| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/quic/quic_connection.h" |
| |
| #include "base/basictypes.h" |
| #include "base/bind.h" |
| #include "base/stl_util.h" |
| #include "net/base/net_errors.h" |
| #include "net/quic/congestion_control/loss_detection_interface.h" |
| #include "net/quic/congestion_control/receive_algorithm_interface.h" |
| #include "net/quic/congestion_control/send_algorithm_interface.h" |
| #include "net/quic/crypto/null_encrypter.h" |
| #include "net/quic/crypto/quic_decrypter.h" |
| #include "net/quic/crypto/quic_encrypter.h" |
| #include "net/quic/quic_flags.h" |
| #include "net/quic/quic_protocol.h" |
| #include "net/quic/quic_utils.h" |
| #include "net/quic/test_tools/mock_clock.h" |
| #include "net/quic/test_tools/mock_random.h" |
| #include "net/quic/test_tools/quic_config_peer.h" |
| #include "net/quic/test_tools/quic_connection_peer.h" |
| #include "net/quic/test_tools/quic_framer_peer.h" |
| #include "net/quic/test_tools/quic_packet_creator_peer.h" |
| #include "net/quic/test_tools/quic_sent_packet_manager_peer.h" |
| #include "net/quic/test_tools/quic_test_utils.h" |
| #include "net/quic/test_tools/simple_quic_framer.h" |
| #include "testing/gmock/include/gmock/gmock.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| |
| using base::StringPiece; |
| using std::map; |
| using std::vector; |
| using testing::AnyNumber; |
| using testing::AtLeast; |
| using testing::ContainerEq; |
| using testing::Contains; |
| using testing::DoAll; |
| using testing::InSequence; |
| using testing::InvokeWithoutArgs; |
| using testing::NiceMock; |
| using testing::Ref; |
| using testing::Return; |
| using testing::SaveArg; |
| using testing::StrictMock; |
| using testing::_; |
| |
| namespace net { |
| namespace test { |
| namespace { |
| |
| const char data1[] = "foo"; |
| const char data2[] = "bar"; |
| |
| const bool kFin = true; |
| const bool kEntropyFlag = true; |
| |
| const QuicPacketEntropyHash kTestEntropyHash = 76; |
| |
| const int kDefaultRetransmissionTimeMs = 500; |
| |
| class TestReceiveAlgorithm : public ReceiveAlgorithmInterface { |
| public: |
| explicit TestReceiveAlgorithm(QuicCongestionFeedbackFrame* feedback) |
| : feedback_(feedback) { |
| } |
| |
| bool GenerateCongestionFeedback( |
| QuicCongestionFeedbackFrame* congestion_feedback) override { |
| if (feedback_ == nullptr) { |
| return false; |
| } |
| *congestion_feedback = *feedback_; |
| return true; |
| } |
| |
| MOCK_METHOD3(RecordIncomingPacket, |
| void(QuicByteCount, QuicPacketSequenceNumber, QuicTime)); |
| |
| private: |
| QuicCongestionFeedbackFrame* feedback_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TestReceiveAlgorithm); |
| }; |
| |
| // TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message. |
| class TaggingEncrypter : public QuicEncrypter { |
| public: |
| explicit TaggingEncrypter(uint8 tag) |
| : tag_(tag) { |
| } |
| |
| ~TaggingEncrypter() override {} |
| |
| // QuicEncrypter interface. |
| bool SetKey(StringPiece key) override { return true; } |
| |
| bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; } |
| |
| bool Encrypt(StringPiece nonce, |
| StringPiece associated_data, |
| StringPiece plaintext, |
| unsigned char* output) override { |
| memcpy(output, plaintext.data(), plaintext.size()); |
| output += plaintext.size(); |
| memset(output, tag_, kTagSize); |
| return true; |
| } |
| |
| QuicData* EncryptPacket(QuicPacketSequenceNumber sequence_number, |
| StringPiece associated_data, |
| StringPiece plaintext) override { |
| const size_t len = plaintext.size() + kTagSize; |
| uint8* buffer = new uint8[len]; |
| Encrypt(StringPiece(), associated_data, plaintext, buffer); |
| return new QuicData(reinterpret_cast<char*>(buffer), len, true); |
| } |
| |
| size_t GetKeySize() const override { return 0; } |
| size_t GetNoncePrefixSize() const override { return 0; } |
| |
| size_t GetMaxPlaintextSize(size_t ciphertext_size) const override { |
| return ciphertext_size - kTagSize; |
| } |
| |
| size_t GetCiphertextSize(size_t plaintext_size) const override { |
| return plaintext_size + kTagSize; |
| } |
| |
| StringPiece GetKey() const override { return StringPiece(); } |
| |
| StringPiece GetNoncePrefix() const override { return StringPiece(); } |
| |
| private: |
| enum { |
| kTagSize = 12, |
| }; |
| |
| const uint8 tag_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter); |
| }; |
| |
| // TaggingDecrypter ensures that the final kTagSize bytes of the message all |
| // have the same value and then removes them. |
| class TaggingDecrypter : public QuicDecrypter { |
| public: |
| ~TaggingDecrypter() override {} |
| |
| // QuicDecrypter interface |
| bool SetKey(StringPiece key) override { return true; } |
| |
| bool SetNoncePrefix(StringPiece nonce_prefix) override { return true; } |
| |
| bool Decrypt(StringPiece nonce, |
| StringPiece associated_data, |
| StringPiece ciphertext, |
| unsigned char* output, |
| size_t* output_length) override { |
| if (ciphertext.size() < kTagSize) { |
| return false; |
| } |
| if (!CheckTag(ciphertext, GetTag(ciphertext))) { |
| return false; |
| } |
| *output_length = ciphertext.size() - kTagSize; |
| memcpy(output, ciphertext.data(), *output_length); |
| return true; |
| } |
| |
| QuicData* DecryptPacket(QuicPacketSequenceNumber sequence_number, |
| StringPiece associated_data, |
| StringPiece ciphertext) override { |
| if (ciphertext.size() < kTagSize) { |
| return nullptr; |
| } |
| if (!CheckTag(ciphertext, GetTag(ciphertext))) { |
| return nullptr; |
| } |
| const size_t len = ciphertext.size() - kTagSize; |
| uint8* buf = new uint8[len]; |
| memcpy(buf, ciphertext.data(), len); |
| return new QuicData(reinterpret_cast<char*>(buf), len, |
| true /* owns buffer */); |
| } |
| |
| StringPiece GetKey() const override { return StringPiece(); } |
| StringPiece GetNoncePrefix() const override { return StringPiece(); } |
| |
| protected: |
| virtual uint8 GetTag(StringPiece ciphertext) { |
| return ciphertext.data()[ciphertext.size()-1]; |
| } |
| |
| private: |
| enum { |
| kTagSize = 12, |
| }; |
| |
| bool CheckTag(StringPiece ciphertext, uint8 tag) { |
| for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) { |
| if (ciphertext.data()[i] != tag) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| }; |
| |
| // StringTaggingDecrypter ensures that the final kTagSize bytes of the message |
| // match the expected value. |
| class StrictTaggingDecrypter : public TaggingDecrypter { |
| public: |
| explicit StrictTaggingDecrypter(uint8 tag) : tag_(tag) {} |
| ~StrictTaggingDecrypter() override {} |
| |
| // TaggingQuicDecrypter |
| uint8 GetTag(StringPiece ciphertext) override { return tag_; } |
| |
| private: |
| const uint8 tag_; |
| }; |
| |
| class TestConnectionHelper : public QuicConnectionHelperInterface { |
| public: |
| class TestAlarm : public QuicAlarm { |
| public: |
| explicit TestAlarm(QuicAlarm::Delegate* delegate) |
| : QuicAlarm(delegate) { |
| } |
| |
| void SetImpl() override {} |
| void CancelImpl() override {} |
| using QuicAlarm::Fire; |
| }; |
| |
| TestConnectionHelper(MockClock* clock, MockRandom* random_generator) |
| : clock_(clock), |
| random_generator_(random_generator) { |
| clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1)); |
| } |
| |
| // QuicConnectionHelperInterface |
| const QuicClock* GetClock() const override { return clock_; } |
| |
| QuicRandom* GetRandomGenerator() override { return random_generator_; } |
| |
| QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) override { |
| return new TestAlarm(delegate); |
| } |
| |
| private: |
| MockClock* clock_; |
| MockRandom* random_generator_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper); |
| }; |
| |
| class TestPacketWriter : public QuicPacketWriter { |
| public: |
| TestPacketWriter(QuicVersion version, MockClock *clock) |
| : version_(version), |
| framer_(SupportedVersions(version_)), |
| last_packet_size_(0), |
| write_blocked_(false), |
| block_on_next_write_(false), |
| is_write_blocked_data_buffered_(false), |
| final_bytes_of_last_packet_(0), |
| final_bytes_of_previous_packet_(0), |
| use_tagging_decrypter_(false), |
| packets_write_attempts_(0), |
| clock_(clock), |
| write_pause_time_delta_(QuicTime::Delta::Zero()) { |
| } |
| |
| // QuicPacketWriter interface |
| WriteResult WritePacket(const char* buffer, |
| size_t buf_len, |
| const IPAddressNumber& self_address, |
| const IPEndPoint& peer_address) override { |
| QuicEncryptedPacket packet(buffer, buf_len); |
| ++packets_write_attempts_; |
| |
| if (packet.length() >= sizeof(final_bytes_of_last_packet_)) { |
| final_bytes_of_previous_packet_ = final_bytes_of_last_packet_; |
| memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4, |
| sizeof(final_bytes_of_last_packet_)); |
| } |
| |
| if (use_tagging_decrypter_) { |
| framer_.framer()->SetDecrypter(new TaggingDecrypter, ENCRYPTION_NONE); |
| } |
| EXPECT_TRUE(framer_.ProcessPacket(packet)); |
| if (block_on_next_write_) { |
| write_blocked_ = true; |
| block_on_next_write_ = false; |
| } |
| if (IsWriteBlocked()) { |
| return WriteResult(WRITE_STATUS_BLOCKED, -1); |
| } |
| last_packet_size_ = packet.length(); |
| |
| if (!write_pause_time_delta_.IsZero()) { |
| clock_->AdvanceTime(write_pause_time_delta_); |
| } |
| return WriteResult(WRITE_STATUS_OK, last_packet_size_); |
| } |
| |
| bool IsWriteBlockedDataBuffered() const override { |
| return is_write_blocked_data_buffered_; |
| } |
| |
| bool IsWriteBlocked() const override { return write_blocked_; } |
| |
| void SetWritable() override { write_blocked_ = false; } |
| |
| void BlockOnNextWrite() { block_on_next_write_ = true; } |
| |
| // Sets the amount of time that the writer should before the actual write. |
| void SetWritePauseTimeDelta(QuicTime::Delta delta) { |
| write_pause_time_delta_ = delta; |
| } |
| |
| const QuicPacketHeader& header() { return framer_.header(); } |
| |
| size_t frame_count() const { return framer_.num_frames(); } |
| |
| const vector<QuicAckFrame>& ack_frames() const { |
| return framer_.ack_frames(); |
| } |
| |
| const vector<QuicCongestionFeedbackFrame>& feedback_frames() const { |
| return framer_.feedback_frames(); |
| } |
| |
| const vector<QuicStopWaitingFrame>& stop_waiting_frames() const { |
| return framer_.stop_waiting_frames(); |
| } |
| |
| const vector<QuicConnectionCloseFrame>& connection_close_frames() const { |
| return framer_.connection_close_frames(); |
| } |
| |
| const vector<QuicStreamFrame>& stream_frames() const { |
| return framer_.stream_frames(); |
| } |
| |
| const vector<QuicPingFrame>& ping_frames() const { |
| return framer_.ping_frames(); |
| } |
| |
| size_t last_packet_size() { |
| return last_packet_size_; |
| } |
| |
| const QuicVersionNegotiationPacket* version_negotiation_packet() { |
| return framer_.version_negotiation_packet(); |
| } |
| |
| void set_is_write_blocked_data_buffered(bool buffered) { |
| is_write_blocked_data_buffered_ = buffered; |
| } |
| |
| void set_is_server(bool is_server) { |
| // We invert is_server here, because the framer needs to parse packets |
| // we send. |
| QuicFramerPeer::SetIsServer(framer_.framer(), !is_server); |
| } |
| |
| // final_bytes_of_last_packet_ returns the last four bytes of the previous |
| // packet as a little-endian, uint32. This is intended to be used with a |
| // TaggingEncrypter so that tests can determine which encrypter was used for |
| // a given packet. |
| uint32 final_bytes_of_last_packet() { return final_bytes_of_last_packet_; } |
| |
| // Returns the final bytes of the second to last packet. |
| uint32 final_bytes_of_previous_packet() { |
| return final_bytes_of_previous_packet_; |
| } |
| |
| void use_tagging_decrypter() { |
| use_tagging_decrypter_ = true; |
| } |
| |
| uint32 packets_write_attempts() { return packets_write_attempts_; } |
| |
| void Reset() { framer_.Reset(); } |
| |
| void SetSupportedVersions(const QuicVersionVector& versions) { |
| framer_.SetSupportedVersions(versions); |
| } |
| |
| private: |
| QuicVersion version_; |
| SimpleQuicFramer framer_; |
| size_t last_packet_size_; |
| bool write_blocked_; |
| bool block_on_next_write_; |
| bool is_write_blocked_data_buffered_; |
| uint32 final_bytes_of_last_packet_; |
| uint32 final_bytes_of_previous_packet_; |
| bool use_tagging_decrypter_; |
| uint32 packets_write_attempts_; |
| MockClock *clock_; |
| // If non-zero, the clock will pause during WritePacket for this amount of |
| // time. |
| QuicTime::Delta write_pause_time_delta_; |
| |
| DISALLOW_COPY_AND_ASSIGN(TestPacketWriter); |
| }; |
| |
| class TestConnection : public QuicConnection { |
| public: |
| TestConnection(QuicConnectionId connection_id, |
| IPEndPoint address, |
| TestConnectionHelper* helper, |
| const PacketWriterFactory& factory, |
| bool is_server, |
| QuicVersion version) |
| : QuicConnection(connection_id, |
| address, |
| helper, |
| factory, |
| /* owns_writer= */ false, |
| is_server, |
| /* is_secure= */ false, |
| SupportedVersions(version)) { |
| // Disable tail loss probes for most tests. |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes( |
| QuicConnectionPeer::GetSentPacketManager(this), 0); |
| writer()->set_is_server(is_server); |
| } |
| |
| void SendAck() { |
| QuicConnectionPeer::SendAck(this); |
| } |
| |
| void SetReceiveAlgorithm(TestReceiveAlgorithm* receive_algorithm) { |
| QuicConnectionPeer::SetReceiveAlgorithm(this, receive_algorithm); |
| } |
| |
| void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) { |
| QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm); |
| } |
| |
| void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) { |
| QuicSentPacketManagerPeer::SetLossAlgorithm( |
| QuicConnectionPeer::GetSentPacketManager(this), loss_algorithm); |
| } |
| |
| void SendPacket(EncryptionLevel level, |
| QuicPacketSequenceNumber sequence_number, |
| QuicPacket* packet, |
| QuicPacketEntropyHash entropy_hash, |
| HasRetransmittableData retransmittable) { |
| RetransmittableFrames* retransmittable_frames = |
| retransmittable == HAS_RETRANSMITTABLE_DATA |
| ? new RetransmittableFrames() |
| : nullptr; |
| OnSerializedPacket( |
| SerializedPacket(sequence_number, PACKET_6BYTE_SEQUENCE_NUMBER, |
| packet, entropy_hash, retransmittable_frames)); |
| } |
| |
| QuicConsumedData SendStreamDataWithString( |
| QuicStreamId id, |
| StringPiece data, |
| QuicStreamOffset offset, |
| bool fin, |
| QuicAckNotifier::DelegateInterface* delegate) { |
| return SendStreamDataWithStringHelper(id, data, offset, fin, |
| MAY_FEC_PROTECT, delegate); |
| } |
| |
| QuicConsumedData SendStreamDataWithStringWithFec( |
| QuicStreamId id, |
| StringPiece data, |
| QuicStreamOffset offset, |
| bool fin, |
| QuicAckNotifier::DelegateInterface* delegate) { |
| return SendStreamDataWithStringHelper(id, data, offset, fin, |
| MUST_FEC_PROTECT, delegate); |
| } |
| |
| QuicConsumedData SendStreamDataWithStringHelper( |
| QuicStreamId id, |
| StringPiece data, |
| QuicStreamOffset offset, |
| bool fin, |
| FecProtection fec_protection, |
| QuicAckNotifier::DelegateInterface* delegate) { |
| IOVector data_iov; |
| if (!data.empty()) { |
| data_iov.Append(const_cast<char*>(data.data()), data.size()); |
| } |
| return QuicConnection::SendStreamData(id, data_iov, offset, fin, |
| fec_protection, delegate); |
| } |
| |
| QuicConsumedData SendStreamData3() { |
| return SendStreamDataWithString(kClientDataStreamId1, "food", 0, !kFin, |
| nullptr); |
| } |
| |
| QuicConsumedData SendStreamData3WithFec() { |
| return SendStreamDataWithStringWithFec(kClientDataStreamId1, "food", 0, |
| !kFin, nullptr); |
| } |
| |
| QuicConsumedData SendStreamData5() { |
| return SendStreamDataWithString(kClientDataStreamId2, "food2", 0, !kFin, |
| nullptr); |
| } |
| |
| QuicConsumedData SendStreamData5WithFec() { |
| return SendStreamDataWithStringWithFec(kClientDataStreamId2, "food2", 0, |
| !kFin, nullptr); |
| } |
| // Ensures the connection can write stream data before writing. |
| QuicConsumedData EnsureWritableAndSendStreamData5() { |
| EXPECT_TRUE(CanWriteStreamData()); |
| return SendStreamData5(); |
| } |
| |
| // The crypto stream has special semantics so that it is not blocked by a |
| // congestion window limitation, and also so that it gets put into a separate |
| // packet (so that it is easier to reason about a crypto frame not being |
| // split needlessly across packet boundaries). As a result, we have separate |
| // tests for some cases for this stream. |
| QuicConsumedData SendCryptoStreamData() { |
