr. | 
 | //   } | 
 | // | 
 | // Notice that if you do not call Pass() when returning from PassThru(), or | 
 | // when invoking TakesOwnership(), the code will not compile because scopers | 
 | // are not copyable; they only implement move semantics which require calling | 
 | // the Pass() function to signify a destructive transfer of state. CreateFoo() | 
 | // is different though because we are constructing a temporary on the return | 
 | // line and thus can avoid needing to call Pass(). | 
 | // | 
 | // Pass() properly handles upcast in initialization, i.e. you can use a | 
 | // scoped_ptr<Child> to initialize a scoped_ptr<Parent>: | 
 | // | 
 | //   scoped_ptr<Foo> foo(new Foo()); | 
 | //   scoped_ptr<FooParent> parent(foo.Pass()); | 
 |  | 
 | #ifndef BASE_MEMORY_SCOPED_PTR_H_ | 
 | #define BASE_MEMORY_SCOPED_PTR_H_ | 
 |  | 
 | // This is an implementation designed to match the anticipated future TR2 | 
 | // implementation of the scoped_ptr class. | 
 |  | 
 | #include <assert.h> | 
 | #include <stddef.h> | 
 | #include <stdlib.h> | 
 |  | 
 | #include <algorithm>  // For std::swap(). | 
 | #include <iosfwd> | 
 |  | 
 | #include "base/basictypes.h" | 
 | #include "base/compiler_specific.h" | 
 | #include "base/move.h" | 
 | #include "base/template_util.h" | 
 |  | 
 | namespace base { | 
 |  | 
 | namespace subtle { | 
 | class RefCountedBase; | 
 | class RefCountedThreadSafeBase; | 
 | }  // namespace subtle | 
 |  | 
 | // Function object which deletes its parameter, which must be a pointer. | 
 | // If C is an array type, invokes 'delete[]' on the parameter; otherwise, | 
 | // invokes 'delete'. The default deleter for scoped_ptr<T>. | 
 | template <class T> | 
 | struct DefaultDeleter { | 
 |   DefaultDeleter() {} | 
 |   template <typename U> DefaultDeleter(const DefaultDeleter<U>& other) { | 
 |     // IMPLEMENTATION NOTE: C++11 20.7.1.1.2p2 only provides this constructor | 
 |     // if U* is implicitly convertible to T* and U is not an array type. | 
 |     // | 
 |     // Correct implementation should use SFINAE to disable this | 
 |     // constructor. However, since there are no other 1-argument constructors, | 
 |     // using a COMPILE_ASSERT() based on is_convertible<> and requiring | 
 |     // complete types is simpler and will cause compile failures for equivalent | 
 |     // misuses. | 
 |     // | 
 |     // Note, the is_convertible<U*, T*> check also ensures that U is not an | 
 |     // array. T is guaranteed to be a non-array, so any U* where U is an array | 
 |     // cannot convert to T*. | 
 |     enum { T_must_be_complete = sizeof(T) }; | 
 |     enum { U_must_be_complete = sizeof(U) }; | 
 |     COMPILE_ASSERT((base::is_convertible<U*, T*>::value), | 
 |                    U_ptr_must_implicitly_convert_to_T_ptr); | 
 |   } | 
 |   inline void operator()(T* ptr) const { | 
 |     enum { type_must_be_complete = sizeof(T) }; | 
 |     delete ptr; | 
 |   } | 
 | }; | 
 |  | 
 | // Specialization of DefaultDeleter for array types. | 
 | template <class T> | 
 | struct DefaultDeleter<T[]> { | 
 |   inline void operator()(T* ptr) const { | 
 |     enum { type_must_be_complete = sizeof(T) }; | 
 |     delete[] ptr; | 
 |   } | 
 |  | 
 |  private: | 
 |   // Disable this operator for any U != T because it is undefined to execute | 
 |   // an array delete when the static type of the array mismatches the dynamic | 
 |   // type. | 
 |   // | 
 |   // References: | 
 |   //   C++98 [expr.delete]p3 | 
 |   //   http://cplusplus.github.com/LWG/lwg-defects.html#938 | 
 |   template <typename U> void operator()(U* array) const; | 
 | }; | 
 |  | 
 | template <class T, int n> | 
 | struct DefaultDeleter<T[n]> { | 
 |   // Never allow someone to declare something like scoped_ptr<int[10]>. | 
