blob: 98417a6df5c1c6e450c9ee67c75c5f40f90ebfd8 [file] [log] [blame]
/*
* Copyright (C) 2006, 2007, 2008, 2009, 2010, 2011, 2012 Apple Inc. All rights reserved.
*
* Portions are Copyright (C) 1998 Netscape Communications Corporation.
*
* Other contributors:
* Robert O'Callahan <roc+@cs.cmu.edu>
* David Baron <dbaron@fas.harvard.edu>
* Christian Biesinger <cbiesinger@web.de>
* Randall Jesup <rjesup@wgate.com>
* Roland Mainz <roland.mainz@informatik.med.uni-giessen.de>
* Josh Soref <timeless@mac.com>
* Boris Zbarsky <bzbarsky@mit.edu>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*
* Alternatively, the contents of this file may be used under the terms
* of either the Mozilla Public License Version 1.1, found at
* http://www.mozilla.org/MPL/ (the "MPL") or the GNU General Public
* License Version 2.0, found at http://www.fsf.org/copyleft/gpl.html
* (the "GPL"), in which case the provisions of the MPL or the GPL are
* applicable instead of those above. If you wish to allow use of your
* version of this file only under the terms of one of those two
* licenses (the MPL or the GPL) and not to allow others to use your
* version of this file under the LGPL, indicate your decision by
* deletingthe provisions above and replace them with the notice and
* other provisions required by the MPL or the GPL, as the case may be.
* If you do not delete the provisions above, a recipient may use your
* version of this file under any of the LGPL, the MPL or the GPL.
*/
#include "sky/engine/config.h"
#include "sky/engine/core/rendering/RenderLayer.h"
#include "gen/sky/core/CSSPropertyNames.h"
#include "gen/sky/platform/RuntimeEnabledFeatures.h"
#include "sky/engine/core/dom/Document.h"
#include "sky/engine/core/dom/shadow/ShadowRoot.h"
#include "sky/engine/core/frame/FrameView.h"
#include "sky/engine/core/frame/LocalFrame.h"
#include "sky/engine/core/frame/Settings.h"
#include "sky/engine/core/page/Page.h"
#include "sky/engine/core/rendering/FilterEffectRenderer.h"
#include "sky/engine/core/rendering/HitTestRequest.h"
#include "sky/engine/core/rendering/HitTestResult.h"
#include "sky/engine/core/rendering/HitTestingTransformState.h"
#include "sky/engine/core/rendering/RenderGeometryMap.h"
#include "sky/engine/core/rendering/RenderInline.h"
#include "sky/engine/core/rendering/RenderTreeAsText.h"
#include "sky/engine/core/rendering/RenderView.h"
#include "sky/engine/platform/LengthFunctions.h"
#include "sky/engine/platform/Partitions.h"
#include "sky/engine/platform/TraceEvent.h"
#include "sky/engine/platform/geometry/FloatPoint3D.h"
#include "sky/engine/platform/geometry/FloatRect.h"
#include "sky/engine/platform/geometry/TransformState.h"
#include "sky/engine/platform/graphics/GraphicsContextStateSaver.h"
#include "sky/engine/platform/graphics/filters/ReferenceFilter.h"
#include "sky/engine/platform/graphics/filters/SourceGraphic.h"
#include "sky/engine/platform/transforms/ScaleTransformOperation.h"
#include "sky/engine/platform/transforms/TransformationMatrix.h"
#include "sky/engine/platform/transforms/TranslateTransformOperation.h"
#include "sky/engine/public/platform/Platform.h"
#include "sky/engine/wtf/StdLibExtras.h"
#include "sky/engine/wtf/text/CString.h"
namespace blink {
RenderLayer::RenderLayer(RenderLayerModelObject* renderer, LayerType type)
: m_layerType(type)
, m_hasSelfPaintingLayerDescendant(false)
, m_hasSelfPaintingLayerDescendantDirty(false)
, m_isRootLayer(renderer->isRenderView())
, m_usedTransparency(false)
, m_3DTransformedDescendantStatusDirty(true)
, m_has3DTransformedDescendant(false)
, m_containsDirtyOverlayScrollbars(false)
, m_hasFilterInfo(false)
, m_needsAncestorDependentCompositingInputsUpdate(true)
, m_needsDescendantDependentCompositingInputsUpdate(true)
, m_childNeedsCompositingInputsUpdate(true)
, m_hasCompositingDescendant(false)
, m_lostGroupedMapping(false)
, m_renderer(renderer)
, m_parent(0)
, m_previous(0)
, m_next(0)
, m_first(0)
, m_last(0)
, m_staticInlinePosition(0)
, m_staticBlockPosition(0)
, m_clipper(*renderer)
{
updateStackingNode();
m_isSelfPaintingLayer = shouldBeSelfPaintingLayer();
updateScrollableArea();
}
RenderLayer::~RenderLayer()
{
removeFilterInfoIfNeeded();
}
String RenderLayer::debugName() const
{
return renderer()->debugName();
}
bool RenderLayer::paintsWithFilters() const
{
// FIXME(sky): Remove
return renderer()->hasFilter();
}
bool RenderLayer::requiresFullLayerImageForFilters() const
{
if (!paintsWithFilters())
return false;
FilterEffectRenderer* filter = filterRenderer();
return filter ? filter->hasFilterThatMovesPixels() : false;
}
LayoutSize RenderLayer::subpixelAccumulation() const
{
return m_subpixelAccumulation;
}
void RenderLayer::setSubpixelAccumulation(const LayoutSize& size)
{
m_subpixelAccumulation = size;
}
void RenderLayer::updateLayerPositionsAfterLayout()
{
TRACE_EVENT0("blink", "RenderLayer::updateLayerPositionsAfterLayout");
m_clipper.clearClipRectsIncludingDescendants();
}
void RenderLayer::updateHasSelfPaintingLayerDescendant() const
{
ASSERT(m_hasSelfPaintingLayerDescendantDirty);
m_hasSelfPaintingLayerDescendant = false;
for (RenderLayer* child = firstChild(); child; child = child->nextSibling()) {
if (child->isSelfPaintingLayer() || child->hasSelfPaintingLayerDescendant()) {
m_hasSelfPaintingLayerDescendant = true;
break;
}
}
m_hasSelfPaintingLayerDescendantDirty = false;
}
void RenderLayer::dirtyAncestorChainHasSelfPaintingLayerDescendantStatus()
{
for (RenderLayer* layer = this; layer; layer = layer->parent()) {
layer->m_hasSelfPaintingLayerDescendantDirty = true;
// If we have reached a self-painting layer, we know our parent should have a self-painting descendant
// in this case, there is no need to dirty our ancestors further.
if (layer->isSelfPaintingLayer()) {
ASSERT(!parent() || parent()->m_hasSelfPaintingLayerDescendantDirty || parent()->m_hasSelfPaintingLayerDescendant);
break;
}
}
}
bool RenderLayer::scrollsWithRespectTo(const RenderLayer* other) const
{
return ancestorScrollingLayer() != other->ancestorScrollingLayer();
}
void RenderLayer::updateTransformationMatrix()
{
if (m_transform) {
RenderBox* box = renderBox();
ASSERT(box);
m_transform->makeIdentity();
box->style()->applyTransform(*m_transform, box->pixelSnappedBorderBoxRect().size(), RenderStyle::IncludeTransformOrigin);
makeMatrixRenderable(*m_transform);
}
}
void RenderLayer::updateTransform(const RenderStyle* oldStyle, RenderStyle* newStyle)
{
if (oldStyle && newStyle->transformDataEquivalent(*oldStyle))
return;
// hasTransform() on the renderer is also true when there is transform-style: preserve-3d or perspective set,
// so check style too.
bool hasTransform = renderer()->hasTransform() && newStyle->hasTransform();
bool had3DTransform = has3DTransform();
bool hadTransform = m_transform;
if (hasTransform != hadTransform) {
if (hasTransform)
m_transform = adoptPtr(new TransformationMatrix);
else
m_transform.clear();
// Layers with transforms act as clip rects roots, so clear the cached clip rects here.
m_clipper.clearClipRectsIncludingDescendants();
} else if (hasTransform) {
m_clipper.clearClipRectsIncludingDescendants(AbsoluteClipRects);
}
updateTransformationMatrix();
if (had3DTransform != has3DTransform())
dirty3DTransformedDescendantStatus();
}
static RenderLayer* enclosingLayerForContainingBlock(RenderLayer* layer)
{
if (RenderObject* containingBlock = layer->renderer()->containingBlock())
return containingBlock->enclosingLayer();
return 0;
}
RenderLayer* RenderLayer::renderingContextRoot()
{
RenderLayer* renderingContext = 0;
if (shouldPreserve3D())
renderingContext = this;
for (RenderLayer* current = enclosingLayerForContainingBlock(this); current && current->shouldPreserve3D(); current = enclosingLayerForContainingBlock(current))
renderingContext = current;
return renderingContext;
}
TransformationMatrix RenderLayer::currentTransform(RenderStyle::ApplyTransformOrigin applyOrigin) const
{
if (!m_transform)
return TransformationMatrix();
// m_transform includes transform-origin, so we need to recompute the transform here.
if (applyOrigin == RenderStyle::ExcludeTransformOrigin) {
RenderBox* box = renderBox();
TransformationMatrix currTransform;
box->style()->applyTransform(currTransform, box->pixelSnappedBorderBoxRect().size(), RenderStyle::ExcludeTransformOrigin);
makeMatrixRenderable(currTransform);
return currTransform;
}
return *m_transform;
}
TransformationMatrix RenderLayer::renderableTransform() const
{
return m_transform ? *m_transform : TransformationMatrix();
}
RenderLayer* RenderLayer::enclosingOverflowClipLayer(IncludeSelfOrNot includeSelf) const
{
const RenderLayer* layer = (includeSelf == IncludeSelf) ? this : parent();
while (layer) {
if (layer->renderer()->hasOverflowClip())
return const_cast<RenderLayer*>(layer);
layer = layer->parent();
}
return 0;
}
void RenderLayer::dirty3DTransformedDescendantStatus()
{
RenderLayerStackingNode* stackingNode = m_stackingNode->ancestorStackingContextNode();
if (!stackingNode)
return;
stackingNode->layer()->m_3DTransformedDescendantStatusDirty = true;
// This propagates up through preserve-3d hierarchies to the enclosing flattening layer.
