| import copy |
| |
| from Cython.Compiler import (ExprNodes, PyrexTypes, MemoryView, |
| ParseTreeTransforms, StringEncoding, |
| Errors) |
| from Cython.Compiler.ExprNodes import CloneNode, ProxyNode, TupleNode |
| from Cython.Compiler.Nodes import (FuncDefNode, CFuncDefNode, StatListNode, |
| DefNode) |
| |
| class FusedCFuncDefNode(StatListNode): |
| """ |
| This node replaces a function with fused arguments. It deep-copies the |
| function for every permutation of fused types, and allocates a new local |
| scope for it. It keeps track of the original function in self.node, and |
| the entry of the original function in the symbol table is given the |
| 'fused_cfunction' attribute which points back to us. |
| Then when a function lookup occurs (to e.g. call it), the call can be |
| dispatched to the right function. |
| |
| node FuncDefNode the original function |
| nodes [FuncDefNode] list of copies of node with different specific types |
| py_func DefNode the fused python function subscriptable from |
| Python space |
| __signatures__ A DictNode mapping signature specialization strings |
| to PyCFunction nodes |
| resulting_fused_function PyCFunction for the fused DefNode that delegates |
| to specializations |
| fused_func_assignment Assignment of the fused function to the function name |
| defaults_tuple TupleNode of defaults (letting PyCFunctionNode build |
| defaults would result in many different tuples) |
| specialized_pycfuncs List of synthesized pycfunction nodes for the |
| specializations |
| code_object CodeObjectNode shared by all specializations and the |
| fused function |
| |
| fused_compound_types All fused (compound) types (e.g. floating[:]) |
| """ |
| |
| __signatures__ = None |
| resulting_fused_function = None |
| fused_func_assignment = None |
| defaults_tuple = None |
| decorators = None |
| |
| child_attrs = StatListNode.child_attrs + [ |
| '__signatures__', 'resulting_fused_function', 'fused_func_assignment'] |
| |
| def __init__(self, node, env): |
| super(FusedCFuncDefNode, self).__init__(node.pos) |
| |
| self.nodes = [] |
| self.node = node |
| |
| is_def = isinstance(self.node, DefNode) |
| if is_def: |
| # self.node.decorators = [] |
| self.copy_def(env) |
| else: |
| self.copy_cdef(env) |
| |
| # Perform some sanity checks. If anything fails, it's a bug |
| for n in self.nodes: |
| assert not n.entry.type.is_fused |
| assert not n.local_scope.return_type.is_fused |
| if node.return_type.is_fused: |
| assert not n.return_type.is_fused |
| |
| if not is_def and n.cfunc_declarator.optional_arg_count: |
| assert n.type.op_arg_struct |
| |
| node.entry.fused_cfunction = self |
| # Copy the nodes as AnalyseDeclarationsTransform will prepend |
| # self.py_func to self.stats, as we only want specialized |
| # CFuncDefNodes in self.nodes |
| self.stats = self.nodes[:] |
| |
| def copy_def(self, env): |
| """ |
| Create a copy of the original def or lambda function for specialized |
| versions. |
| """ |
| fused_compound_types = PyrexTypes.unique( |
| [arg.type for arg in self.node.args if arg.type.is_fused]) |
| permutations = PyrexTypes.get_all_specialized_permutations(fused_compound_types) |
| |
| self.fused_compound_types = fused_compound_types |
| |
| if self.node.entry in env.pyfunc_entries: |
| env.pyfunc_entries.remove(self.node.entry) |
| |
| for cname, fused_to_specific in permutations: |
| copied_node = copy.deepcopy(self.node) |
| |
| self._specialize_function_args(copied_node.args, fused_to_specific) |
| copied_node.return_type = self.node.return_type.specialize( |
| fused_to_specific) |
| |
| copied_node.analyse_declarations(env) |
| # copied_node.is_staticmethod = self.node.is_staticmethod |
| # copied_node.is_classmethod = self.node.is_classmethod |