 |   COMPILE_ASSERT(sizeof(T) == -1, do_not_use_array_with_size_as_type); | 
 | }; | 
 |  | 
 | // Function object which invokes 'free' on its parameter, which must be | 
 | // a pointer. Can be used to store malloc-allocated pointers in scoped_ptr: | 
 | // | 
 | // scoped_ptr<int, base::FreeDeleter> foo_ptr( | 
 | //     static_cast<int*>(malloc(sizeof(int)))); | 
 | struct FreeDeleter { | 
 |   inline void operator()(void* ptr) const { | 
 |     free(ptr); | 
 |   } | 
 | }; | 
 |  | 
 | namespace internal { | 
 |  | 
 | template <typename T> struct IsNotRefCounted { | 
 |   enum { | 
 |     value = !base::is_convertible<T*, base::subtle::RefCountedBase*>::value && | 
 |         !base::is_convertible<T*, base::subtle::RefCountedThreadSafeBase*>:: | 
 |             value | 
 |   }; | 
 | }; | 
 |  | 
 | template <typename T> | 
 | struct ShouldAbortOnSelfReset { | 
 |   template <typename U> | 
 |   static NoType Test(const typename U::AllowSelfReset*); | 
 |  | 
 |   template <typename U> | 
 |   static YesType Test(...); | 
 |  | 
 |   static const bool value = sizeof(Test<T>(0)) == sizeof(YesType); | 
 | }; | 
 |  | 
 | // Minimal implementation of the core logic of scoped_ptr, suitable for | 
 | // reuse in both scoped_ptr and its specializations. | 
 | template <class T, class D> | 
 | class scoped_ptr_impl { | 
 |  public: | 
 |   explicit scoped_ptr_impl(T* p) : data_(p) {} | 
 |  | 
 |   // Initializer for deleters that have data parameters. | 
 |   scoped_ptr_impl(T* p, const D& d) : data_(p, d) {} | 
 |  | 
 |   // Templated constructor that destructively takes the value from another | 
 |   // scoped_ptr_impl. | 
 |   template <typename U, typename V> | 
 |   scoped_ptr_impl(scoped_ptr_impl<U, V>* other) | 
 |       : data_(other->release(), other->get_deleter()) { | 
 |     // We do not support move-only deleters.  We could modify our move | 
 |     // emulation to have base::subtle::move() and base::subtle::forward() | 
 |     // functions that are imperfect emulations of their C++11 equivalents, | 
 |     // but until there's a requirement, just assume deleters are copyable. | 
 |   } | 
 |  | 
 |   template <typename U, typename V> | 
 |   void TakeState(scoped_ptr_impl<U, V>* other) { | 
 |     // See comment in templated constructor above regarding lack of support | 
 |     // for move-only deleters. | 
 |     reset(other->release()); | 
 |     get_deleter() = other->get_deleter(); | 
 |   } | 
 |  | 
 |   ~scoped_ptr_impl() { | 
 |     if (data_.ptr != nullptr) { | 
 |       // Not using get_deleter() saves one function call in non-optimized | 
 |       // builds. | 
 |       static_cast<D&>(data_)(data_.ptr); | 
 |     } | 
 |   } | 
 |  | 
 |   void reset(T* p) { | 
 |     // This is a self-reset, which is no longer allowed for default deleters: | 
 |     // https://crbug.com/162971 | 
 |     assert(!ShouldAbortOnSelfReset<D>::value || p == nullptr || p != data_.ptr); | 
 |  | 
 |     // Note that running data_.ptr = p can lead to undefined behavior if | 
 |     // get_deleter()(get()) deletes this. In order to prevent this, reset() | 
 |     // should update the stored pointer before deleting its old value. | 
 |     // | 
 |     // However, changing reset() to use that behavior may cause current code to | 
 |     // break in unexpected ways. If the destruction of the owned object | 
 |     // dereferences the scoped_ptr when it is destroyed by a call to reset(), | 
 |     // then it will incorrectly dispatch calls to |p| rather than the original | 
 |     // value of |data_.ptr|. | 
 |     // | 
 |     // During the transition period, set the stored pointer to nullptr while | 
 |     // deleting the object. Eventually, this safety check will be removed to | 
