| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/quic/congestion_control/tcp_cubic_sender.h" |
| |
| #include <algorithm> |
| |
| #include "base/metrics/histogram.h" |
| #include "net/quic/congestion_control/prr_sender.h" |
| #include "net/quic/congestion_control/rtt_stats.h" |
| #include "net/quic/crypto/crypto_protocol.h" |
| |
| using std::max; |
| using std::min; |
| |
| namespace net { |
| |
| namespace { |
| // Constants based on TCP defaults. |
| // The minimum cwnd based on RFC 3782 (TCP NewReno) for cwnd reductions on a |
| // fast retransmission. The cwnd after a timeout is still 1. |
| const QuicPacketCount kMinimumCongestionWindow = 2; |
| const QuicByteCount kMaxSegmentSize = kDefaultTCPMSS; |
| const int kMaxBurstLength = 3; |
| const float kRenoBeta = 0.7f; // Reno backoff factor. |
| const uint32 kDefaultNumConnections = 2; // N-connection emulation. |
| } // namespace |
| |
| TcpCubicSender::TcpCubicSender(const QuicClock* clock, |
| const RttStats* rtt_stats, |
| bool reno, |
| QuicPacketCount initial_tcp_congestion_window, |
| QuicPacketCount max_tcp_congestion_window, |
| QuicConnectionStats* stats) |
| : hybrid_slow_start_(clock), |
| cubic_(clock, stats), |
| rtt_stats_(rtt_stats), |
| stats_(stats), |
| reno_(reno), |
| num_connections_(kDefaultNumConnections), |
| congestion_window_count_(0), |
| largest_sent_sequence_number_(0), |
| largest_acked_sequence_number_(0), |
| largest_sent_at_last_cutback_(0), |
| congestion_window_(initial_tcp_congestion_window), |
| previous_congestion_window_(0), |
| slowstart_threshold_(max_tcp_congestion_window), |
| previous_slowstart_threshold_(0), |
| last_cutback_exited_slowstart_(false), |
| max_tcp_congestion_window_(max_tcp_congestion_window), |
| clock_(clock) {} |
| |
| TcpCubicSender::~TcpCubicSender() { |
| UMA_HISTOGRAM_COUNTS("Net.QuicSession.FinalTcpCwnd", congestion_window_); |
| } |
| |
| void TcpCubicSender::SetFromConfig(const QuicConfig& config, |
| bool is_server, |
| bool using_pacing) { |
| if (is_server) { |
| if (config.HasReceivedConnectionOptions() && |
| ContainsQuicTag(config.ReceivedConnectionOptions(), kIW10)) { |
| // Initial window experiment. |
| congestion_window_ = 10; |
| } |
| if (using_pacing) { |
| // Disable the ack train mode in hystart when pacing is enabled, since it |
| // may be falsely triggered. |
| hybrid_slow_start_.set_ack_train_detection(false); |
| } |
| } |
| } |
| |
| bool TcpCubicSender::ResumeConnectionState( |
| const CachedNetworkParameters& cached_network_params) { |
| // If the previous bandwidth estimate is less than an hour old, store in |
| // preparation for doing bandwidth resumption. |
| int64 seconds_since_estimate = |
| clock_->WallNow().ToUNIXSeconds() - cached_network_params.timestamp(); |
| if (seconds_since_estimate > kNumSecondsPerHour) { |
| return false; |
| } |
| |
| QuicBandwidth bandwidth = QuicBandwidth::FromBytesPerSecond( |
| cached_network_params.bandwidth_estimate_bytes_per_second()); |
| QuicTime::Delta rtt_ms = |
| QuicTime::Delta::FromMilliseconds(cached_network_params.min_rtt_ms()); |
| |
| // Make sure CWND is in appropriate range (in case of bad data). |
| QuicPacketCount new_congestion_window = |
| bandwidth.ToBytesPerPeriod(rtt_ms) / kMaxPacketSize; |
| congestion_window_ = max(min(new_congestion_window, kMaxTcpCongestionWindow), |
| kMinCongestionWindowForBandwidthResumption); |