| return SendStreamDataWithString(kCryptoStreamId, "chlo", 0, !kFin, nullptr); |
| } |
| |
| bool is_server() { |
| return QuicConnectionPeer::IsServer(this); |
| } |
| |
| void set_version(QuicVersion version) { |
| QuicConnectionPeer::GetFramer(this)->set_version(version); |
| } |
| |
| void SetSupportedVersions(const QuicVersionVector& versions) { |
| QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions); |
| writer()->SetSupportedVersions(versions); |
| } |
| |
| void set_is_server(bool is_server) { |
| writer()->set_is_server(is_server); |
| QuicConnectionPeer::SetIsServer(this, is_server); |
| } |
| |
| TestConnectionHelper::TestAlarm* GetAckAlarm() { |
| return reinterpret_cast<TestConnectionHelper::TestAlarm*>( |
| QuicConnectionPeer::GetAckAlarm(this)); |
| } |
| |
| TestConnectionHelper::TestAlarm* GetPingAlarm() { |
| return reinterpret_cast<TestConnectionHelper::TestAlarm*>( |
| QuicConnectionPeer::GetPingAlarm(this)); |
| } |
| |
| TestConnectionHelper::TestAlarm* GetResumeWritesAlarm() { |
| return reinterpret_cast<TestConnectionHelper::TestAlarm*>( |
| QuicConnectionPeer::GetResumeWritesAlarm(this)); |
| } |
| |
| TestConnectionHelper::TestAlarm* GetRetransmissionAlarm() { |
| return reinterpret_cast<TestConnectionHelper::TestAlarm*>( |
| QuicConnectionPeer::GetRetransmissionAlarm(this)); |
| } |
| |
| TestConnectionHelper::TestAlarm* GetSendAlarm() { |
| return reinterpret_cast<TestConnectionHelper::TestAlarm*>( |
| QuicConnectionPeer::GetSendAlarm(this)); |
| } |
| |
| TestConnectionHelper::TestAlarm* GetTimeoutAlarm() { |
| return reinterpret_cast<TestConnectionHelper::TestAlarm*>( |
| QuicConnectionPeer::GetTimeoutAlarm(this)); |
| } |
| |
| using QuicConnection::SelectMutualVersion; |
| |
| private: |
| TestPacketWriter* writer() { |
| return static_cast<TestPacketWriter*>(QuicConnection::writer()); |
| } |
| |
| DISALLOW_COPY_AND_ASSIGN(TestConnection); |
| }; |
| |
| // Used for testing packets revived from FEC packets. |
| class FecQuicConnectionDebugVisitor |
| : public QuicConnectionDebugVisitor { |
| public: |
| void OnRevivedPacket(const QuicPacketHeader& header, |
| StringPiece data) override { |
| revived_header_ = header; |
| } |
| |
| // Public accessor method. |
| QuicPacketHeader revived_header() const { |
| return revived_header_; |
| } |
| |
| private: |
| QuicPacketHeader revived_header_; |
| }; |
| |
| class MockPacketWriterFactory : public QuicConnection::PacketWriterFactory { |
| public: |
| MockPacketWriterFactory(QuicPacketWriter* writer) { |
| ON_CALL(*this, Create(_)).WillByDefault(Return(writer)); |
| } |
| ~MockPacketWriterFactory() override {} |
| |
| MOCK_CONST_METHOD1(Create, QuicPacketWriter*(QuicConnection* connection)); |
| }; |
| |
| class QuicConnectionTest : public ::testing::TestWithParam<QuicVersion> { |
| protected: |
| QuicConnectionTest() |
| : connection_id_(42), |
| framer_(SupportedVersions(version()), QuicTime::Zero(), false), |
| peer_creator_(connection_id_, &framer_, &random_generator_), |
| send_algorithm_(new StrictMock<MockSendAlgorithm>), |
| loss_algorithm_(new MockLossAlgorithm()), |
| helper_(new TestConnectionHelper(&clock_, &random_generator_)), |
| writer_(new TestPacketWriter(version(), &clock_)), |
| factory_(writer_.get()), |
| connection_(connection_id_, IPEndPoint(), helper_.get(), |
| factory_, false, version()), |
| frame1_(1, false, 0, MakeIOVector(data1)), |
| frame2_(1, false, 3, MakeIOVector(data2)), |
| sequence_number_length_(PACKET_6BYTE_SEQUENCE_NUMBER), |
| connection_id_length_(PACKET_8BYTE_CONNECTION_ID) { |
| connection_.set_visitor(&visitor_); |
| connection_.SetSendAlgorithm(send_algorithm_); |
| connection_.SetLossAlgorithm(loss_algorithm_); |
| framer_.set_received_entropy_calculator(&entropy_calculator_); |
| // Simplify tests by not sending feedback unless specifically configured. |
| SetFeedback(nullptr); |
| EXPECT_CALL( |
| *send_algorithm_, TimeUntilSend(_, _, _)).WillRepeatedly(Return( |
| QuicTime::Delta::Zero())); |
| EXPECT_CALL(*receive_algorithm_, |
| RecordIncomingPacket(_, _, _)).Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, RetransmissionDelay()).WillRepeatedly( |
| Return(QuicTime::Delta::Zero())); |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( |
| Return(kMaxPacketSize)); |
| ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillByDefault(Return(true)); |
| EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate()) |
| .Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()) |
| .Times(AnyNumber()) |
| .WillRepeatedly(Return(QuicBandwidth::Zero())); |
| EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber()); |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber()); |
| EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber()); |
| EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber()); |
| EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(false)); |
| EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber()); |
| |
| EXPECT_CALL(*loss_algorithm_, GetLossTimeout()) |
| .WillRepeatedly(Return(QuicTime::Zero())); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillRepeatedly(Return(SequenceNumberSet())); |
| } |
| |
| QuicVersion version() { |
| return GetParam(); |
| } |
| |
| QuicAckFrame* outgoing_ack() { |
| outgoing_ack_.reset(QuicConnectionPeer::CreateAckFrame(&connection_)); |
| return outgoing_ack_.get(); |
| } |
| |
| QuicStopWaitingFrame* stop_waiting() { |
| stop_waiting_.reset( |
| QuicConnectionPeer::CreateStopWaitingFrame(&connection_)); |
| return stop_waiting_.get(); |
| } |
| |
| QuicPacketSequenceNumber least_unacked() { |
| if (writer_->stop_waiting_frames().empty()) { |
| return 0; |
| } |
| return writer_->stop_waiting_frames()[0].least_unacked; |
| } |
| |
| void use_tagging_decrypter() { |
| writer_->use_tagging_decrypter(); |
| } |
| |
| void ProcessPacket(QuicPacketSequenceNumber number) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); |
| ProcessDataPacket(number, 0, !kEntropyFlag); |
| } |
| |
| QuicPacketEntropyHash ProcessFramePacket(QuicFrame frame) { |
| QuicFrames frames; |
| frames.push_back(QuicFrame(frame)); |
| QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_, |
| connection_.is_server()); |
| SerializedPacket serialized_packet = |
| peer_creator_.SerializeAllFrames(frames); |
| scoped_ptr<QuicPacket> packet(serialized_packet.packet); |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.EncryptPacket(ENCRYPTION_NONE, |
| serialized_packet.sequence_number, *packet)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| return serialized_packet.entropy_hash; |
| } |
| |
| size_t ProcessDataPacket(QuicPacketSequenceNumber number, |
| QuicFecGroupNumber fec_group, |
| bool entropy_flag) { |
| return ProcessDataPacketAtLevel(number, fec_group, entropy_flag, |
| ENCRYPTION_NONE); |
| } |
| |
| size_t ProcessDataPacketAtLevel(QuicPacketSequenceNumber number, |
| QuicFecGroupNumber fec_group, |
| bool entropy_flag, |
| EncryptionLevel level) { |
| scoped_ptr<QuicPacket> packet(ConstructDataPacket(number, fec_group, |
| entropy_flag)); |
| scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( |
| level, number, *packet)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| return encrypted->length(); |
| } |
| |
| void ProcessPingPacket(QuicPacketSequenceNumber number) { |
| scoped_ptr<QuicPacket> packet(ConstructPingPacket(number)); |
| scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( |
| ENCRYPTION_NONE, number, *packet)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| } |
| |
| void ProcessClosePacket(QuicPacketSequenceNumber number, |
| QuicFecGroupNumber fec_group) { |
| scoped_ptr<QuicPacket> packet(ConstructClosePacket(number, fec_group)); |
| scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( |
| ENCRYPTION_NONE, number, *packet)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| } |
| |
| size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number, |
| bool expect_revival, bool entropy_flag) { |
| if (expect_revival) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); |
| } |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1). |
| RetiresOnSaturation(); |
| return ProcessDataPacket(number, 1, entropy_flag); |
| } |
| |
| // Processes an FEC packet that covers the packets that would have been |
| // received. |
| size_t ProcessFecPacket(QuicPacketSequenceNumber number, |
| QuicPacketSequenceNumber min_protected_packet, |
| bool expect_revival, |
| bool entropy_flag, |
| QuicPacket* packet) { |
| if (expect_revival) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); |
| } |
| |
| // Construct the decrypted data packet so we can compute the correct |
| // redundancy. If |packet| has been provided then use that, otherwise |
| // construct a default data packet. |
| scoped_ptr<QuicPacket> data_packet; |
| if (packet) { |
| data_packet.reset(packet); |
| } else { |
| data_packet.reset(ConstructDataPacket(number, 1, !kEntropyFlag)); |
| } |
| |
| header_.public_header.connection_id = connection_id_; |
| header_.public_header.reset_flag = false; |
| header_.public_header.version_flag = false; |
| header_.public_header.sequence_number_length = sequence_number_length_; |
| header_.public_header.connection_id_length = connection_id_length_; |
| header_.packet_sequence_number = number; |
| header_.entropy_flag = entropy_flag; |
| header_.fec_flag = true; |
| header_.is_in_fec_group = IN_FEC_GROUP; |
| header_.fec_group = min_protected_packet; |
| QuicFecData fec_data; |
| fec_data.fec_group = header_.fec_group; |
| |
| // Since all data packets in this test have the same payload, the |
| // redundancy is either equal to that payload or the xor of that payload |
| // with itself, depending on the number of packets. |
| if (((number - min_protected_packet) % 2) == 0) { |
| for (size_t i = GetStartOfFecProtectedData( |
| header_.public_header.connection_id_length, |
| header_.public_header.version_flag, |
| header_.public_header.sequence_number_length); |
| i < data_packet->length(); ++i) { |
| data_packet->mutable_data()[i] ^= data_packet->data()[i]; |
| } |
| } |
| fec_data.redundancy = data_packet->FecProtectedData(); |
| |
| scoped_ptr<QuicPacket> fec_packet( |
| framer_.BuildFecPacket(header_, fec_data).packet); |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.EncryptPacket(ENCRYPTION_NONE, number, *fec_packet)); |
| |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| return encrypted->length(); |
| } |
| |
| QuicByteCount SendStreamDataToPeer(QuicStreamId id, |
| StringPiece data, |
| QuicStreamOffset offset, |
| bool fin, |
| QuicPacketSequenceNumber* last_packet) { |
| QuicByteCount packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true))); |
| connection_.SendStreamDataWithString(id, data, offset, fin, nullptr); |
| if (last_packet != nullptr) { |
| *last_packet = |
| QuicConnectionPeer::GetPacketCreator(&connection_)->sequence_number(); |
| } |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AnyNumber()); |
| return packet_size; |
| } |
| |
| void SendAckPacketToPeer() { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendAck(); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AnyNumber()); |
| } |
| |
| QuicPacketEntropyHash ProcessAckPacket(QuicAckFrame* frame) { |
| return ProcessFramePacket(QuicFrame(frame)); |
| } |
| |
| QuicPacketEntropyHash ProcessStopWaitingPacket(QuicStopWaitingFrame* frame) { |
| return ProcessFramePacket(QuicFrame(frame)); |
| } |
| |
| QuicPacketEntropyHash ProcessGoAwayPacket(QuicGoAwayFrame* frame) { |
| return ProcessFramePacket(QuicFrame(frame)); |
| } |
| |
| bool IsMissing(QuicPacketSequenceNumber number) { |
| return IsAwaitingPacket(*outgoing_ack(), number); |
| } |
| |
| QuicPacket* ConstructDataPacket(QuicPacketSequenceNumber number, |
| QuicFecGroupNumber fec_group, |
| bool entropy_flag) { |
| header_.public_header.connection_id = connection_id_; |
| header_.public_header.reset_flag = false; |
| header_.public_header.version_flag = false; |
| header_.public_header.sequence_number_length = sequence_number_length_; |
| header_.public_header.connection_id_length = connection_id_length_; |
| header_.entropy_flag = entropy_flag; |
| header_.fec_flag = false; |
| header_.packet_sequence_number = number; |
| header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP; |
| header_.fec_group = fec_group; |
| |
| QuicFrames frames; |
| QuicFrame frame(&frame1_); |
| frames.push_back(frame); |
| QuicPacket* packet = |
| BuildUnsizedDataPacket(&framer_, header_, frames).packet; |
| EXPECT_TRUE(packet != nullptr); |
| return packet; |
| } |
| |
| QuicPacket* ConstructPingPacket(QuicPacketSequenceNumber number) { |
| header_.public_header.connection_id = connection_id_; |
| header_.packet_sequence_number = number; |
| header_.public_header.reset_flag = false; |
| header_.public_header.version_flag = false; |
| header_.entropy_flag = false; |
| header_.fec_flag = false; |
| header_.is_in_fec_group = NOT_IN_FEC_GROUP; |
| header_.fec_group = 0; |
| |
| QuicPingFrame ping; |
| |
| QuicFrames frames; |
| QuicFrame frame(&ping); |
| frames.push_back(frame); |
| QuicPacket* packet = |
| BuildUnsizedDataPacket(&framer_, header_, frames).packet; |
| EXPECT_TRUE(packet != nullptr); |
| return packet; |
| } |
| |
| QuicPacket* ConstructClosePacket(QuicPacketSequenceNumber number, |
| QuicFecGroupNumber fec_group) { |
| header_.public_header.connection_id = connection_id_; |
| header_.packet_sequence_number = number; |
| header_.public_header.reset_flag = false; |
| header_.public_header.version_flag = false; |
| header_.entropy_flag = false; |
| header_.fec_flag = false; |
| header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP; |
| header_.fec_group = fec_group; |
| |
| QuicConnectionCloseFrame qccf; |
| qccf.error_code = QUIC_PEER_GOING_AWAY; |
| |
| QuicFrames frames; |
| QuicFrame frame(&qccf); |
| frames.push_back(frame); |
| QuicPacket* packet = |
| BuildUnsizedDataPacket(&framer_, header_, frames).packet; |
| EXPECT_TRUE(packet != nullptr); |
| return packet; |
| } |
| |
| void SetFeedback(QuicCongestionFeedbackFrame* feedback) { |
| receive_algorithm_ = new TestReceiveAlgorithm(feedback); |
| connection_.SetReceiveAlgorithm(receive_algorithm_); |
| } |
| |
| QuicTime::Delta DefaultRetransmissionTime() { |
| return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); |
| } |
| |
| QuicTime::Delta DefaultDelayedAckTime() { |
| return QuicTime::Delta::FromMilliseconds(kMaxDelayedAckTimeMs); |
| } |
| |
| // Initialize a frame acknowledging all packets up to largest_observed. |
| const QuicAckFrame InitAckFrame(QuicPacketSequenceNumber largest_observed) { |
| QuicAckFrame frame(MakeAckFrame(largest_observed)); |
| if (largest_observed > 0) { |
| frame.entropy_hash = |
| QuicConnectionPeer::GetSentEntropyHash(&connection_, |
| largest_observed); |
| } |
| return frame; |
| } |
| |
| const QuicStopWaitingFrame InitStopWaitingFrame( |
| QuicPacketSequenceNumber least_unacked) { |
| QuicStopWaitingFrame frame; |
| frame.least_unacked = least_unacked; |
| return frame; |
| } |
| |
| // Explicitly nack a packet. |
| void NackPacket(QuicPacketSequenceNumber missing, QuicAckFrame* frame) { |
| frame->missing_packets.insert(missing); |
| frame->entropy_hash ^= |
| QuicConnectionPeer::PacketEntropy(&connection_, missing); |
| } |
| |
| // Undo nacking a packet within the frame. |
| void AckPacket(QuicPacketSequenceNumber arrived, QuicAckFrame* frame) { |
| EXPECT_THAT(frame->missing_packets, Contains(arrived)); |
| frame->missing_packets.erase(arrived); |
| frame->entropy_hash ^= |
| QuicConnectionPeer::PacketEntropy(&connection_, arrived); |
| } |
| |
| void TriggerConnectionClose() { |
| // Send an erroneous packet to close the connection. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); |
| // Call ProcessDataPacket rather than ProcessPacket, as we should not get a |
| // packet call to the visitor. |
| ProcessDataPacket(6000, 0, !kEntropyFlag); |
| EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == |
| nullptr); |
| } |
| |
| void BlockOnNextWrite() { |
| writer_->BlockOnNextWrite(); |
| EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1)); |
| } |
| |
| void SetWritePauseTimeDelta(QuicTime::Delta delta) { |
| writer_->SetWritePauseTimeDelta(delta); |
| } |
| |
| void CongestionBlockWrites() { |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, _, _)).WillRepeatedly( |
| testing::Return(QuicTime::Delta::FromSeconds(1))); |
| } |
| |
| void CongestionUnblockWrites() { |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, _, _)).WillRepeatedly( |
