| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/quic/quic_session.h" |
| |
| #include <set> |
| #include <vector> |
| |
| #include "base/basictypes.h" |
| #include "base/containers/hash_tables.h" |
| #include "base/rand_util.h" |
| #include "base/stl_util.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "net/quic/crypto/crypto_protocol.h" |
| #include "net/quic/quic_crypto_stream.h" |
| #include "net/quic/quic_flags.h" |
| #include "net/quic/quic_protocol.h" |
| #include "net/quic/quic_utils.h" |
| #include "net/quic/reliable_quic_stream.h" |
| #include "net/quic/test_tools/quic_config_peer.h" |
| #include "net/quic/test_tools/quic_connection_peer.h" |
| #include "net/quic/test_tools/quic_data_stream_peer.h" |
| #include "net/quic/test_tools/quic_flow_controller_peer.h" |
| #include "net/quic/test_tools/quic_session_peer.h" |
| #include "net/quic/test_tools/quic_test_utils.h" |
| #include "net/quic/test_tools/reliable_quic_stream_peer.h" |
| #include "net/spdy/spdy_framer.h" |
| #include "net/test/gtest_util.h" |
| #include "testing/gmock/include/gmock/gmock.h" |
| #include "testing/gmock_mutant.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| using base::hash_map; |
| using std::set; |
| using std::vector; |
| using testing::CreateFunctor; |
| using testing::InSequence; |
| using testing::Invoke; |
| using testing::Return; |
| using testing::StrictMock; |
| using testing::_; |
| |
| namespace net { |
| namespace test { |
| namespace { |
| |
| const QuicPriority kHighestPriority = 0; |
| const QuicPriority kSomeMiddlePriority = 3; |
| |
| class TestCryptoStream : public QuicCryptoStream { |
| public: |
| explicit TestCryptoStream(QuicSession* session) |
| : QuicCryptoStream(session) { |
| } |
| |
| virtual void OnHandshakeMessage( |
| const CryptoHandshakeMessage& message) override { |
| encryption_established_ = true; |
| handshake_confirmed_ = true; |
| CryptoHandshakeMessage msg; |
| string error_details; |
| session()->config()->SetInitialFlowControlWindowToSend( |
| kInitialSessionFlowControlWindowForTest); |
| session()->config()->SetInitialStreamFlowControlWindowToSend( |
| kInitialStreamFlowControlWindowForTest); |
| session()->config()->SetInitialSessionFlowControlWindowToSend( |
| kInitialSessionFlowControlWindowForTest); |
| session()->config()->ToHandshakeMessage(&msg); |
| const QuicErrorCode error = session()->config()->ProcessPeerHello( |
| msg, CLIENT, &error_details); |
| EXPECT_EQ(QUIC_NO_ERROR, error); |
| session()->OnConfigNegotiated(); |
| session()->OnCryptoHandshakeEvent(QuicSession::HANDSHAKE_CONFIRMED); |
| } |
| |
| MOCK_METHOD0(OnCanWrite, void()); |
| }; |
| |
| class TestHeadersStream : public QuicHeadersStream { |
| public: |
| explicit TestHeadersStream(QuicSession* session) |
| : QuicHeadersStream(session) { |
| } |
| |
| MOCK_METHOD0(OnCanWrite, void()); |
| }; |
| |
| class TestStream : public QuicDataStream { |
| public: |
| TestStream(QuicStreamId id, QuicSession* session) |
| : QuicDataStream(id, session) { |
| } |
| |
| using ReliableQuicStream::CloseWriteSide; |
| |
| virtual uint32 ProcessData(const char* data, uint32 data_len) override { |
| return data_len; |
| } |
| |
| void SendBody(const string& data, bool fin) { |
| WriteOrBufferData(data, fin, nullptr); |
| } |
| |
| MOCK_METHOD0(OnCanWrite, void()); |
| }; |
| |
| // Poor man's functor for use as callback in a mock. |
| class StreamBlocker { |
| public: |
| StreamBlocker(QuicSession* session, QuicStreamId stream_id) |
| : session_(session), |
| stream_id_(stream_id) { |
| } |
| |
| void MarkWriteBlocked() { |
| session_->MarkWriteBlocked(stream_id_, kSomeMiddlePriority); |
| } |
| |
| private: |
| QuicSession* const session_; |
| const QuicStreamId stream_id_; |
| }; |
| |
| class TestSession : public QuicSession { |
| public: |
| explicit TestSession(QuicConnection* connection) |
| : QuicSession(connection, DefaultQuicConfig()), |
| crypto_stream_(this), |
| writev_consumes_all_data_(false) { |
| InitializeSession(); |
| } |
| |
| virtual TestCryptoStream* GetCryptoStream() override { |
| return &crypto_stream_; |
| } |
| |
| virtual TestStream* CreateOutgoingDataStream() override { |
| TestStream* stream = new TestStream(GetNextStreamId(), this); |
| ActivateStream(stream); |
| return stream; |
| } |
| |
| virtual TestStream* CreateIncomingDataStream(QuicStreamId id) override { |
| return new TestStream(id, this); |
| } |
| |
| bool IsClosedStream(QuicStreamId id) { |
| return QuicSession::IsClosedStream(id); |
| } |
| |
| QuicDataStream* GetIncomingDataStream(QuicStreamId stream_id) { |
| return QuicSession::GetIncomingDataStream(stream_id); |
| } |
| |
| virtual QuicConsumedData WritevData( |
| QuicStreamId id, |
| const IOVector& data, |
| QuicStreamOffset offset, |
| bool fin, |
| FecProtection fec_protection, |
| QuicAckNotifier::DelegateInterface* ack_notifier_delegate) override { |
| // Always consumes everything. |
| if (writev_consumes_all_data_) { |
| return QuicConsumedData(data.TotalBufferSize(), fin); |
| } else { |
| return QuicSession::WritevData(id, data, offset, fin, fec_protection, |