| |
| // TODO(rjshade): Set appropriate CWND when previous connection was in slow |
| // start at time of estimate. |
| return true; |
| } |
| |
| void TcpCubicSender::SetNumEmulatedConnections(int num_connections) { |
| num_connections_ = max(1, num_connections); |
| cubic_.SetNumConnections(num_connections_); |
| } |
| |
| float TcpCubicSender::RenoBeta() const { |
| // kNConnectionBeta is the backoff factor after loss for our N-connection |
| // emulation, which emulates the effective backoff of an ensemble of N |
| // TCP-Reno connections on a single loss event. The effective multiplier is |
| // computed as: |
| return (num_connections_ - 1 + kRenoBeta) / num_connections_; |
| } |
| |
| void TcpCubicSender::OnCongestionEvent( |
| bool rtt_updated, |
| QuicByteCount bytes_in_flight, |
| const CongestionVector& acked_packets, |
| const CongestionVector& lost_packets) { |
| if (rtt_updated && InSlowStart() && |
| hybrid_slow_start_.ShouldExitSlowStart(rtt_stats_->latest_rtt(), |
| rtt_stats_->min_rtt(), |
| congestion_window_)) { |
| slowstart_threshold_ = congestion_window_; |
| } |
| for (CongestionVector::const_iterator it = lost_packets.begin(); |
| it != lost_packets.end(); ++it) { |
| OnPacketLost(it->first, bytes_in_flight); |
| } |
| for (CongestionVector::const_iterator it = acked_packets.begin(); |
| it != acked_packets.end(); ++it) { |
| OnPacketAcked(it->first, it->second.bytes_sent, bytes_in_flight); |
| } |
| } |
| |
| void TcpCubicSender::OnPacketAcked( |
| QuicPacketSequenceNumber acked_sequence_number, |
| QuicByteCount acked_bytes, |
| QuicByteCount bytes_in_flight) { |
| largest_acked_sequence_number_ = max(acked_sequence_number, |
| largest_acked_sequence_number_); |
| if (InRecovery()) { |
| // PRR is used when in recovery. |
| prr_.OnPacketAcked(acked_bytes); |
| return; |
| } |
| MaybeIncreaseCwnd(acked_sequence_number, bytes_in_flight); |
| // TODO(ianswett): Should this even be called when not in slow start? |
| hybrid_slow_start_.OnPacketAcked(acked_sequence_number, InSlowStart()); |
| } |
| |
| void TcpCubicSender::OnPacketLost(QuicPacketSequenceNumber sequence_number, |
| QuicByteCount bytes_in_flight) { |
| // TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets |
| // already sent should be treated as a single loss event, since it's expected. |
| if (sequence_number <= largest_sent_at_last_cutback_) { |
| if (last_cutback_exited_slowstart_) { |
| ++stats_->slowstart_packets_lost; |
| } |
| DVLOG(1) << "Ignoring loss for largest_missing:" << sequence_number |
| << " because it was sent prior to the last CWND cutback."; |
| return; |
| } |
| ++stats_->tcp_loss_events; |
| last_cutback_exited_slowstart_ = InSlowStart(); |
| if (InSlowStart()) { |
| ++stats_->slowstart_packets_lost; |
| } |
| |
| prr_.OnPacketLost(bytes_in_flight); |
| |
| if (reno_) { |
| congestion_window_ = congestion_window_ * RenoBeta(); |
| } else { |
| congestion_window_ = |
| cubic_.CongestionWindowAfterPacketLoss(congestion_window_); |
| } |
| slowstart_threshold_ = congestion_window_; |
| // Enforce TCP's minimum congestion window of 2*MSS. |
| if (congestion_window_ < kMinimumCongestionWindow) { |
| congestion_window_ = kMinimumCongestionWindow; |
| } |
| largest_sent_at_last_cutback_ = largest_sent_sequence_number_; |
| // reset packet count from congestion avoidance mode. We start |
| // counting again when we're out of recovery. |