// Note that preserves3D() creates stacking context, so we can just run up the stacking containers.
while (stackingNode && stackingNode->layer()->preserves3D()) {
stackingNode->layer()->m_3DTransformedDescendantStatusDirty = true;
stackingNode = stackingNode->ancestorStackingContextNode();
}
}
// Return true if this layer or any preserve-3d descendants have 3d.
bool RenderLayer::update3DTransformedDescendantStatus()
{
if (m_3DTransformedDescendantStatusDirty) {
m_has3DTransformedDescendant = false;
m_stackingNode->updateZOrderLists();
// Transformed or preserve-3d descendants can only be in the z-order lists, not
// in the normal flow list, so we only need to check those.
RenderLayerStackingNodeIterator iterator(*m_stackingNode.get(), PositiveZOrderChildren | NegativeZOrderChildren);
while (RenderLayerStackingNode* node = iterator.next())
m_has3DTransformedDescendant |= node->layer()->update3DTransformedDescendantStatus();
m_3DTransformedDescendantStatusDirty = false;
}
// If we live in a 3d hierarchy, then the layer at the root of that hierarchy needs
// the m_has3DTransformedDescendant set.
if (preserves3D())
return has3DTransform() || m_has3DTransformedDescendant;
return has3DTransform();
}
IntSize RenderLayer::size() const
{
if (renderer()->isInline() && renderer()->isRenderInline())
return toRenderInline(renderer())->linesBoundingBox().size();
// FIXME: Is snapping the size really needed here?
if (RenderBox* box = renderBox())
return pixelSnappedIntSize(box->size(), box->location());
return IntSize();
}
LayoutPoint RenderLayer::location() const
{
LayoutPoint localPoint;
LayoutSize inlineBoundingBoxOffset; // We don't put this into the RenderLayer x/y for inlines, so we need to subtract it out when done.
if (renderer()->isInline() && renderer()->isRenderInline()) {
RenderInline* inlineFlow = toRenderInline(renderer());
IntRect lineBox = inlineFlow->linesBoundingBox();
inlineBoundingBoxOffset = toSize(lineBox.location());
localPoint += inlineBoundingBoxOffset;
} else if (RenderBox* box = renderBox()) {
localPoint += box->locationOffset();
}
if (!renderer()->isOutOfFlowPositioned() && renderer()->parent()) {
// We must adjust our position by walking up the render tree looking for the
// nearest enclosing object with a layer.
RenderObject* curr = renderer()->parent();
while (curr && !curr->hasLayer()) {
if (curr->isBox()) {
// Rows and cells share the same coordinate space (that of the section).
// Omit them when computing our xpos/ypos.
localPoint += toRenderBox(curr)->locationOffset();
}
curr = curr->parent();
}
}
// Subtract our parent's scroll offset.
if (renderer()->isOutOfFlowPositioned() && enclosingPositionedAncestor()) {
RenderLayer* positionedParent = enclosingPositionedAncestor();
// For positioned layers, we subtract out the enclosing positioned layer's scroll offset.
if (positionedParent->renderer()->hasOverflowClip()) {
LayoutSize offset = positionedParent->renderBox()->scrolledContentOffset();
localPoint -= offset;
}
if (positionedParent->renderer()->isRelPositioned() && positionedParent->renderer()->isRenderInline()) {
LayoutSize offset = toRenderInline(positionedParent->renderer())->offsetForInFlowPositionedInline(*toRenderBox(renderer()));
localPoint += offset;
}
} else if (parent()) {
if (parent()->renderer()->hasOverflowClip()) {
IntSize scrollOffset = parent()->renderBox()->scrolledContentOffset();
localPoint -= scrollOffset;
}
}
localPoint.move(offsetForInFlowPosition());
// FIXME: We'd really like to just get rid of the concept of a layer rectangle and rely on the renderers.
localPoint -= inlineBoundingBoxOffset;
return localPoint;
}
const LayoutSize RenderLayer::offsetForInFlowPosition() const
{
return renderer()->isRelPositioned() ? toRenderBoxModelObject(renderer())->offsetForInFlowPosition() : LayoutSize();
}
TransformationMatrix RenderLayer::perspectiveTransform() const
{
if (!renderer()->hasTransform())
return TransformationMatrix();
RenderStyle* style = renderer()->style();
if (!style->hasPerspective())
return TransformationMatrix();
// Maybe fetch the perspective from the backing?
const IntRect borderBox = toRenderBox(renderer())->pixelSnappedBorderBoxRect();
const float boxWidth = borderBox.width();
const float boxHeight = borderBox.height();
float perspectiveOriginX = floatValueForLength(style->perspectiveOriginX(), boxWidth);
float perspectiveOriginY = floatValueForLength(style->perspectiveOriginY(), boxHeight);
// A perspective origin of 0,0 makes the vanishing point in the center of the element.
// We want it to be in the top-left, so subtract half the height and width.
perspectiveOriginX -= boxWidth / 2.0f;
perspectiveOriginY -= boxHeight / 2.0f;
TransformationMatrix t;
t.translate(perspectiveOriginX, perspectiveOriginY);
t.applyPerspective(style->perspective());
t.translate(-perspectiveOriginX, -perspectiveOriginY);
return t;
}
FloatPoint RenderLayer::perspectiveOrigin() const
{
if (!renderer()->hasTransform())
return FloatPoint();
const LayoutRect borderBox = toRenderBox(renderer())->borderBoxRect();
RenderStyle* style = renderer()->style();
return FloatPoint(floatValueForLength(style->perspectiveOriginX(), borderBox.width().toFloat()), floatValueForLength(style->perspectiveOriginY(), borderBox.height().toFloat()));
}
RenderLayer* RenderLayer::enclosingPositionedAncestor() const
{
RenderLayer* curr = parent();
while (curr && !curr->isPositionedContainer())
curr = curr->parent();
return curr;
}
RenderLayer* RenderLayer::enclosingTransformedAncestor() const
{
RenderLayer* curr = parent();
while (curr && !curr->isRootLayer() && !curr->renderer()->hasTransform())
curr = curr->parent();
return curr;
}
LayoutPoint RenderLayer::computeOffsetFromTransformedAncestor() const
{
const AncestorDependentCompositingInputs& properties = ancestorDependentCompositingInputs();
TransformState transformState(TransformState::ApplyTransformDirection, FloatPoint());
// FIXME: add a test that checks flipped writing mode and ApplyContainerFlip are correct.
renderer()->mapLocalToContainer(properties.transformAncestor ? properties.transformAncestor->renderer() : 0, transformState, ApplyContainerFlip);
transformState.flatten();
return LayoutPoint(transformState.lastPlanarPoint());
}
const RenderLayer* RenderLayer::compositingContainer() const
{
if (stackingNode()->isNormalFlowOnly())
return parent();
if (RenderLayerStackingNode* ancestorStackingNode = stackingNode()->ancestorStackingContextNode())
return ancestorStackingNode->layer();
return 0;
}
RenderLayer* RenderLayer::enclosingFilterLayer(IncludeSelfOrNot includeSelf) const
{
const RenderLayer* curr = (includeSelf == IncludeSelf) ? this : parent();
for (; curr; curr = curr->parent()) {
if (curr->requiresFullLayerImageForFilters())
return const_cast<RenderLayer*>(curr);
}
return 0;
}
void RenderLayer::updateAncestorDependentCompositingInputs(const AncestorDependentCompositingInputs& compositingInputs)
{
m_ancestorDependentCompositingInputs = compositingInputs;
m_needsAncestorDependentCompositingInputsUpdate = false;
}
void RenderLayer::updateDescendantDependentCompositingInputs(const DescendantDependentCompositingInputs& compositingInputs)
{
m_descendantDependentCompositingInputs = compositingInputs;
m_needsDescendantDependentCompositingInputsUpdate = false;
}
void RenderLayer::setHasCompositingDescendant(bool hasCompositingDescendant)
{
// FIXME(sky): Remove
m_hasCompositingDescendant = hasCompositingDescendant;
}
bool RenderLayer::hasAncestorWithFilterOutsets() const
{
for (const RenderLayer* curr = this; curr; curr = curr->parent()) {
RenderLayerModelObject* renderer = curr->renderer();
if (renderer->style()->hasFilterOutsets())
return true;
}
return false;
}
RenderLayer* RenderLayer::transparentPaintingAncestor()
{
for (RenderLayer* curr = parent(); curr; curr = curr->parent()) {
if (curr->isTransparent())
return curr;
}
return 0;
}
enum TransparencyClipBoxBehavior {
PaintingTransparencyClipBox,
HitTestingTransparencyClipBox
};
enum TransparencyClipBoxMode {
DescendantsOfTransparencyClipBox,
RootOfTransparencyClipBox
};
static LayoutRect transparencyClipBox(const RenderLayer*, const RenderLayer* rootLayer, TransparencyClipBoxBehavior, TransparencyClipBoxMode, const LayoutSize& subPixelAccumulation);
static void expandClipRectForDescendantsAndReflection(LayoutRect& clipRect, const RenderLayer* layer, const RenderLayer* rootLayer,
TransparencyClipBoxBehavior transparencyBehavior, const LayoutSize& subPixelAccumulation)
{
// If we have a mask, then the clip is limited to the border box area (and there is
// no need to examine child layers).