 |     // prevent the scenario initially described from occuring and | 
 |     // http://crbug.com/176091 can be closed. | 
 |     T* old = data_.ptr; | 
 |     data_.ptr = nullptr; | 
 |     if (old != nullptr) | 
 |       static_cast<D&>(data_)(old); | 
 |     data_.ptr = p; | 
 |   } | 
 |  | 
 |   T* get() const { return data_.ptr; } | 
 |  | 
 |   D& get_deleter() { return data_; } | 
 |   const D& get_deleter() const { return data_; } | 
 |  | 
 |   void swap(scoped_ptr_impl& p2) { | 
 |     // Standard swap idiom: 'using std::swap' ensures that std::swap is | 
 |     // present in the overload set, but we call swap unqualified so that | 
 |     // any more-specific overloads can be used, if available. | 
 |     using std::swap; | 
 |     swap(static_cast<D&>(data_), static_cast<D&>(p2.data_)); | 
 |     swap(data_.ptr, p2.data_.ptr); | 
 |   } | 
 |  | 
 |   T* release() { | 
 |     T* old_ptr = data_.ptr; | 
 |     data_.ptr = nullptr; | 
 |     return old_ptr; | 
 |   } | 
 |  | 
 |  private: | 
 |   // Needed to allow type-converting constructor. | 
 |   template <typename U, typename V> friend class scoped_ptr_impl; | 
 |  | 
 |   // Use the empty base class optimization to allow us to have a D | 
 |   // member, while avoiding any space overhead for it when D is an | 
 |   // empty class.  See e.g. http://www.cantrip.org/emptyopt.html for a good | 
 |   // discussion of this technique. | 
 |   struct Data : public D { | 
 |     explicit Data(T* ptr_in) : ptr(ptr_in) {} | 
 |     Data(T* ptr_in, const D& other) : D(other), ptr(ptr_in) {} | 
 |     T* ptr; | 
 |   }; | 
 |  | 
 |   Data data_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(scoped_ptr_impl); | 
 | }; | 
 |  | 
 | }  // namespace internal | 
 |  | 
 | }  // namespace base | 
 |  | 
 | // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> | 
 | // automatically deletes the pointer it holds (if any). | 
 | // That is, scoped_ptr<T> owns the T object that it points to. | 
 | // Like a T*, a scoped_ptr<T> may hold either nullptr or a pointer to a T | 
 | // object. Also like T*, scoped_ptr<T> is thread-compatible, and once you | 
 | // dereference it, you get the thread safety guarantees of T. | 
 | // | 
 | // The size of scoped_ptr is small. On most compilers, when using the | 
 | // DefaultDeleter, sizeof(scoped_ptr<T>) == sizeof(T*). Custom deleters will | 
 | // increase the size proportional to whatever state they need to have. See | 
 | // comments inside scoped_ptr_impl<> for details. | 
 | // | 
 | // Current implementation targets having a strict subset of  C++11's | 
 | // unique_ptr<> features. Known deficiencies include not supporting move-only | 
 | // deleteres, function pointers as deleters, and deleters with reference | 
 | // types. | 
 | template <class T, class D = base::DefaultDeleter<T> > | 
 | class scoped_ptr { | 
 |   MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr) | 
 |  | 
 |   COMPILE_ASSERT(base::internal::IsNotRefCounted<T>::value, | 
 |                  T_is_refcounted_type_and_needs_scoped_refptr); | 
 |  | 
 |  public: | 
 |   // The element and deleter types. | 
 |   typedef T element_type; | 
 |   typedef D deleter_type; | 
 |  | 
 |   // Constructor.  Defaults to initializing with nullptr. | 
 |   scoped_ptr() : impl_(nullptr) {} | 
 |  | 
 |   // Constructor.  Takes ownership of p. | 
 |   explicit scoped_ptr(element_type* p) : impl_(p) {} | 
 |  | 
 |   // Constructor.  Allows initialization of a stateful deleter. | 
 |   scoped_ptr(element_type* p, const D& d) : impl_(p, d) {} | 
 |  | 
 |   // Constructor.  Allows construction from a nullptr. | 
 |   scoped_ptr(decltype(nullptr)) : impl_(nullptr) {} | 
 |  | 
 |   // Constructor.  Allows construction from a scoped_ptr rvalue for a | 
 |   // convertible type and deleter. | 