| testing::Return(QuicTime::Delta::Zero())); |
| } |
| |
| QuicConnectionId connection_id_; |
| QuicFramer framer_; |
| QuicPacketCreator peer_creator_; |
| MockEntropyCalculator entropy_calculator_; |
| |
| MockSendAlgorithm* send_algorithm_; |
| MockLossAlgorithm* loss_algorithm_; |
| TestReceiveAlgorithm* receive_algorithm_; |
| MockClock clock_; |
| MockRandom random_generator_; |
| scoped_ptr<TestConnectionHelper> helper_; |
| scoped_ptr<TestPacketWriter> writer_; |
| NiceMock<MockPacketWriterFactory> factory_; |
| TestConnection connection_; |
| StrictMock<MockConnectionVisitor> visitor_; |
| |
| QuicPacketHeader header_; |
| QuicStreamFrame frame1_; |
| QuicStreamFrame frame2_; |
| scoped_ptr<QuicAckFrame> outgoing_ack_; |
| scoped_ptr<QuicStopWaitingFrame> stop_waiting_; |
| QuicSequenceNumberLength sequence_number_length_; |
| QuicConnectionIdLength connection_id_length_; |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest); |
| }; |
| |
| // Run all end to end tests with all supported versions. |
| INSTANTIATE_TEST_CASE_P(SupportedVersion, |
| QuicConnectionTest, |
| ::testing::ValuesIn(QuicSupportedVersions())); |
| |
| TEST_P(QuicConnectionTest, PacketsInOrder) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(1); |
| EXPECT_EQ(1u, outgoing_ack()->largest_observed); |
| EXPECT_EQ(0u, outgoing_ack()->missing_packets.size()); |
| |
| ProcessPacket(2); |
| EXPECT_EQ(2u, outgoing_ack()->largest_observed); |
| EXPECT_EQ(0u, outgoing_ack()->missing_packets.size()); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(3u, outgoing_ack()->largest_observed); |
| EXPECT_EQ(0u, outgoing_ack()->missing_packets.size()); |
| } |
| |
| TEST_P(QuicConnectionTest, PacketsOutOfOrder) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(3u, outgoing_ack()->largest_observed); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(2); |
| EXPECT_EQ(3u, outgoing_ack()->largest_observed); |
| EXPECT_FALSE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(1); |
| EXPECT_EQ(3u, outgoing_ack()->largest_observed); |
| EXPECT_FALSE(IsMissing(2)); |
| EXPECT_FALSE(IsMissing(1)); |
| } |
| |
| TEST_P(QuicConnectionTest, DuplicatePacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(3u, outgoing_ack()->largest_observed); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| // Send packet 3 again, but do not set the expectation that |
| // the visitor OnStreamFrames() will be called. |
| ProcessDataPacket(3, 0, !kEntropyFlag); |
| EXPECT_EQ(3u, outgoing_ack()->largest_observed); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| } |
| |
| TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| EXPECT_EQ(3u, outgoing_ack()->largest_observed); |
| EXPECT_TRUE(IsMissing(2)); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(2); |
| EXPECT_EQ(3u, outgoing_ack()->largest_observed); |
| EXPECT_TRUE(IsMissing(1)); |
| |
| ProcessPacket(5); |
| EXPECT_EQ(5u, outgoing_ack()->largest_observed); |
| EXPECT_TRUE(IsMissing(1)); |
| EXPECT_TRUE(IsMissing(4)); |
| |
| // Pretend at this point the client has gotten acks for 2 and 3 and 1 is a |
| // packet the peer will not retransmit. It indicates this by sending 'least |
| // awaiting' is 4. The connection should then realize 1 will not be |
| // retransmitted, and will remove it from the missing list. |
| peer_creator_.set_sequence_number(5); |
| QuicAckFrame frame = InitAckFrame(1); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _)); |
| ProcessAckPacket(&frame); |
| |
| // Force an ack to be sent. |
| SendAckPacketToPeer(); |
| EXPECT_TRUE(IsMissing(4)); |
| } |
| |
| TEST_P(QuicConnectionTest, RejectPacketTooFarOut) { |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false)); |
| // Call ProcessDataPacket rather than ProcessPacket, as we should not get a |
| // packet call to the visitor. |
| ProcessDataPacket(6000, 0, !kEntropyFlag); |
| EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == |
| nullptr); |
| } |
| |
| TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) { |
| // Process an unencrypted packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA, |
| false)); |
| ProcessDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_FALSE(QuicConnectionPeer::GetConnectionClosePacket(&connection_) == |
| nullptr); |
| const vector<QuicConnectionCloseFrame>& connection_close_frames = |
| writer_->connection_close_frames(); |
| EXPECT_EQ(1u, connection_close_frames.size()); |
| EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA, |
| connection_close_frames[0].error_code); |
| } |
| |
| TEST_P(QuicConnectionTest, TruncatedAck) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicPacketSequenceNumber num_packets = 256 * 2 + 1; |
| for (QuicPacketSequenceNumber i = 0; i < num_packets; ++i) { |
| SendStreamDataToPeer(3, "foo", i * 3, !kFin, nullptr); |
| } |
| |
| QuicAckFrame frame = InitAckFrame(num_packets); |
| SequenceNumberSet lost_packets; |
| // Create an ack with 256 nacks, none adjacent to one another. |
| for (QuicPacketSequenceNumber i = 1; i <= 256; ++i) { |
| NackPacket(i * 2, &frame); |
| if (i < 256) { // Last packet is nacked, but not lost. |
| lost_packets.insert(i * 2); |
| } |
| } |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(entropy_calculator_, EntropyHash(511)) |
| .WillOnce(Return(static_cast<QuicPacketEntropyHash>(0))); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| ProcessAckPacket(&frame); |
| |
| const QuicSentPacketManager& sent_packet_manager = |
| connection_.sent_packet_manager(); |
| // A truncated ack will not have the true largest observed. |
| EXPECT_GT(num_packets, sent_packet_manager.largest_observed()); |
| |
| AckPacket(192, &frame); |
| |
| // Removing one missing packet allows us to ack 192 and one more range, but |
| // 192 has already been declared lost, so it doesn't register as an ack. |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(SequenceNumberSet())); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| ProcessAckPacket(&frame); |
| EXPECT_EQ(num_packets, sent_packet_manager.largest_observed()); |
| } |
| |
| TEST_P(QuicConnectionTest, AckReceiptCausesAckSendBadEntropy) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(1); |
| // Delay sending, then queue up an ack. |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(1))); |
| QuicConnectionPeer::SendAck(&connection_); |
| |
| // Process an ack with a least unacked of the received ack. |
| // This causes an ack to be sent when TimeUntilSend returns 0. |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, _, _)).WillRepeatedly( |
| testing::Return(QuicTime::Delta::Zero())); |
| // Skip a packet and then record an ack. |
| peer_creator_.set_sequence_number(2); |
| QuicAckFrame frame = InitAckFrame(0); |
| ProcessAckPacket(&frame); |
| } |
| |
| TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessPacket(3); |
| // Should ack immediately since we have missing packets. |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| |
| ProcessPacket(2); |
| // Should ack immediately since we have missing packets. |
| EXPECT_EQ(2u, writer_->packets_write_attempts()); |
| |
| ProcessPacket(1); |
| // Should ack immediately, since this fills the last hole. |
| EXPECT_EQ(3u, writer_->packets_write_attempts()); |
| |
| ProcessPacket(4); |
| // Should not cause an ack. |
| EXPECT_EQ(3u, writer_->packets_write_attempts()); |
| } |
| |
| TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| QuicPacketSequenceNumber original; |
| QuicByteCount packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(DoAll(SaveArg<2>(&original), SaveArg<3>(&packet_size), |
| Return(true))); |
| connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); |
| QuicAckFrame frame = InitAckFrame(original); |
| NackPacket(original, &frame); |
| // First nack triggers early retransmit. |
| SequenceNumberSet lost_packets; |
| lost_packets.insert(1); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicPacketSequenceNumber retransmission; |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _)) |
| .WillOnce(DoAll(SaveArg<2>(&retransmission), Return(true))); |
| |
| ProcessAckPacket(&frame); |
| |
| QuicAckFrame frame2 = InitAckFrame(retransmission); |
| NackPacket(original, &frame2); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(SequenceNumberSet())); |
| ProcessAckPacket(&frame2); |
| |
| // Now if the peer sends an ack which still reports the retransmitted packet |
| // as missing, that will bundle an ack with data after two acks in a row |
| // indicate the high water mark needs to be raised. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, |
| HAS_RETRANSMITTABLE_DATA)); |
| connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr); |
| // No ack sent. |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| |
| // No more packet loss for the rest of the test. |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillRepeatedly(Return(SequenceNumberSet())); |
| ProcessAckPacket(&frame2); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, |
| HAS_RETRANSMITTABLE_DATA)); |
| connection_.SendStreamDataWithString(3, "foo", 3, !kFin, nullptr); |
| // Ack bundled. |
| EXPECT_EQ(3u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| |
| // But an ack with no missing packets will not send an ack. |
| AckPacket(original, &frame2); |
| ProcessAckPacket(&frame2); |
| ProcessAckPacket(&frame2); |
| } |
| |
| TEST_P(QuicConnectionTest, 20AcksCausesAckSend) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); |
| |
| QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); |
| // But an ack with no missing packets will not send an ack. |
| QuicAckFrame frame = InitAckFrame(1); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillRepeatedly(Return(SequenceNumberSet())); |
| for (int i = 0; i < 20; ++i) { |
| EXPECT_FALSE(ack_alarm->IsSet()); |
| ProcessAckPacket(&frame); |
| } |
| EXPECT_TRUE(ack_alarm->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, LeastUnackedLower) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); |
| SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr); |
| SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr); |
| |
| // Start out saying the least unacked is 2. |
| peer_creator_.set_sequence_number(5); |
| QuicStopWaitingFrame frame = InitStopWaitingFrame(2); |
| ProcessStopWaitingPacket(&frame); |
| |
| // Change it to 1, but lower the sequence number to fake out-of-order packets. |
| // This should be fine. |
| peer_creator_.set_sequence_number(1); |
| // The scheduler will not process out of order acks, but all packet processing |
| // causes the connection to try to write. |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| QuicStopWaitingFrame frame2 = InitStopWaitingFrame(1); |
| ProcessStopWaitingPacket(&frame2); |
| |
| // Now claim it's one, but set the ordering so it was sent "after" the first |
| // one. This should cause a connection error. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| peer_creator_.set_sequence_number(7); |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA, false)); |
| QuicStopWaitingFrame frame3 = InitStopWaitingFrame(1); |
| ProcessStopWaitingPacket(&frame3); |
| } |
| |
| TEST_P(QuicConnectionTest, TooManySentPackets) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| for (int i = 0; i < 1100; ++i) { |
| SendStreamDataToPeer(1, "foo", 3 * i, !kFin, nullptr); |
| } |
| |
| // Ack packet 1, which leaves more than the limit outstanding. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| if (FLAGS_quic_too_many_outstanding_packets) { |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(QUIC_TOO_MANY_OUTSTANDING_SENT_PACKETS, |
| false)); |
| } |
| // We're receive buffer limited, so the connection won't try to write more. |
| EXPECT_CALL(visitor_, OnCanWrite()).Times(0); |
| |
| // Nack every packet except the last one, leaving a huge gap. |
| QuicAckFrame frame1 = InitAckFrame(1100); |
| for (QuicPacketSequenceNumber i = 1; i < 1100; ++i) { |
| NackPacket(i, &frame1); |
| } |
| ProcessAckPacket(&frame1); |
| } |
| |
| TEST_P(QuicConnectionTest, TooManyReceivedPackets) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| if (FLAGS_quic_too_many_outstanding_packets) { |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(QUIC_TOO_MANY_OUTSTANDING_RECEIVED_PACKETS, |
| false)); |
| } |
| |
| // Miss every other packet for 1000 packets. |
| for (QuicPacketSequenceNumber i = 1; i < 1000; ++i) { |
| ProcessPacket(i * 2); |
| if (!connection_.connected()) { |
| break; |
| } |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, LargestObservedLower) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); |
| SendStreamDataToPeer(1, "bar", 3, !kFin, nullptr); |
| SendStreamDataToPeer(1, "eep", 6, !kFin, nullptr); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| |
| // Start out saying the largest observed is 2. |
| QuicAckFrame frame1 = InitAckFrame(1); |
| QuicAckFrame frame2 = InitAckFrame(2); |
| ProcessAckPacket(&frame2); |
| |
| // Now change it to 1, and it should cause a connection error. |
| EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false)); |
| EXPECT_CALL(visitor_, OnCanWrite()).Times(0); |
| ProcessAckPacket(&frame1); |
| } |
| |
| TEST_P(QuicConnectionTest, AckUnsentData) { |
| // Ack a packet which has not been sent. |
| EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| QuicAckFrame frame(MakeAckFrame(1)); |
| EXPECT_CALL(visitor_, OnCanWrite()).Times(0); |
| ProcessAckPacket(&frame); |
| } |
| |
| TEST_P(QuicConnectionTest, AckAll) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| |
| peer_creator_.set_sequence_number(1); |
| QuicAckFrame frame1 = InitAckFrame(0); |
| ProcessAckPacket(&frame1); |
| } |
| |
| TEST_P(QuicConnectionTest, SendingDifferentSequenceNumberLengthsBandwidth) { |
| QuicPacketSequenceNumber last_packet; |
| QuicPacketCreator* creator = |
| QuicConnectionPeer::GetPacketCreator(&connection_); |
| SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); |
| EXPECT_EQ(1u, last_packet); |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| creator->next_sequence_number_length()); |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| writer_->header().public_header.sequence_number_length); |
| |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( |
| Return(kMaxPacketSize * 256)); |
| |
| SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); |
| EXPECT_EQ(2u, last_packet); |
| EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, |
| creator->next_sequence_number_length()); |
| // The 1 packet lag is due to the sequence number length being recalculated in |
| // QuicConnection after a packet is sent. |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| writer_->header().public_header.sequence_number_length); |
| |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( |
| Return(kMaxPacketSize * 256 * 256)); |
| |
| SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); |
| EXPECT_EQ(3u, last_packet); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| creator->next_sequence_number_length()); |
| EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, |
| writer_->header().public_header.sequence_number_length); |
| |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( |
| Return(kMaxPacketSize * 256 * 256 * 256)); |
| |
| SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet); |
| EXPECT_EQ(4u, last_packet); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| creator->next_sequence_number_length()); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| writer_->header().public_header.sequence_number_length); |
| |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( |
| Return(kMaxPacketSize * 256 * 256 * 256 * 256)); |
| |
| SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet); |
| EXPECT_EQ(5u, last_packet); |
| EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER, |
| creator->next_sequence_number_length()); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| writer_->header().public_header.sequence_number_length); |
| } |
| |
| // TODO(ianswett): Re-enable this test by finding a good way to test different |
| // sequence number lengths without sending packets with giant gaps. |
| TEST_P(QuicConnectionTest, |
| DISABLED_SendingDifferentSequenceNumberLengthsUnackedDelta) { |
| QuicPacketSequenceNumber last_packet; |
| QuicPacketCreator* creator = |
| QuicConnectionPeer::GetPacketCreator(&connection_); |
| SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); |