| self.create_new_local_scope(copied_node, env, fused_to_specific) |
| self.specialize_copied_def(copied_node, cname, self.node.entry, |
| fused_to_specific, fused_compound_types) |
| |
| PyrexTypes.specialize_entry(copied_node.entry, cname) |
| copied_node.entry.used = True |
| env.entries[copied_node.entry.name] = copied_node.entry |
| |
| if not self.replace_fused_typechecks(copied_node): |
| break |
| |
| self.orig_py_func = self.node |
| self.py_func = self.make_fused_cpdef(self.node, env, is_def=True) |
| |
| def copy_cdef(self, env): |
| """ |
| Create a copy of the original c(p)def function for all specialized |
| versions. |
| """ |
| permutations = self.node.type.get_all_specialized_permutations() |
| # print 'Node %s has %d specializations:' % (self.node.entry.name, |
| # len(permutations)) |
| # import pprint; pprint.pprint([d for cname, d in permutations]) |
| |
| if self.node.entry in env.cfunc_entries: |
| env.cfunc_entries.remove(self.node.entry) |
| |
| # Prevent copying of the python function |
| self.orig_py_func = orig_py_func = self.node.py_func |
| self.node.py_func = None |
| if orig_py_func: |
| env.pyfunc_entries.remove(orig_py_func.entry) |
| |
| fused_types = self.node.type.get_fused_types() |
| self.fused_compound_types = fused_types |
| |
| for cname, fused_to_specific in permutations: |
| copied_node = copy.deepcopy(self.node) |
| |
| # Make the types in our CFuncType specific |
| type = copied_node.type.specialize(fused_to_specific) |
| entry = copied_node.entry |
| |
| copied_node.type = type |
| entry.type, type.entry = type, entry |
| |
| entry.used = (entry.used or |
| self.node.entry.defined_in_pxd or |
| env.is_c_class_scope or |
| entry.is_cmethod) |
| |
| if self.node.cfunc_declarator.optional_arg_count: |
| self.node.cfunc_declarator.declare_optional_arg_struct( |
| type, env, fused_cname=cname) |
| |
| copied_node.return_type = type.return_type |
| self.create_new_local_scope(copied_node, env, fused_to_specific) |
| |
| # Make the argument types in the CFuncDeclarator specific |
| self._specialize_function_args(copied_node.cfunc_declarator.args, |
| fused_to_specific) |
| |
| type.specialize_entry(entry, cname) |
| env.cfunc_entries.append(entry) |
| |
| # If a cpdef, declare all specialized cpdefs (this |
| # also calls analyse_declarations) |
| copied_node.declare_cpdef_wrapper(env) |
| if copied_node.py_func: |
| env.pyfunc_entries.remove(copied_node.py_func.entry) |
| |
| self.specialize_copied_def( |
| copied_node.py_func, cname, self.node.entry.as_variable, |
| fused_to_specific, fused_types) |
| |
| if not self.replace_fused_typechecks(copied_node): |
| break |
| |
| if orig_py_func: |
| self.py_func = self.make_fused_cpdef(orig_py_func, env, |
| is_def=False) |
| else: |
| self.py_func = orig_py_func |
| |
| def _specialize_function_args(self, args, fused_to_specific): |
| for arg in args: |
| if arg.type.is_fused: |
| arg.type = arg.type.specialize(fused_to_specific) |
| if arg.type.is_memoryviewslice: |
| MemoryView.validate_memslice_dtype(arg.pos, arg.type.dtype) |
| |
| def create_new_local_scope(self, node, env, f2s): |
| """ |
| Create a new local scope for the copied node and append it to |
| self.nodes. A new local scope is needed because the arguments with the |
| fused types are aready in the local scope, and we need the specialized |
| entries created after analyse_declarations on each specialized version |
| of the (CFunc)DefNode. |
| f2s is a dict mapping each fused type to its specialized version |
| """ |
| node.create_local_scope(env) |
| node.local_scope.fused_to_specific = f2s |
| |
| # This is copied from the original function, set it to false to |
| # stop recursion |
| node.has_fused_arguments = False |
| self.nodes.append(node) |