 |   // | 
 |   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this constructor distinct | 
 |   // from the normal move constructor. By C++11 20.7.1.2.1.21, this constructor | 
 |   // has different post-conditions if D is a reference type. Since this | 
 |   // implementation does not support deleters with reference type, | 
 |   // we do not need a separate move constructor allowing us to avoid one | 
 |   // use of SFINAE. You only need to care about this if you modify the | 
 |   // implementation of scoped_ptr. | 
 |   template <typename U, typename V> | 
 |   scoped_ptr(scoped_ptr<U, V>&& other) | 
 |       : impl_(&other.impl_) { | 
 |     COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array); | 
 |   } | 
 |  | 
 |   // operator=.  Allows assignment from a scoped_ptr rvalue for a convertible | 
 |   // type and deleter. | 
 |   // | 
 |   // IMPLEMENTATION NOTE: C++11 unique_ptr<> keeps this operator= distinct from | 
 |   // the normal move assignment operator. By C++11 20.7.1.2.3.4, this templated | 
 |   // form has different requirements on for move-only Deleters. Since this | 
 |   // implementation does not support move-only Deleters, we do not need a | 
 |   // separate move assignment operator allowing us to avoid one use of SFINAE. | 
 |   // You only need to care about this if you modify the implementation of | 
 |   // scoped_ptr. | 
 |   template <typename U, typename V> | 
 |   scoped_ptr& operator=(scoped_ptr<U, V>&& rhs) { | 
 |     COMPILE_ASSERT(!base::is_array<U>::value, U_cannot_be_an_array); | 
 |     impl_.TakeState(&rhs.impl_); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // operator=.  Allows assignment from a nullptr. Deletes the currently owned | 
 |   // object, if any. | 
 |   scoped_ptr& operator=(decltype(nullptr)) { | 
 |     reset(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Reset.  Deletes the currently owned object, if any. | 
 |   // Then takes ownership of a new object, if given. | 
 |   void reset(element_type* p = nullptr) { impl_.reset(p); } | 
 |  | 
 |   // Accessors to get the owned object. | 
 |   // operator* and operator-> will assert() if there is no current object. | 
 |   element_type& operator*() const { | 
 |     assert(impl_.get() != nullptr); | 
 |     return *impl_.get(); | 
 |   } | 
 |   element_type* operator->() const  { | 
 |     assert(impl_.get() != nullptr); | 
 |     return impl_.get(); | 
 |   } | 
 |   element_type* get() const { return impl_.get(); } | 
 |  | 
 |   // Access to the deleter. | 
 |   deleter_type& get_deleter() { return impl_.get_deleter(); } | 
 |   const deleter_type& get_deleter() const { return impl_.get_deleter(); } | 
 |  | 
 |   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not | 
 |   // implicitly convertible to a real bool (which is dangerous). | 
 |   // | 
 |   // Note that this trick is only safe when the == and != operators | 
 |   // are declared explicitly, as otherwise "scoped_ptr1 == | 
 |   // scoped_ptr2" will compile but do the wrong thing (i.e., convert | 
 |   // to Testable and then do the comparison). | 
 |  private: | 
 |   typedef base::internal::scoped_ptr_impl<element_type, deleter_type> | 
 |       scoped_ptr::*Testable; | 
 |  | 
 |  public: | 
 |   operator Testable() const { | 
 |     return impl_.get() ? &scoped_ptr::impl_ : nullptr; | 
 |   } | 
 |  | 
 |   // Comparison operators. | 
 |   // These return whether two scoped_ptr refer to the same object, not just to | 
 |   // two different but equal objects. | 
 |   bool operator==(const element_type* p) const { return impl_.get() == p; } | 
 |   bool operator!=(const element_type* p) const { return impl_.get() != p; } | 
 |  | 
 |   // Swap two scoped pointers. | 
 |   void swap(scoped_ptr& p2) { | 