| EXPECT_EQ(1u, last_packet); |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| creator->next_sequence_number_length()); |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| writer_->header().public_header.sequence_number_length); |
| |
| creator->set_sequence_number(100); |
| |
| SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); |
| EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, |
| creator->next_sequence_number_length()); |
| EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER, |
| writer_->header().public_header.sequence_number_length); |
| |
| creator->set_sequence_number(100 * 256); |
| |
| SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| creator->next_sequence_number_length()); |
| EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER, |
| writer_->header().public_header.sequence_number_length); |
| |
| creator->set_sequence_number(100 * 256 * 256); |
| |
| SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| creator->next_sequence_number_length()); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| writer_->header().public_header.sequence_number_length); |
| |
| creator->set_sequence_number(100 * 256 * 256 * 256); |
| |
| SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet); |
| EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER, |
| creator->next_sequence_number_length()); |
| EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER, |
| writer_->header().public_header.sequence_number_length); |
| } |
| |
| TEST_P(QuicConnectionTest, BasicSending) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicPacketSequenceNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 |
| EXPECT_EQ(1u, last_packet); |
| SendAckPacketToPeer(); // Packet 2 |
| |
| EXPECT_EQ(1u, least_unacked()); |
| |
| SendAckPacketToPeer(); // Packet 3 |
| EXPECT_EQ(1u, least_unacked()); |
| |
| SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); // Packet 4 |
| EXPECT_EQ(4u, last_packet); |
| SendAckPacketToPeer(); // Packet 5 |
| EXPECT_EQ(1u, least_unacked()); |
| |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| |
| // Peer acks up to packet 3. |
| QuicAckFrame frame = InitAckFrame(3); |
| ProcessAckPacket(&frame); |
| SendAckPacketToPeer(); // Packet 6 |
| |
| // As soon as we've acked one, we skip ack packets 2 and 3 and note lack of |
| // ack for 4. |
| EXPECT_EQ(4u, least_unacked()); |
| |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| |
| // Peer acks up to packet 4, the last packet. |
| QuicAckFrame frame2 = InitAckFrame(6); |
| ProcessAckPacket(&frame2); // Acks don't instigate acks. |
| |
| // Verify that we did not send an ack. |
| EXPECT_EQ(6u, writer_->header().packet_sequence_number); |
| |
| // So the last ack has not changed. |
| EXPECT_EQ(4u, least_unacked()); |
| |
| // If we force an ack, we shouldn't change our retransmit state. |
| SendAckPacketToPeer(); // Packet 7 |
| EXPECT_EQ(7u, least_unacked()); |
| |
| // But if we send more data it should. |
| SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet); // Packet 8 |
| EXPECT_EQ(8u, last_packet); |
| SendAckPacketToPeer(); // Packet 9 |
| EXPECT_EQ(7u, least_unacked()); |
| } |
| |
| // If FLAGS_quic_record_send_time_before_write is disabled, QuicConnection |
| // should record the packet sen-tdime after the packet is sent. |
| TEST_P(QuicConnectionTest, RecordSentTimeAfterPacketSent) { |
| ValueRestore<bool> old_flag(&FLAGS_quic_record_send_time_before_write, false); |
| // We're using a MockClock for the tests, so we have complete control over the |
| // time. |
| // Our recorded timestamp for the last packet sent time will be passed in to |
| // the send_algorithm. Make sure that it is set to the correct value. |
| QuicTime actual_recorded_send_time = QuicTime::Zero(); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); |
| |
| // First send without any pause and check the result. |
| QuicTime expected_recorded_send_time = clock_.Now(); |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); |
| EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) |
| << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() |
| << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue(); |
| |
| // Now pause during the write, and check the results. |
| actual_recorded_send_time = QuicTime::Zero(); |
| const QuicTime::Delta kWritePauseTimeDelta = |
| QuicTime::Delta::FromMilliseconds(5000); |
| SetWritePauseTimeDelta(kWritePauseTimeDelta); |
| expected_recorded_send_time = clock_.Now().Add(kWritePauseTimeDelta); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); |
| connection_.SendStreamDataWithString(2, "baz", 0, !kFin, nullptr); |
| EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) |
| << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() |
| << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue(); |
| } |
| |
| // If FLAGS_quic_record_send_time_before_write is enabled, QuicConnection should |
| // record the the packet sent-time prior to sending the packet. |
| TEST_P(QuicConnectionTest, RecordSentTimeBeforePacketSent) { |
| ValueRestore<bool> old_flag(&FLAGS_quic_record_send_time_before_write, true); |
| // We're using a MockClock for the tests, so we have complete control over the |
| // time. |
| // Our recorded timestamp for the last packet sent time will be passed in to |
| // the send_algorithm. Make sure that it is set to the correct value. |
| QuicTime actual_recorded_send_time = QuicTime::Zero(); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); |
| |
| // First send without any pause and check the result. |
| QuicTime expected_recorded_send_time = clock_.Now(); |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); |
| EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) |
| << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() |
| << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue(); |
| |
| // Now pause during the write, and check the results. |
| actual_recorded_send_time = QuicTime::Zero(); |
| const QuicTime::Delta kWritePauseTimeDelta = |
| QuicTime::Delta::FromMilliseconds(5000); |
| SetWritePauseTimeDelta(kWritePauseTimeDelta); |
| expected_recorded_send_time = clock_.Now(); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(DoAll(SaveArg<0>(&actual_recorded_send_time), Return(true))); |
| connection_.SendStreamDataWithString(2, "baz", 0, !kFin, nullptr); |
| EXPECT_EQ(expected_recorded_send_time, actual_recorded_send_time) |
| << "Expected time = " << expected_recorded_send_time.ToDebuggingValue() |
| << ". Actual time = " << actual_recorded_send_time.ToDebuggingValue(); |
| } |
| |
| TEST_P(QuicConnectionTest, FECSending) { |
| // All packets carry version info till version is negotiated. |
| QuicPacketCreator* creator = |
| QuicConnectionPeer::GetPacketCreator(&connection_); |
| size_t payload_length; |
| // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining |
| // packet length. The size of the offset field in a stream frame is 0 for |
| // offset 0, and 2 for non-zero offsets up through 64K. Increase |
| // max_packet_length by 2 so that subsequent packets containing subsequent |
| // stream frames with non-zero offets will fit within the packet length. |
| size_t length = 2 + GetPacketLengthForOneStream( |
| connection_.version(), kIncludeVersion, |
| PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER, |
| IN_FEC_GROUP, &payload_length); |
| creator->set_max_packet_length(length); |
| |
| // Send 4 protected data packets, which should also trigger 1 FEC packet. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(5); |
| // The first stream frame will have 2 fewer overhead bytes than the other 3. |
| const string payload(payload_length * 4 + 2, 'a'); |
| connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, nullptr); |
| // Expect the FEC group to be closed after SendStreamDataWithString. |
| EXPECT_FALSE(creator->IsFecGroupOpen()); |
| EXPECT_FALSE(creator->IsFecProtected()); |
| } |
| |
| TEST_P(QuicConnectionTest, FECQueueing) { |
| // All packets carry version info till version is negotiated. |
| size_t payload_length; |
| QuicPacketCreator* creator = |
| QuicConnectionPeer::GetPacketCreator(&connection_); |
| size_t length = GetPacketLengthForOneStream( |
| connection_.version(), kIncludeVersion, |
| PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER, |
| IN_FEC_GROUP, &payload_length); |
| creator->set_max_packet_length(length); |
| EXPECT_TRUE(creator->IsFecEnabled()); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| BlockOnNextWrite(); |
| const string payload(payload_length, 'a'); |
| connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, nullptr); |
| EXPECT_FALSE(creator->IsFecGroupOpen()); |
| EXPECT_FALSE(creator->IsFecProtected()); |
| // Expect the first data packet and the fec packet to be queued. |
| EXPECT_EQ(2u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_P(QuicConnectionTest, AbandonFECFromCongestionWindow) { |
| EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator( |
| &connection_)->IsFecEnabled()); |
| |
| // 1 Data and 1 FEC packet. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(2); |
| connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, nullptr); |
| |
| const QuicTime::Delta retransmission_time = |
| QuicTime::Delta::FromMilliseconds(5000); |
| clock_.AdvanceTime(retransmission_time); |
| |
| // Abandon FEC packet and data packet. |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| connection_.OnRetransmissionTimeout(); |
| } |
| |
| TEST_P(QuicConnectionTest, DontAbandonAckedFEC) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator( |
| &connection_)->IsFecEnabled()); |
| |
| // 3 Data and 3 FEC packets. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(6); |
| connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, nullptr); |
| // Send some more data afterwards to ensure early retransmit doesn't trigger. |
| connection_.SendStreamDataWithStringWithFec(3, "foo", 3, !kFin, nullptr); |
| connection_.SendStreamDataWithStringWithFec(3, "foo", 6, !kFin, nullptr); |
| |
| QuicAckFrame ack_fec = InitAckFrame(2); |
| // Data packet missing. |
| // TODO(ianswett): Note that this is not a sensible ack, since if the FEC was |
| // received, it would cause the covered packet to be acked as well. |
| NackPacket(1, &ack_fec); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| ProcessAckPacket(&ack_fec); |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| |
| // Don't abandon the acked FEC packet, but it will abandon 2 the subsequent |
| // FEC packets. |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| } |
| |
| TEST_P(QuicConnectionTest, AbandonAllFEC) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator( |
| &connection_)->IsFecEnabled()); |
| |
| // 3 Data and 3 FEC packet. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, _, HAS_RETRANSMITTABLE_DATA)).Times(6); |
| connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, nullptr); |
| // Send some more data afterwards to ensure early retransmit doesn't trigger. |
| connection_.SendStreamDataWithStringWithFec(3, "foo", 3, !kFin, nullptr); |
| // Advance the time so not all the FEC packets are abandoned. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1)); |
| connection_.SendStreamDataWithStringWithFec(3, "foo", 6, !kFin, nullptr); |
| |
| QuicAckFrame ack_fec = InitAckFrame(5); |
| // Ack all data packets, but no fec packets. |
| NackPacket(2, &ack_fec); |
| NackPacket(4, &ack_fec); |
| |
| // Lose the first FEC packet and ack the three data packets. |
| SequenceNumberSet lost_packets; |
| lost_packets.insert(2); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| ProcessAckPacket(&ack_fec); |
| |
| clock_.AdvanceTime(DefaultRetransmissionTime().Subtract( |
| QuicTime::Delta::FromMilliseconds(1))); |
| |
| // Abandon all packets |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(false)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Ensure the alarm is not set since all packets have been abandoned. |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePacking) { |
| CongestionBlockWrites(); |
| |
| // Send an ack and two stream frames in 1 packet by queueing them. |
| connection_.SendAck(); |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData3)), |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData5)))); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| CongestionUnblockWrites(); |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's an ack and two stream frames from |
| // two different streams. |
| EXPECT_EQ(4u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| ASSERT_EQ(2u, writer_->stream_frames().size()); |
| EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); |
| EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) { |
| CongestionBlockWrites(); |
| |
| // Send an ack and two stream frames (one non-crypto, then one crypto) in 2 |
| // packets by queueing them. |
| connection_.SendAck(); |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData3)), |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendCryptoStreamData)))); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| CongestionUnblockWrites(); |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's the crypto stream frame. |
| EXPECT_EQ(1u, writer_->frame_count()); |
| ASSERT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_EQ(kCryptoStreamId, writer_->stream_frames()[0].stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) { |
| CongestionBlockWrites(); |
| |
| // Send an ack and two stream frames (one crypto, then one non-crypto) in 2 |
| // packets by queueing them. |
| connection_.SendAck(); |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendCryptoStreamData)), |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData3)))); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| CongestionUnblockWrites(); |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's the stream frame from stream 3. |
| EXPECT_EQ(1u, writer_->frame_count()); |
| ASSERT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePackingFEC) { |
| EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator( |
| &connection_)->IsFecEnabled()); |
| |
| CongestionBlockWrites(); |
| |
| // Queue an ack and two stream frames. Ack gets flushed when FEC is turned on |
| // for sending protected data; two stream frames are packing in 1 packet. |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( |
| IgnoreResult(InvokeWithoutArgs( |
| &connection_, &TestConnection::SendStreamData3WithFec)), |
| IgnoreResult(InvokeWithoutArgs( |
| &connection_, &TestConnection::SendStreamData5WithFec)))); |
| connection_.SendAck(); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); |
| CongestionUnblockWrites(); |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's in an fec group. |
| EXPECT_EQ(2u, writer_->header().fec_group); |
| EXPECT_EQ(0u, writer_->frame_count()); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePackingAckResponse) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| // Process a data packet to queue up a pending ack. |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); |
| ProcessDataPacket(1, 1, kEntropyFlag); |
| |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData3)), |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData5)))); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| |
| // Process an ack to cause the visitor's OnCanWrite to be invoked. |
| peer_creator_.set_sequence_number(2); |
| QuicAckFrame ack_one = InitAckFrame(0); |
| ProcessAckPacket(&ack_one); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's an ack and two stream frames from |
| // two different streams. |
| EXPECT_EQ(4u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| ASSERT_EQ(2u, writer_->stream_frames().size()); |
| EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); |
| EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePackingSendv) { |
| // Send data in 1 packet by writing multiple blocks in a single iovector |
| // using writev. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| |
| char data[] = "ABCD"; |
| IOVector data_iov; |
| data_iov.AppendNoCoalesce(data, 2); |
| data_iov.AppendNoCoalesce(data + 2, 2); |
| connection_.SendStreamData(1, data_iov, 0, !kFin, MAY_FEC_PROTECT, nullptr); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure multiple iovector blocks have |
| // been packed into a single stream frame from one stream. |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| QuicStreamFrame frame = writer_->stream_frames()[0]; |
| EXPECT_EQ(1u, frame.stream_id); |
| EXPECT_EQ("ABCD", string(static_cast<char*> |
| (frame.data.iovec()[0].iov_base), |
