|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "crypto/ghash.h" | 
|  |  | 
|  | #include <algorithm> | 
|  |  | 
|  | #include "base/logging.h" | 
|  | #include "base/sys_byteorder.h" | 
|  |  | 
|  | namespace crypto { | 
|  |  | 
|  | // GaloisHash is a polynomial authenticator that works in GF(2^128). | 
|  | // | 
|  | // Elements of the field are represented in `little-endian' order (which | 
|  | // matches the description in the paper[1]), thus the most significant bit is | 
|  | // the right-most bit. (This is backwards from the way that everybody else does | 
|  | // it.) | 
|  | // | 
|  | // We store field elements in a pair of such `little-endian' uint64s. So the | 
|  | // value one is represented by {low = 2**63, high = 0} and doubling a value | 
|  | // involves a *right* shift. | 
|  | // | 
|  | // [1] http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Get64 reads a 64-bit, big-endian number from |bytes|. | 
|  | uint64 Get64(const uint8 bytes[8]) { | 
|  | uint64 t; | 
|  | memcpy(&t, bytes, sizeof(t)); | 
|  | return base::NetToHost64(t); | 
|  | } | 
|  |  | 
|  | // Put64 writes |x| to |bytes| as a 64-bit, big-endian number. | 
|  | void Put64(uint8 bytes[8], uint64 x) { | 
|  | x = base::HostToNet64(x); | 
|  | memcpy(bytes, &x, sizeof(x)); | 
|  | } | 
|  |  | 
|  | // Reverse reverses the order of the bits of 4-bit number in |i|. | 
|  | int Reverse(int i) { | 
|  | i = ((i << 2) & 0xc) | ((i >> 2) & 0x3); | 
|  | i = ((i << 1) & 0xa) | ((i >> 1) & 0x5); | 
|  | return i; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | GaloisHash::GaloisHash(const uint8 key[16]) { | 
|  | Reset(); | 
|  |  | 
|  | // We precompute 16 multiples of |key|. However, when we do lookups into this | 
|  | // table we'll be using bits from a field element and therefore the bits will | 
|  | // be in the reverse order. So normally one would expect, say, 4*key to be in | 
|  | // index 4 of the table but due to this bit ordering it will actually be in | 
|  | // index 0010 (base 2) = 2. | 
|  | FieldElement x = {Get64(key), Get64(key+8)}; | 
|  | product_table_[0].low = 0; | 
|  | product_table_[0].hi = 0; | 
|  | product_table_[Reverse(1)] = x; | 
|  |  | 
|  | for (int i = 0; i < 16; i += 2) { | 
|  | product_table_[Reverse(i)] = Double(product_table_[Reverse(i/2)]); | 
|  | product_table_[Reverse(i+1)] = Add(product_table_[Reverse(i)], x); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GaloisHash::Reset() { | 
|  | state_ = kHashingAdditionalData; | 
|  | additional_bytes_ = 0; | 
|  | ciphertext_bytes_ = 0; | 
|  | buf_used_ = 0; | 
|  | y_.low = 0; | 
|  | y_.hi = 0; | 
|  | } | 
|  |  | 
|  | void GaloisHash::UpdateAdditional(const uint8* data, size_t length) { | 
|  | DCHECK_EQ(state_, kHashingAdditionalData); | 
|  | additional_bytes_ += length; | 
|  | Update(data, length); | 
|  | } | 
|  |  | 
|  | void GaloisHash::UpdateCiphertext(const uint8* data, size_t length) { | 
|  | if (state_ == kHashingAdditionalData) { | 
|  | // If there's any remaining additional data it's zero padded to the next | 
|  | // full block. | 
|  | if (buf_used_ > 0) { | 
|  | memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); | 
|  | UpdateBlocks(buf_, 1); | 
|  | buf_used_ = 0; | 
|  | } | 
|  | state_ = kHashingCiphertext; | 
|  | } | 
|  |  | 
|  | DCHECK_EQ(state_, kHashingCiphertext); | 
|  | ciphertext_bytes_ += length; | 
|  | Update(data, length); | 
|  | } | 
|  |  | 
|  | void GaloisHash::Finish(void* output, size_t len) { | 
|  | DCHECK(state_ != kComplete); | 
|  |  | 
|  | if (buf_used_ > 0) { | 
|  | // If there's any remaining data (additional data or ciphertext), it's zero | 
|  | // padded to the next full block. | 
|  | memset(&buf_[buf_used_], 0, sizeof(buf_)-buf_used_); | 
|  | UpdateBlocks(buf_, 1); | 
|  | buf_used_ = 0; | 
|  | } | 
|  |  | 
|  | state_ = kComplete; | 
|  |  | 
|  | // The lengths of the additional data and ciphertext are included as the last | 
|  | // block. The lengths are the number of bits. | 
|  | y_.low ^= additional_bytes_*8; | 
|  | y_.hi ^= ciphertext_bytes_*8; | 
|  | MulAfterPrecomputation(product_table_, &y_); | 
|  |  | 
|  | uint8 *result, result_tmp[16]; | 
|  | if (len >= 16) { | 
|  | result = reinterpret_cast<uint8*>(output); | 
|  | } else { | 
|  | result = result_tmp; | 
|  | } | 
|  |  | 
|  | Put64(result, y_.low); | 
|  | Put64(result + 8, y_.hi); | 
|  |  | 
|  | if (len < 16) | 
|  | memcpy(output, result_tmp, len); | 
|  | } | 
|  |  | 
|  | // static | 