| ack_notifier_delegate); |
| } |
| } |
| |
| void set_writev_consumes_all_data(bool val) { |
| writev_consumes_all_data_ = val; |
| } |
| |
| QuicConsumedData SendStreamData(QuicStreamId id) { |
| return WritevData(id, IOVector(), 0, true, MAY_FEC_PROTECT, nullptr); |
| } |
| |
| using QuicSession::PostProcessAfterData; |
| |
| private: |
| StrictMock<TestCryptoStream> crypto_stream_; |
| |
| bool writev_consumes_all_data_; |
| }; |
| |
| class QuicSessionTest : public ::testing::TestWithParam<QuicVersion> { |
| protected: |
| QuicSessionTest() |
| : connection_(new MockConnection(true, SupportedVersions(GetParam()))), |
| session_(connection_) { |
| session_.config()->SetInitialFlowControlWindowToSend( |
| kInitialSessionFlowControlWindowForTest); |
| session_.config()->SetInitialStreamFlowControlWindowToSend( |
| kInitialStreamFlowControlWindowForTest); |
| session_.config()->SetInitialSessionFlowControlWindowToSend( |
| kInitialSessionFlowControlWindowForTest); |
| headers_[":host"] = "www.google.com"; |
| headers_[":path"] = "/index.hml"; |
| headers_[":scheme"] = "http"; |
| headers_["cookie"] = |
| "__utma=208381060.1228362404.1372200928.1372200928.1372200928.1; " |
| "__utmc=160408618; " |
| "GX=DQAAAOEAAACWJYdewdE9rIrW6qw3PtVi2-d729qaa-74KqOsM1NVQblK4VhX" |
| "hoALMsy6HOdDad2Sz0flUByv7etmo3mLMidGrBoljqO9hSVA40SLqpG_iuKKSHX" |
| "RW3Np4bq0F0SDGDNsW0DSmTS9ufMRrlpARJDS7qAI6M3bghqJp4eABKZiRqebHT" |
| "pMU-RXvTI5D5oCF1vYxYofH_l1Kviuiy3oQ1kS1enqWgbhJ2t61_SNdv-1XJIS0" |
| "O3YeHLmVCs62O6zp89QwakfAWK9d3IDQvVSJzCQsvxvNIvaZFa567MawWlXg0Rh" |
| "1zFMi5vzcns38-8_Sns; " |
| "GA=v*2%2Fmem*57968640*47239936%2Fmem*57968640*47114716%2Fno-nm-" |
| "yj*15%2Fno-cc-yj*5%2Fpc-ch*133685%2Fpc-s-cr*133947%2Fpc-s-t*1339" |
| "47%2Fno-nm-yj*4%2Fno-cc-yj*1%2Fceft-as*1%2Fceft-nqas*0%2Fad-ra-c" |
| "v_p%2Fad-nr-cv_p-f*1%2Fad-v-cv_p*859%2Fad-ns-cv_p-f*1%2Ffn-v-ad%" |
| "2Fpc-t*250%2Fpc-cm*461%2Fpc-s-cr*722%2Fpc-s-t*722%2Fau_p*4" |
| "SICAID=AJKiYcHdKgxum7KMXG0ei2t1-W4OD1uW-ecNsCqC0wDuAXiDGIcT_HA2o1" |
| "3Rs1UKCuBAF9g8rWNOFbxt8PSNSHFuIhOo2t6bJAVpCsMU5Laa6lewuTMYI8MzdQP" |
| "ARHKyW-koxuhMZHUnGBJAM1gJODe0cATO_KGoX4pbbFxxJ5IicRxOrWK_5rU3cdy6" |
| "edlR9FsEdH6iujMcHkbE5l18ehJDwTWmBKBzVD87naobhMMrF6VvnDGxQVGp9Ir_b" |
| "Rgj3RWUoPumQVCxtSOBdX0GlJOEcDTNCzQIm9BSfetog_eP_TfYubKudt5eMsXmN6" |
| "QnyXHeGeK2UINUzJ-D30AFcpqYgH9_1BvYSpi7fc7_ydBU8TaD8ZRxvtnzXqj0RfG" |
| "tuHghmv3aD-uzSYJ75XDdzKdizZ86IG6Fbn1XFhYZM-fbHhm3mVEXnyRW4ZuNOLFk" |
| "Fas6LMcVC6Q8QLlHYbXBpdNFuGbuZGUnav5C-2I_-46lL0NGg3GewxGKGHvHEfoyn" |
| "EFFlEYHsBQ98rXImL8ySDycdLEFvBPdtctPmWCfTxwmoSMLHU2SCVDhbqMWU5b0yr" |
| "JBCScs_ejbKaqBDoB7ZGxTvqlrB__2ZmnHHjCr8RgMRtKNtIeuZAo "; |
| } |
| |
| void CheckClosedStreams() { |
| for (int i = kCryptoStreamId; i < 100; i++) { |
| if (!ContainsKey(closed_streams_, i)) { |
| EXPECT_FALSE(session_.IsClosedStream(i)) << " stream id: " << i; |
| } else { |
| EXPECT_TRUE(session_.IsClosedStream(i)) << " stream id: " << i; |
| } |
| } |
| } |
| |
| void CloseStream(QuicStreamId id) { |
| session_.CloseStream(id); |
| closed_streams_.insert(id); |
| } |
| |
| QuicVersion version() const { return connection_->version(); } |
| |
| MockConnection* connection_; |
| TestSession session_; |
| set<QuicStreamId> closed_streams_; |
| SpdyHeaderBlock headers_; |
| }; |
| |
| INSTANTIATE_TEST_CASE_P(Tests, QuicSessionTest, |
| ::testing::ValuesIn(QuicSupportedVersions())); |
| |
| TEST_P(QuicSessionTest, PeerAddress) { |
| EXPECT_EQ(IPEndPoint(Loopback4(), kTestPort), session_.peer_address()); |
| } |
| |
| TEST_P(QuicSessionTest, IsCryptoHandshakeConfirmed) { |
| EXPECT_FALSE(session_.IsCryptoHandshakeConfirmed()); |
| CryptoHandshakeMessage message; |
| session_.GetCryptoStream()->OnHandshakeMessage(message); |
| EXPECT_TRUE(session_.IsCryptoHandshakeConfirmed()); |
| } |
| |
| TEST_P(QuicSessionTest, IsClosedStreamDefault) { |
| // Ensure that no streams are initially closed. |
| for (int i = kCryptoStreamId; i < 100; i++) { |
| EXPECT_FALSE(session_.IsClosedStream(i)) << "stream id: " << i; |
| } |
| } |
| |
| TEST_P(QuicSessionTest, ImplicitlyCreatedStreams) { |
| ASSERT_TRUE(session_.GetIncomingDataStream(7) != nullptr); |
| // Both 3 and 5 should be implicitly created. |
| EXPECT_FALSE(session_.IsClosedStream(3)); |
| EXPECT_FALSE(session_.IsClosedStream(5)); |
| ASSERT_TRUE(session_.GetIncomingDataStream(5) != nullptr); |
| ASSERT_TRUE(session_.GetIncomingDataStream(3) != nullptr); |
| } |
| |
| TEST_P(QuicSessionTest, IsClosedStreamLocallyCreated) { |
| TestStream* stream2 = session_.CreateOutgoingDataStream(); |
| EXPECT_EQ(2u, stream2->id()); |
| TestStream* stream4 = session_.CreateOutgoingDataStream(); |
| EXPECT_EQ(4u, stream4->id()); |
| |
| CheckClosedStreams(); |
| CloseStream(4); |
| CheckClosedStreams(); |
| CloseStream(2); |
| CheckClosedStreams(); |
| } |
| |
| TEST_P(QuicSessionTest, IsClosedStreamPeerCreated) { |
| QuicStreamId stream_id1 = kClientDataStreamId1; |
| QuicStreamId stream_id2 = kClientDataStreamId2; |
| QuicDataStream* stream1 = session_.GetIncomingDataStream(stream_id1); |
| QuicDataStreamPeer::SetHeadersDecompressed(stream1, true); |
