| // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #ifndef BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ | 
 | #define BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ | 
 |  | 
 | #include <windows.h> | 
 |  | 
 | #include <list> | 
 |  | 
 | #include "base/base_export.h" | 
 | #include "base/basictypes.h" | 
 | #include "base/message_loop/message_pump.h" | 
 | #include "base/message_loop/message_pump_dispatcher.h" | 
 | #include "base/observer_list.h" | 
 | #include "base/time/time.h" | 
 | #include "base/win/scoped_handle.h" | 
 |  | 
 | namespace base { | 
 |  | 
 | // MessagePumpWin serves as the base for specialized versions of the MessagePump | 
 | // for Windows. It provides basic functionality like handling of observers and | 
 | // controlling the lifetime of the message pump. | 
 | class BASE_EXPORT MessagePumpWin : public MessagePump { | 
 |  public: | 
 |   MessagePumpWin() : have_work_(0), state_(NULL) {} | 
 |  | 
 |   // Like MessagePump::Run, but MSG objects are routed through dispatcher. | 
 |   void RunWithDispatcher(Delegate* delegate, MessagePumpDispatcher* dispatcher); | 
 |  | 
 |   // MessagePump methods: | 
 |   void Run(Delegate* delegate) override; | 
 |   void Quit() override; | 
 |  | 
 |  protected: | 
 |   struct RunState { | 
 |     Delegate* delegate; | 
 |     MessagePumpDispatcher* dispatcher; | 
 |  | 
 |     // Used to flag that the current Run() invocation should return ASAP. | 
 |     bool should_quit; | 
 |  | 
 |     // Used to count how many Run() invocations are on the stack. | 
 |     int run_depth; | 
 |   }; | 
 |  | 
 |   virtual void DoRunLoop() = 0; | 
 |   int GetCurrentDelay() const; | 
 |  | 
 |   // The time at which delayed work should run. | 
 |   TimeTicks delayed_work_time_; | 
 |  | 
 |   // A boolean value used to indicate if there is a kMsgDoWork message pending | 
 |   // in the Windows Message queue.  There is at most one such message, and it | 
 |   // can drive execution of tasks when a native message pump is running. | 
 |   LONG have_work_; | 
 |  | 
 |   // State for the current invocation of Run. | 
 |   RunState* state_; | 
 | }; | 
 |  | 
 | //----------------------------------------------------------------------------- | 
 | // MessagePumpForUI extends MessagePumpWin with methods that are particular to a | 
 | // MessageLoop instantiated with TYPE_UI. | 
 | // | 
 | // MessagePumpForUI implements a "traditional" Windows message pump. It contains | 
 | // a nearly infinite loop that peeks out messages, and then dispatches them. | 
 | // Intermixed with those peeks are callouts to DoWork for pending tasks, and | 
 | // DoDelayedWork for pending timers. When there are no events to be serviced, | 
 | // this pump goes into a wait state. In most cases, this message pump handles | 
 | // all processing. | 
 | // | 
 | // However, when a task, or windows event, invokes on the stack a native dialog | 
 | // box or such, that window typically provides a bare bones (native?) message | 
 | // pump.  That bare-bones message pump generally supports little more than a | 
 | // peek of the Windows message queue, followed by a dispatch of the peeked | 
 | // message.  MessageLoop extends that bare-bones message pump to also service | 
 | // Tasks, at the cost of some complexity. | 
 | // | 
 | // The basic structure of the extension (refered to as a sub-pump) is that a | 
 | // special message, kMsgHaveWork, is repeatedly injected into the Windows | 
 | // Message queue.  Each time the kMsgHaveWork message is peeked, checks are | 
 | // made for an extended set of events, including the availability of Tasks to | 
 | // run. | 
 | // | 
 | // After running a task, the special message kMsgHaveWork is again posted to | 
 | // the Windows Message queue, ensuring a future time slice for processing a | 
 | // future event.  To prevent flooding the Windows Message queue, care is taken | 
 | // to be sure that at most one kMsgHaveWork message is EVER pending in the | 
 | // Window's Message queue. | 
 | // | 
 | // There are a few additional complexities in this system where, when there are | 
 | // no Tasks to run, this otherwise infinite stream of messages which drives the | 
 | // sub-pump is halted.  The pump is automatically re-started when Tasks are | 
 | // queued. | 
 | // | 
 | // A second complexity is that the presence of this stream of posted tasks may | 
 | // prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER. | 
 | // Such paint and timer events always give priority to a posted message, such as | 
 | // kMsgHaveWork messages.  As a result, care is taken to do some peeking in | 
 | // between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork | 
 | // is peeked, and before a replacement kMsgHaveWork is posted). | 
 | // | 
 | // NOTE: Although it may seem odd that messages are used to start and stop this | 
 | // flow (as opposed to signaling objects, etc.), it should be understood that | 
 | // the native message pump will *only* respond to messages.  As a result, it is | 