| (frame.data.iovec()[0].iov_len))); |
| } |
| |
| TEST_P(QuicConnectionTest, FramePackingSendvQueued) { |
| // Try to send two stream frames in 1 packet by using writev. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| |
| BlockOnNextWrite(); |
| char data[] = "ABCD"; |
| IOVector data_iov; |
| data_iov.AppendNoCoalesce(data, 2); |
| data_iov.AppendNoCoalesce(data + 2, 2); |
| connection_.SendStreamData(1, data_iov, 0, !kFin, MAY_FEC_PROTECT, nullptr); |
| |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| EXPECT_TRUE(connection_.HasQueuedData()); |
| |
| // Unblock the writes and actually send. |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| |
| // Parse the last packet and ensure it's one stream frame from one stream. |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, SendingZeroBytes) { |
| // Send a zero byte write with a fin using writev. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| IOVector empty_iov; |
| connection_.SendStreamData(1, empty_iov, 0, kFin, MAY_FEC_PROTECT, nullptr); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| |
| // Parse the last packet and ensure it's one stream frame from one stream. |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id); |
| EXPECT_TRUE(writer_->stream_frames()[0].fin); |
| } |
| |
| TEST_P(QuicConnectionTest, OnCanWrite) { |
| // Visitor's OnCanWrite will send data, but will have more pending writes. |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll( |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData3)), |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendStreamData5)))); |
| EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true)); |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, _, _)).WillRepeatedly( |
| testing::Return(QuicTime::Delta::Zero())); |
| |
| connection_.OnCanWrite(); |
| |
| // Parse the last packet and ensure it's the two stream frames from |
| // two different streams. |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_EQ(2u, writer_->stream_frames().size()); |
| EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id); |
| EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitOnNack) { |
| QuicPacketSequenceNumber last_packet; |
| QuicByteCount second_packet_size; |
| SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 1 |
| second_packet_size = |
| SendStreamDataToPeer(3, "foos", 3, !kFin, &last_packet); // Packet 2 |
| SendStreamDataToPeer(3, "fooos", 7, !kFin, &last_packet); // Packet 3 |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Don't lose a packet on an ack, and nothing is retransmitted. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicAckFrame ack_one = InitAckFrame(1); |
| ProcessAckPacket(&ack_one); |
| |
| // Lose a packet and ensure it triggers retransmission. |
| QuicAckFrame nack_two = InitAckFrame(3); |
| NackPacket(2, &nack_two); |
| SequenceNumberSet lost_packets; |
| lost_packets.insert(2); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, second_packet_size - kQuicVersionSize, _)). |
| Times(1); |
| ProcessAckPacket(&nack_two); |
| } |
| |
| TEST_P(QuicConnectionTest, DiscardRetransmit) { |
| QuicPacketSequenceNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 |
| SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet); // Packet 2 |
| SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet); // Packet 3 |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Instigate a loss with an ack. |
| QuicAckFrame nack_two = InitAckFrame(3); |
| NackPacket(2, &nack_two); |
| // The first nack should trigger a fast retransmission, but we'll be |
| // write blocked, so the packet will be queued. |
| BlockOnNextWrite(); |
| SequenceNumberSet lost_packets; |
| lost_packets.insert(2); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| ProcessAckPacket(&nack_two); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Now, ack the previous transmission. |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(SequenceNumberSet())); |
| QuicAckFrame ack_all = InitAckFrame(3); |
| ProcessAckPacket(&ack_all); |
| |
| // Unblock the socket and attempt to send the queued packets. However, |
| // since the previous transmission has been acked, we will not |
| // send the retransmission. |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, _, _)).Times(0); |
| |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicPacketSequenceNumber largest_observed; |
| QuicByteCount packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(DoAll(SaveArg<2>(&largest_observed), SaveArg<3>(&packet_size), |
| Return(true))); |
| connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); |
| |
| QuicAckFrame frame = InitAckFrame(1); |
| NackPacket(largest_observed, &frame); |
| // The first nack should retransmit the largest observed packet. |
| SequenceNumberSet lost_packets; |
| lost_packets.insert(1); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _)); |
| ProcessAckPacket(&frame); |
| } |
| |
| TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) { |
| for (int i = 0; i < 10; ++i) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendStreamDataWithString(3, "foo", i * 3, !kFin, nullptr); |
| } |
| |
| // Block the congestion window and ensure they're queued. |
| BlockOnNextWrite(); |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| // Only one packet should be retransmitted. |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_TRUE(connection_.HasQueuedData()); |
| |
| // Unblock the congestion window. |
| writer_->SetWritable(); |
| clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds( |
| 2 * DefaultRetransmissionTime().ToMicroseconds())); |
| // Retransmit already retransmitted packets event though the sequence number |
| // greater than the largest observed. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(10); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| connection_.OnCanWrite(); |
| } |
| |
| TEST_P(QuicConnectionTest, WriteBlockedThenSent) { |
| BlockOnNextWrite(); |
| writer_->set_is_write_blocked_data_buffered(true); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| BlockOnNextWrite(); |
| writer_->set_is_write_blocked_data_buffered(true); |
| // Simulate the retransmission alarm firing. |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(_)); |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Ack the sent packet before the callback returns, which happens in |
| // rare circumstances with write blocked sockets. |
| QuicAckFrame ack = InitAckFrame(1); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); |
| ProcessAckPacket(&ack); |
| |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| // There is now a pending packet, but with no retransmittable frames. |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.sent_packet_manager().HasRetransmittableFrames(2)); |
| } |
| |
| TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) { |
| // Block the connection. |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| |
| // Set the send and resumption alarms. Fire the alarms and ensure they don't |
| // attempt to write. |
| connection_.GetResumeWritesAlarm()->Set(clock_.ApproximateNow()); |
| connection_.GetSendAlarm()->Set(clock_.ApproximateNow()); |
| connection_.GetResumeWritesAlarm()->Fire(); |
| connection_.GetSendAlarm()->Fire(); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| } |
| |
| TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| int offset = 0; |
| // Send packets 1 to 15. |
| for (int i = 0; i < 15; ++i) { |
| SendStreamDataToPeer(1, "foo", offset, !kFin, nullptr); |
| offset += 3; |
| } |
| |
| // Ack 15, nack 1-14. |
| SequenceNumberSet lost_packets; |
| QuicAckFrame nack = InitAckFrame(15); |
| for (int i = 1; i < 15; ++i) { |
| NackPacket(i, &nack); |
| lost_packets.insert(i); |
| } |
| |
| // 14 packets have been NACK'd and lost. In TCP cubic, PRR limits |
| // the retransmission rate in the case of burst losses. |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(14); |
| ProcessAckPacket(&nack); |
| } |
| |
| // Test sending multiple acks from the connection to the session. |
| TEST_P(QuicConnectionTest, MultipleAcks) { |
| QuicPacketSequenceNumber last_packet; |
| SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1 |
| EXPECT_EQ(1u, last_packet); |
| SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 2 |
| EXPECT_EQ(2u, last_packet); |
| SendAckPacketToPeer(); // Packet 3 |
| SendStreamDataToPeer(5, "foo", 0, !kFin, &last_packet); // Packet 4 |
| EXPECT_EQ(4u, last_packet); |
| SendStreamDataToPeer(1, "foo", 3, !kFin, &last_packet); // Packet 5 |
| EXPECT_EQ(5u, last_packet); |
| SendStreamDataToPeer(3, "foo", 3, !kFin, &last_packet); // Packet 6 |
| EXPECT_EQ(6u, last_packet); |
| |
| // Client will ack packets 1, 2, [!3], 4, 5. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicAckFrame frame1 = InitAckFrame(5); |
| NackPacket(3, &frame1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessAckPacket(&frame1); |
| |
| // Now the client implicitly acks 3, and explicitly acks 6. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicAckFrame frame2 = InitAckFrame(6); |
| ProcessAckPacket(&frame2); |
| } |
| |
| TEST_P(QuicConnectionTest, DontLatchUnackedPacket) { |
| SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); // Packet 1; |
| // From now on, we send acks, so the send algorithm won't mark them pending. |
| ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillByDefault(Return(false)); |
| SendAckPacketToPeer(); // Packet 2 |
| |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicAckFrame frame = InitAckFrame(1); |
| ProcessAckPacket(&frame); |
| |
| // Verify that our internal state has least-unacked as 2, because we're still |
| // waiting for a potential ack for 2. |
| |
| EXPECT_EQ(2u, stop_waiting()->least_unacked); |
| |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| frame = InitAckFrame(2); |
| ProcessAckPacket(&frame); |
| EXPECT_EQ(3u, stop_waiting()->least_unacked); |
| |
| // When we send an ack, we make sure our least-unacked makes sense. In this |
| // case since we're not waiting on an ack for 2 and all packets are acked, we |
| // set it to 3. |
| SendAckPacketToPeer(); // Packet 3 |
| // Least_unacked remains at 3 until another ack is received. |
| EXPECT_EQ(3u, stop_waiting()->least_unacked); |
| // Check that the outgoing ack had its sequence number as least_unacked. |
| EXPECT_EQ(3u, least_unacked()); |
| |
| // Ack the ack, which updates the rtt and raises the least unacked. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| frame = InitAckFrame(3); |
| ProcessAckPacket(&frame); |
| |
| ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillByDefault(Return(true)); |
| SendStreamDataToPeer(1, "bar", 3, false, nullptr); // Packet 4 |
| EXPECT_EQ(4u, stop_waiting()->least_unacked); |
| ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillByDefault(Return(false)); |
| SendAckPacketToPeer(); // Packet 5 |
| EXPECT_EQ(4u, least_unacked()); |
| |
| // Send two data packets at the end, and ensure if the last one is acked, |
| // the least unacked is raised above the ack packets. |
| ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillByDefault(Return(true)); |
| SendStreamDataToPeer(1, "bar", 6, false, nullptr); // Packet 6 |
| SendStreamDataToPeer(1, "bar", 9, false, nullptr); // Packet 7 |
| |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| frame = InitAckFrame(7); |
| NackPacket(5, &frame); |
| NackPacket(6, &frame); |
| ProcessAckPacket(&frame); |
| |
| EXPECT_EQ(6u, stop_waiting()->least_unacked); |
| } |
| |
| TEST_P(QuicConnectionTest, ReviveMissingPacketAfterFecPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Don't send missing packet 1. |
| ProcessFecPacket(2, 1, true, !kEntropyFlag, nullptr); |
| // Entropy flag should be false, so entropy should be 0. |
| EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); |
| } |
| |
| TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingSeqNumLengths) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Set up a debug visitor to the connection. |
| FecQuicConnectionDebugVisitor* fec_visitor = |
| new FecQuicConnectionDebugVisitor(); |
| connection_.set_debug_visitor(fec_visitor); |
| |
| QuicPacketSequenceNumber fec_packet = 0; |
| QuicSequenceNumberLength lengths[] = {PACKET_6BYTE_SEQUENCE_NUMBER, |
| PACKET_4BYTE_SEQUENCE_NUMBER, |
| PACKET_2BYTE_SEQUENCE_NUMBER, |
| PACKET_1BYTE_SEQUENCE_NUMBER}; |
| // For each sequence number length size, revive a packet and check sequence |
| // number length in the revived packet. |
| for (size_t i = 0; i < arraysize(lengths); ++i) { |
| // Set sequence_number_length_ (for data and FEC packets). |
| sequence_number_length_ = lengths[i]; |
| fec_packet += 2; |
| // Don't send missing packet, but send fec packet right after it. |
| ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, nullptr); |
| // Sequence number length in the revived header should be the same as |
| // in the original data/fec packet headers. |
| EXPECT_EQ(sequence_number_length_, fec_visitor->revived_header(). |
| public_header.sequence_number_length); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingConnectionIdLengths) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Set up a debug visitor to the connection. |
| FecQuicConnectionDebugVisitor* fec_visitor = |
| new FecQuicConnectionDebugVisitor(); |
| connection_.set_debug_visitor(fec_visitor); |
| |
| QuicPacketSequenceNumber fec_packet = 0; |
| QuicConnectionIdLength lengths[] = {PACKET_8BYTE_CONNECTION_ID, |
| PACKET_4BYTE_CONNECTION_ID, |
| PACKET_1BYTE_CONNECTION_ID, |
| PACKET_0BYTE_CONNECTION_ID}; |
| // For each connection id length size, revive a packet and check connection |
| // id length in the revived packet. |
| for (size_t i = 0; i < arraysize(lengths); ++i) { |
| // Set connection id length (for data and FEC packets). |
| connection_id_length_ = lengths[i]; |
| fec_packet += 2; |
| // Don't send missing packet, but send fec packet right after it. |
| ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, nullptr); |
| // Connection id length in the revived header should be the same as |
| // in the original data/fec packet headers. |
| EXPECT_EQ(connection_id_length_, |
| fec_visitor->revived_header().public_header.connection_id_length); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketThenFecPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessFecProtectedPacket(1, false, kEntropyFlag); |
| // Don't send missing packet 2. |
| ProcessFecPacket(3, 1, true, !kEntropyFlag, nullptr); |
| // Entropy flag should be true, so entropy should not be 0. |
| EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); |
| } |
| |
| TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketsThenFecPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessFecProtectedPacket(1, false, !kEntropyFlag); |
| // Don't send missing packet 2. |
| ProcessFecProtectedPacket(3, false, !kEntropyFlag); |
| ProcessFecPacket(4, 1, true, kEntropyFlag, nullptr); |
| // Ensure QUIC no longer revives entropy for lost packets. |
| EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); |
| EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 4)); |
| } |
| |
| TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Don't send missing packet 1. |
| ProcessFecPacket(3, 1, false, !kEntropyFlag, nullptr); |
| // Out of order. |
| ProcessFecProtectedPacket(2, true, !kEntropyFlag); |
| // Entropy flag should be false, so entropy should be 0. |
| EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); |
| } |
| |
| TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPackets) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| ProcessFecProtectedPacket(1, false, !kEntropyFlag); |
| // Don't send missing packet 2. |
| ProcessFecPacket(6, 1, false, kEntropyFlag, nullptr); |
| ProcessFecProtectedPacket(3, false, kEntropyFlag); |
| ProcessFecProtectedPacket(4, false, kEntropyFlag); |
| ProcessFecProtectedPacket(5, true, !kEntropyFlag); |
| // Ensure entropy is not revived for the missing packet. |
| EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2)); |
| EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 3)); |
| } |
| |
| TEST_P(QuicConnectionTest, TLP) { |
| QuicSentPacketManagerPeer::SetMaxTailLossProbes( |
| QuicConnectionPeer::GetSentPacketManager(&connection_), 1); |
| |
| SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); |
| EXPECT_EQ(1u, stop_waiting()->least_unacked); |
| QuicTime retransmission_time = |
| connection_.GetRetransmissionAlarm()->deadline(); |
| EXPECT_NE(QuicTime::Zero(), retransmission_time); |