| QuicDataStream* stream2 = session_.GetIncomingDataStream(stream_id2); |
| QuicDataStreamPeer::SetHeadersDecompressed(stream2, true); |
| |
| CheckClosedStreams(); |
| CloseStream(stream_id1); |
| CheckClosedStreams(); |
| CloseStream(stream_id2); |
| // Create a stream explicitly, and another implicitly. |
| QuicDataStream* stream3 = session_.GetIncomingDataStream(stream_id2 + 4); |
| QuicDataStreamPeer::SetHeadersDecompressed(stream3, true); |
| CheckClosedStreams(); |
| // Close one, but make sure the other is still not closed |
| CloseStream(stream3->id()); |
| CheckClosedStreams(); |
| } |
| |
| TEST_P(QuicSessionTest, StreamIdTooLarge) { |
| QuicStreamId stream_id = kClientDataStreamId1; |
| session_.GetIncomingDataStream(stream_id); |
| EXPECT_CALL(*connection_, SendConnectionClose(QUIC_INVALID_STREAM_ID)); |
| session_.GetIncomingDataStream(stream_id + kMaxStreamIdDelta + 2); |
| } |
| |
| TEST_P(QuicSessionTest, DecompressionError) { |
| QuicHeadersStream* stream = QuicSessionPeer::GetHeadersStream(&session_); |
| const unsigned char data[] = { |
| 0x80, 0x03, 0x00, 0x01, // SPDY/3 SYN_STREAM frame |
| 0x00, 0x00, 0x00, 0x25, // flags/length |
| 0x00, 0x00, 0x00, 0x05, // stream id |
| 0x00, 0x00, 0x00, 0x00, // associated stream id |
| 0x00, 0x00, |
| 'a', 'b', 'c', 'd' // invalid compressed data |
| }; |
| EXPECT_CALL(*connection_, |
| SendConnectionCloseWithDetails(QUIC_INVALID_HEADERS_STREAM_DATA, |
| "SPDY framing error.")); |
| stream->ProcessRawData(reinterpret_cast<const char*>(data), |
| arraysize(data)); |
| } |
| |
| TEST_P(QuicSessionTest, DebugDFatalIfMarkingClosedStreamWriteBlocked) { |
| TestStream* stream2 = session_.CreateOutgoingDataStream(); |
| // Close the stream. |
| stream2->Reset(QUIC_BAD_APPLICATION_PAYLOAD); |
| // TODO(rtenneti): enable when chromium supports EXPECT_DEBUG_DFATAL. |
| /* |
| QuicStreamId kClosedStreamId = stream2->id(); |
| EXPECT_DEBUG_DFATAL( |
| session_.MarkWriteBlocked(kClosedStreamId, kSomeMiddlePriority), |
| "Marking unknown stream 2 blocked."); |
| */ |
| } |
| |
| TEST_P(QuicSessionTest, DebugDFatalIfMarkWriteBlockedCalledWithWrongPriority) { |
| const QuicPriority kDifferentPriority = 0; |
| |
| TestStream* stream2 = session_.CreateOutgoingDataStream(); |
| EXPECT_NE(kDifferentPriority, stream2->EffectivePriority()); |
| // TODO(rtenneti): enable when chromium supports EXPECT_DEBUG_DFATAL. |
| /* |
| EXPECT_DEBUG_DFATAL( |
| session_.MarkWriteBlocked(stream2->id(), kDifferentPriority), |
| "Priorities do not match. Got: 0 Expected: 3"); |
| */ |
| } |
| |
| TEST_P(QuicSessionTest, OnCanWrite) { |
| TestStream* stream2 = session_.CreateOutgoingDataStream(); |
| TestStream* stream4 = session_.CreateOutgoingDataStream(); |
| TestStream* stream6 = session_.CreateOutgoingDataStream(); |
| |
| session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority); |
| session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority); |
| session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority); |
| |
| InSequence s; |
| StreamBlocker stream2_blocker(&session_, stream2->id()); |
| // Reregister, to test the loop limit. |
| EXPECT_CALL(*stream2, OnCanWrite()) |
| .WillOnce(Invoke(&stream2_blocker, &StreamBlocker::MarkWriteBlocked)); |
| EXPECT_CALL(*stream6, OnCanWrite()); |
| EXPECT_CALL(*stream4, OnCanWrite()); |
| session_.OnCanWrite(); |
| EXPECT_TRUE(session_.WillingAndAbleToWrite()); |
| } |
| |
| TEST_P(QuicSessionTest, OnCanWriteBundlesStreams) { |
| // Drive congestion control manually. |
| MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>; |
| QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); |
| |
| TestStream* stream2 = session_.CreateOutgoingDataStream(); |
| TestStream* stream4 = session_.CreateOutgoingDataStream(); |
| TestStream* stream6 = session_.CreateOutgoingDataStream(); |
| |
| session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority); |
| session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority); |
| session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority); |
| |
| EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillRepeatedly( |
| Return(QuicTime::Delta::Zero())); |
| EXPECT_CALL(*send_algorithm, GetCongestionWindow()) |
| .WillRepeatedly(Return(kMaxPacketSize * 10)); |
| EXPECT_CALL(*stream2, OnCanWrite()) |
| .WillOnce(IgnoreResult(Invoke(CreateFunctor( |
| &session_, &TestSession::SendStreamData, stream2->id())))); |
| EXPECT_CALL(*stream4, OnCanWrite()) |
| .WillOnce(IgnoreResult(Invoke(CreateFunctor( |
| &session_, &TestSession::SendStreamData, stream4->id())))); |
| EXPECT_CALL(*stream6, OnCanWrite()) |
| .WillOnce(IgnoreResult(Invoke(CreateFunctor( |
| &session_, &TestSession::SendStreamData, stream6->id())))); |
| |
| // Expect that we only send one packet, the writes from different streams |
| // should be bundled together. |
| MockPacketWriter* writer = |
| static_cast<MockPacketWriter*>( |
| QuicConnectionPeer::GetWriter(session_.connection())); |
| EXPECT_CALL(*writer, WritePacket(_, _, _, _)).WillOnce( |
| Return(WriteResult(WRITE_STATUS_OK, 0))); |