if (!layer->renderer()->hasMask()) {
// Note: we don't have to walk z-order lists since transparent elements always establish
// a stacking container. This means we can just walk the layer tree directly.
for (RenderLayer* curr = layer->firstChild(); curr; curr = curr->nextSibling())
clipRect.unite(transparencyClipBox(curr, rootLayer, transparencyBehavior, DescendantsOfTransparencyClipBox, subPixelAccumulation));
}
}
static LayoutRect transparencyClipBox(const RenderLayer* layer, const RenderLayer* rootLayer, TransparencyClipBoxBehavior transparencyBehavior,
TransparencyClipBoxMode transparencyMode, const LayoutSize& subPixelAccumulation)
{
// FIXME: Although this function completely ignores CSS-imposed clipping, we did already intersect with the
// paintDirtyRect, and that should cut down on the amount we have to paint. Still it
// would be better to respect clips.
if (rootLayer != layer && ((transparencyBehavior == PaintingTransparencyClipBox && layer->paintsWithTransform())
|| (transparencyBehavior == HitTestingTransparencyClipBox && layer->hasTransform()))) {
// The best we can do here is to use enclosed bounding boxes to establish a "fuzzy" enough clip to encompass
// the transformed layer and all of its children.
const RenderLayer* rootLayerForTransform = rootLayer;
LayoutPoint delta;
layer->convertToLayerCoords(rootLayerForTransform, delta);
delta.move(subPixelAccumulation);
IntPoint pixelSnappedDelta = roundedIntPoint(delta);
TransformationMatrix transform;
transform.translate(pixelSnappedDelta.x(), pixelSnappedDelta.y());
transform = transform * *layer->transform();
// We don't use fragment boxes when collecting a transformed layer's bounding box, since it always
// paints unfragmented.
LayoutRect clipRect = layer->physicalBoundingBox(layer);
expandClipRectForDescendantsAndReflection(clipRect, layer, layer, transparencyBehavior, subPixelAccumulation);
layer->renderer()->style()->filterOutsets().expandRect(clipRect);
LayoutRect result = transform.mapRect(clipRect);
return result;
}
LayoutRect clipRect = layer->physicalBoundingBox(rootLayer);
expandClipRectForDescendantsAndReflection(clipRect, layer, rootLayer, transparencyBehavior, subPixelAccumulation);
layer->renderer()->style()->filterOutsets().expandRect(clipRect);
clipRect.move(subPixelAccumulation);
return clipRect;
}
LayoutRect RenderLayer::paintingExtent(const RenderLayer* rootLayer, const LayoutRect& paintDirtyRect, const LayoutSize& subPixelAccumulation)
{
return intersection(transparencyClipBox(this, rootLayer, PaintingTransparencyClipBox, RootOfTransparencyClipBox, subPixelAccumulation), paintDirtyRect);
}
void RenderLayer::beginTransparencyLayers(GraphicsContext* context, const RenderLayer* rootLayer, const LayoutRect& paintDirtyRect, const LayoutSize& subPixelAccumulation)
{
if (isTransparent() && m_usedTransparency)
return;
RenderLayer* ancestor = transparentPaintingAncestor();
if (ancestor)
ancestor->beginTransparencyLayers(context, rootLayer, paintDirtyRect, subPixelAccumulation);
if (isTransparent()) {
m_usedTransparency = true;
context->save();
LayoutRect clipRect = paintingExtent(rootLayer, paintDirtyRect, subPixelAccumulation);
context->clip(clipRect);
context->beginTransparencyLayer(renderer()->opacity());
#ifdef REVEAL_TRANSPARENCY_LAYERS
context->setFillColor(Color(0.0f, 0.0f, 0.5f, 0.2f));
context->fillRect(clipRect);
#endif
}
}
void* RenderLayer::operator new(size_t sz)
{
return partitionAlloc(Partitions::getRenderingPartition(), sz);
}
void RenderLayer::operator delete(void* ptr)
{
partitionFree(ptr);
}
void RenderLayer::addChild(RenderLayer* child, RenderLayer* beforeChild)
{
RenderLayer* prevSibling = beforeChild ? beforeChild->previousSibling() : lastChild();
if (prevSibling) {
child->setPreviousSibling(prevSibling);
prevSibling->setNextSibling(child);
ASSERT(prevSibling != child);
} else
setFirstChild(child);
if (beforeChild) {
beforeChild->setPreviousSibling(child);
child->setNextSibling(beforeChild);
ASSERT(beforeChild != child);
} else
setLastChild(child);
child->m_parent = this;
if (child->stackingNode()->isNormalFlowOnly())
m_stackingNode->dirtyNormalFlowList();
if (!child->stackingNode()->isNormalFlowOnly() || child->firstChild()) {
// Dirty the z-order list in which we are contained. The ancestorStackingContextNode() can be null in the
// case where we're building up generated content layers. This is ok, since the lists will start
// off dirty in that case anyway.
child->stackingNode()->dirtyStackingContextZOrderLists();
}
dirtyAncestorChainHasSelfPaintingLayerDescendantStatus();
}
RenderLayer* RenderLayer::removeChild(RenderLayer* oldChild)
{
if (oldChild->previousSibling())
oldChild->previousSibling()->setNextSibling(oldChild->nextSibling());
if (oldChild->nextSibling())
oldChild->nextSibling()->setPreviousSibling(oldChild->previousSibling());
if (m_first == oldChild)
m_first = oldChild->nextSibling();
if (m_last == oldChild)
m_last = oldChild->previousSibling();
if (oldChild->stackingNode()->isNormalFlowOnly())
m_stackingNode->dirtyNormalFlowList();
if (!oldChild->stackingNode()->isNormalFlowOnly() || oldChild->firstChild()) {
// Dirty the z-order list in which we are contained. When called via the
// reattachment process in removeOnlyThisLayer, the layer may already be disconnected
// from the main layer tree, so we need to null-check the
// |stackingContext| value.
oldChild->stackingNode()->dirtyStackingContextZOrderLists();
}
oldChild->setPreviousSibling(0);
oldChild->setNextSibling(0);
oldChild->m_parent = 0;
dirtyAncestorChainHasSelfPaintingLayerDescendantStatus();
return oldChild;
}
void RenderLayer::removeOnlyThisLayer()
{
if (!m_parent)
return;
m_clipper.clearClipRectsIncludingDescendants();
RenderLayer* nextSib = nextSibling();
// Now walk our kids and reattach them to our parent.
RenderLayer* current = m_first;
while (current) {
RenderLayer* next = current->nextSibling();
removeChild(current);
m_parent->addChild(current, nextSib);
// FIXME: We should call a specialized version of this function.
current->updateLayerPositionsAfterLayout();
current = next;
}
// Remove us from the parent.
m_parent->removeChild(this);
m_renderer->destroyLayer();
}
void RenderLayer::insertOnlyThisLayer()
{
if (!m_parent && renderer()->parent()) {
// We need to connect ourselves when our renderer() has a parent.
// Find our enclosingLayer and add ourselves.
RenderLayer* parentLayer = renderer()->parent()->enclosingLayer();
ASSERT(parentLayer);
RenderLayer* beforeChild = renderer()->parent()->findNextLayer(parentLayer, renderer());
parentLayer->addChild(this, beforeChild);
}
// Remove all descendant layers from the hierarchy and add them to the new position.
for (RenderObject* curr = renderer()->slowFirstChild(); curr; curr = curr->nextSibling())
curr->moveLayers(m_parent, this);
// Clear out all the clip rects.
m_clipper.clearClipRectsIncludingDescendants();
}
// Returns the layer reached on the walk up towards the ancestor.
static inline const RenderLayer* accumulateOffsetTowardsAncestor(const RenderLayer* layer, const RenderLayer* ancestorLayer, LayoutPoint& location)
{
ASSERT(ancestorLayer != layer);
const RenderLayerModelObject* renderer = layer->renderer();
EPosition position = renderer->style()->position();
RenderLayer* parentLayer;
if (position == AbsolutePosition) {
// Do what enclosingPositionedAncestor() does, but check for ancestorLayer along the way.
parentLayer = layer->parent();
bool foundAncestorFirst = false;
while (parentLayer) {
// RenderFlowThread is a positioned container, child of RenderView, positioned at (0,0).
// This implies that, for out-of-flow positioned elements inside a RenderFlowThread,
// we are bailing out before reaching root layer.
if (parentLayer->isPositionedContainer())
break;
if (parentLayer == ancestorLayer) {
foundAncestorFirst = true;
break;
}
parentLayer = parentLayer->parent();
}
if (foundAncestorFirst) {
// Found ancestorLayer before the abs. positioned container, so compute offset of both relative
// to enclosingPositionedAncestor and subtract.