| |
| EXPECT_EQ(1u, writer_->header().packet_sequence_number); |
| // Simulate the retransmission alarm firing and sending a tlp, |
| // so send algorithm's OnRetransmissionTimeout is not called. |
| clock_.AdvanceTime(retransmission_time.Subtract(clock_.Now())); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(2u, writer_->header().packet_sequence_number); |
| // We do not raise the high water mark yet. |
| EXPECT_EQ(1u, stop_waiting()->least_unacked); |
| } |
| |
| TEST_P(QuicConnectionTest, RTO) { |
| QuicTime default_retransmission_time = clock_.ApproximateNow().Add( |
| DefaultRetransmissionTime()); |
| SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); |
| EXPECT_EQ(1u, stop_waiting()->least_unacked); |
| |
| EXPECT_EQ(1u, writer_->header().packet_sequence_number); |
| EXPECT_EQ(default_retransmission_time, |
| connection_.GetRetransmissionAlarm()->deadline()); |
| // Simulate the retransmission alarm firing. |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(2u, writer_->header().packet_sequence_number); |
| // We do not raise the high water mark yet. |
| EXPECT_EQ(1u, stop_waiting()->least_unacked); |
| } |
| |
| TEST_P(QuicConnectionTest, RTOWithSameEncryptionLevel) { |
| QuicTime default_retransmission_time = clock_.ApproximateNow().Add( |
| DefaultRetransmissionTime()); |
| use_tagging_decrypter(); |
| |
| // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at |
| // the end of the packet. We can test this to check which encrypter was used. |
| connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); |
| SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); |
| EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); |
| |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); |
| SendStreamDataToPeer(3, "foo", 0, !kFin, nullptr); |
| EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); |
| |
| EXPECT_EQ(default_retransmission_time, |
| connection_.GetRetransmissionAlarm()->deadline()); |
| { |
| InSequence s; |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 3, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 4, _, _)); |
| } |
| |
| // Simulate the retransmission alarm firing. |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Packet should have been sent with ENCRYPTION_NONE. |
| EXPECT_EQ(0x01010101u, writer_->final_bytes_of_previous_packet()); |
| |
| // Packet should have been sent with ENCRYPTION_INITIAL. |
| EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendHandshakeMessages) { |
| use_tagging_decrypter(); |
| // A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at |
| // the end of the packet. We can test this to check which encrypter was used. |
| connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); |
| |
| // Attempt to send a handshake message and have the socket block. |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, _, _)).WillRepeatedly( |
| testing::Return(QuicTime::Delta::Zero())); |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); |
| // The packet should be serialized, but not queued. |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Switch to the new encrypter. |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); |
| |
| // Now become writeable and flush the packets. |
| writer_->SetWritable(); |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| connection_.OnCanWrite(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| |
| // Verify that the handshake packet went out at the null encryption. |
| EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet()); |
| } |
| |
| TEST_P(QuicConnectionTest, |
| DropRetransmitsForNullEncryptedPacketAfterForwardSecure) { |
| use_tagging_decrypter(); |
| connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); |
| QuicPacketSequenceNumber sequence_number; |
| SendStreamDataToPeer(3, "foo", 0, !kFin, &sequence_number); |
| |
| // Simulate the retransmission alarm firing and the socket blocking. |
| BlockOnNextWrite(); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Go forward secure. |
| connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| new TaggingEncrypter(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE); |
| connection_.NeuterUnencryptedPackets(); |
| |
| EXPECT_EQ(QuicTime::Zero(), |
| connection_.GetRetransmissionAlarm()->deadline()); |
| // Unblock the socket and ensure that no packets are sent. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) { |
| use_tagging_decrypter(); |
| connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE); |
| |
| SendStreamDataToPeer(1, "foo", 0, !kFin, nullptr); |
| |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); |
| |
| SendStreamDataToPeer(2, "bar", 0, !kFin, nullptr); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1); |
| |
| connection_.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION); |
| } |
| |
| TEST_P(QuicConnectionTest, DelayForwardSecureEncryptionUntilClientIsReady) { |
| ValueRestore<bool> old_flag(&FLAGS_enable_quic_delay_forward_security, true); |
| |
| // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at |
| // the end of the packet. We can test this to check which encrypter was used. |
| use_tagging_decrypter(); |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); |
| SendAckPacketToPeer(); |
| EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); |
| |
| // Set a forward-secure encrypter but do not make it the default, and verify |
| // that it is not yet used. |
| connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| new TaggingEncrypter(0x03)); |
| SendAckPacketToPeer(); |
| EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); |
| |
| // Now simulate receipt of a forward-secure packet and verify that the |
| // forward-secure encrypter is now used. |
| connection_.OnDecryptedPacket(ENCRYPTION_FORWARD_SECURE); |
| SendAckPacketToPeer(); |
| EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); |
| } |
| |
| TEST_P(QuicConnectionTest, DelayForwardSecureEncryptionUntilManyPacketSent) { |
| ValueRestore<bool> old_flag(&FLAGS_enable_quic_delay_forward_security, true); |
| |
| // Set a congestion window of 10 packets. |
| QuicPacketCount congestion_window = 10; |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( |
| Return(congestion_window * kDefaultMaxPacketSize)); |
| |
| // A TaggingEncrypter puts kTagSize copies of the given byte (0x02 here) at |
| // the end of the packet. We can test this to check which encrypter was used. |
| use_tagging_decrypter(); |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02)); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); |
| SendAckPacketToPeer(); |
| EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); |
| |
| // Set a forward-secure encrypter but do not make it the default, and |
| // verify that it is not yet used. |
| connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE, |
| new TaggingEncrypter(0x03)); |
| SendAckPacketToPeer(); |
| EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); |
| |
| // Now send a packet "Far enough" after the encrypter was set and verify that |
| // the forward-secure encrypter is now used. |
| for (uint64 i = 0; i < 3 * congestion_window - 1; ++i) { |
| EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet()); |
| SendAckPacketToPeer(); |
| } |
| EXPECT_EQ(0x03030303u, writer_->final_bytes_of_last_packet()); |
| } |
| |
| TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) { |
| // SetFromConfig is always called after construction from InitializeSession. |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| use_tagging_decrypter(); |
| |
| const uint8 tag = 0x07; |
| framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); |
| |
| // Process an encrypted packet which can not yet be decrypted which should |
| // result in the packet being buffered. |
| ProcessDataPacketAtLevel(1, 0, kEntropyFlag, ENCRYPTION_INITIAL); |
| |
| // Transition to the new encryption state and process another encrypted packet |
| // which should result in the original packet being processed. |
| connection_.SetDecrypter(new StrictTaggingDecrypter(tag), |
| ENCRYPTION_INITIAL); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(2); |
| ProcessDataPacketAtLevel(2, 0, kEntropyFlag, ENCRYPTION_INITIAL); |
| |
| // Finally, process a third packet and note that we do not reprocess the |
| // buffered packet. |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); |
| ProcessDataPacketAtLevel(3, 0, kEntropyFlag, ENCRYPTION_INITIAL); |
| } |
| |
| TEST_P(QuicConnectionTest, Buffer100NonDecryptablePackets) { |
| // SetFromConfig is always called after construction from InitializeSession. |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| QuicConfig config; |
| config.set_max_undecryptable_packets(100); |
| connection_.SetFromConfig(config); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| use_tagging_decrypter(); |
| |
| const uint8 tag = 0x07; |
| framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); |
| |
| // Process an encrypted packet which can not yet be decrypted which should |
| // result in the packet being buffered. |
| for (QuicPacketSequenceNumber i = 1; i <= 100; ++i) { |
| ProcessDataPacketAtLevel(i, 0, kEntropyFlag, ENCRYPTION_INITIAL); |
| } |
| |
| // Transition to the new encryption state and process another encrypted packet |
| // which should result in the original packets being processed. |
| connection_.SetDecrypter(new StrictTaggingDecrypter(tag), ENCRYPTION_INITIAL); |
| connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL); |
| connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(101); |
| ProcessDataPacketAtLevel(101, 0, kEntropyFlag, ENCRYPTION_INITIAL); |
| |
| // Finally, process a third packet and note that we do not reprocess the |
| // buffered packet. |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); |
| ProcessDataPacketAtLevel(102, 0, kEntropyFlag, ENCRYPTION_INITIAL); |
| } |
| |
| TEST_P(QuicConnectionTest, TestRetransmitOrder) { |
| QuicByteCount first_packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce( |
| DoAll(SaveArg<3>(&first_packet_size), Return(true))); |
| |
| connection_.SendStreamDataWithString(3, "first_packet", 0, !kFin, nullptr); |
| QuicByteCount second_packet_size; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce( |
| DoAll(SaveArg<3>(&second_packet_size), Return(true))); |
| connection_.SendStreamDataWithString(3, "second_packet", 12, !kFin, nullptr); |
| EXPECT_NE(first_packet_size, second_packet_size); |
| // Advance the clock by huge time to make sure packets will be retransmitted. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| { |
| InSequence s; |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, first_packet_size, _)); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, second_packet_size, _)); |
| } |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Advance again and expect the packets to be sent again in the same order. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20)); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| { |
| InSequence s; |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, first_packet_size, _)); |
| EXPECT_CALL(*send_algorithm_, |
| OnPacketSent(_, _, _, second_packet_size, _)); |
| } |
| connection_.GetRetransmissionAlarm()->Fire(); |
| } |
| |
| TEST_P(QuicConnectionTest, RetransmissionCountCalculation) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicPacketSequenceNumber original_sequence_number; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(DoAll(SaveArg<2>(&original_sequence_number), Return(true))); |
| connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); |
| |
| EXPECT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( |
| &connection_, original_sequence_number)); |
| EXPECT_FALSE(QuicConnectionPeer::IsRetransmission( |
| &connection_, original_sequence_number)); |
| // Force retransmission due to RTO. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| QuicPacketSequenceNumber rto_sequence_number; |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(DoAll(SaveArg<2>(&rto_sequence_number), Return(true))); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission( |
| &connection_, original_sequence_number)); |
| ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( |
| &connection_, rto_sequence_number)); |
| EXPECT_TRUE(QuicConnectionPeer::IsRetransmission( |
| &connection_, rto_sequence_number)); |
| // Once by explicit nack. |
| SequenceNumberSet lost_packets; |
| lost_packets.insert(rto_sequence_number); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicPacketSequenceNumber nack_sequence_number = 0; |
| // Ack packets might generate some other packets, which are not |
| // retransmissions. (More ack packets). |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(AnyNumber()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .WillOnce(DoAll(SaveArg<2>(&nack_sequence_number), Return(true))); |
| QuicAckFrame ack = InitAckFrame(rto_sequence_number); |
| // Nack the retransmitted packet. |
| NackPacket(original_sequence_number, &ack); |
| NackPacket(rto_sequence_number, &ack); |
| ProcessAckPacket(&ack); |
| |
| ASSERT_NE(0u, nack_sequence_number); |
| EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission( |
| &connection_, rto_sequence_number)); |
| ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission( |
| &connection_, nack_sequence_number)); |
| EXPECT_TRUE(QuicConnectionPeer::IsRetransmission( |
| &connection_, nack_sequence_number)); |
| } |
| |
| TEST_P(QuicConnectionTest, SetRTOAfterWritingToSocket) { |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); |
| // Make sure that RTO is not started when the packet is queued. |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| |
| // Test that RTO is started once we write to the socket. |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, DelayRTOWithAckReceipt) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)) |
| .Times(2); |
| connection_.SendStreamDataWithString(2, "foo", 0, !kFin, nullptr); |
| connection_.SendStreamDataWithString(3, "bar", 0, !kFin, nullptr); |
| QuicAlarm* retransmission_alarm = connection_.GetRetransmissionAlarm(); |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| EXPECT_EQ(clock_.Now().Add(DefaultRetransmissionTime()), |
| retransmission_alarm->deadline()); |
| |
| // Advance the time right before the RTO, then receive an ack for the first |
| // packet to delay the RTO. |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicAckFrame ack = InitAckFrame(1); |
| ProcessAckPacket(&ack); |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| EXPECT_GT(retransmission_alarm->deadline(), clock_.Now()); |
| |
| // Move forward past the original RTO and ensure the RTO is still pending. |
| clock_.AdvanceTime(DefaultRetransmissionTime().Multiply(2)); |
| |
| // Ensure the second packet gets retransmitted when it finally fires. |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| EXPECT_LT(retransmission_alarm->deadline(), clock_.ApproximateNow()); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| // Manually cancel the alarm to simulate a real test. |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // The new retransmitted sequence number should set the RTO to a larger value |
| // than previously. |
| EXPECT_TRUE(retransmission_alarm->IsSet()); |
| QuicTime next_rto_time = retransmission_alarm->deadline(); |
| QuicTime expected_rto_time = |
| connection_.sent_packet_manager().GetRetransmissionTime(); |
| EXPECT_EQ(next_rto_time, expected_rto_time); |
| } |
| |
| TEST_P(QuicConnectionTest, TestQueued) { |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| |
| // Unblock the writes and actually send. |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_P(QuicConnectionTest, CloseFecGroup) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| // Don't send missing packet 1. |
| // Don't send missing packet 2. |
| ProcessFecProtectedPacket(3, false, !kEntropyFlag); |
| // Don't send missing FEC packet 3. |
| ASSERT_EQ(1u, connection_.NumFecGroups()); |
| |
| // Now send non-fec protected ack packet and close the group. |
| peer_creator_.set_sequence_number(4); |
| QuicStopWaitingFrame frame = InitStopWaitingFrame(5); |
| ProcessStopWaitingPacket(&frame); |
| ASSERT_EQ(0u, connection_.NumFecGroups()); |
| } |
| |
| TEST_P(QuicConnectionTest, NoQuicCongestionFeedbackFrame) { |
| SendAckPacketToPeer(); |
| EXPECT_TRUE(writer_->feedback_frames().empty()); |
| } |
| |
| TEST_P(QuicConnectionTest, WithQuicCongestionFeedbackFrame) { |
| QuicCongestionFeedbackFrame info; |