 | // an excellent choice.  It is also helpful that the starter messages that are | 
 | // placed in the queue when new task arrive also awakens DoRunLoop. | 
 | // | 
 | class BASE_EXPORT MessagePumpForUI : public MessagePumpWin { | 
 |  public: | 
 |   // The application-defined code passed to the hook procedure. | 
 |   static const int kMessageFilterCode = 0x5001; | 
 |  | 
 |   MessagePumpForUI(); | 
 |   ~MessagePumpForUI() override; | 
 |  | 
 |   // MessagePump methods: | 
 |   void ScheduleWork() override; | 
 |   void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override; | 
 |  | 
 |  private: | 
 |   static LRESULT CALLBACK WndProcThunk(HWND window_handle, | 
 |                                        UINT message, | 
 |                                        WPARAM wparam, | 
 |                                        LPARAM lparam); | 
 |   void DoRunLoop() override; | 
 |   void InitMessageWnd(); | 
 |   void WaitForWork(); | 
 |   void HandleWorkMessage(); | 
 |   void HandleTimerMessage(); | 
 |   bool ProcessNextWindowsMessage(); | 
 |   bool ProcessMessageHelper(const MSG& msg); | 
 |   bool ProcessPumpReplacementMessage(); | 
 |  | 
 |   // Atom representing the registered window class. | 
 |   ATOM atom_; | 
 |  | 
 |   // A hidden message-only window. | 
 |   HWND message_hwnd_; | 
 | }; | 
 |  | 
 | //----------------------------------------------------------------------------- | 
 | // MessagePumpForIO extends MessagePumpWin with methods that are particular to a | 
 | // MessageLoop instantiated with TYPE_IO. This version of MessagePump does not | 
 | // deal with Windows mesagges, and instead has a Run loop based on Completion | 
 | // Ports so it is better suited for IO operations. | 
 | // | 
 | class BASE_EXPORT MessagePumpForIO : public MessagePumpWin { | 
 |  public: | 
 |   struct IOContext; | 
 |  | 
 |   // Clients interested in receiving OS notifications when asynchronous IO | 
 |   // operations complete should implement this interface and register themselves | 
 |   // with the message pump. | 
 |   // | 
 |   // Typical use #1: | 
 |   //   // Use only when there are no user's buffers involved on the actual IO, | 
 |   //   // so that all the cleanup can be done by the message pump. | 
 |   //   class MyFile : public IOHandler { | 
 |   //     MyFile() { | 
 |   //       ... | 
 |   //       context_ = new IOContext; | 
 |   //       context_->handler = this; | 
 |   //       message_pump->RegisterIOHandler(file_, this); | 
 |   //     } | 
 |   //     ~MyFile() { | 
 |   //       if (pending_) { | 
 |   //         // By setting the handler to NULL, we're asking for this context | 
 |   //         // to be deleted when received, without calling back to us. | 
 |   //         context_->handler = NULL; | 
 |   //       } else { | 
 |   //         delete context_; | 
 |   //      } | 
 |   //     } | 
 |   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, | 
 |   //                                DWORD error) { | 
 |   //         pending_ = false; | 
 |   //     } | 
 |   //     void DoSomeIo() { | 
 |   //       ... | 
 |   //       // The only buffer required for this operation is the overlapped | 
 |   //       // structure. | 
 |   //       ConnectNamedPipe(file_, &context_->overlapped); | 
 |   //       pending_ = true; | 
 |   //     } | 
 |   //     bool pending_; | 
 |   //     IOContext* context_; | 
 |   //     HANDLE file_; | 
 |   //   }; | 
 |   // | 
 |   // Typical use #2: | 
 |   //   class MyFile : public IOHandler { | 
 |   //     MyFile() { | 
 |   //       ... | 
 |   //       message_pump->RegisterIOHandler(file_, this); | 
 |   //     } | 
 |   //     // Plus some code to make sure that this destructor is not called | 
 |   //     // while there are pending IO operations. | 
 |   //     ~MyFile() { | 
 |   //     } | 
 |   //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, | 
 |   //                                DWORD error) { | 
 |   //       ... | 
 |   //       delete context; | 
 |   //     } | 
 |   //     void DoSomeIo() { | 
 |   //       ... | 
 |   //       IOContext* context = new IOContext; | 
 |   //       // This is not used for anything. It just prevents the context from | 
 |   //       // being considered "abandoned". | 
 |   //       context->handler = this; | 
 |   //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped); | 
 |   //     } | 
 |   //     HANDLE file_; | 
 |   //   }; | 
 |   // | 
 |   // Typical use #3: | 
 |   // Same as the previous example, except that in order to deal with the | 
 |   // requirement stated for the destructor, the class calls WaitForIOCompletion | 
 |   // from the destructor to block until all IO finishes. | 
 |   //     ~MyFile() { | 
 |   //       while(pending_) | 
 |   //         message_pump->WaitForIOCompletion(INFINITE, this); | 
 |   //     } | 
 |   // | 
 |   class IOHandler { | 
 |    public: | 
 |     virtual ~IOHandler() {} | 
 |     // This will be called once the pending IO operation associated with | 
 |     // |context| completes. |error| is the Win32 error code of the IO operation | 