| congestion_window_count_ = 0; |
| DVLOG(1) << "Incoming loss; congestion window: " << congestion_window_ |
| << " slowstart threshold: " << slowstart_threshold_; |
| } |
| |
| bool TcpCubicSender::OnPacketSent(QuicTime /*sent_time*/, |
| QuicByteCount /*bytes_in_flight*/, |
| QuicPacketSequenceNumber sequence_number, |
| QuicByteCount bytes, |
| HasRetransmittableData is_retransmittable) { |
| // Only update bytes_in_flight_ for data packets. |
| if (is_retransmittable != HAS_RETRANSMITTABLE_DATA) { |
| return false; |
| } |
| if (InRecovery()) { |
| // PRR is used when in recovery. |
| prr_.OnPacketSent(bytes); |
| } |
| DCHECK_LT(largest_sent_sequence_number_, sequence_number); |
| largest_sent_sequence_number_ = sequence_number; |
| hybrid_slow_start_.OnPacketSent(sequence_number); |
| return true; |
| } |
| |
| QuicTime::Delta TcpCubicSender::TimeUntilSend( |
| QuicTime /* now */, |
| QuicByteCount bytes_in_flight, |
| HasRetransmittableData has_retransmittable_data) const { |
| if (has_retransmittable_data == NO_RETRANSMITTABLE_DATA) { |
| // For TCP we can always send an ACK immediately. |
| return QuicTime::Delta::Zero(); |
| } |
| if (InRecovery()) { |
| // PRR is used when in recovery. |
| return prr_.TimeUntilSend(GetCongestionWindow(), bytes_in_flight, |
| slowstart_threshold_); |
| } |
| if (GetCongestionWindow() > bytes_in_flight) { |
| return QuicTime::Delta::Zero(); |
| } |
| return QuicTime::Delta::Infinite(); |
| } |
| |
| QuicBandwidth TcpCubicSender::PacingRate() const { |
| // We pace at twice the rate of the underlying sender's bandwidth estimate |
| // during slow start and 1.25x during congestion avoidance to ensure pacing |
| // doesn't prevent us from filling the window. |
| QuicTime::Delta srtt = rtt_stats_->smoothed_rtt(); |
| if (srtt.IsZero()) { |
| srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_->initial_rtt_us()); |
| } |
| const QuicBandwidth bandwidth = |
| QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt); |
| return bandwidth.Scale(InSlowStart() ? 2 : 1.25); |
| } |
| |
| QuicBandwidth TcpCubicSender::BandwidthEstimate() const { |
| QuicTime::Delta srtt = rtt_stats_->smoothed_rtt(); |
| if (srtt.IsZero()) { |
| // If we haven't measured an rtt, the bandwidth estimate is unknown. |
| return QuicBandwidth::Zero(); |
| } |
| return QuicBandwidth::FromBytesAndTimeDelta(GetCongestionWindow(), srtt); |
| } |
| |
| bool TcpCubicSender::HasReliableBandwidthEstimate() const { |
| return !InSlowStart() && !InRecovery() && |
| !rtt_stats_->smoothed_rtt().IsZero();; |
| } |
| |
| QuicTime::Delta TcpCubicSender::RetransmissionDelay() const { |
| if (rtt_stats_->smoothed_rtt().IsZero()) { |
| return QuicTime::Delta::Zero(); |
| } |
| return rtt_stats_->smoothed_rtt().Add( |
| rtt_stats_->mean_deviation().Multiply(4)); |
| } |
| |
| QuicByteCount TcpCubicSender::GetCongestionWindow() const { |
| return congestion_window_ * kMaxSegmentSize; |
| } |
| |
| bool TcpCubicSender::InSlowStart() const { |
| return congestion_window_ < slowstart_threshold_; |
| } |
| |
| QuicByteCount TcpCubicSender::GetSlowStartThreshold() const { |
| return slowstart_threshold_ * kMaxSegmentSize; |
| } |
| |
| bool TcpCubicSender::IsCwndLimited(QuicByteCount bytes_in_flight) const { |
| const QuicByteCount congestion_window_bytes = congestion_window_ * |
| kMaxSegmentSize; |