| info.type = kTCP; |
| info.tcp.receive_window = 0x4030; |
| |
| // After QUIC_VERSION_22, do not send TCP Congestion Feedback Frames anymore. |
| if (version() > QUIC_VERSION_22) { |
| SendAckPacketToPeer(); |
| ASSERT_TRUE(writer_->feedback_frames().empty()); |
| } else { |
| // Only SetFeedback in this case because SetFeedback will create a receive |
| // algorithm which is how the received_packet_manager checks if it should be |
| // creating TCP Congestion Feedback Frames. |
| SetFeedback(&info); |
| SendAckPacketToPeer(); |
| ASSERT_FALSE(writer_->feedback_frames().empty()); |
| ASSERT_EQ(kTCP, writer_->feedback_frames()[0].type); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, UpdateQuicCongestionFeedbackFrame) { |
| SendAckPacketToPeer(); |
| EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| } |
| |
| TEST_P(QuicConnectionTest, DontUpdateQuicCongestionFeedbackFrameForRevived) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| SendAckPacketToPeer(); |
| // Process an FEC packet, and revive the missing data packet |
| // but only contact the receive_algorithm once. |
| EXPECT_CALL(*receive_algorithm_, RecordIncomingPacket(_, _, _)); |
| ProcessFecPacket(2, 1, true, !kEntropyFlag, nullptr); |
| } |
| |
| TEST_P(QuicConnectionTest, InitialTimeout) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| |
| // SetFromConfig sets the initial timeouts before negotiation. |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| // Subtract a second from the idle timeout on the client side. |
| QuicTime default_timeout = clock_.ApproximateNow().Add( |
| QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1)); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false)); |
| // Simulate the timeout alarm firing. |
| clock_.AdvanceTime( |
| QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1)); |
| connection_.GetTimeoutAlarm()->Fire(); |
| |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, OverallTimeout) { |
| // Use a shorter overall connection timeout than idle timeout for this test. |
| const QuicTime::Delta timeout = QuicTime::Delta::FromSeconds(5); |
| connection_.SetNetworkTimeouts(timeout, timeout); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(AnyNumber()); |
| |
| QuicTime overall_timeout = clock_.ApproximateNow().Add(timeout).Subtract( |
| QuicTime::Delta::FromSeconds(1)); |
| EXPECT_EQ(overall_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| EXPECT_TRUE(connection_.connected()); |
| |
| // Send and ack new data 3 seconds later to lengthen the idle timeout. |
| SendStreamDataToPeer(1, "GET /", 0, kFin, nullptr); |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(3)); |
| QuicAckFrame frame = InitAckFrame(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| ProcessAckPacket(&frame); |
| |
| // Fire early to verify it wouldn't timeout yet. |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.connected()); |
| |
| clock_.AdvanceTime(timeout.Subtract(QuicTime::Delta::FromSeconds(2))); |
| |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(QUIC_CONNECTION_OVERALL_TIMED_OUT, false)); |
| // Simulate the timeout alarm firing. |
| connection_.GetTimeoutAlarm()->Fire(); |
| |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetResumeWritesAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.GetSendAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, PingAfterSend) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(true)); |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| |
| // Advance to 5ms, and send a packet to the peer, which will set |
| // the ping alarm. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet()); |
| SendStreamDataToPeer(1, "GET /", 0, kFin, nullptr); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| EXPECT_EQ(clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)), |
| connection_.GetPingAlarm()->deadline()); |
| |
| // Now recevie and ACK of the previous packet, which will move the |
| // ping alarm forward. |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| QuicAckFrame frame = InitAckFrame(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| ProcessAckPacket(&frame); |
| EXPECT_TRUE(connection_.GetPingAlarm()->IsSet()); |
| // The ping timer is set slightly less than 15 seconds in the future, because |
| // of the 1s ping timer alarm granularity. |
| EXPECT_EQ(clock_.ApproximateNow().Add(QuicTime::Delta::FromSeconds(15)) |
| .Subtract(QuicTime::Delta::FromMilliseconds(5)), |
| connection_.GetPingAlarm()->deadline()); |
| |
| writer_->Reset(); |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(15)); |
| connection_.GetPingAlarm()->Fire(); |
| EXPECT_EQ(1u, writer_->frame_count()); |
| ASSERT_EQ(1u, writer_->ping_frames().size()); |
| writer_->Reset(); |
| |
| EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(false)); |
| clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(5)); |
| SendAckPacketToPeer(); |
| |
| EXPECT_FALSE(connection_.GetPingAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, TimeoutAfterSend) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)); |
| QuicConfig config; |
| connection_.SetFromConfig(config); |
| |
| const QuicTime::Delta initial_idle_timeout = |
| QuicTime::Delta::FromSeconds(kInitialIdleTimeoutSecs - 1); |
| const QuicTime::Delta five_ms = QuicTime::Delta::FromMilliseconds(5); |
| QuicTime default_timeout = clock_.ApproximateNow().Add(initial_idle_timeout); |
| |
| // When we send a packet, the timeout will change to 5ms + |
| // kInitialIdleTimeoutSecs. |
| clock_.AdvanceTime(five_ms); |
| |
| // Send an ack so we don't set the retransmission alarm. |
| SendAckPacketToPeer(); |
| EXPECT_EQ(default_timeout, connection_.GetTimeoutAlarm()->deadline()); |
| |
| // The original alarm will fire. We should not time out because we had a |
| // network event at t=5ms. The alarm will reregister. |
| clock_.AdvanceTime(initial_idle_timeout.Subtract(five_ms)); |
| EXPECT_EQ(default_timeout, clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_TRUE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_EQ(default_timeout.Add(five_ms), |
| connection_.GetTimeoutAlarm()->deadline()); |
| |
| // This time, we should time out. |
| EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_CONNECTION_TIMED_OUT, false)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| clock_.AdvanceTime(five_ms); |
| EXPECT_EQ(default_timeout.Add(five_ms), clock_.ApproximateNow()); |
| connection_.GetTimeoutAlarm()->Fire(); |
| EXPECT_FALSE(connection_.GetTimeoutAlarm()->IsSet()); |
| EXPECT_FALSE(connection_.connected()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendScheduler) { |
| // Test that if we send a packet without delay, it is not queued. |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendSchedulerEAGAIN) { |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| BlockOnNextWrite(); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_P(QuicConnectionTest, TestQueueLimitsOnSendStreamData) { |
| // All packets carry version info till version is negotiated. |
| size_t payload_length; |
| size_t length = GetPacketLengthForOneStream( |
| connection_.version(), kIncludeVersion, |
| PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER, |
| NOT_IN_FEC_GROUP, &payload_length); |
| QuicConnectionPeer::GetPacketCreator(&connection_)->set_max_packet_length( |
| length); |
| |
| // Queue the first packet. |
| EXPECT_CALL(*send_algorithm_, |
| TimeUntilSend(_, _, _)).WillOnce( |
| testing::Return(QuicTime::Delta::FromMicroseconds(10))); |
| const string payload(payload_length, 'a'); |
| EXPECT_EQ(0u, connection_.SendStreamDataWithString(3, payload, 0, !kFin, |
| nullptr).bytes_consumed); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| } |
| |
| TEST_P(QuicConnectionTest, LoopThroughSendingPackets) { |
| // All packets carry version info till version is negotiated. |
| size_t payload_length; |
| // GetPacketLengthForOneStream() assumes a stream offset of 0 in determining |
| // packet length. The size of the offset field in a stream frame is 0 for |
| // offset 0, and 2 for non-zero offsets up through 16K. Increase |
| // max_packet_length by 2 so that subsequent packets containing subsequent |
| // stream frames with non-zero offets will fit within the packet length. |
| size_t length = 2 + GetPacketLengthForOneStream( |
| connection_.version(), kIncludeVersion, |
| PACKET_8BYTE_CONNECTION_ID, PACKET_1BYTE_SEQUENCE_NUMBER, |
| NOT_IN_FEC_GROUP, &payload_length); |
| QuicConnectionPeer::GetPacketCreator(&connection_)->set_max_packet_length( |
| length); |
| |
| // Queue the first packet. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(7); |
| // The first stream frame will have 2 fewer overhead bytes than the other six. |
| const string payload(payload_length * 7 + 2, 'a'); |
| EXPECT_EQ(payload.size(), |
| connection_.SendStreamDataWithString(1, payload, 0, !kFin, nullptr) |
| .bytes_consumed); |
| } |
| |
| TEST_P(QuicConnectionTest, LoopThroughSendingPacketsWithTruncation) { |
| ValueRestore<bool> old_flag(&FLAGS_allow_truncated_connection_ids_for_quic, |
| true); |
| |
| // Set up a larger payload than will fit in one packet. |
| const string payload(connection_.max_packet_length(), 'a'); |
| EXPECT_CALL(*send_algorithm_, SetFromConfig(_, _, _)).Times(AnyNumber()); |
| |
| // Now send some packets with no truncation. |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| EXPECT_EQ(payload.size(), |
| connection_.SendStreamDataWithString( |
| 3, payload, 0, !kFin, nullptr).bytes_consumed); |
| // Track the size of the second packet here. The overhead will be the largest |
| // we see in this test, due to the non-truncated CID. |
| size_t non_truncated_packet_size = writer_->last_packet_size(); |
| |
| // Change to a 4 byte CID. |
| QuicConfig config; |
| QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 4); |
| connection_.SetFromConfig(config); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| EXPECT_EQ(payload.size(), |
| connection_.SendStreamDataWithString( |
| 3, payload, 0, !kFin, nullptr).bytes_consumed); |
| // Verify that we have 8 fewer bytes than in the non-truncated case. The |
| // first packet got 4 bytes of extra payload due to the truncation, and the |
| // headers here are also 4 byte smaller. |
| EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 8); |
| |
| |
| // Change to a 1 byte CID. |
| QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 1); |
| connection_.SetFromConfig(config); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| EXPECT_EQ(payload.size(), |
| connection_.SendStreamDataWithString( |
| 3, payload, 0, !kFin, nullptr).bytes_consumed); |
| // Just like above, we save 7 bytes on payload, and 7 on truncation. |
| EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 7 * 2); |
| |
| // Change to a 0 byte CID. |
| QuicConfigPeer::SetReceivedBytesForConnectionId(&config, 0); |
| connection_.SetFromConfig(config); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2); |
| EXPECT_EQ(payload.size(), |
| connection_.SendStreamDataWithString( |
| 3, payload, 0, !kFin, nullptr).bytes_consumed); |
| // Just like above, we save 8 bytes on payload, and 8 on truncation. |
| EXPECT_EQ(non_truncated_packet_size, writer_->last_packet_size() + 8 * 2); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAck) { |
| QuicTime ack_time = clock_.ApproximateNow().Add(DefaultDelayedAckTime()); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| const uint8 tag = 0x07; |
| connection_.SetDecrypter(new StrictTaggingDecrypter(tag), |
| ENCRYPTION_INITIAL); |
| framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag)); |
| // Process a packet from the non-crypto stream. |
| frame1_.stream_id = 3; |
| |
| // The same as ProcessPacket(1) except that ENCRYPTION_INITIAL is used |
| // instead of ENCRYPTION_NONE. |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); |
| ProcessDataPacketAtLevel(1, 0, !kEntropyFlag, ENCRYPTION_INITIAL); |
| |
| // Check if delayed ack timer is running for the expected interval. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| // Simulate delayed ack alarm firing. |
| connection_.GetAckAlarm()->Fire(); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckOnHandshakeConfirmed) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| // Check that ack is sent and that delayed ack alarm is set. |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| QuicTime ack_time = clock_.ApproximateNow().Add(DefaultDelayedAckTime()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // Completing the handshake as the server does nothing. |
| QuicConnectionPeer::SetIsServer(&connection_, true); |
| connection_.OnHandshakeComplete(); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(ack_time, connection_.GetAckAlarm()->deadline()); |
| |
| // Complete the handshake as the client decreases the delayed ack time to 0ms. |
| QuicConnectionPeer::SetIsServer(&connection_, false); |
| connection_.OnHandshakeComplete(); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_EQ(clock_.ApproximateNow(), connection_.GetAckAlarm()->deadline()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckOnSecondPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| ProcessPacket(2); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| EXPECT_EQ(2u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, NoAckOnOldNacks) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| // Drop one packet, triggering a sequence of acks. |
| ProcessPacket(2); |
| size_t frames_per_ack = 2; |
| EXPECT_EQ(frames_per_ack, writer_->frame_count()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| writer_->Reset(); |
| ProcessPacket(3); |
| EXPECT_EQ(frames_per_ack, writer_->frame_count()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| writer_->Reset(); |
| ProcessPacket(4); |
| EXPECT_EQ(frames_per_ack, writer_->frame_count()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| writer_->Reset(); |
| ProcessPacket(5); |
| EXPECT_EQ(frames_per_ack, writer_->frame_count()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| writer_->Reset(); |
| // Now only set the timer on the 6th packet, instead of sending another ack. |
| ProcessPacket(6); |
| EXPECT_EQ(0u, writer_->frame_count()); |
| EXPECT_TRUE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, |
| nullptr); |
| // Check that ack is bundled with outgoing data and that delayed ack |
| // alarm is reset. |
| EXPECT_EQ(3u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, SendDelayedAckOnOutgoingCryptoPacket) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, |
| nullptr); |
| // Check that ack is bundled with outgoing crypto data. |
| EXPECT_EQ(3u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, BlockAndBufferOnFirstCHLOPacketOfTwo) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| BlockOnNextWrite(); |
| writer_->set_is_write_blocked_data_buffered(true); |
| connection_.SendStreamDataWithString(kCryptoStreamId, "foo", 0, !kFin, |
| nullptr); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| connection_.SendStreamDataWithString(kCryptoStreamId, "bar", 3, !kFin, |
| nullptr); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| EXPECT_TRUE(connection_.HasQueuedData()); |
| } |
| |
| TEST_P(QuicConnectionTest, BundleAckForSecondCHLO) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce( |
| IgnoreResult(InvokeWithoutArgs(&connection_, |
| &TestConnection::SendCryptoStreamData))); |
| // Process a packet from the crypto stream, which is frame1_'s default. |
| // Receiving the CHLO as packet 2 first will cause the connection to |
| // immediately send an ack, due to the packet gap. |
| ProcessPacket(2); |
| // Check that ack is sent and that delayed ack alarm is reset. |
| EXPECT_EQ(3u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, BundleAckWithDataOnIncomingAck) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 0, !kFin, |
| nullptr); |
| connection_.SendStreamDataWithString(kClientDataStreamId1, "foo", 3, !kFin, |
| nullptr); |
| // Ack the second packet, which will retransmit the first packet. |
| QuicAckFrame ack = InitAckFrame(2); |
| NackPacket(1, &ack); |
| SequenceNumberSet lost_packets; |
| lost_packets.insert(1); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| ProcessAckPacket(&ack); |
| EXPECT_EQ(1u, writer_->frame_count()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| writer_->Reset(); |
| |
| // Now ack the retransmission, which will both raise the high water mark |
| // and see if there is more data to send. |
| ack = InitAckFrame(3); |