 |     impl_.swap(p2.impl_); | 
 |   } | 
 |  | 
 |   // Release a pointer. | 
 |   // The return value is the current pointer held by this object. If this object | 
 |   // holds a nullptr, the return value is nullptr. After this operation, this | 
 |   // object will hold a nullptr, and will not own the object any more. | 
 |   element_type* release() WARN_UNUSED_RESULT { | 
 |     return impl_.release(); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Needed to reach into |impl_| in the constructor. | 
 |   template <typename U, typename V> friend class scoped_ptr; | 
 |   base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; | 
 |  | 
 |   // Forbidden for API compatibility with std::unique_ptr. | 
 |   explicit scoped_ptr(int disallow_construction_from_null); | 
 |  | 
 |   // Forbid comparison of scoped_ptr types.  If U != T, it totally | 
 |   // doesn't make sense, and if U == T, it still doesn't make sense | 
 |   // because you should never have the same object owned by two different | 
 |   // scoped_ptrs. | 
 |   template <class U> bool operator==(scoped_ptr<U> const& p2) const; | 
 |   template <class U> bool operator!=(scoped_ptr<U> const& p2) const; | 
 | }; | 
 |  | 
 | template <class T, class D> | 
 | class scoped_ptr<T[], D> { | 
 |   MOVE_ONLY_TYPE_WITH_MOVE_CONSTRUCTOR_FOR_CPP_03(scoped_ptr) | 
 |  | 
 |  public: | 
 |   // The element and deleter types. | 
 |   typedef T element_type; | 
 |   typedef D deleter_type; | 
 |  | 
 |   // Constructor.  Defaults to initializing with nullptr. | 
 |   scoped_ptr() : impl_(nullptr) {} | 
 |  | 
 |   // Constructor. Stores the given array. Note that the argument's type | 
 |   // must exactly match T*. In particular: | 
 |   // - it cannot be a pointer to a type derived from T, because it is | 
 |   //   inherently unsafe in the general case to access an array through a | 
 |   //   pointer whose dynamic type does not match its static type (eg., if | 
 |   //   T and the derived types had different sizes access would be | 
 |   //   incorrectly calculated). Deletion is also always undefined | 
 |   //   (C++98 [expr.delete]p3). If you're doing this, fix your code. | 
 |   // - it cannot be const-qualified differently from T per unique_ptr spec | 
 |   //   (http://cplusplus.github.com/LWG/lwg-active.html#2118). Users wanting | 
 |   //   to work around this may use implicit_cast<const T*>(). | 
 |   //   However, because of the first bullet in this comment, users MUST | 
 |   //   NOT use implicit_cast<Base*>() to upcast the static type of the array. | 
 |   explicit scoped_ptr(element_type* array) : impl_(array) {} | 
 |  | 
 |   // Constructor.  Allows construction from a nullptr. | 
 |   scoped_ptr(decltype(nullptr)) : impl_(nullptr) {} | 
 |  | 
 |   // Constructor.  Allows construction from a scoped_ptr rvalue. | 
 |   scoped_ptr(scoped_ptr&& other) : impl_(&other.impl_) {} | 
 |  | 
 |   // operator=.  Allows assignment from a scoped_ptr rvalue. | 
 |   scoped_ptr& operator=(scoped_ptr&& rhs) { | 
 |     impl_.TakeState(&rhs.impl_); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // operator=.  Allows assignment from a nullptr. Deletes the currently owned | 
 |   // array, if any. | 
 |   scoped_ptr& operator=(decltype(nullptr)) { | 
 |     reset(); | 
 |     return *this; | 
 |   } | 
 |  | 
 |   // Reset.  Deletes the currently owned array, if any. | 
 |   // Then takes ownership of a new object, if given. | 
 |   void reset(element_type* array = nullptr) { impl_.reset(array); } | 
 |  | 
 |   // Accessors to get the owned array. | 
 |   element_type& operator[](size_t i) const { | 
 |     assert(impl_.get() != nullptr); | 
 |     return impl_.get()[i]; | 
 |   } | 
 |   element_type* get() const { return impl_.get(); } | 
 |  | 