| |
| def specialize_copied_def(self, node, cname, py_entry, f2s, fused_types): |
| """Specialize the copy of a DefNode given the copied node, |
| the specialization cname and the original DefNode entry""" |
| type_strings = [ |
| PyrexTypes.specialization_signature_string(fused_type, f2s) |
| for fused_type in fused_types |
| ] |
| |
| node.specialized_signature_string = '|'.join(type_strings) |
| |
| node.entry.pymethdef_cname = PyrexTypes.get_fused_cname( |
| cname, node.entry.pymethdef_cname) |
| node.entry.doc = py_entry.doc |
| node.entry.doc_cname = py_entry.doc_cname |
| |
| def replace_fused_typechecks(self, copied_node): |
| """ |
| Branch-prune fused type checks like |
| |
| if fused_t is int: |
| ... |
| |
| Returns whether an error was issued and whether we should stop in |
| in order to prevent a flood of errors. |
| """ |
| num_errors = Errors.num_errors |
| transform = ParseTreeTransforms.ReplaceFusedTypeChecks( |
| copied_node.local_scope) |
| transform(copied_node) |
| |
| if Errors.num_errors > num_errors: |
| return False |
| |
| return True |
| |
| def _fused_instance_checks(self, normal_types, pyx_code, env): |
| """ |
| Genereate Cython code for instance checks, matching an object to |
| specialized types. |
| """ |
| if_ = 'if' |
| for specialized_type in normal_types: |
| # all_numeric = all_numeric and specialized_type.is_numeric |
| py_type_name = specialized_type.py_type_name() |
| specialized_type_name = specialized_type.specialization_string |
| pyx_code.context.update(locals()) |
| pyx_code.put_chunk( |
| u""" |
| {{if_}} isinstance(arg, {{py_type_name}}): |
| dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}' |
| """) |
| if_ = 'elif' |
| |
| if not normal_types: |
| # we need an 'if' to match the following 'else' |
| pyx_code.putln("if 0: pass") |
| |
| def _dtype_name(self, dtype): |
| if dtype.is_typedef: |
| return '___pyx_%s' % dtype |
| return str(dtype).replace(' ', '_') |
| |
| def _dtype_type(self, dtype): |
| if dtype.is_typedef: |
| return self._dtype_name(dtype) |
| return str(dtype) |
| |
| def _sizeof_dtype(self, dtype): |
| if dtype.is_pyobject: |
| return 'sizeof(void *)' |
| else: |
| return "sizeof(%s)" % self._dtype_type(dtype) |
| |
| def _buffer_check_numpy_dtype_setup_cases(self, pyx_code): |
| "Setup some common cases to match dtypes against specializations" |
| if pyx_code.indenter("if dtype.kind in ('i', 'u'):"): |
| pyx_code.putln("pass") |
| pyx_code.named_insertion_point("dtype_int") |
| pyx_code.dedent() |
| |
| if pyx_code.indenter("elif dtype.kind == 'f':"): |
| pyx_code.putln("pass") |
| pyx_code.named_insertion_point("dtype_float") |
| pyx_code.dedent() |
| |
| if pyx_code.indenter("elif dtype.kind == 'c':"): |
| pyx_code.putln("pass") |
| pyx_code.named_insertion_point("dtype_complex") |
| pyx_code.dedent() |
| |
| if pyx_code.indenter("elif dtype.kind == 'O':"): |
| pyx_code.putln("pass") |
| pyx_code.named_insertion_point("dtype_object") |
| pyx_code.dedent() |
| |
| match = "dest_sig[{{dest_sig_idx}}] = '{{specialized_type_name}}'" |
| no_match = "dest_sig[{{dest_sig_idx}}] = None" |
| def _buffer_check_numpy_dtype(self, pyx_code, specialized_buffer_types): |
| """ |
| Match a numpy dtype object to the individual specializations. |
| """ |
| self._buffer_check_numpy_dtype_setup_cases(pyx_code) |
| |
| for specialized_type in specialized_buffer_types: |
| dtype = specialized_type.dtype |
| pyx_code.context.update( |
| itemsize_match=self._sizeof_dtype(dtype) + " == itemsize", |
| signed_match="not (%s_is_signed ^ dtype_signed)" % self._dtype_name(dtype), |
| dtype=dtype, |
| specialized_type_name=specialized_type.specialization_string) |
| |
| dtypes = [ |
| (dtype.is_int, pyx_code.dtype_int), |