| if (bytes_in_flight >= congestion_window_bytes) { |
| return true; |
| } |
| const QuicByteCount max_burst = kMaxBurstLength * kMaxSegmentSize; |
| const QuicByteCount available_bytes = |
| congestion_window_bytes - bytes_in_flight; |
| const bool slow_start_limited = InSlowStart() && |
| bytes_in_flight > congestion_window_bytes / 2; |
| return slow_start_limited || available_bytes <= max_burst; |
| } |
| |
| bool TcpCubicSender::InRecovery() const { |
| return largest_acked_sequence_number_ <= largest_sent_at_last_cutback_ && |
| largest_acked_sequence_number_ != 0; |
| } |
| |
| // Called when we receive an ack. Normal TCP tracks how many packets one ack |
| // represents, but quic has a separate ack for each packet. |
| void TcpCubicSender::MaybeIncreaseCwnd( |
| QuicPacketSequenceNumber acked_sequence_number, |
| QuicByteCount bytes_in_flight) { |
| LOG_IF(DFATAL, InRecovery()) << "Never increase the CWND during recovery."; |
| if (!IsCwndLimited(bytes_in_flight)) { |
| // We don't update the congestion window unless we are close to using the |
| // window we have available. |
| return; |
| } |
| if (InSlowStart()) { |
| // congestion_window_cnt is the number of acks since last change of snd_cwnd |
| if (congestion_window_ < max_tcp_congestion_window_) { |
| // TCP slow start, exponential growth, increase by one for each ACK. |
| ++congestion_window_; |
| } |
| DVLOG(1) << "Slow start; congestion window: " << congestion_window_ |
| << " slowstart threshold: " << slowstart_threshold_; |
| return; |
| } |
| if (congestion_window_ >= max_tcp_congestion_window_) { |
| return; |
| } |
| // Congestion avoidance |
| if (reno_) { |
| // Classic Reno congestion avoidance. |
| ++congestion_window_count_; |
| // Divide by num_connections to smoothly increase the CWND at a faster |
| // rate than conventional Reno. |
| if (congestion_window_count_ * num_connections_ >= congestion_window_) { |
| ++congestion_window_; |
| congestion_window_count_ = 0; |
| } |
| |
| DVLOG(1) << "Reno; congestion window: " << congestion_window_ |
| << " slowstart threshold: " << slowstart_threshold_ |
| << " congestion window count: " << congestion_window_count_; |
| } else { |
| congestion_window_ = min(max_tcp_congestion_window_, |
| cubic_.CongestionWindowAfterAck( |
| congestion_window_, rtt_stats_->min_rtt())); |
| DVLOG(1) << "Cubic; congestion window: " << congestion_window_ |
| << " slowstart threshold: " << slowstart_threshold_; |
| } |
| } |
| |
| void TcpCubicSender::OnRetransmissionTimeout(bool packets_retransmitted) { |
| largest_sent_at_last_cutback_ = 0; |
| if (!packets_retransmitted) { |
| return; |
| } |
| cubic_.Reset(); |
| hybrid_slow_start_.Restart(); |
| previous_slowstart_threshold_ = slowstart_threshold_; |
| slowstart_threshold_ = congestion_window_ / 2; |
| previous_congestion_window_ = congestion_window_; |
| congestion_window_ = kMinimumCongestionWindow; |
| } |
| |
| void TcpCubicSender::RevertRetransmissionTimeout() { |
| if (previous_congestion_window_ == 0) { |
| LOG(DFATAL) << "No previous congestion window to revert to."; |
| return; |
| } |
| congestion_window_ = previous_congestion_window_; |
| slowstart_threshold_ = previous_slowstart_threshold_; |
| previous_congestion_window_ = 0; |
| } |
| |
| CongestionControlType TcpCubicSender::GetCongestionControlType() const { |
| return reno_ ? kReno : kCubic; |
| } |
| |
| } // namespace net |