RenderLayer* positionedAncestor = parentLayer->enclosingPositionedAncestor();
LayoutPoint thisCoords;
layer->convertToLayerCoords(positionedAncestor, thisCoords);
LayoutPoint ancestorCoords;
ancestorLayer->convertToLayerCoords(positionedAncestor, ancestorCoords);
location += (thisCoords - ancestorCoords);
return ancestorLayer;
}
} else
parentLayer = layer->parent();
if (!parentLayer)
return 0;
location += toSize(layer->location());
return parentLayer;
}
void RenderLayer::convertToLayerCoords(const RenderLayer* ancestorLayer, LayoutPoint& location) const
{
if (ancestorLayer == this)
return;
const RenderLayer* currLayer = this;
while (currLayer && currLayer != ancestorLayer)
currLayer = accumulateOffsetTowardsAncestor(currLayer, ancestorLayer, location);
}
void RenderLayer::convertToLayerCoords(const RenderLayer* ancestorLayer, LayoutRect& rect) const
{
LayoutPoint delta;
convertToLayerCoords(ancestorLayer, delta);
rect.move(-delta.x(), -delta.y());
}
void RenderLayer::didUpdateNeedsCompositedScrolling()
{
updateSelfPaintingLayer();
}
void RenderLayer::updateStackingNode()
{
if (requiresStackingNode())
m_stackingNode = adoptPtr(new RenderLayerStackingNode(this));
else
m_stackingNode = nullptr;
}
void RenderLayer::updateScrollableArea()
{
if (requiresScrollableArea())
m_scrollableArea = adoptPtr(new RenderLayerScrollableArea(*this));
else
m_scrollableArea = nullptr;
}
bool RenderLayer::hasOverflowControls() const
{
return m_scrollableArea && m_scrollableArea->hasScrollbar();
}
void RenderLayer::paint(GraphicsContext* context, const LayoutRect& damageRect, RenderObject* paintingRoot)
{
TRACE_EVENT0("blink", "RenderLayer::paint");
LayerPaintingInfo paintingInfo(this, enclosingIntRect(damageRect), LayoutSize(), paintingRoot);
paintLayer(context, paintingInfo, PaintContent);
}
void RenderLayer::paintOverlayScrollbars(GraphicsContext* context, const LayoutRect& damageRect, RenderObject* paintingRoot)
{
if (!m_containsDirtyOverlayScrollbars)
return;
LayerPaintingInfo paintingInfo(this, enclosingIntRect(damageRect), LayoutSize(), paintingRoot);
paintLayer(context, paintingInfo, PaintOverlayScrollbars);
m_containsDirtyOverlayScrollbars = false;
}
static bool inContainingBlockChain(RenderLayer* startLayer, RenderLayer* endLayer)
{
if (startLayer == endLayer)
return true;
RenderView* view = startLayer->renderer()->view();
for (RenderBlock* currentBlock = startLayer->renderer()->containingBlock(); currentBlock && currentBlock != view; currentBlock = currentBlock->containingBlock()) {
if (currentBlock->layer() == endLayer)
return true;
}
return false;
}
void RenderLayer::clipToRect(const LayerPaintingInfo& localPaintingInfo, GraphicsContext* context, const ClipRect& clipRect,
BorderRadiusClippingRule rule)
{
if (clipRect.rect() == localPaintingInfo.paintDirtyRect && !clipRect.hasRadius())
return;
context->save();
context->clip(pixelSnappedIntRect(clipRect.rect()));
if (!clipRect.hasRadius())
return;
// If the clip rect has been tainted by a border radius, then we have to walk up our layer chain applying the clips from
// any layers with overflow. The condition for being able to apply these clips is that the overflow object be in our
// containing block chain so we check that also.
for (RenderLayer* layer = rule == IncludeSelfForBorderRadius ? this : parent(); layer; layer = layer->parent()) {
// Composited scrolling layers handle border-radius clip in the compositor via a mask layer. We do not
// want to apply a border-radius clip to the layer contents itself, because that would require re-rastering
// every frame to update the clip. We only want to make sure that the mask layer is properly clipped so
// that it can in turn clip the scrolled contents in the compositor.
if (layer->needsCompositedScrolling())
break;
if (layer->renderer()->hasOverflowClip() && layer->renderer()->style()->hasBorderRadius() && inContainingBlockChain(this, layer)) {
LayoutPoint delta;
layer->convertToLayerCoords(localPaintingInfo.rootLayer, delta);
context->clipRoundedRect(layer->renderer()->style()->getRoundedInnerBorderFor(LayoutRect(delta, layer->size())));
}
if (layer == localPaintingInfo.rootLayer)
break;
}
}
void RenderLayer::restoreClip(GraphicsContext* context, const LayoutRect& paintDirtyRect, const ClipRect& clipRect)
{
if (clipRect.rect() == paintDirtyRect && !clipRect.hasRadius())
return;
context->restore();
}
void RenderLayer::paintLayer(GraphicsContext* context, const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags)
{
// Non self-painting leaf layers don't need to be painted as their renderer() should properly paint itself.
if (!isSelfPaintingLayer() && !hasSelfPaintingLayerDescendant())
return;
// If this layer is totally invisible then there is nothing to paint.
if (!renderer()->opacity())
return;
if (paintsWithTransform()) {
TransformationMatrix layerTransform = renderableTransform();
// If the transform can't be inverted, then don't paint anything.
if (!layerTransform.isInvertible())
return;
// If we have a transparency layer enclosing us and we are the root of a transform, then we need to establish the transparency
// layer from the parent now, assuming there is a parent
if (isTransparent()) {
if (parent())
parent()->beginTransparencyLayers(context, paintingInfo.rootLayer, paintingInfo.paintDirtyRect, paintingInfo.subPixelAccumulation);
else
beginTransparencyLayers(context, paintingInfo.rootLayer, paintingInfo.paintDirtyRect, paintingInfo.subPixelAccumulation);
}
// Make sure the parent's clip rects have been calculated.
ClipRect clipRect = paintingInfo.paintDirtyRect;
if (parent()) {
ClipRectsContext clipRectsContext(paintingInfo.rootLayer, PaintingClipRects);
clipRect = clipper().backgroundClipRect(clipRectsContext);
clipRect.intersect(paintingInfo.paintDirtyRect);
// Push the parent coordinate space's clip.
parent()->clipToRect(paintingInfo, context, clipRect);
}
paintLayerByApplyingTransform(context, paintingInfo, paintFlags);
// Restore the clip.
if (parent())
parent()->restoreClip(context, paintingInfo.paintDirtyRect, clipRect);
return;
}
paintLayerContents(context, paintingInfo, paintFlags);
}
void RenderLayer::paintLayerContents(GraphicsContext* context, const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags)
{
ASSERT(isSelfPaintingLayer() || hasSelfPaintingLayerDescendant());
float deviceScaleFactor = blink::deviceScaleFactor(renderer()->frame());
context->setDeviceScaleFactor(deviceScaleFactor);
GraphicsContext* transparencyLayerContext = context;
m_stackingNode->updateLayerListsIfNeeded();
LayoutPoint offsetFromRoot;
convertToLayerCoords(paintingInfo.rootLayer, offsetFromRoot);
LayoutRect rootRelativeBounds;
bool rootRelativeBoundsComputed = false;
// Apply clip-path to context.
GraphicsContextStateSaver clipStateSaver(*context, false);
RenderStyle* style = renderer()->style();
// Clip-path, like border radius, must not be applied to the contents of a composited-scrolling container.
// It must, however, still be applied to the mask layer, so that the compositor can properly mask the
// scrolling contents and scrollbars.
if (renderer()->hasClipPath() && style && !needsCompositedScrolling()) {
ASSERT(style->clipPath());
if (style->clipPath()->type() == ClipPathOperation::SHAPE) {
ShapeClipPathOperation* clipPath = toShapeClipPathOperation(style->clipPath());
if (clipPath->isValid()) {
clipStateSaver.save();
if (!rootRelativeBoundsComputed) {
rootRelativeBounds = physicalBoundingBoxIncludingReflectionAndStackingChildren(paintingInfo.rootLayer, offsetFromRoot);
rootRelativeBoundsComputed = true;
}
context->clipPath(clipPath->path(rootRelativeBounds), clipPath->windRule());
}
}
}
LayerPaintingInfo localPaintingInfo(paintingInfo);
FilterEffectRendererHelper filterPainter(filterRenderer() && paintsWithFilters());
LayoutRect layerBounds;
ClipRect backgroundRect, foregroundRect, outlineRect;
ClipRectsContext clipRectsContext(localPaintingInfo.rootLayer, PaintingClipRects, localPaintingInfo.subPixelAccumulation);
clipper().calculateRects(clipRectsContext, localPaintingInfo.paintDirtyRect,
layerBounds, backgroundRect, foregroundRect, outlineRect,
&offsetFromRoot);
bool isPaintingOverlayScrollbars = paintFlags == PaintOverlayScrollbars;
bool shouldPaintContent = isSelfPaintingLayer() && !isPaintingOverlayScrollbars
&& intersectsDamageRect(layerBounds, backgroundRect.rect(), localPaintingInfo.rootLayer, &offsetFromRoot);
bool haveTransparency = isTransparent();
if (filterPainter.haveFilterEffect()) {
ASSERT(this->filterInfo());
if (!rootRelativeBoundsComputed)
rootRelativeBounds = physicalBoundingBoxIncludingReflectionAndStackingChildren(paintingInfo.rootLayer, offsetFromRoot);
if (filterPainter.prepareFilterEffect(this, rootRelativeBounds, paintingInfo.paintDirtyRect)) {
// Rewire the old context to a memory buffer, so that we can capture the contents of the layer.