| (dtype.is_float, pyx_code.dtype_float), |
| (dtype.is_complex, pyx_code.dtype_complex) |
| ] |
| |
| for dtype_category, codewriter in dtypes: |
| if dtype_category: |
| cond = '{{itemsize_match}} and arg.ndim == %d' % ( |
| specialized_type.ndim,) |
| if dtype.is_int: |
| cond += ' and {{signed_match}}' |
| |
| if codewriter.indenter("if %s:" % cond): |
| # codewriter.putln("print 'buffer match found based on numpy dtype'") |
| codewriter.putln(self.match) |
| codewriter.putln("break") |
| codewriter.dedent() |
| |
| def _buffer_parse_format_string_check(self, pyx_code, decl_code, |
| specialized_type, env): |
| """ |
| For each specialized type, try to coerce the object to a memoryview |
| slice of that type. This means obtaining a buffer and parsing the |
| format string. |
| TODO: separate buffer acquisition from format parsing |
| """ |
| dtype = specialized_type.dtype |
| if specialized_type.is_buffer: |
| axes = [('direct', 'strided')] * specialized_type.ndim |
| else: |
| axes = specialized_type.axes |
| |
| memslice_type = PyrexTypes.MemoryViewSliceType(dtype, axes) |
| memslice_type.create_from_py_utility_code(env) |
| pyx_code.context.update( |
| coerce_from_py_func=memslice_type.from_py_function, |
| dtype=dtype) |
| decl_code.putln( |
| "{{memviewslice_cname}} {{coerce_from_py_func}}(object)") |
| |
| pyx_code.context.update( |
| specialized_type_name=specialized_type.specialization_string, |
| sizeof_dtype=self._sizeof_dtype(dtype)) |
| |
| pyx_code.put_chunk( |
| u""" |
| # try {{dtype}} |
| if itemsize == -1 or itemsize == {{sizeof_dtype}}: |
| memslice = {{coerce_from_py_func}}(arg) |
| if memslice.memview: |
| __PYX_XDEC_MEMVIEW(&memslice, 1) |
| # print 'found a match for the buffer through format parsing' |
| %s |
| break |
| else: |
| __pyx_PyErr_Clear() |
| """ % self.match) |
| |
| def _buffer_checks(self, buffer_types, pyx_code, decl_code, env): |
| """ |
| Generate Cython code to match objects to buffer specializations. |
| First try to get a numpy dtype object and match it against the individual |
| specializations. If that fails, try naively to coerce the object |
| to each specialization, which obtains the buffer each time and tries |
| to match the format string. |
| """ |
| from Cython.Compiler import ExprNodes |
| if buffer_types: |
| if pyx_code.indenter(u"else:"): |
| # The first thing to find a match in this loop breaks out of the loop |
| if pyx_code.indenter(u"while 1:"): |
| pyx_code.put_chunk( |
| u""" |
| if numpy is not None: |
| if isinstance(arg, numpy.ndarray): |
| dtype = arg.dtype |
| elif (__pyx_memoryview_check(arg) and |
| isinstance(arg.base, numpy.ndarray)): |
| dtype = arg.base.dtype |
| else: |
| dtype = None |
| |
| itemsize = -1 |
| if dtype is not None: |
| itemsize = dtype.itemsize |
| kind = ord(dtype.kind) |
| dtype_signed = kind == ord('i') |
| """) |
| pyx_code.indent(2) |
| pyx_code.named_insertion_point("numpy_dtype_checks") |
| self._buffer_check_numpy_dtype(pyx_code, buffer_types) |
| pyx_code.dedent(2) |
| |
| for specialized_type in buffer_types: |
| self._buffer_parse_format_string_check( |
| pyx_code, decl_code, specialized_type, env) |
| |
| pyx_code.putln(self.no_match) |
| pyx_code.putln("break") |
| pyx_code.dedent() |
| |
| pyx_code.dedent() |
| else: |
| pyx_code.putln("else: %s" % self.no_match) |
| |
| def _buffer_declarations(self, pyx_code, decl_code, all_buffer_types): |
| """ |
| If we have any buffer specializations, write out some variable |
| declarations and imports. |
| """ |
| decl_code.put_chunk( |
| u""" |
| ctypedef struct {{memviewslice_cname}}: |
| void *memview |
| |
| void __PYX_XDEC_MEMVIEW({{memviewslice_cname}} *, int have_gil) |
| bint __pyx_memoryview_check(object) |
| """) |
| |
| pyx_code.local_variable_declarations.put_chunk( |