 |   // Access to the deleter. | 
 |   deleter_type& get_deleter() { return impl_.get_deleter(); } | 
 |   const deleter_type& get_deleter() const { return impl_.get_deleter(); } | 
 |  | 
 |   // Allow scoped_ptr<element_type> to be used in boolean expressions, but not | 
 |   // implicitly convertible to a real bool (which is dangerous). | 
 |  private: | 
 |   typedef base::internal::scoped_ptr_impl<element_type, deleter_type> | 
 |       scoped_ptr::*Testable; | 
 |  | 
 |  public: | 
 |   operator Testable() const { | 
 |     return impl_.get() ? &scoped_ptr::impl_ : nullptr; | 
 |   } | 
 |  | 
 |   // Comparison operators. | 
 |   // These return whether two scoped_ptr refer to the same object, not just to | 
 |   // two different but equal objects. | 
 |   bool operator==(element_type* array) const { return impl_.get() == array; } | 
 |   bool operator!=(element_type* array) const { return impl_.get() != array; } | 
 |  | 
 |   // Swap two scoped pointers. | 
 |   void swap(scoped_ptr& p2) { | 
 |     impl_.swap(p2.impl_); | 
 |   } | 
 |  | 
 |   // Release a pointer. | 
 |   // The return value is the current pointer held by this object. If this object | 
 |   // holds a nullptr, the return value is nullptr. After this operation, this | 
 |   // object will hold a nullptr, and will not own the object any more. | 
 |   element_type* release() WARN_UNUSED_RESULT { | 
 |     return impl_.release(); | 
 |   } | 
 |  | 
 |  private: | 
 |   // Force element_type to be a complete type. | 
 |   enum { type_must_be_complete = sizeof(element_type) }; | 
 |  | 
 |   // Actually hold the data. | 
 |   base::internal::scoped_ptr_impl<element_type, deleter_type> impl_; | 
 |  | 
 |   // Disable initialization from any type other than element_type*, by | 
 |   // providing a constructor that matches such an initialization, but is | 
 |   // private and has no definition. This is disabled because it is not safe to | 
 |   // call delete[] on an array whose static type does not match its dynamic | 
 |   // type. | 
 |   template <typename U> explicit scoped_ptr(U* array); | 
 |   explicit scoped_ptr(int disallow_construction_from_null); | 
 |  | 
 |   // Disable reset() from any type other than element_type*, for the same | 
 |   // reasons as the constructor above. | 
 |   template <typename U> void reset(U* array); | 
 |   void reset(int disallow_reset_from_null); | 
 |  | 
 |   // Forbid comparison of scoped_ptr types.  If U != T, it totally | 
 |   // doesn't make sense, and if U == T, it still doesn't make sense | 
 |   // because you should never have the same object owned by two different | 
 |   // scoped_ptrs. | 
 |   template <class U> bool operator==(scoped_ptr<U> const& p2) const; | 
 |   template <class U> bool operator!=(scoped_ptr<U> const& p2) const; | 
 | }; | 
 |  | 
 | // Free functions | 
 | template <class T, class D> | 
 | void swap(scoped_ptr<T, D>& p1, scoped_ptr<T, D>& p2) { | 
 |   p1.swap(p2); | 
 | } | 
 |  | 
 | template <class T, class D> | 
 | bool operator==(T* p1, const scoped_ptr<T, D>& p2) { | 
 |   return p1 == p2.get(); | 
 | } | 
 |  | 
 | template <class T, class D> | 
 | bool operator!=(T* p1, const scoped_ptr<T, D>& p2) { | 
 |   return p1 != p2.get(); | 
 | } | 
 |  | 
 | // A function to convert T* into scoped_ptr<T> | 
 | // Doing e.g. make_scoped_ptr(new FooBarBaz<type>(arg)) is a shorter notation | 
 | // for scoped_ptr<FooBarBaz<type> >(new FooBarBaz<type>(arg)) | 
 | template <typename T> | 
 | scoped_ptr<T> make_scoped_ptr(T* ptr) { | 
 |   return scoped_ptr<T>(ptr); | 
 | } | 
 |  | 
 | template <typename T> | 
 | std::ostream& operator<<(std::ostream& out, const scoped_ptr<T>& p) { | 
 |   return out << p.get(); | 
 | } | 
 |  | 
 | #endif  // BASE_MEMORY_SCOPED_PTR_H_ |