// NOTE: We saved the old context in the "transparencyLayerContext" local variable, to be able to start a transparency layer
// on the original context and avoid duplicating "beginFilterEffect" after each transparency layer call. Also, note that
// beginTransparencyLayers will only create a single lazy transparency layer, even though it is called twice in this method.
// With deferred filters, we don't need a separate context, but we do need to do transparency and clipping before starting
// filter processing.
// FIXME: when the legacy path is removed, remove the transparencyLayerContext as well.
if (haveTransparency) {
// If we have a filter and transparency, we have to eagerly start a transparency layer here, rather than risk a child layer lazily starts one after filter processing.
beginTransparencyLayers(context, localPaintingInfo.rootLayer, paintingInfo.paintDirtyRect, paintingInfo.subPixelAccumulation);
}
// We'll handle clipping to the dirty rect before filter rasterization.
// Filter processing will automatically expand the clip rect and the offscreen to accommodate any filter outsets.
// FIXME: It is incorrect to just clip to the damageRect here once multiple fragments are involved.
clipToRect(localPaintingInfo, context, backgroundRect);
// Subsequent code should not clip to the dirty rect, since we've already
// done it above, and doing it later will defeat the outsets.
localPaintingInfo.clipToDirtyRect = false;
context = filterPainter.beginFilterEffect(context);
}
}
// If this layer's renderer is a child of the paintingRoot, we render unconditionally, which
// is done by passing a nil paintingRoot down to our renderer (as if no paintingRoot was ever set).
// Else, our renderer tree may or may not contain the painting root, so we pass that root along
// so it will be tested against as we descend through the renderers.
RenderObject* paintingRootForRenderer = 0;
if (localPaintingInfo.paintingRoot && !renderer()->isDescendantOf(localPaintingInfo.paintingRoot))
paintingRootForRenderer = localPaintingInfo.paintingRoot;
LayoutPoint layerLocation = toPoint(layerBounds.location() - renderBoxLocation() + localPaintingInfo.subPixelAccumulation);
if (shouldPaintContent) {
paintBackground(context, transparencyLayerContext, paintingInfo.paintDirtyRect, haveTransparency,
localPaintingInfo, paintingRootForRenderer, layerLocation, backgroundRect);
}
paintChildren(NegativeZOrderChildren, context, paintingInfo, paintFlags);
if (shouldPaintContent) {
paintForeground(context, transparencyLayerContext, paintingInfo.paintDirtyRect, haveTransparency,
localPaintingInfo, paintingRootForRenderer, layerLocation, foregroundRect);
}
paintOutline(context, localPaintingInfo, paintingRootForRenderer, layerLocation, outlineRect);
paintChildren(NormalFlowChildren | PositiveZOrderChildren, context, paintingInfo, paintFlags);
if (isPaintingOverlayScrollbars)
paintOverflowControls(context, localPaintingInfo, layerLocation, backgroundRect);
if (filterPainter.hasStartedFilterEffect()) {
context = filterPainter.applyFilterEffect();
restoreClip(transparencyLayerContext, localPaintingInfo.paintDirtyRect, backgroundRect);
}
// Make sure that we now use the original transparency context.
ASSERT(transparencyLayerContext == context);
if (shouldPaintContent && renderer()->hasMask())
paintMask(context, localPaintingInfo, paintingRootForRenderer, layerLocation, backgroundRect);
// End our transparency layer
if (haveTransparency && m_usedTransparency) {
context->endLayer();
context->restore();
m_usedTransparency = false;
}
}
void RenderLayer::paintLayerByApplyingTransform(GraphicsContext* context, const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags, const LayoutPoint& translationOffset)
{
// This involves subtracting out the position of the layer in our current coordinate space, but preserving
// the accumulated error for sub-pixel layout.
LayoutPoint delta;
convertToLayerCoords(paintingInfo.rootLayer, delta);
delta.moveBy(translationOffset);
TransformationMatrix transform(renderableTransform());
IntPoint roundedDelta = roundedIntPoint(delta);
transform.translateRight(roundedDelta.x(), roundedDelta.y());
LayoutSize adjustedSubPixelAccumulation = paintingInfo.subPixelAccumulation + (delta - roundedDelta);
// Apply the transform.
GraphicsContextStateSaver stateSaver(*context, false);
if (!transform.isIdentity()) {
stateSaver.save();
context->concatCTM(transform.toAffineTransform());
}
// Now do a paint with the root layer shifted to be us.
LayerPaintingInfo transformedPaintingInfo(this, enclosingIntRect(transform.inverse().mapRect(paintingInfo.paintDirtyRect)),
adjustedSubPixelAccumulation, paintingInfo.paintingRoot);
paintLayerContents(context, transformedPaintingInfo, paintFlags);
}
void RenderLayer::paintChildren(unsigned childrenToVisit, GraphicsContext* context, const LayerPaintingInfo& paintingInfo, PaintLayerFlags paintFlags)
{
if (!hasSelfPaintingLayerDescendant())
return;
#if ENABLE(ASSERT)
LayerListMutationDetector mutationChecker(m_stackingNode.get());
#endif
RenderLayerStackingNodeIterator iterator(*m_stackingNode, childrenToVisit);
while (RenderLayerStackingNode* child = iterator.next()) {
child->layer()->paintLayer(context, paintingInfo, paintFlags);
}
}
void RenderLayer::paintBackground(GraphicsContext* context, GraphicsContext* transparencyLayerContext,
const LayoutRect& transparencyPaintDirtyRect, bool haveTransparency, const LayerPaintingInfo& localPaintingInfo,
RenderObject* paintingRootForRenderer, LayoutPoint& layerLocation, ClipRect& layerBackgroundRect)
{
// Begin transparency layers lazily now that we know we have to paint something.
if (haveTransparency)
beginTransparencyLayers(transparencyLayerContext, localPaintingInfo.rootLayer, transparencyPaintDirtyRect, localPaintingInfo.subPixelAccumulation);
if (localPaintingInfo.clipToDirtyRect) {
// Paint our background first, before painting any child layers.
// Establish the clip used to paint our background.
clipToRect(localPaintingInfo, context, layerBackgroundRect, DoNotIncludeSelfForBorderRadius); // Background painting will handle clipping to self.
}
// Paint the background.
// FIXME: Eventually we will collect the region from the fragment itself instead of just from the paint info.
PaintInfo paintInfo(context, pixelSnappedIntRect(layerBackgroundRect.rect()), PaintPhaseBlockBackground, paintingRootForRenderer, 0, localPaintingInfo.rootLayer->renderer());
renderer()->paint(paintInfo, layerLocation);
if (localPaintingInfo.clipToDirtyRect)
restoreClip(context, localPaintingInfo.paintDirtyRect, layerBackgroundRect);
}
void RenderLayer::paintForeground(GraphicsContext* context, GraphicsContext* transparencyLayerContext,
const LayoutRect& transparencyPaintDirtyRect, bool haveTransparency, const LayerPaintingInfo& localPaintingInfo,
RenderObject* paintingRootForRenderer, LayoutPoint& layerLocation, ClipRect& layerForegroundRect)
{
bool foregroundRectIsEmpty = layerForegroundRect.isEmpty();
// Begin transparency if we have something to paint.
if (haveTransparency && !foregroundRectIsEmpty)
beginTransparencyLayers(transparencyLayerContext, localPaintingInfo.rootLayer, transparencyPaintDirtyRect, localPaintingInfo.subPixelAccumulation);
// Optimize clipping for the single fragment case.
bool shouldClip = localPaintingInfo.clipToDirtyRect && !foregroundRectIsEmpty;
if (shouldClip)
clipToRect(localPaintingInfo, context, layerForegroundRect);
if (!foregroundRectIsEmpty) {
// We have to loop through every fragment multiple times, since we have to issue paint invalidations in each specific phase in order for
// interleaving of the fragments to work properly.
// FIXME(sky): Do we still need this for anything now that we don't have fragments?
paintForegroundWithPhase(PaintPhaseChildBlockBackgrounds,
context, localPaintingInfo, paintingRootForRenderer,
layerLocation, layerForegroundRect);
paintForegroundWithPhase(PaintPhaseForeground,
context, localPaintingInfo, paintingRootForRenderer,
layerLocation, layerForegroundRect);
paintForegroundWithPhase(PaintPhaseChildOutlines,
context, localPaintingInfo, paintingRootForRenderer,
layerLocation, layerForegroundRect);
}
if (shouldClip)
restoreClip(context, localPaintingInfo.paintDirtyRect, layerForegroundRect);
}
void RenderLayer::paintForegroundWithPhase(PaintPhase phase, GraphicsContext* context,
const LayerPaintingInfo& localPaintingInfo, RenderObject* paintingRootForRenderer, LayoutPoint& layerLocation, ClipRect& layerForegroundRect)
{
PaintInfo paintInfo(context, pixelSnappedIntRect(layerForegroundRect.rect()), phase, paintingRootForRenderer, 0, localPaintingInfo.rootLayer->renderer());
renderer()->paint(paintInfo, layerLocation);
}
void RenderLayer::paintOutline(GraphicsContext* context, const LayerPaintingInfo& localPaintingInfo,
RenderObject* paintingRootForRenderer, LayoutPoint& layerLocation, ClipRect& layerOutlineRect)
{
if (layerOutlineRect.isEmpty())
return;
PaintInfo paintInfo(context, pixelSnappedIntRect(layerOutlineRect.rect()), PaintPhaseSelfOutline, paintingRootForRenderer, 0, localPaintingInfo.rootLayer->renderer());
clipToRect(localPaintingInfo, context, layerOutlineRect, DoNotIncludeSelfForBorderRadius);
renderer()->paint(paintInfo, layerLocation);
restoreClip(context, localPaintingInfo.paintDirtyRect, layerOutlineRect);
}
void RenderLayer::paintMask(GraphicsContext* context, const LayerPaintingInfo& localPaintingInfo,
RenderObject* paintingRootForRenderer, LayoutPoint& layerLocation, ClipRect& layerBackgroundRect)
{
if (localPaintingInfo.clipToDirtyRect)
clipToRect(localPaintingInfo, context, layerBackgroundRect, DoNotIncludeSelfForBorderRadius); // Mask painting will handle clipping to self.