| u""" |
| cdef {{memviewslice_cname}} memslice |
| cdef Py_ssize_t itemsize |
| cdef bint dtype_signed |
| cdef char kind |
| |
| itemsize = -1 |
| """) |
| |
| pyx_code.imports.put_chunk( |
| u""" |
| try: |
| import numpy |
| except ImportError: |
| numpy = None |
| """) |
| |
| seen_int_dtypes = set() |
| for buffer_type in all_buffer_types: |
| dtype = buffer_type.dtype |
| if dtype.is_typedef: |
| #decl_code.putln("ctypedef %s %s" % (dtype.resolve(), |
| # self._dtype_name(dtype))) |
| decl_code.putln('ctypedef %s %s "%s"' % (dtype.resolve(), |
| self._dtype_name(dtype), |
| dtype.declaration_code(""))) |
| |
| if buffer_type.dtype.is_int: |
| if str(dtype) not in seen_int_dtypes: |
| seen_int_dtypes.add(str(dtype)) |
| pyx_code.context.update(dtype_name=self._dtype_name(dtype), |
| dtype_type=self._dtype_type(dtype)) |
| pyx_code.local_variable_declarations.put_chunk( |
| u""" |
| cdef bint {{dtype_name}}_is_signed |
| {{dtype_name}}_is_signed = <{{dtype_type}}> -1 < 0 |
| """) |
| |
| def _split_fused_types(self, arg): |
| """ |
| Specialize fused types and split into normal types and buffer types. |
| """ |
| specialized_types = PyrexTypes.get_specialized_types(arg.type) |
| # Prefer long over int, etc |
| # specialized_types.sort() |
| seen_py_type_names = set() |
| normal_types, buffer_types = [], [] |
| for specialized_type in specialized_types: |
| py_type_name = specialized_type.py_type_name() |
| if py_type_name: |
| if py_type_name in seen_py_type_names: |
| continue |
| seen_py_type_names.add(py_type_name) |
| normal_types.append(specialized_type) |
| elif specialized_type.is_buffer or specialized_type.is_memoryviewslice: |
| buffer_types.append(specialized_type) |
| |
| return normal_types, buffer_types |
| |
| def _unpack_argument(self, pyx_code): |
| pyx_code.put_chunk( |
| u""" |
| # PROCESSING ARGUMENT {{arg_tuple_idx}} |
| if {{arg_tuple_idx}} < len(args): |
| arg = args[{{arg_tuple_idx}}] |
| elif '{{arg.name}}' in kwargs: |
| arg = kwargs['{{arg.name}}'] |
| else: |
| {{if arg.default:}} |
| arg = defaults[{{default_idx}}] |
| {{else}} |
| raise TypeError("Expected at least %d arguments" % len(args)) |
| {{endif}} |
| """) |
| |
| def make_fused_cpdef(self, orig_py_func, env, is_def): |
| """ |
| This creates the function that is indexable from Python and does |
| runtime dispatch based on the argument types. The function gets the |
| arg tuple and kwargs dict (or None) and the defaults tuple |
| as arguments from the Binding Fused Function's tp_call. |
| """ |
| from Cython.Compiler import TreeFragment, Code, MemoryView, UtilityCode |
| |
| # { (arg_pos, FusedType) : specialized_type } |
| seen_fused_types = set() |
| |
| context = { |
| 'memviewslice_cname': MemoryView.memviewslice_cname, |
| 'func_args': self.node.args, |
| 'n_fused': len([arg for arg in self.node.args]), |
| 'name': orig_py_func.entry.name, |
| } |
| |
| pyx_code = Code.PyxCodeWriter(context=context) |
| decl_code = Code.PyxCodeWriter(context=context) |
| decl_code.put_chunk( |
| u""" |
| cdef extern from *: |
| void __pyx_PyErr_Clear "PyErr_Clear" () |
| """) |
| decl_code.indent() |
| |
| pyx_code.put_chunk( |
| u""" |
| def __pyx_fused_cpdef(signatures, args, kwargs, defaults): |
| dest_sig = [{{for _ in range(n_fused)}}None,{{endfor}}] |
| |
| if kwargs is None: |
| kwargs = {} |
| |
| cdef Py_ssize_t i |
| |
| # instance check body |
| """) |
| pyx_code.indent() # indent following code to function body |
| pyx_code.named_insertion_point("imports") |
| pyx_code.named_insertion_point("local_variable_declarations") |
| |
| fused_index = 0 |
| default_idx = 0 |
| all_buffer_types = set() |
| for i, arg in enumerate(self.node.args): |
| if arg.type.is_fused and arg.type not in seen_fused_types: |