| EXPECT_CALL(*send_algorithm, OnPacketSent(_, _, _, _, _)).Times(1); |
| session_.OnCanWrite(); |
| EXPECT_FALSE(session_.WillingAndAbleToWrite()); |
| } |
| |
| TEST_P(QuicSessionTest, OnCanWriteCongestionControlBlocks) { |
| InSequence s; |
| |
| // Drive congestion control manually. |
| MockSendAlgorithm* send_algorithm = new StrictMock<MockSendAlgorithm>; |
| QuicConnectionPeer::SetSendAlgorithm(session_.connection(), send_algorithm); |
| |
| TestStream* stream2 = session_.CreateOutgoingDataStream(); |
| TestStream* stream4 = session_.CreateOutgoingDataStream(); |
| TestStream* stream6 = session_.CreateOutgoingDataStream(); |
| |
| session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority); |
| session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority); |
| session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority); |
| |
| StreamBlocker stream2_blocker(&session_, stream2->id()); |
| EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return( |
| QuicTime::Delta::Zero())); |
| EXPECT_CALL(*stream2, OnCanWrite()); |
| EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return( |
| QuicTime::Delta::Zero())); |
| EXPECT_CALL(*stream6, OnCanWrite()); |
| EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return( |
| QuicTime::Delta::Infinite())); |
| // stream4->OnCanWrite is not called. |
| |
| session_.OnCanWrite(); |
| EXPECT_TRUE(session_.WillingAndAbleToWrite()); |
| |
| // Still congestion-control blocked. |
| EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return( |
| QuicTime::Delta::Infinite())); |
| session_.OnCanWrite(); |
| EXPECT_TRUE(session_.WillingAndAbleToWrite()); |
| |
| // stream4->OnCanWrite is called once the connection stops being |
| // congestion-control blocked. |
| EXPECT_CALL(*send_algorithm, TimeUntilSend(_, _, _)).WillOnce(Return( |
| QuicTime::Delta::Zero())); |
| EXPECT_CALL(*stream4, OnCanWrite()); |
| session_.OnCanWrite(); |
| EXPECT_FALSE(session_.WillingAndAbleToWrite()); |
| } |
| |
| TEST_P(QuicSessionTest, BufferedHandshake) { |
| EXPECT_FALSE(session_.HasPendingHandshake()); // Default value. |
| |
| // Test that blocking other streams does not change our status. |
| TestStream* stream2 = session_.CreateOutgoingDataStream(); |
| StreamBlocker stream2_blocker(&session_, stream2->id()); |
| stream2_blocker.MarkWriteBlocked(); |
| EXPECT_FALSE(session_.HasPendingHandshake()); |
| |
| TestStream* stream3 = session_.CreateOutgoingDataStream(); |
| StreamBlocker stream3_blocker(&session_, stream3->id()); |
| stream3_blocker.MarkWriteBlocked(); |
| EXPECT_FALSE(session_.HasPendingHandshake()); |
| |
| // Blocking (due to buffering of) the Crypto stream is detected. |
| session_.MarkWriteBlocked(kCryptoStreamId, kHighestPriority); |
| EXPECT_TRUE(session_.HasPendingHandshake()); |
| |
| TestStream* stream4 = session_.CreateOutgoingDataStream(); |
| StreamBlocker stream4_blocker(&session_, stream4->id()); |
| stream4_blocker.MarkWriteBlocked(); |
| EXPECT_TRUE(session_.HasPendingHandshake()); |
| |
| InSequence s; |
| // Force most streams to re-register, which is common scenario when we block |
| // the Crypto stream, and only the crypto stream can "really" write. |
| |
| // Due to prioritization, we *should* be asked to write the crypto stream |
| // first. |
| // Don't re-register the crypto stream (which signals complete writing). |
| TestCryptoStream* crypto_stream = session_.GetCryptoStream(); |
| EXPECT_CALL(*crypto_stream, OnCanWrite()); |
| |
| // Re-register all other streams, to show they weren't able to proceed. |
| EXPECT_CALL(*stream2, OnCanWrite()) |
| .WillOnce(Invoke(&stream2_blocker, &StreamBlocker::MarkWriteBlocked)); |
| EXPECT_CALL(*stream3, OnCanWrite()) |
| .WillOnce(Invoke(&stream3_blocker, &StreamBlocker::MarkWriteBlocked)); |
| EXPECT_CALL(*stream4, OnCanWrite()) |
| .WillOnce(Invoke(&stream4_blocker, &StreamBlocker::MarkWriteBlocked)); |
| |
| session_.OnCanWrite(); |
| EXPECT_TRUE(session_.WillingAndAbleToWrite()); |
| EXPECT_FALSE(session_.HasPendingHandshake()); // Crypto stream wrote. |
| } |
| |
| TEST_P(QuicSessionTest, OnCanWriteWithClosedStream) { |
| TestStream* stream2 = session_.CreateOutgoingDataStream(); |
| TestStream* stream4 = session_.CreateOutgoingDataStream(); |
| TestStream* stream6 = session_.CreateOutgoingDataStream(); |
| |
| session_.MarkWriteBlocked(stream2->id(), kSomeMiddlePriority); |
| session_.MarkWriteBlocked(stream6->id(), kSomeMiddlePriority); |
| session_.MarkWriteBlocked(stream4->id(), kSomeMiddlePriority); |
| CloseStream(stream6->id()); |
| |
| InSequence s; |
| EXPECT_CALL(*stream2, OnCanWrite()); |
| EXPECT_CALL(*stream4, OnCanWrite()); |
| session_.OnCanWrite(); |
| EXPECT_FALSE(session_.WillingAndAbleToWrite()); |
| } |
| |
| TEST_P(QuicSessionTest, OnCanWriteLimitsNumWritesIfFlowControlBlocked) { |
| // Ensure connection level flow control blockage. |
| QuicFlowControllerPeer::SetSendWindowOffset(session_.flow_controller(), 0); |
| EXPECT_TRUE(session_.flow_controller()->IsBlocked()); |
| EXPECT_TRUE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| |