 |     // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero | 
 |     // on error. | 
 |     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered, | 
 |                                DWORD error) = 0; | 
 |   }; | 
 |  | 
 |   // An IOObserver is an object that receives IO notifications from the | 
 |   // MessagePump. | 
 |   // | 
 |   // NOTE: An IOObserver implementation should be extremely fast! | 
 |   class IOObserver { | 
 |    public: | 
 |     IOObserver() {} | 
 |  | 
 |     virtual void WillProcessIOEvent() = 0; | 
 |     virtual void DidProcessIOEvent() = 0; | 
 |  | 
 |    protected: | 
 |     virtual ~IOObserver() {} | 
 |   }; | 
 |  | 
 |   // The extended context that should be used as the base structure on every | 
 |   // overlapped IO operation. |handler| must be set to the registered IOHandler | 
 |   // for the given file when the operation is started, and it can be set to NULL | 
 |   // before the operation completes to indicate that the handler should not be | 
 |   // called anymore, and instead, the IOContext should be deleted when the OS | 
 |   // notifies the completion of this operation. Please remember that any buffers | 
 |   // involved with an IO operation should be around until the callback is | 
 |   // received, so this technique can only be used for IO that do not involve | 
 |   // additional buffers (other than the overlapped structure itself). | 
 |   struct IOContext { | 
 |     OVERLAPPED overlapped; | 
 |     IOHandler* handler; | 
 |   }; | 
 |  | 
 |   MessagePumpForIO(); | 
 |   ~MessagePumpForIO() override; | 
 |  | 
 |   // MessagePump methods: | 
 |   void ScheduleWork() override; | 
 |   void ScheduleDelayedWork(const TimeTicks& delayed_work_time) override; | 
 |  | 
 |   // Register the handler to be used when asynchronous IO for the given file | 
 |   // completes. The registration persists as long as |file_handle| is valid, so | 
 |   // |handler| must be valid as long as there is pending IO for the given file. | 
 |   void RegisterIOHandler(HANDLE file_handle, IOHandler* handler); | 
 |  | 
 |   // Register the handler to be used to process job events. The registration | 
 |   // persists as long as the job object is live, so |handler| must be valid | 
 |   // until the job object is destroyed. Returns true if the registration | 
 |   // succeeded, and false otherwise. | 
 |   bool RegisterJobObject(HANDLE job_handle, IOHandler* handler); | 
 |  | 
 |   // Waits for the next IO completion that should be processed by |filter|, for | 
 |   // up to |timeout| milliseconds. Return true if any IO operation completed, | 
 |   // regardless of the involved handler, and false if the timeout expired. If | 
 |   // the completion port received any message and the involved IO handler | 
 |   // matches |filter|, the callback is called before returning from this code; | 
 |   // if the handler is not the one that we are looking for, the callback will | 
 |   // be postponed for another time, so reentrancy problems can be avoided. | 
 |   // External use of this method should be reserved for the rare case when the | 
 |   // caller is willing to allow pausing regular task dispatching on this thread. | 
 |   bool WaitForIOCompletion(DWORD timeout, IOHandler* filter); | 
 |  | 
 |   void AddIOObserver(IOObserver* obs); | 
 |   void RemoveIOObserver(IOObserver* obs); | 
 |  | 
 |  private: | 
 |   struct IOItem { | 
 |     IOHandler* handler; | 
 |     IOContext* context; | 
 |     DWORD bytes_transfered; | 
 |     DWORD error; | 
 |  | 
 |     // In some cases |context| can be a non-pointer value casted to a pointer. | 
 |     // |has_valid_io_context| is true if |context| is a valid IOContext | 
 |     // pointer, and false otherwise. | 
 |     bool has_valid_io_context; | 
 |   }; | 
 |  | 
 |   void DoRunLoop() override; | 
 |   void WaitForWork(); | 
 |   bool MatchCompletedIOItem(IOHandler* filter, IOItem* item); | 
 |   bool GetIOItem(DWORD timeout, IOItem* item); | 
 |   bool ProcessInternalIOItem(const IOItem& item); | 
 |   void WillProcessIOEvent(); | 
 |   void DidProcessIOEvent(); | 
 |  | 
 |   // Converts an IOHandler pointer to a completion port key. | 
 |   // |has_valid_io_context| specifies whether completion packets posted to | 
 |   // |handler| will have valid OVERLAPPED pointers. | 
 |   static ULONG_PTR HandlerToKey(IOHandler* handler, bool has_valid_io_context); | 
 |  | 
 |   // Converts a completion port key to an IOHandler pointer. | 
 |   static IOHandler* KeyToHandler(ULONG_PTR key, bool* has_valid_io_context); | 
 |  | 
 |   // The completion port associated with this thread. | 
 |   win::ScopedHandle port_; | 
 |   // This list will be empty almost always. It stores IO completions that have | 
 |   // not been delivered yet because somebody was doing cleanup. | 
 |   std::list<IOItem> completed_io_; | 
 |  | 
 |   ObserverList<IOObserver> io_observers_; | 
 | }; | 
 |  | 
 | }  // namespace base | 
 |  | 
 | #endif  // BASE_MESSAGE_LOOP_MESSAGE_PUMP_WIN_H_ |