| seen_fused_types.add(arg.type) |
| |
| context.update( |
| arg_tuple_idx=i, |
| arg=arg, |
| dest_sig_idx=fused_index, |
| default_idx=default_idx, |
| ) |
| |
| normal_types, buffer_types = self._split_fused_types(arg) |
| self._unpack_argument(pyx_code) |
| self._fused_instance_checks(normal_types, pyx_code, env) |
| self._buffer_checks(buffer_types, pyx_code, decl_code, env) |
| fused_index += 1 |
| |
| all_buffer_types.update(buffer_types) |
| |
| if arg.default: |
| default_idx += 1 |
| |
| if all_buffer_types: |
| self._buffer_declarations(pyx_code, decl_code, all_buffer_types) |
| env.use_utility_code(Code.UtilityCode.load_cached("Import", "ImportExport.c")) |
| |
| pyx_code.put_chunk( |
| u""" |
| candidates = [] |
| for sig in signatures: |
| match_found = False |
| for src_type, dst_type in zip(sig.strip('()').split('|'), dest_sig): |
| if dst_type is not None: |
| if src_type == dst_type: |
| match_found = True |
| else: |
| match_found = False |
| break |
| |
| if match_found: |
| candidates.append(sig) |
| |
| if not candidates: |
| raise TypeError("No matching signature found") |
| elif len(candidates) > 1: |
| raise TypeError("Function call with ambiguous argument types") |
| else: |
| return signatures[candidates[0]] |
| """) |
| |
| fragment_code = pyx_code.getvalue() |
| # print decl_code.getvalue() |
| # print fragment_code |
| fragment = TreeFragment.TreeFragment(fragment_code, level='module') |
| ast = TreeFragment.SetPosTransform(self.node.pos)(fragment.root) |
| UtilityCode.declare_declarations_in_scope(decl_code.getvalue(), |
| env.global_scope()) |
| ast.scope = env |
| ast.analyse_declarations(env) |
| py_func = ast.stats[-1] # the DefNode |
| self.fragment_scope = ast.scope |
| |
| if isinstance(self.node, DefNode): |
| py_func.specialized_cpdefs = self.nodes[:] |
| else: |
| py_func.specialized_cpdefs = [n.py_func for n in self.nodes] |
| |
| return py_func |
| |
| def update_fused_defnode_entry(self, env): |
| copy_attributes = ( |
| 'name', 'pos', 'cname', 'func_cname', 'pyfunc_cname', |
| 'pymethdef_cname', 'doc', 'doc_cname', 'is_member', |
| 'scope' |
| ) |
| |
| entry = self.py_func.entry |
| |
| for attr in copy_attributes: |
| setattr(entry, attr, |
| getattr(self.orig_py_func.entry, attr)) |
| |
| self.py_func.name = self.orig_py_func.name |
| self.py_func.doc = self.orig_py_func.doc |
| |
| env.entries.pop('__pyx_fused_cpdef', None) |
| if isinstance(self.node, DefNode): |
| env.entries[entry.name] = entry |
| else: |
| env.entries[entry.name].as_variable = entry |
| |
| env.pyfunc_entries.append(entry) |
| |
| self.py_func.entry.fused_cfunction = self |
| for node in self.nodes: |
| if isinstance(self.node, DefNode): |
| node.fused_py_func = self.py_func |
| else: |
| node.py_func.fused_py_func = self.py_func |
| node.entry.as_variable = entry |
| |
| self.synthesize_defnodes() |
| self.stats.append(self.__signatures__) |
| |
| def analyse_expressions(self, env): |
| """ |
| Analyse the expressions. Take care to only evaluate default arguments |
| once and clone the result for all specializations |
| """ |
| for fused_compound_type in self.fused_compound_types: |
| for fused_type in fused_compound_type.get_fused_types(): |
| for specialization_type in fused_type.types: |
| if specialization_type.is_complex: |
| specialization_type.create_declaration_utility_code(env) |
| |
| if self.py_func: |
| self.__signatures__ = self.__signatures__.analyse_expressions(env) |
| self.py_func = self.py_func.analyse_expressions(env) |
| self.resulting_fused_function = self.resulting_fused_function.analyse_expressions(env) |
| self.fused_func_assignment = self.fused_func_assignment.analyse_expressions(env) |
| |
| self.defaults = defaults = [] |
| |