// Paint the mask.
// FIXME: Eventually we will collect the region from the fragment itself instead of just from the paint info.
PaintInfo paintInfo(context, pixelSnappedIntRect(layerBackgroundRect.rect()), PaintPhaseMask, paintingRootForRenderer, 0, localPaintingInfo.rootLayer->renderer());
renderer()->paint(paintInfo, layerLocation);
if (localPaintingInfo.clipToDirtyRect)
restoreClip(context, localPaintingInfo.paintDirtyRect, layerBackgroundRect);
}
void RenderLayer::paintOverflowControls(GraphicsContext* context, const LayerPaintingInfo& localPaintingInfo, LayoutPoint& layerLocation, ClipRect& layerBackgroundRect)
{
clipToRect(localPaintingInfo, context, layerBackgroundRect);
if (RenderLayerScrollableArea* scrollableArea = this->scrollableArea())
scrollableArea->paintOverflowControls(context, roundedIntPoint(layerLocation), pixelSnappedIntRect(layerBackgroundRect.rect()), true);
restoreClip(context, localPaintingInfo.paintDirtyRect, layerBackgroundRect);
}
static inline LayoutRect frameVisibleRect(RenderObject* renderer)
{
FrameView* frameView = renderer->document().view();
if (!frameView)
return LayoutRect();
return frameView->visibleContentRect();
}
bool RenderLayer::hitTest(const HitTestRequest& request, HitTestResult& result)
{
return hitTest(request, result.hitTestLocation(), result);
}
bool RenderLayer::hitTest(const HitTestRequest& request, const HitTestLocation& hitTestLocation, HitTestResult& result)
{
ASSERT(isSelfPaintingLayer() || hasSelfPaintingLayerDescendant());
// RenderView should make sure to update layout before entering hit testing
ASSERT(!renderer()->frame()->view()->layoutPending());
ASSERT(!renderer()->document().renderView()->needsLayout());
LayoutRect hitTestArea = renderer()->view()->documentRect();
if (!request.ignoreClipping())
hitTestArea.intersect(frameVisibleRect(renderer()));
RenderLayer* insideLayer = hitTestLayer(this, 0, request, result, hitTestArea, hitTestLocation, false);
if (!insideLayer) {
// We didn't hit any layer. If we are the root layer and the mouse is -- or just was -- down,
// return ourselves. We do this so mouse events continue getting delivered after a drag has
// exited the WebView, and so hit testing over a scrollbar hits the content document.
if ((request.active() || request.release()) && isRootLayer()) {
renderer()->updateHitTestResult(result, hitTestLocation.point());
insideLayer = this;
}
}
// Now determine if the result is inside an anchor - if the urlElement isn't already set.
Node* node = result.innerNode();
if (node && !result.URLElement())
result.setURLElement(node->enclosingLinkEventParentOrSelf());
// Now return whether we were inside this layer (this will always be true for the root
// layer).
return insideLayer;
}
Node* RenderLayer::enclosingElement() const
{
for (RenderObject* r = renderer(); r; r = r->parent()) {
if (Node* e = r->node())
return e;
}
ASSERT_NOT_REACHED();
return 0;
}
// Compute the z-offset of the point in the transformState.
// This is effectively projecting a ray normal to the plane of ancestor, finding where that
// ray intersects target, and computing the z delta between those two points.
static double computeZOffset(const HitTestingTransformState& transformState)
{
// We got an affine transform, so no z-offset
if (transformState.m_accumulatedTransform.isAffine())
return 0;
// Flatten the point into the target plane
FloatPoint targetPoint = transformState.mappedPoint();
// Now map the point back through the transform, which computes Z.
FloatPoint3D backmappedPoint = transformState.m_accumulatedTransform.mapPoint(FloatPoint3D(targetPoint));
return backmappedPoint.z();
}
PassRefPtr<HitTestingTransformState> RenderLayer::createLocalTransformState(RenderLayer* rootLayer, RenderLayer* containerLayer,
const LayoutRect& hitTestRect, const HitTestLocation& hitTestLocation,
const HitTestingTransformState* containerTransformState,
const LayoutPoint& translationOffset) const
{
RefPtr<HitTestingTransformState> transformState;
LayoutPoint offset;
if (containerTransformState) {
// If we're already computing transform state, then it's relative to the container (which we know is non-null).
transformState = HitTestingTransformState::create(*containerTransformState);
convertToLayerCoords(containerLayer, offset);
} else {
// If this is the first time we need to make transform state, then base it off of hitTestLocation,
// which is relative to rootLayer.
transformState = HitTestingTransformState::create(hitTestLocation.transformedPoint(), hitTestLocation.transformedRect(), FloatQuad(hitTestRect));
convertToLayerCoords(rootLayer, offset);
}
offset.moveBy(translationOffset);
RenderObject* containerRenderer = containerLayer ? containerLayer->renderer() : 0;
if (renderer()->shouldUseTransformFromContainer(containerRenderer)) {
TransformationMatrix containerTransform;
renderer()->getTransformFromContainer(containerRenderer, toLayoutSize(offset), containerTransform);
transformState->applyTransform(containerTransform, HitTestingTransformState::AccumulateTransform);
} else {
transformState->translate(offset.x(), offset.y(), HitTestingTransformState::AccumulateTransform);
}
return transformState;
}
static bool isHitCandidate(const RenderLayer* hitLayer, bool canDepthSort, double* zOffset, const HitTestingTransformState* transformState)
{
if (!hitLayer)
return false;
// The hit layer is depth-sorting with other layers, so just say that it was hit.
if (canDepthSort)
return true;
// We need to look at z-depth to decide if this layer was hit.
if (zOffset) {
ASSERT(transformState);
// This is actually computing our z, but that's OK because the hitLayer is coplanar with us.
double childZOffset = computeZOffset(*transformState);
if (childZOffset > *zOffset) {
*zOffset = childZOffset;
return true;
}
return false;
}
return true;
}
// hitTestLocation and hitTestRect are relative to rootLayer.
// A 'flattening' layer is one preserves3D() == false.
// transformState.m_accumulatedTransform holds the transform from the containing flattening layer.
// transformState.m_lastPlanarPoint is the hitTestLocation in the plane of the containing flattening layer.
// transformState.m_lastPlanarQuad is the hitTestRect as a quad in the plane of the containing flattening layer.
//
// If zOffset is non-null (which indicates that the caller wants z offset information),
// *zOffset on return is the z offset of the hit point relative to the containing flattening layer.
RenderLayer* RenderLayer::hitTestLayer(RenderLayer* rootLayer, RenderLayer* containerLayer, const HitTestRequest& request, HitTestResult& result,
const LayoutRect& hitTestRect, const HitTestLocation& hitTestLocation, bool appliedTransform,
const HitTestingTransformState* transformState, double* zOffset)
{
if (!isSelfPaintingLayer() && !hasSelfPaintingLayerDescendant())
return 0;
// The natural thing would be to keep HitTestingTransformState on the stack, but it's big, so we heap-allocate.
// Apply a transform if we have one.
if (transform() && !appliedTransform) {
// Make sure the parent's clip rects have been calculated.
if (parent()) {
ClipRect clipRect = clipper().backgroundClipRect(ClipRectsContext(rootLayer, RootRelativeClipRects));
// Go ahead and test the enclosing clip now.
if (!clipRect.intersects(hitTestLocation))
return 0;
}
return hitTestLayerByApplyingTransform(rootLayer, containerLayer, request, result, hitTestRect, hitTestLocation, transformState, zOffset);
}
// Ensure our lists and 3d status are up-to-date.
m_stackingNode->updateLayerListsIfNeeded();
update3DTransformedDescendantStatus();
RefPtr<HitTestingTransformState> localTransformState;
if (appliedTransform) {
// We computed the correct state in the caller (above code), so just reference it.