| // Mark the crypto and headers streams as write blocked, we expect them to be |
| // allowed to write later. |
| session_.MarkWriteBlocked(kCryptoStreamId, kHighestPriority); |
| session_.MarkWriteBlocked(kHeadersStreamId, kHighestPriority); |
| |
| // Create a data stream, and although it is write blocked we never expect it |
| // to be allowed to write as we are connection level flow control blocked. |
| TestStream* stream = session_.CreateOutgoingDataStream(); |
| session_.MarkWriteBlocked(stream->id(), kSomeMiddlePriority); |
| EXPECT_CALL(*stream, OnCanWrite()).Times(0); |
| |
| // The crypto and headers streams should be called even though we are |
| // connection flow control blocked. |
| TestCryptoStream* crypto_stream = session_.GetCryptoStream(); |
| EXPECT_CALL(*crypto_stream, OnCanWrite()).Times(1); |
| TestHeadersStream* headers_stream = new TestHeadersStream(&session_); |
| QuicSessionPeer::SetHeadersStream(&session_, headers_stream); |
| EXPECT_CALL(*headers_stream, OnCanWrite()).Times(1); |
| |
| session_.OnCanWrite(); |
| EXPECT_FALSE(session_.WillingAndAbleToWrite()); |
| } |
| |
| TEST_P(QuicSessionTest, SendGoAway) { |
| EXPECT_CALL(*connection_, |
| SendGoAway(QUIC_PEER_GOING_AWAY, 0u, "Going Away.")); |
| session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); |
| EXPECT_TRUE(session_.goaway_sent()); |
| |
| EXPECT_CALL(*connection_, |
| SendRstStream(3u, QUIC_STREAM_PEER_GOING_AWAY, 0)).Times(0); |
| EXPECT_TRUE(session_.GetIncomingDataStream(3u)); |
| } |
| |
| TEST_P(QuicSessionTest, DoNotSendGoAwayTwice) { |
| EXPECT_CALL(*connection_, |
| SendGoAway(QUIC_PEER_GOING_AWAY, 0u, "Going Away.")).Times(1); |
| session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); |
| EXPECT_TRUE(session_.goaway_sent()); |
| session_.SendGoAway(QUIC_PEER_GOING_AWAY, "Going Away."); |
| } |
| |
| TEST_P(QuicSessionTest, IncreasedTimeoutAfterCryptoHandshake) { |
| EXPECT_EQ(kInitialIdleTimeoutSecs + 3, |
| QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds()); |
| CryptoHandshakeMessage msg; |
| session_.GetCryptoStream()->OnHandshakeMessage(msg); |
| EXPECT_EQ(kMaximumIdleTimeoutSecs + 3, |
| QuicConnectionPeer::GetNetworkTimeout(connection_).ToSeconds()); |
| } |
| |
| TEST_P(QuicSessionTest, RstStreamBeforeHeadersDecompressed) { |
| // Send two bytes of payload. |
| QuicStreamFrame data1(kClientDataStreamId1, false, 0, MakeIOVector("HT")); |
| vector<QuicStreamFrame> frames; |
| frames.push_back(data1); |
| session_.OnStreamFrames(frames); |
| EXPECT_EQ(1u, session_.GetNumOpenStreams()); |
| |
| QuicRstStreamFrame rst1(kClientDataStreamId1, QUIC_STREAM_NO_ERROR, 0); |
| session_.OnRstStream(rst1); |
| EXPECT_EQ(0u, session_.GetNumOpenStreams()); |
| // Connection should remain alive. |
| EXPECT_TRUE(connection_->connected()); |
| } |
| |
| TEST_P(QuicSessionTest, MultipleRstStreamsCauseSingleConnectionClose) { |
| // If multiple invalid reset stream frames arrive in a single packet, this |
| // should trigger a connection close. However there is no need to send |
| // multiple connection close frames. |
| |
| // Create valid stream. |
| QuicStreamFrame data1(kClientDataStreamId1, false, 0, MakeIOVector("HT")); |
| vector<QuicStreamFrame> frames; |
| frames.push_back(data1); |
| session_.OnStreamFrames(frames); |
| EXPECT_EQ(1u, session_.GetNumOpenStreams()); |
| |
| // Process first invalid stream reset, resulting in the connection being |
| // closed. |
| EXPECT_CALL(*connection_, SendConnectionClose(QUIC_INVALID_STREAM_ID)) |
| .Times(1); |
| QuicStreamId kLargeInvalidStreamId = 99999999; |
| QuicRstStreamFrame rst1(kLargeInvalidStreamId, QUIC_STREAM_NO_ERROR, 0); |
| session_.OnRstStream(rst1); |
| QuicConnectionPeer::CloseConnection(connection_); |
| |
| // Processing of second invalid stream reset should not result in the |
| // connection being closed for a second time. |
| QuicRstStreamFrame rst2(kLargeInvalidStreamId, QUIC_STREAM_NO_ERROR, 0); |
| session_.OnRstStream(rst2); |
| } |
| |
| TEST_P(QuicSessionTest, HandshakeUnblocksFlowControlBlockedStream) { |
| // Test that if a stream is flow control blocked, then on receipt of the SHLO |
| // containing a suitable send window offset, the stream becomes unblocked. |
| |
| // Ensure that Writev consumes all the data it is given (simulate no socket |
| // blocking). |
| session_.set_writev_consumes_all_data(true); |
| |
| // Create a stream, and send enough data to make it flow control blocked. |
| TestStream* stream2 = session_.CreateOutgoingDataStream(); |
| string body(kDefaultFlowControlSendWindow, '.'); |
| EXPECT_FALSE(stream2->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| stream2->SendBody(body, false); |
| EXPECT_TRUE(stream2->flow_controller()->IsBlocked()); |
| EXPECT_TRUE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); |
| |
| // The handshake message will call OnCanWrite, so the stream can resume |
| // writing. |
| EXPECT_CALL(*stream2, OnCanWrite()); |
| // Now complete the crypto handshake, resulting in an increased flow control |
| // send window. |
| CryptoHandshakeMessage msg; |
| session_.GetCryptoStream()->OnHandshakeMessage(msg); |