| for arg in self.node.args: |
| if arg.default: |
| arg.default = arg.default.analyse_expressions(env) |
| defaults.append(ProxyNode(arg.default)) |
| else: |
| defaults.append(None) |
| |
| for i, stat in enumerate(self.stats): |
| stat = self.stats[i] = stat.analyse_expressions(env) |
| if isinstance(stat, FuncDefNode): |
| for arg, default in zip(stat.args, defaults): |
| if default is not None: |
| arg.default = CloneNode(default).coerce_to(arg.type, env) |
| |
| if self.py_func: |
| args = [CloneNode(default) for default in defaults if default] |
| self.defaults_tuple = TupleNode(self.pos, args=args) |
| self.defaults_tuple = self.defaults_tuple.analyse_types(env, skip_children=True) |
| self.defaults_tuple = ProxyNode(self.defaults_tuple) |
| self.code_object = ProxyNode(self.specialized_pycfuncs[0].code_object) |
| |
| fused_func = self.resulting_fused_function.arg |
| fused_func.defaults_tuple = CloneNode(self.defaults_tuple) |
| fused_func.code_object = CloneNode(self.code_object) |
| |
| for i, pycfunc in enumerate(self.specialized_pycfuncs): |
| pycfunc.code_object = CloneNode(self.code_object) |
| pycfunc = self.specialized_pycfuncs[i] = pycfunc.analyse_types(env) |
| pycfunc.defaults_tuple = CloneNode(self.defaults_tuple) |
| return self |
| |
| def synthesize_defnodes(self): |
| """ |
| Create the __signatures__ dict of PyCFunctionNode specializations. |
| """ |
| if isinstance(self.nodes[0], CFuncDefNode): |
| nodes = [node.py_func for node in self.nodes] |
| else: |
| nodes = self.nodes |
| |
| signatures = [ |
| StringEncoding.EncodedString(node.specialized_signature_string) |
| for node in nodes] |
| keys = [ExprNodes.StringNode(node.pos, value=sig) |
| for node, sig in zip(nodes, signatures)] |
| values = [ExprNodes.PyCFunctionNode.from_defnode(node, True) |
| for node in nodes] |
| self.__signatures__ = ExprNodes.DictNode.from_pairs(self.pos, |
| zip(keys, values)) |
| |
| self.specialized_pycfuncs = values |
| for pycfuncnode in values: |
| pycfuncnode.is_specialization = True |
| |
| def generate_function_definitions(self, env, code): |
| if self.py_func: |
| self.py_func.pymethdef_required = True |
| self.fused_func_assignment.generate_function_definitions(env, code) |
| |
| for stat in self.stats: |
| if isinstance(stat, FuncDefNode) and stat.entry.used: |
| code.mark_pos(stat.pos) |
| stat.generate_function_definitions(env, code) |
| |
| def generate_execution_code(self, code): |
| # Note: all def function specialization are wrapped in PyCFunction |
| # nodes in the self.__signatures__ dictnode. |
| for default in self.defaults: |
| if default is not None: |
| default.generate_evaluation_code(code) |
| |
| if self.py_func: |
| self.defaults_tuple.generate_evaluation_code(code) |
| self.code_object.generate_evaluation_code(code) |
| |
| for stat in self.stats: |
| code.mark_pos(stat.pos) |
| if isinstance(stat, ExprNodes.ExprNode): |
| stat.generate_evaluation_code(code) |
| else: |
| stat.generate_execution_code(code) |
| |
| if self.__signatures__: |
| self.resulting_fused_function.generate_evaluation_code(code) |
| |
| code.putln( |
| "((__pyx_FusedFunctionObject *) %s)->__signatures__ = %s;" % |
| (self.resulting_fused_function.result(), |
| self.__signatures__.result())) |
| code.put_giveref(self.__signatures__.result()) |
| |
| self.fused_func_assignment.generate_execution_code(code) |
| |
| # Dispose of results |
| self.resulting_fused_function.generate_disposal_code(code) |
| self.defaults_tuple.generate_disposal_code(code) |
| self.code_object.generate_disposal_code(code) |
| |
| for default in self.defaults: |
| if default is not None: |
| default.generate_disposal_code(code) |
| |
| def annotate(self, code): |
| for stat in self.stats: |
| stat.annotate(code) |