ASSERT(transformState);
localTransformState = const_cast<HitTestingTransformState*>(transformState);
} else if (transformState || m_has3DTransformedDescendant || preserves3D()) {
// We need transform state for the first time, or to offset the container state, so create it here.
localTransformState = createLocalTransformState(rootLayer, containerLayer, hitTestRect, hitTestLocation, transformState);
}
// Check for hit test on backface if backface-visibility is 'hidden'
if (localTransformState && renderer()->style()->backfaceVisibility() == BackfaceVisibilityHidden) {
TransformationMatrix invertedMatrix = localTransformState->m_accumulatedTransform.inverse();
// If the z-vector of the matrix is negative, the back is facing towards the viewer.
if (invertedMatrix.m33() < 0)
return 0;
}
RefPtr<HitTestingTransformState> unflattenedTransformState = localTransformState;
if (localTransformState && !preserves3D()) {
// Keep a copy of the pre-flattening state, for computing z-offsets for the container
unflattenedTransformState = HitTestingTransformState::create(*localTransformState);
// This layer is flattening, so flatten the state passed to descendants.
localTransformState->flatten();
}
// The following are used for keeping track of the z-depth of the hit point of 3d-transformed
// descendants.
double localZOffset = -std::numeric_limits<double>::infinity();
double* zOffsetForDescendantsPtr = 0;
double* zOffsetForContentsPtr = 0;
bool depthSortDescendants = false;
if (preserves3D()) {
depthSortDescendants = true;
// Our layers can depth-test with our container, so share the z depth pointer with the container, if it passed one down.
zOffsetForDescendantsPtr = zOffset ? zOffset : &localZOffset;
zOffsetForContentsPtr = zOffset ? zOffset : &localZOffset;
} else if (zOffset) {
zOffsetForDescendantsPtr = 0;
// Container needs us to give back a z offset for the hit layer.
zOffsetForContentsPtr = zOffset;
}
// This variable tracks which layer the mouse ends up being inside.
RenderLayer* candidateLayer = 0;
// Begin by walking our list of positive layers from highest z-index down to the lowest z-index.
RenderLayer* hitLayer = hitTestChildren(PositiveZOrderChildren, rootLayer, request, result, hitTestRect, hitTestLocation,
localTransformState.get(), zOffsetForDescendantsPtr, zOffset, unflattenedTransformState.get(), depthSortDescendants);
if (hitLayer) {
if (!depthSortDescendants)
return hitLayer;
candidateLayer = hitLayer;
}
// Now check our overflow objects.
hitLayer = hitTestChildren(NormalFlowChildren, rootLayer, request, result, hitTestRect, hitTestLocation,
localTransformState.get(), zOffsetForDescendantsPtr, zOffset, unflattenedTransformState.get(), depthSortDescendants);
if (hitLayer) {
if (!depthSortDescendants)
return hitLayer;
candidateLayer = hitLayer;
}
LayoutRect layerBounds;
ClipRect backgroundRect, foregroundRect, outlineRect;
ClipRectsContext clipRectsContext(rootLayer, RootRelativeClipRects);
clipper().calculateRects(clipRectsContext, hitTestRect, layerBounds, backgroundRect, foregroundRect, outlineRect);
// Next we want to see if the mouse pos is inside the child RenderObjects of the layer.
if (isSelfPaintingLayer() && foregroundRect.intersects(hitTestLocation)) {
// Hit test with a temporary HitTestResult, because we only want to commit to 'result' if we know we're frontmost.
HitTestResult tempResult(result.hitTestLocation());
if (hitTestContents(request, tempResult, layerBounds, hitTestLocation, HitTestDescendants)
&& isHitCandidate(this, false, zOffsetForContentsPtr, unflattenedTransformState.get())) {
if (result.isRectBasedTest())
result.append(tempResult);
else
result = tempResult;
if (!depthSortDescendants)
return this;
// Foreground can depth-sort with descendant layers, so keep this as a candidate.
candidateLayer = this;
} else if (result.isRectBasedTest()) {
result.append(tempResult);
}
}
// Now check our negative z-index children.
hitLayer = hitTestChildren(NegativeZOrderChildren, rootLayer, request, result, hitTestRect, hitTestLocation,
localTransformState.get(), zOffsetForDescendantsPtr, zOffset, unflattenedTransformState.get(), depthSortDescendants);
if (hitLayer) {
if (!depthSortDescendants)
return hitLayer;
candidateLayer = hitLayer;
}
// If we found a layer, return. Child layers, and foreground always render in front of background.
if (candidateLayer)
return candidateLayer;
if (isSelfPaintingLayer() && backgroundRect.intersects(hitTestLocation)) {
HitTestResult tempResult(result.hitTestLocation());
if (hitTestContents(request, tempResult, layerBounds, hitTestLocation, HitTestSelf)
&& isHitCandidate(this, false, zOffsetForContentsPtr, unflattenedTransformState.get())) {
if (result.isRectBasedTest())
result.append(tempResult);
else
result = tempResult;
return this;
}
if (result.isRectBasedTest())
result.append(tempResult);
}
return 0;
}
RenderLayer* RenderLayer::hitTestLayerByApplyingTransform(RenderLayer* rootLayer, RenderLayer* containerLayer, const HitTestRequest& request, HitTestResult& result,
const LayoutRect& hitTestRect, const HitTestLocation& hitTestLocation, const HitTestingTransformState* transformState, double* zOffset,
const LayoutPoint& translationOffset)
{
// Create a transform state to accumulate this transform.
RefPtr<HitTestingTransformState> newTransformState = createLocalTransformState(rootLayer, containerLayer, hitTestRect, hitTestLocation, transformState, translationOffset);
// If the transform can't be inverted, then don't hit test this layer at all.
if (!newTransformState->m_accumulatedTransform.isInvertible())
return 0;
// Compute the point and the hit test rect in the coords of this layer by using the values
// from the transformState, which store the point and quad in the coords of the last flattened
// layer, and the accumulated transform which lets up map through preserve-3d layers.
//
// We can't just map hitTestLocation and hitTestRect because they may have been flattened (losing z)
// by our container.
FloatPoint localPoint = newTransformState->mappedPoint();
FloatQuad localPointQuad = newTransformState->mappedQuad();
LayoutRect localHitTestRect = newTransformState->boundsOfMappedArea();
HitTestLocation newHitTestLocation;
if (hitTestLocation.isRectBasedTest())
newHitTestLocation = HitTestLocation(localPoint, localPointQuad);
else
newHitTestLocation = HitTestLocation(localPoint);
// Now do a hit test with the root layer shifted to be us.
return hitTestLayer(this, containerLayer, request, result, localHitTestRect, newHitTestLocation, true, newTransformState.get(), zOffset);
}
bool RenderLayer::hitTestContents(const HitTestRequest& request, HitTestResult& result, const LayoutRect& layerBounds, const HitTestLocation& hitTestLocation, HitTestFilter hitTestFilter) const
{
ASSERT(isSelfPaintingLayer() || hasSelfPaintingLayerDescendant());
if (!renderer()->hitTest(request, result, hitTestLocation, toLayoutPoint(layerBounds.location() - renderBoxLocation()), hitTestFilter)) {
// It's wrong to set innerNode, but then claim that you didn't hit anything, unless it is
// a rect-based test.
ASSERT(!result.innerNode() || (result.isRectBasedTest() && result.rectBasedTestResult().size()));
return false;
}
// For positioned generated content, we might still not have a
// node by the time we get to the layer level, since none of
// the content in the layer has an element. So just walk up
// the tree.
if (!result.innerNode() || !result.innerNonSharedNode()) {
Node* e = enclosingElement();
if (!result.innerNode())
result.setInnerNode(e);
if (!result.innerNonSharedNode())
result.setInnerNonSharedNode(e);
}
return true;
}
RenderLayer* RenderLayer::hitTestChildren(ChildrenIteration childrentoVisit, RenderLayer* rootLayer,
const HitTestRequest& request, HitTestResult& result,
const LayoutRect& hitTestRect, const HitTestLocation& hitTestLocation,
const HitTestingTransformState* transformState,
double* zOffsetForDescendants, double* zOffset,
const HitTestingTransformState* unflattenedTransformState,
bool depthSortDescendants)
{
if (!hasSelfPaintingLayerDescendant())
return 0;
RenderLayer* resultLayer = 0;
RenderLayerStackingNodeReverseIterator iterator(*m_stackingNode, childrentoVisit);
while (RenderLayerStackingNode* child = iterator.next()) {
RenderLayer* childLayer = child->layer();
RenderLayer* hitLayer = 0;
HitTestResult tempResult(result.hitTestLocation());
hitLayer = childLayer->hitTestLayer(rootLayer, this, request, tempResult, hitTestRect, hitTestLocation, false, transformState, zOffsetForDescendants);
// If it a rect-based test, we can safely append the temporary result since it might had hit
// nodes but not necesserily had hitLayer set.
if (result.isRectBasedTest())
result.append(tempResult);
if (isHitCandidate(hitLayer, depthSortDescendants, zOffset, unflattenedTransformState)) {
resultLayer = hitLayer;
if (!result.isRectBasedTest())
result = tempResult;
if (!depthSortDescendants)
break;
}
}
return resultLayer;
}
bool RenderLayer::intersectsDamageRect(const LayoutRect& layerBounds, const LayoutRect& damageRect, const RenderLayer* rootLayer, const LayoutPoint* offsetFromRoot) const
{
// Always examine the canvas and the root.
// FIXME: Could eliminate the isDocumentElement() check if we fix background painting so that the RenderView
// paints the root's background.
if (isRootLayer() || renderer()->isDocumentElement())
return true;
// If we aren't an inline flow, and our layer bounds do intersect the damage rect, then we
// can go ahead and return true.
RenderView* view = renderer()->view();
ASSERT(view);
if (view && !renderer()->isRenderInline()) {
if (layerBounds.intersects(damageRect))
return true;
}
// Otherwise we need to compute the bounding box of this single layer and see if it intersects
// the damage rect.
return physicalBoundingBox(rootLayer, offsetFromRoot).intersects(damageRect);
}
LayoutRect RenderLayer::logicalBoundingBox() const
{
// There are three special cases we need to consider.