| |
| // Stream is now unblocked. |
| EXPECT_FALSE(stream2->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| } |
| |
| TEST_P(QuicSessionTest, HandshakeUnblocksFlowControlBlockedCryptoStream) { |
| if (version() <= QUIC_VERSION_19) { |
| return; |
| } |
| // Test that if the crypto stream is flow control blocked, then if the SHLO |
| // contains a larger send window offset, the stream becomes unblocked. |
| session_.set_writev_consumes_all_data(true); |
| TestCryptoStream* crypto_stream = session_.GetCryptoStream(); |
| EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| QuicHeadersStream* headers_stream = |
| QuicSessionPeer::GetHeadersStream(&session_); |
| EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| // Write until the crypto stream is flow control blocked. |
| int i = 0; |
| while (!crypto_stream->flow_controller()->IsBlocked() && i < 1000) { |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| QuicConfig config; |
| CryptoHandshakeMessage crypto_message; |
| config.ToHandshakeMessage(&crypto_message); |
| crypto_stream->SendHandshakeMessage(crypto_message); |
| ++i; |
| } |
| EXPECT_TRUE(crypto_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); |
| EXPECT_FALSE(session_.HasDataToWrite()); |
| EXPECT_TRUE(crypto_stream->HasBufferedData()); |
| |
| // The handshake message will call OnCanWrite, so the stream can |
| // resume writing. |
| EXPECT_CALL(*crypto_stream, OnCanWrite()); |
| // Now complete the crypto handshake, resulting in an increased flow control |
| // send window. |
| CryptoHandshakeMessage msg; |
| session_.GetCryptoStream()->OnHandshakeMessage(msg); |
| |
| // Stream is now unblocked and will no longer have buffered data. |
| EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| } |
| |
| TEST_P(QuicSessionTest, HandshakeUnblocksFlowControlBlockedHeadersStream) { |
| if (version() <= QUIC_VERSION_19) { |
| return; |
| } |
| // Test that if the header stream is flow control blocked, then if the SHLO |
| // contains a larger send window offset, the stream becomes unblocked. |
| session_.set_writev_consumes_all_data(true); |
| TestCryptoStream* crypto_stream = session_.GetCryptoStream(); |
| EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| QuicHeadersStream* headers_stream = |
| QuicSessionPeer::GetHeadersStream(&session_); |
| EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| QuicStreamId stream_id = 5; |
| // Write until the header stream is flow control blocked. |
| SpdyHeaderBlock headers; |
| while (!headers_stream->flow_controller()->IsBlocked() && stream_id < 2000) { |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| headers["header"] = base::Uint64ToString(base::RandUint64()) + |
| base::Uint64ToString(base::RandUint64()) + |
| base::Uint64ToString(base::RandUint64()); |
| headers_stream->WriteHeaders(stream_id, headers, true, nullptr); |
| stream_id += 2; |
| } |
| // Write once more to ensure that the headers stream has buffered data. The |
| // random headers may have exactly filled the flow control window. |
| headers_stream->WriteHeaders(stream_id, headers, true, nullptr); |
| EXPECT_TRUE(headers_stream->HasBufferedData()); |
| |
| EXPECT_TRUE(headers_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(crypto_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); |
| EXPECT_FALSE(session_.HasDataToWrite()); |
| |
| // Now complete the crypto handshake, resulting in an increased flow control |
| // send window. |
| CryptoHandshakeMessage msg; |
| session_.GetCryptoStream()->OnHandshakeMessage(msg); |
| |
| // Stream is now unblocked and will no longer have buffered data. |
| EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| EXPECT_FALSE(headers_stream->HasBufferedData()); |
| } |
| |
| TEST_P(QuicSessionTest, InvalidFlowControlWindowInHandshake) { |
| // TODO(rjshade): Remove this test when removing QUIC_VERSION_19. |
| // Test that receipt of an invalid (< default) flow control window from |
| // the peer results in the connection being torn down. |
| if (version() > QUIC_VERSION_19) { |
| return; |
| } |
| |
| uint32 kInvalidWindow = kDefaultFlowControlSendWindow - 1; |
| QuicConfigPeer::SetReceivedInitialFlowControlWindow(session_.config(), |
| kInvalidWindow); |
| |
| EXPECT_CALL(*connection_, |
| SendConnectionClose(QUIC_FLOW_CONTROL_INVALID_WINDOW)).Times(2); |
| session_.OnConfigNegotiated(); |
| } |
| |
| TEST_P(QuicSessionTest, ConnectionFlowControlAccountingRstOutOfOrder) { |
| // Test that when we receive an out of order stream RST we correctly adjust |
| // our connection level flow control receive window. |
| // On close, the stream should mark as consumed all bytes between the highest |
| // byte consumed so far and the final byte offset from the RST frame. |
| TestStream* stream = session_.CreateOutgoingDataStream(); |
| |
| const QuicStreamOffset kByteOffset = |
| 1 + kInitialSessionFlowControlWindowForTest / 2; |
| |
| // Expect no stream WINDOW_UPDATE frames, as stream read side closed. |
| EXPECT_CALL(*connection_, SendWindowUpdate(stream->id(), _)).Times(0); |
| // We do expect a connection level WINDOW_UPDATE when the stream is reset. |