|  | GaloisHash::FieldElement GaloisHash::Add( | 
|  | const FieldElement& x, | 
|  | const FieldElement& y) { | 
|  | // Addition in a characteristic 2 field is just XOR. | 
|  | FieldElement z = {x.low^y.low, x.hi^y.hi}; | 
|  | return z; | 
|  | } | 
|  |  | 
|  | // static | 
|  | GaloisHash::FieldElement GaloisHash::Double(const FieldElement& x) { | 
|  | const bool msb_set = x.hi & 1; | 
|  |  | 
|  | FieldElement xx; | 
|  | // Because of the bit-ordering, doubling is actually a right shift. | 
|  | xx.hi = x.hi >> 1; | 
|  | xx.hi |= x.low << 63; | 
|  | xx.low = x.low >> 1; | 
|  |  | 
|  | // If the most-significant bit was set before shifting then it, conceptually, | 
|  | // becomes a term of x^128. This is greater than the irreducible polynomial | 
|  | // so the result has to be reduced. The irreducible polynomial is | 
|  | // 1+x+x^2+x^7+x^128. We can subtract that to eliminate the term at x^128 | 
|  | // which also means subtracting the other four terms. In characteristic 2 | 
|  | // fields, subtraction == addition == XOR. | 
|  | if (msb_set) | 
|  | xx.low ^= 0xe100000000000000ULL; | 
|  |  | 
|  | return xx; | 
|  | } | 
|  |  | 
|  | void GaloisHash::MulAfterPrecomputation(const FieldElement* table, | 
|  | FieldElement* x) { | 
|  | FieldElement z = {0, 0}; | 
|  |  | 
|  | // In order to efficiently multiply, we use the precomputed table of i*key, | 
|  | // for i in 0..15, to handle four bits at a time. We could obviously use | 
|  | // larger tables for greater speedups but the next convenient table size is | 
|  | // 4K, which is a little large. | 
|  | // | 
|  | // In other fields one would use bit positions spread out across the field in | 
|  | // order to reduce the number of doublings required. However, in | 
|  | // characteristic 2 fields, repeated doublings are exceptionally cheap and | 
|  | // it's not worth spending more precomputation time to eliminate them. | 
|  | for (unsigned i = 0; i < 2; i++) { | 
|  | uint64 word; | 
|  | if (i == 0) { | 
|  | word = x->hi; | 
|  | } else { | 
|  | word = x->low; | 
|  | } | 
|  |  | 
|  | for (unsigned j = 0; j < 64; j += 4) { | 
|  | Mul16(&z); | 
|  | // the values in |table| are ordered for little-endian bit positions. See | 
|  | // the comment in the constructor. | 
|  | const FieldElement& t = table[word & 0xf]; | 
|  | z.low ^= t.low; | 
|  | z.hi ^= t.hi; | 
|  | word >>= 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | *x = z; | 
|  | } | 
|  |  | 
|  | // kReductionTable allows for rapid multiplications by 16. A multiplication by | 
|  | // 16 is a right shift by four bits, which results in four bits at 2**128. | 
|  | // These terms have to be eliminated by dividing by the irreducible polynomial. | 
|  | // In GHASH, the polynomial is such that all the terms occur in the | 
|  | // least-significant 8 bits, save for the term at x^128. Therefore we can | 
|  | // precompute the value to be added to the field element for each of the 16 bit | 
|  | // patterns at 2**128 and the values fit within 12 bits. | 
|  | static const uint16 kReductionTable[16] = { | 
|  | 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, | 
|  | 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, | 
|  | }; | 
|  |  | 
|  | // static | 
|  | void GaloisHash::Mul16(FieldElement* x) { | 
|  | const unsigned msw = x->hi & 0xf; | 
|  | x->hi >>= 4; | 
|  | x->hi |= x->low << 60; | 
|  | x->low >>= 4; | 
|  | x->low ^= static_cast<uint64>(kReductionTable[msw]) << 48; | 
|  | } | 
|  |  | 
|  | void GaloisHash::UpdateBlocks(const uint8* bytes, size_t num_blocks) { | 
|  | for (size_t i = 0; i < num_blocks; i++) { | 
|  | y_.low ^= Get64(bytes); | 
|  | bytes += 8; | 
|  | y_.hi ^= Get64(bytes); | 
|  | bytes += 8; | 
|  | MulAfterPrecomputation(product_table_, &y_); | 
|  | } | 
|  | } | 
|  |  | 
|  | void GaloisHash::Update(const uint8* data, size_t length) { | 
|  | if (buf_used_ > 0) { | 
|  | const size_t n = std::min(length, sizeof(buf_) - buf_used_); | 
|  | memcpy(&buf_[buf_used_], data, n); | 
|  | buf_used_ += n; | 
|  | length -= n; | 
|  | data += n; | 
|  |  | 
|  | if (buf_used_ == sizeof(buf_)) { | 
|  | UpdateBlocks(buf_, 1); | 
|  | buf_used_ = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (length >= 16) { | 
|  | const size_t n = length / 16; | 
|  | UpdateBlocks(data, n); | 
|  | length -= n*16; | 
|  | data += n*16; | 
|  | } | 
|  |  | 
|  | if (length > 0) { | 
|  | memcpy(buf_, data, length); | 
|  | buf_used_ = length; | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace crypto |