// (1) Inline Flows. For inline flows we will create a bounding box that fully encompasses all of the lines occupied by the
// inline. In other words, if some <span> wraps to three lines, we'll create a bounding box that fully encloses the
// line boxes of all three lines (including overflow on those lines).
// (2) Left/Top Overflow. The width/height of layers already includes right/bottom overflow. However, in the case of left/top
// overflow, we have to create a bounding box that will extend to include this overflow.
// (3) Floats. When a layer has overhanging floats that it paints, we need to make sure to include these overhanging floats
// as part of our bounding box. We do this because we are the responsible layer for both hit testing and painting those
// floats.
LayoutRect result;
if (renderer()->isInline() && renderer()->isRenderInline()) {
result = toRenderInline(renderer())->linesVisualOverflowBoundingBox();
} else {
RenderBox* box = renderBox();
ASSERT(box);
result = box->borderBoxRect();
result.unite(box->visualOverflowRect());
}
ASSERT(renderer()->view());
return result;
}
LayoutRect RenderLayer::physicalBoundingBox(const RenderLayer* ancestorLayer, const LayoutPoint* offsetFromRoot) const
{
LayoutPoint delta;
if (offsetFromRoot)
delta = *offsetFromRoot;
else
convertToLayerCoords(ancestorLayer, delta);
LayoutRect result = logicalBoundingBox();
result.moveBy(delta);
return result;
}
static void expandRectForReflectionAndStackingChildren(const RenderLayer* ancestorLayer, RenderLayer::CalculateBoundsOptions options, LayoutRect& result)
{
ASSERT(ancestorLayer->stackingNode()->isStackingContext() || !ancestorLayer->stackingNode()->hasPositiveZOrderList());
#if ENABLE(ASSERT)
LayerListMutationDetector mutationChecker(const_cast<RenderLayer*>(ancestorLayer)->stackingNode());
#endif
RenderLayerStackingNodeIterator iterator(*ancestorLayer->stackingNode(), AllChildren);
while (RenderLayerStackingNode* node = iterator.next()) {
result.unite(node->layer()->boundingBoxForCompositing(ancestorLayer, options));
}
}
LayoutRect RenderLayer::physicalBoundingBoxIncludingReflectionAndStackingChildren(const RenderLayer* ancestorLayer, const LayoutPoint& offsetFromRoot) const
{
LayoutPoint origin;
LayoutRect result = physicalBoundingBox(ancestorLayer, &origin);
const_cast<RenderLayer*>(this)->stackingNode()->updateLayerListsIfNeeded();
expandRectForReflectionAndStackingChildren(this, DoNotApplyBoundsChickenEggHacks, result);
result.moveBy(offsetFromRoot);
return result;
}
LayoutRect RenderLayer::boundingBoxForCompositing(const RenderLayer* ancestorLayer, CalculateBoundsOptions options) const
{
if (!isSelfPaintingLayer())
return LayoutRect();
if (!ancestorLayer)
ancestorLayer = this;
// The root layer is always just the size of the document.
if (isRootLayer())
return m_renderer->view()->unscaledDocumentRect();
const bool shouldIncludeTransform = paintsWithTransform() || (options == ApplyBoundsChickenEggHacks && transform());
LayoutRect localClipRect = clipper().localClipRect();
if (localClipRect != PaintInfo::infiniteRect()) {
if (shouldIncludeTransform)
localClipRect = transform()->mapRect(localClipRect);
LayoutPoint delta;
convertToLayerCoords(ancestorLayer, delta);
localClipRect.moveBy(delta);
return localClipRect;
}
LayoutPoint origin;
LayoutRect result = physicalBoundingBox(ancestorLayer, &origin);
const_cast<RenderLayer*>(this)->stackingNode()->updateLayerListsIfNeeded();
expandRectForReflectionAndStackingChildren(this, options, result);
// FIXME: We can optimize the size of the composited layers, by not enlarging
// filtered areas with the outsets if we know that the filter is going to render in hardware.
// https://bugs.webkit.org/show_bug.cgi?id=81239
m_renderer->style()->filterOutsets().expandRect(result);
if (shouldIncludeTransform)
result = transform()->mapRect(result);
LayoutPoint delta;
convertToLayerCoords(ancestorLayer, delta);
result.moveBy(delta);
return result;
}
bool RenderLayer::paintsWithTransform() const
{
// FIXME(sky): Remove
return transform();
}
bool RenderLayer::shouldBeSelfPaintingLayer() const
{
return m_layerType == NormalLayer
|| (m_scrollableArea && m_scrollableArea->hasOverlayScrollbars())
|| needsCompositedScrolling();
}
void RenderLayer::updateSelfPaintingLayer()
{
bool isSelfPaintingLayer = shouldBeSelfPaintingLayer();
if (this->isSelfPaintingLayer() == isSelfPaintingLayer)
return;
m_isSelfPaintingLayer = isSelfPaintingLayer;
if (parent())
parent()->dirtyAncestorChainHasSelfPaintingLayerDescendantStatus();
}
bool RenderLayer::hasNonEmptyChildRenderers() const
{
// Some HTML can cause whitespace text nodes to have renderers, like:
// <div>
// <img src=...>
// </div>
// so test for 0x0 RenderTexts here
for (RenderObject* child = renderer()->slowFirstChild(); child; child = child->nextSibling()) {
if (!child->hasLayer()) {
if (child->isRenderInline() || !child->isBox())
return true;
if (toRenderBox(child)->width() > 0 || toRenderBox(child)->height() > 0)
return true;
}
}
return false;
}
bool RenderLayer::hasBoxDecorationsOrBackground() const
{
return renderer()->style()->hasBoxDecorations() || renderer()->style()->hasBackground();
}
bool RenderLayer::hasVisibleBoxDecorations() const
{
return hasBoxDecorationsOrBackground() || hasOverflowControls();
}
bool RenderLayer::isVisuallyNonEmpty() const
{
if (hasNonEmptyChildRenderers())
return true;
if (renderer()->isReplaced() || renderer()->hasMask())
return true;
if (hasVisibleBoxDecorations())
return true;
return false;
}
void RenderLayer::updateFilters(const RenderStyle* oldStyle, const RenderStyle* newStyle)
{
if (!newStyle->hasFilter() && (!oldStyle || !oldStyle->hasFilter()))
return;
updateOrRemoveFilterClients();
updateOrRemoveFilterEffectRenderer();
}
void RenderLayer::styleChanged(StyleDifference diff, const RenderStyle* oldStyle)
{
m_stackingNode->updateIsNormalFlowOnly();
m_stackingNode->updateStackingNodesAfterStyleChange(oldStyle);
if (m_scrollableArea)
m_scrollableArea->updateAfterStyleChange(oldStyle);
// Overlay scrollbars can make this layer self-painting so we need
// to recompute the bit once scrollbars have been updated.
updateSelfPaintingLayer();
updateTransform(oldStyle, renderer()->style());
updateFilters(oldStyle, renderer()->style());
}
bool RenderLayer::scrollsOverflow() const
{
if (RenderLayerScrollableArea* scrollableArea = this->scrollableArea())
return scrollableArea->scrollsOverflow();
return false;
}
FilterOperations RenderLayer::computeFilterOperations(const RenderStyle* style)
{
return style->filter();
}
void RenderLayer::updateOrRemoveFilterClients()
{
if (!hasFilter()) {
removeFilterInfoIfNeeded();
return;
}
if (renderer()->style()->filter().hasReferenceFilter())
ensureFilterInfo()->updateReferenceFilterClients(renderer()->style()->filter());
else if (hasFilterInfo())
filterInfo()->removeReferenceFilterClients();
}
void RenderLayer::updateOrRemoveFilterEffectRenderer()
{
// FilterEffectRenderer is only used to render the filters in software mode,
// so we always need to run updateOrRemoveFilterEffectRenderer after the composited
// mode might have changed for this layer.
if (!paintsWithFilters()) {
// Don't delete the whole filter info here, because we might use it
// for loading CSS shader files.
if (RenderLayerFilterInfo* filterInfo = this->filterInfo())
filterInfo->setRenderer(nullptr);
return;
}
RenderLayerFilterInfo* filterInfo = ensureFilterInfo();
if (!filterInfo->renderer()) {
RefPtr<FilterEffectRenderer> filterRenderer = FilterEffectRenderer::create();
filterInfo->setRenderer(filterRenderer.release());
// We can optimize away code paths in other places if we know that there are no software filters.
renderer()->document().view()->setHasSoftwareFilters(true);
}
// If the filter fails to build, remove it from the layer. It will still attempt to
// go through regular processing (e.g. compositing), but never apply anything.
if (!filterInfo->renderer()->build(renderer(), computeFilterOperations(renderer()->style())))
filterInfo->setRenderer(nullptr);
}
} // namespace blink
#ifndef NDEBUG
void showLayerTree(const blink::RenderLayer* layer)
{
if (!layer)
return;
if (blink::LocalFrame* frame = layer->renderer()->frame()) {
WTF::String output = externalRepresentation(frame, blink::RenderAsTextShowAllLayers | blink::RenderAsTextShowLayerNesting | blink::RenderAsTextShowCompositedLayers | blink::RenderAsTextShowAddresses | blink::RenderAsTextShowIDAndClass | blink::RenderAsTextDontUpdateLayout | blink::RenderAsTextShowLayoutState);
fprintf(stderr, "%s\n", output.utf8().data());
}
}
void showLayerTree(const blink::RenderObject* renderer)
{
if (!renderer)
return;
showLayerTree(renderer->enclosingLayer());
}
#endif