| EXPECT_CALL(*connection_, |
| SendWindowUpdate(0, kInitialSessionFlowControlWindowForTest + |
| kByteOffset)).Times(1); |
| |
| QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED, |
| kByteOffset); |
| session_.OnRstStream(rst_frame); |
| session_.PostProcessAfterData(); |
| EXPECT_EQ(kByteOffset, session_.flow_controller()->bytes_consumed()); |
| } |
| |
| TEST_P(QuicSessionTest, ConnectionFlowControlAccountingFinAndLocalReset) { |
| // Test the situation where we receive a FIN on a stream, and before we fully |
| // consume all the data from the sequencer buffer we locally RST the stream. |
| // The bytes between highest consumed byte, and the final byte offset that we |
| // determined when the FIN arrived, should be marked as consumed at the |
| // connection level flow controller when the stream is reset. |
| TestStream* stream = session_.CreateOutgoingDataStream(); |
| |
| const QuicStreamOffset kByteOffset = |
| 1 + kInitialSessionFlowControlWindowForTest / 2; |
| QuicStreamFrame frame(stream->id(), true, kByteOffset, IOVector()); |
| vector<QuicStreamFrame> frames; |
| frames.push_back(frame); |
| session_.OnStreamFrames(frames); |
| session_.PostProcessAfterData(); |
| |
| EXPECT_EQ(0u, stream->flow_controller()->bytes_consumed()); |
| EXPECT_EQ(kByteOffset, |
| stream->flow_controller()->highest_received_byte_offset()); |
| |
| // We only expect to see a connection WINDOW_UPDATE when talking |
| // QUIC_VERSION_19, as in this case both stream and session flow control |
| // windows are the same size. In later versions we will not see a connection |
| // level WINDOW_UPDATE when exhausting a stream, as the stream flow control |
| // limit is much lower than the connection flow control limit. |
| if (version() == QUIC_VERSION_19) { |
| // Expect no stream WINDOW_UPDATE frames, as stream read side closed. |
| EXPECT_CALL(*connection_, SendWindowUpdate(stream->id(), _)).Times(0); |
| // We do expect a connection level WINDOW_UPDATE when the stream is reset. |
| EXPECT_CALL(*connection_, |
| SendWindowUpdate(0, kInitialSessionFlowControlWindowForTest + |
| kByteOffset)).Times(1); |
| } |
| |
| // Reset stream locally. |
| stream->Reset(QUIC_STREAM_CANCELLED); |
| EXPECT_EQ(kByteOffset, session_.flow_controller()->bytes_consumed()); |
| } |
| |
| TEST_P(QuicSessionTest, ConnectionFlowControlAccountingFinAfterRst) { |
| // Test that when we RST the stream (and tear down stream state), and then |
| // receive a FIN from the peer, we correctly adjust our connection level flow |
| // control receive window. |
| |
| // Connection starts with some non-zero highest received byte offset, |
| // due to other active streams. |
| const uint64 kInitialConnectionBytesConsumed = 567; |
| const uint64 kInitialConnectionHighestReceivedOffset = 1234; |
| EXPECT_LT(kInitialConnectionBytesConsumed, |
| kInitialConnectionHighestReceivedOffset); |
| session_.flow_controller()->UpdateHighestReceivedOffset( |
| kInitialConnectionHighestReceivedOffset); |
| session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed); |
| |
| // Reset our stream: this results in the stream being closed locally. |
| TestStream* stream = session_.CreateOutgoingDataStream(); |
| stream->Reset(QUIC_STREAM_CANCELLED); |
| |
| // Now receive a response from the peer with a FIN. We should handle this by |
| // adjusting the connection level flow control receive window to take into |
| // account the total number of bytes sent by the peer. |
| const QuicStreamOffset kByteOffset = 5678; |
| string body = "hello"; |
| IOVector data = MakeIOVector(body); |
| QuicStreamFrame frame(stream->id(), true, kByteOffset, data); |
| vector<QuicStreamFrame> frames; |
| frames.push_back(frame); |
| session_.OnStreamFrames(frames); |
| |
| QuicStreamOffset total_stream_bytes_sent_by_peer = |
| kByteOffset + body.length(); |
| EXPECT_EQ(kInitialConnectionBytesConsumed + total_stream_bytes_sent_by_peer, |
| session_.flow_controller()->bytes_consumed()); |
| EXPECT_EQ( |
| kInitialConnectionHighestReceivedOffset + total_stream_bytes_sent_by_peer, |
| session_.flow_controller()->highest_received_byte_offset()); |
| } |
| |
| TEST_P(QuicSessionTest, ConnectionFlowControlAccountingRstAfterRst) { |
| // Test that when we RST the stream (and tear down stream state), and then |
| // receive a RST from the peer, we correctly adjust our connection level flow |
| // control receive window. |
| |
| // Connection starts with some non-zero highest received byte offset, |
| // due to other active streams. |
| const uint64 kInitialConnectionBytesConsumed = 567; |
| const uint64 kInitialConnectionHighestReceivedOffset = 1234; |
| EXPECT_LT(kInitialConnectionBytesConsumed, |
| kInitialConnectionHighestReceivedOffset); |
| session_.flow_controller()->UpdateHighestReceivedOffset( |
| kInitialConnectionHighestReceivedOffset); |
| session_.flow_controller()->AddBytesConsumed(kInitialConnectionBytesConsumed); |
| |
| // Reset our stream: this results in the stream being closed locally. |
| TestStream* stream = session_.CreateOutgoingDataStream(); |
| stream->Reset(QUIC_STREAM_CANCELLED); |
| |
| // Now receive a RST from the peer. We should handle this by adjusting the |
| // connection level flow control receive window to take into account the total |
| // number of bytes sent by the peer. |
| const QuicStreamOffset kByteOffset = 5678; |
| QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED, |
| kByteOffset); |
| session_.OnRstStream(rst_frame); |
| |
| EXPECT_EQ(kInitialConnectionBytesConsumed + kByteOffset, |
| session_.flow_controller()->bytes_consumed()); |
| EXPECT_EQ(kInitialConnectionHighestReceivedOffset + kByteOffset, |
| session_.flow_controller()->highest_received_byte_offset()); |
| } |
| |
| TEST_P(QuicSessionTest, InvalidStreamFlowControlWindowInHandshake) { |
| // Test that receipt of an invalid (< default) stream flow control window from |
| // the peer results in the connection being torn down. |
| if (version() <= QUIC_VERSION_19) { |
| return; |
| } |
| |
| uint32 kInvalidWindow = kDefaultFlowControlSendWindow - 1; |
| QuicConfigPeer::SetReceivedInitialStreamFlowControlWindow(session_.config(), |
| kInvalidWindow); |
| |
| EXPECT_CALL(*connection_, |
| SendConnectionClose(QUIC_FLOW_CONTROL_INVALID_WINDOW)); |
| session_.OnConfigNegotiated(); |
| } |
| |
| TEST_P(QuicSessionTest, InvalidSessionFlowControlWindowInHandshake) { |
| // Test that receipt of an invalid (< default) session flow control window |
| // from the peer results in the connection being torn down. |
| if (version() == QUIC_VERSION_19) { |
| return; |
| } |
| |
| uint32 kInvalidWindow = kDefaultFlowControlSendWindow - 1; |
| QuicConfigPeer::SetReceivedInitialSessionFlowControlWindow(session_.config(), |
| kInvalidWindow); |
| |
| EXPECT_CALL(*connection_, |
| SendConnectionClose(QUIC_FLOW_CONTROL_INVALID_WINDOW)); |
| session_.OnConfigNegotiated(); |
| } |
| |
| TEST_P(QuicSessionTest, FlowControlWithInvalidFinalOffset) { |
| // Test that if we receive a stream RST with a highest byte offset that |
| // violates flow control, that we close the connection. |
| const uint64 kLargeOffset = kInitialSessionFlowControlWindowForTest + 1; |
| EXPECT_CALL(*connection_, |
| SendConnectionClose(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA)) |
| .Times(2); |
| |
| // Check that stream frame + FIN results in connection close. |
| TestStream* stream = session_.CreateOutgoingDataStream(); |
| stream->Reset(QUIC_STREAM_CANCELLED); |
| QuicStreamFrame frame(stream->id(), true, kLargeOffset, IOVector()); |
| vector<QuicStreamFrame> frames; |
| frames.push_back(frame); |
| session_.OnStreamFrames(frames); |
| |
| // Check that RST results in connection close. |
| QuicRstStreamFrame rst_frame(stream->id(), QUIC_STREAM_CANCELLED, |
| kLargeOffset); |
| session_.OnRstStream(rst_frame); |
| } |
| |
| TEST_P(QuicSessionTest, WindowUpdateUnblocksHeadersStream) { |
| // Test that a flow control blocked headers stream gets unblocked on recipt of |
| // a WINDOW_UPDATE frame. Regression test for b/17413860. |
| if (version() < QUIC_VERSION_21) { |
| return; |
| } |
| |
| // Set the headers stream to be flow control blocked. |
| QuicHeadersStream* headers_stream = |
| QuicSessionPeer::GetHeadersStream(&session_); |
| QuicFlowControllerPeer::SetSendWindowOffset(headers_stream->flow_controller(), |
| 0); |
| EXPECT_TRUE(headers_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_TRUE(session_.IsStreamFlowControlBlocked()); |
| |
| // Unblock the headers stream by supplying a WINDOW_UPDATE. |
| QuicWindowUpdateFrame window_update_frame(headers_stream->id(), |
| 2 * kDefaultFlowControlSendWindow); |
| vector<QuicWindowUpdateFrame> frames; |
| frames.push_back(window_update_frame); |
| session_.OnWindowUpdateFrames(frames); |
| EXPECT_FALSE(headers_stream->flow_controller()->IsBlocked()); |
| EXPECT_FALSE(session_.IsConnectionFlowControlBlocked()); |
| EXPECT_FALSE(session_.IsStreamFlowControlBlocked()); |
| } |
| |
| TEST_P(QuicSessionTest, TooManyUnfinishedStreamsCauseConnectionClose) { |
| // If a buggy/malicious peer creates too many streams that are not ended with |
| // a FIN or RST then we send a connection close. |
| EXPECT_CALL(*connection_, |
| SendConnectionClose(QUIC_TOO_MANY_UNFINISHED_STREAMS)).Times(1); |
| |
| const int kMaxStreams = 5; |
| QuicSessionPeer::SetMaxOpenStreams(&session_, kMaxStreams); |
| |
| // Create kMaxStreams + 1 data streams, and close them all without receiving a |
| // FIN or a RST from the client. |
| const int kFirstStreamId = kClientDataStreamId1; |
| const int kFinalStreamId = kClientDataStreamId1 + 2 * kMaxStreams + 1; |
| for (int i = kFirstStreamId; i < kFinalStreamId; i += 2) { |
| QuicStreamFrame data1(i, false, 0, MakeIOVector("HT")); |
| vector<QuicStreamFrame> frames; |
| frames.push_back(data1); |
| session_.OnStreamFrames(frames); |
| EXPECT_EQ(1u, session_.GetNumOpenStreams()); |
| session_.CloseStream(i); |
| } |
| |
| // Called after any new data is received by the session, and triggers the call |
| // to close the connection. |
| session_.PostProcessAfterData(); |
| } |
| |
| } // namespace |
| } // namespace test |
| } // namespace net |