| NackPacket(1, &ack); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(SequenceNumberSet())); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| ProcessAckPacket(&ack); |
| |
| // Check that no packet is sent and the ack alarm isn't set. |
| EXPECT_EQ(0u, writer_->frame_count()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| writer_->Reset(); |
| |
| // Send the same ack, but send both data and an ack together. |
| ack = InitAckFrame(3); |
| NackPacket(1, &ack); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(SequenceNumberSet())); |
| EXPECT_CALL(visitor_, OnCanWrite()).WillOnce( |
| IgnoreResult(InvokeWithoutArgs( |
| &connection_, |
| &TestConnection::EnsureWritableAndSendStreamData5))); |
| ProcessAckPacket(&ack); |
| |
| // Check that ack is bundled with outgoing data and the delayed ack |
| // alarm is reset. |
| EXPECT_EQ(3u, writer_->frame_count()); |
| EXPECT_FALSE(writer_->stop_waiting_frames().empty()); |
| EXPECT_FALSE(writer_->ack_frames().empty()); |
| EXPECT_EQ(1u, writer_->stream_frames().size()); |
| EXPECT_FALSE(connection_.GetAckAlarm()->IsSet()); |
| } |
| |
| TEST_P(QuicConnectionTest, NoAckSentForClose) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessPacket(1); |
| EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0); |
| ProcessClosePacket(2, 0); |
| } |
| |
| TEST_P(QuicConnectionTest, SendWhenDisconnected) { |
| EXPECT_TRUE(connection_.connected()); |
| EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, false)); |
| connection_.CloseConnection(QUIC_PEER_GOING_AWAY, false); |
| EXPECT_FALSE(connection_.connected()); |
| EXPECT_FALSE(connection_.CanWriteStreamData()); |
| QuicPacket* packet = ConstructDataPacket(1, 0, !kEntropyFlag); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 1, _, _)).Times(0); |
| connection_.SendPacket( |
| ENCRYPTION_NONE, 1, packet, kTestEntropyHash, HAS_RETRANSMITTABLE_DATA); |
| } |
| |
| TEST_P(QuicConnectionTest, PublicReset) { |
| QuicPublicResetPacket header; |
| header.public_header.connection_id = connection_id_; |
| header.public_header.reset_flag = true; |
| header.public_header.version_flag = false; |
| header.rejected_sequence_number = 10101; |
| scoped_ptr<QuicEncryptedPacket> packet( |
| framer_.BuildPublicResetPacket(header)); |
| EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PUBLIC_RESET, true)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *packet); |
| } |
| |
| TEST_P(QuicConnectionTest, GoAway) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| QuicGoAwayFrame goaway; |
| goaway.last_good_stream_id = 1; |
| goaway.error_code = QUIC_PEER_GOING_AWAY; |
| goaway.reason_phrase = "Going away."; |
| EXPECT_CALL(visitor_, OnGoAway(_)); |
| ProcessGoAwayPacket(&goaway); |
| } |
| |
| TEST_P(QuicConnectionTest, WindowUpdate) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| QuicWindowUpdateFrame window_update; |
| window_update.stream_id = 3; |
| window_update.byte_offset = 1234; |
| EXPECT_CALL(visitor_, OnWindowUpdateFrames(_)); |
| ProcessFramePacket(QuicFrame(&window_update)); |
| } |
| |
| TEST_P(QuicConnectionTest, Blocked) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| QuicBlockedFrame blocked; |
| blocked.stream_id = 3; |
| EXPECT_CALL(visitor_, OnBlockedFrames(_)); |
| ProcessFramePacket(QuicFrame(&blocked)); |
| } |
| |
| TEST_P(QuicConnectionTest, ZeroBytePacket) { |
| // Don't close the connection for zero byte packets. |
| EXPECT_CALL(visitor_, OnConnectionClosed(_, _)).Times(0); |
| QuicEncryptedPacket encrypted(nullptr, 0); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), encrypted); |
| } |
| |
| TEST_P(QuicConnectionTest, MissingPacketsBeforeLeastUnacked) { |
| // Set the sequence number of the ack packet to be least unacked (4). |
| peer_creator_.set_sequence_number(3); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicStopWaitingFrame frame = InitStopWaitingFrame(4); |
| ProcessStopWaitingPacket(&frame); |
| EXPECT_TRUE(outgoing_ack()->missing_packets.empty()); |
| } |
| |
| TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculation) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessDataPacket(1, 1, kEntropyFlag); |
| ProcessDataPacket(4, 1, kEntropyFlag); |
| ProcessDataPacket(3, 1, !kEntropyFlag); |
| ProcessDataPacket(7, 1, kEntropyFlag); |
| EXPECT_EQ(146u, outgoing_ack()->entropy_hash); |
| } |
| |
| TEST_P(QuicConnectionTest, ReceivedEntropyHashCalculationHalfFEC) { |
| // FEC packets should not change the entropy hash calculation. |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessDataPacket(1, 1, kEntropyFlag); |
| ProcessFecPacket(4, 1, false, kEntropyFlag, nullptr); |
| ProcessDataPacket(3, 3, !kEntropyFlag); |
| ProcessFecPacket(7, 3, false, kEntropyFlag, nullptr); |
| EXPECT_EQ(146u, outgoing_ack()->entropy_hash); |
| } |
| |
| TEST_P(QuicConnectionTest, UpdateEntropyForReceivedPackets) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessDataPacket(1, 1, kEntropyFlag); |
| ProcessDataPacket(5, 1, kEntropyFlag); |
| ProcessDataPacket(4, 1, !kEntropyFlag); |
| EXPECT_EQ(34u, outgoing_ack()->entropy_hash); |
| // Make 4th packet my least unacked, and update entropy for 2, 3 packets. |
| peer_creator_.set_sequence_number(5); |
| QuicPacketEntropyHash six_packet_entropy_hash = 0; |
| QuicPacketEntropyHash kRandomEntropyHash = 129u; |
| QuicStopWaitingFrame frame = InitStopWaitingFrame(4); |
| frame.entropy_hash = kRandomEntropyHash; |
| if (ProcessStopWaitingPacket(&frame)) { |
| six_packet_entropy_hash = 1 << 6; |
| } |
| |
| EXPECT_EQ((kRandomEntropyHash + (1 << 5) + six_packet_entropy_hash), |
| outgoing_ack()->entropy_hash); |
| } |
| |
| TEST_P(QuicConnectionTest, UpdateEntropyHashUptoCurrentPacket) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| ProcessDataPacket(1, 1, kEntropyFlag); |
| ProcessDataPacket(5, 1, !kEntropyFlag); |
| ProcessDataPacket(22, 1, kEntropyFlag); |
| EXPECT_EQ(66u, outgoing_ack()->entropy_hash); |
| peer_creator_.set_sequence_number(22); |
| QuicPacketEntropyHash kRandomEntropyHash = 85u; |
| // Current packet is the least unacked packet. |
| QuicPacketEntropyHash ack_entropy_hash; |
| QuicStopWaitingFrame frame = InitStopWaitingFrame(23); |
| frame.entropy_hash = kRandomEntropyHash; |
| ack_entropy_hash = ProcessStopWaitingPacket(&frame); |
| EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash), |
| outgoing_ack()->entropy_hash); |
| ProcessDataPacket(25, 1, kEntropyFlag); |
| EXPECT_EQ((kRandomEntropyHash + ack_entropy_hash + (1 << (25 % 8))), |
| outgoing_ack()->entropy_hash); |
| } |
| |
| TEST_P(QuicConnectionTest, EntropyCalculationForTruncatedAck) { |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(AtLeast(1)); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| QuicPacketEntropyHash entropy[51]; |
| entropy[0] = 0; |
| for (int i = 1; i < 51; ++i) { |
| bool should_send = i % 10 != 1; |
| bool entropy_flag = (i & (i - 1)) != 0; |
| if (!should_send) { |
| entropy[i] = entropy[i - 1]; |
| continue; |
| } |
| if (entropy_flag) { |
| entropy[i] = entropy[i - 1] ^ (1 << (i % 8)); |
| } else { |
| entropy[i] = entropy[i - 1]; |
| } |
| ProcessDataPacket(i, 1, entropy_flag); |
| } |
| for (int i = 1; i < 50; ++i) { |
| EXPECT_EQ(entropy[i], QuicConnectionPeer::ReceivedEntropyHash( |
| &connection_, i)); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacket) { |
| connection_.SetSupportedVersions(QuicSupportedVersions()); |
| framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); |
| |
| QuicPacketHeader header; |
| header.public_header.connection_id = connection_id_; |
| header.public_header.reset_flag = false; |
| header.public_header.version_flag = true; |
| header.entropy_flag = false; |
| header.fec_flag = false; |
| header.packet_sequence_number = 12; |
| header.fec_group = 0; |
| |
| QuicFrames frames; |
| QuicFrame frame(&frame1_); |
| frames.push_back(frame); |
| scoped_ptr<QuicPacket> packet( |
| BuildUnsizedDataPacket(&framer_, header, frames).packet); |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); |
| |
| framer_.set_version(version()); |
| connection_.set_is_server(true); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr); |
| |
| size_t num_versions = arraysize(kSupportedQuicVersions); |
| ASSERT_EQ(num_versions, |
| writer_->version_negotiation_packet()->versions.size()); |
| |
| // We expect all versions in kSupportedQuicVersions to be |
| // included in the packet. |
| for (size_t i = 0; i < num_versions; ++i) { |
| EXPECT_EQ(kSupportedQuicVersions[i], |
| writer_->version_negotiation_packet()->versions[i]); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, ServerSendsVersionNegotiationPacketSocketBlocked) { |
| connection_.SetSupportedVersions(QuicSupportedVersions()); |
| framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); |
| |
| QuicPacketHeader header; |
| header.public_header.connection_id = connection_id_; |
| header.public_header.reset_flag = false; |
| header.public_header.version_flag = true; |
| header.entropy_flag = false; |
| header.fec_flag = false; |
| header.packet_sequence_number = 12; |
| header.fec_group = 0; |
| |
| QuicFrames frames; |
| QuicFrame frame(&frame1_); |
| frames.push_back(frame); |
| scoped_ptr<QuicPacket> packet( |
| BuildUnsizedDataPacket(&framer_, header, frames).packet); |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); |
| |
| framer_.set_version(version()); |
| connection_.set_is_server(true); |
| BlockOnNextWrite(); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| EXPECT_EQ(0u, writer_->last_packet_size()); |
| EXPECT_TRUE(connection_.HasQueuedData()); |
| |
| writer_->SetWritable(); |
| connection_.OnCanWrite(); |
| EXPECT_TRUE(writer_->version_negotiation_packet() != nullptr); |
| |
| size_t num_versions = arraysize(kSupportedQuicVersions); |
| ASSERT_EQ(num_versions, |
| writer_->version_negotiation_packet()->versions.size()); |
| |
| // We expect all versions in kSupportedQuicVersions to be |
| // included in the packet. |
| for (size_t i = 0; i < num_versions; ++i) { |
| EXPECT_EQ(kSupportedQuicVersions[i], |
| writer_->version_negotiation_packet()->versions[i]); |
| } |
| } |
| |
| TEST_P(QuicConnectionTest, |
| ServerSendsVersionNegotiationPacketSocketBlockedDataBuffered) { |
| connection_.SetSupportedVersions(QuicSupportedVersions()); |
| framer_.set_version_for_tests(QUIC_VERSION_UNSUPPORTED); |
| |
| QuicPacketHeader header; |
| header.public_header.connection_id = connection_id_; |
| header.public_header.reset_flag = false; |
| header.public_header.version_flag = true; |
| header.entropy_flag = false; |
| header.fec_flag = false; |
| header.packet_sequence_number = 12; |
| header.fec_group = 0; |
| |
| QuicFrames frames; |
| QuicFrame frame(&frame1_); |
| frames.push_back(frame); |
| scoped_ptr<QuicPacket> packet( |
| BuildUnsizedDataPacket(&framer_, header, frames).packet); |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); |
| |
| framer_.set_version(version()); |
| connection_.set_is_server(true); |
| BlockOnNextWrite(); |
| writer_->set_is_write_blocked_data_buffered(true); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| EXPECT_EQ(0u, writer_->last_packet_size()); |
| EXPECT_FALSE(connection_.HasQueuedData()); |
| } |
| |
| TEST_P(QuicConnectionTest, ClientHandlesVersionNegotiation) { |
| // Start out with some unsupported version. |
| QuicConnectionPeer::GetFramer(&connection_)->set_version_for_tests( |
| QUIC_VERSION_UNSUPPORTED); |
| |
| QuicPacketHeader header; |
| header.public_header.connection_id = connection_id_; |
| header.public_header.reset_flag = false; |
| header.public_header.version_flag = true; |
| header.entropy_flag = false; |
| header.fec_flag = false; |
| header.packet_sequence_number = 12; |
| header.fec_group = 0; |
| |
| QuicVersionVector supported_versions; |
| for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { |
| supported_versions.push_back(kSupportedQuicVersions[i]); |
| } |
| |
| // Send a version negotiation packet. |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.BuildVersionNegotiationPacket( |
| header.public_header, supported_versions)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| |
| // Now force another packet. The connection should transition into |
| // NEGOTIATED_VERSION state and tell the packet creator to StopSendingVersion. |
| header.public_header.version_flag = false; |
| QuicFrames frames; |
| QuicFrame frame(&frame1_); |
| frames.push_back(frame); |
| scoped_ptr<QuicPacket> packet( |
| BuildUnsizedDataPacket(&framer_, header, frames).packet); |
| encrypted.reset(framer_.EncryptPacket(ENCRYPTION_NONE, 12, *packet)); |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| |
| ASSERT_FALSE(QuicPacketCreatorPeer::SendVersionInPacket( |
| QuicConnectionPeer::GetPacketCreator(&connection_))); |
| } |
| |
| TEST_P(QuicConnectionTest, BadVersionNegotiation) { |
| QuicPacketHeader header; |
| header.public_header.connection_id = connection_id_; |
| header.public_header.reset_flag = false; |
| header.public_header.version_flag = true; |
| header.entropy_flag = false; |
| header.fec_flag = false; |
| header.packet_sequence_number = 12; |
| header.fec_group = 0; |
| |
| QuicVersionVector supported_versions; |
| for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { |
| supported_versions.push_back(kSupportedQuicVersions[i]); |
| } |
| |
| // Send a version negotiation packet with the version the client started with. |
| // It should be rejected. |
| EXPECT_CALL(visitor_, |
| OnConnectionClosed(QUIC_INVALID_VERSION_NEGOTIATION_PACKET, |
| false)); |
| scoped_ptr<QuicEncryptedPacket> encrypted( |
| framer_.BuildVersionNegotiationPacket( |
| header.public_header, supported_versions)); |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| } |
| |
| TEST_P(QuicConnectionTest, CheckSendStats) { |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.SendStreamDataWithString(3, "first", 0, !kFin, nullptr); |
| size_t first_packet_size = writer_->last_packet_size(); |
| |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| connection_.SendStreamDataWithString(5, "second", 0, !kFin, nullptr); |
| size_t second_packet_size = writer_->last_packet_size(); |
| |
| // 2 retransmissions due to rto, 1 due to explicit nack. |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3); |
| |
| // Retransmit due to RTO. |
| clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| |
| // Retransmit due to explicit nacks. |
| QuicAckFrame nack_three = InitAckFrame(4); |
| NackPacket(3, &nack_three); |
| NackPacket(1, &nack_three); |
| SequenceNumberSet lost_packets; |
| lost_packets.insert(1); |
| lost_packets.insert(3); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| EXPECT_CALL(visitor_, OnCanWrite()).Times(2); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); |
| ProcessAckPacket(&nack_three); |
| |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce( |
| Return(QuicBandwidth::Zero())); |
| |
| const QuicConnectionStats& stats = connection_.GetStats(); |
| EXPECT_EQ(3 * first_packet_size + 2 * second_packet_size - kQuicVersionSize, |
| stats.bytes_sent); |
| EXPECT_EQ(5u, stats.packets_sent); |
| EXPECT_EQ(2 * first_packet_size + second_packet_size - kQuicVersionSize, |
| stats.bytes_retransmitted); |
| EXPECT_EQ(3u, stats.packets_retransmitted); |
| EXPECT_EQ(1u, stats.rto_count); |
| EXPECT_EQ(kDefaultMaxPacketSize, stats.max_packet_size); |
| } |
| |
| TEST_P(QuicConnectionTest, CheckReceiveStats) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| size_t received_bytes = 0; |
| received_bytes += ProcessFecProtectedPacket(1, false, !kEntropyFlag); |
| received_bytes += ProcessFecProtectedPacket(3, false, !kEntropyFlag); |
| // Should be counted against dropped packets. |
| received_bytes += ProcessDataPacket(3, 1, !kEntropyFlag); |
| received_bytes += ProcessFecPacket(4, 1, true, !kEntropyFlag, nullptr); |
| |
| EXPECT_CALL(*send_algorithm_, BandwidthEstimate()).WillOnce( |
| Return(QuicBandwidth::Zero())); |
| |
| const QuicConnectionStats& stats = connection_.GetStats(); |
| EXPECT_EQ(received_bytes, stats.bytes_received); |
| EXPECT_EQ(4u, stats.packets_received); |
| |
| EXPECT_EQ(1u, stats.packets_revived); |
| EXPECT_EQ(1u, stats.packets_dropped); |
| } |
| |
| TEST_P(QuicConnectionTest, TestFecGroupLimits) { |
| // Create and return a group for 1. |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) != nullptr); |
| |
| // Create and return a group for 2. |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != nullptr); |
| |
| // Create and return a group for 4. This should remove 1 but not 2. |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != nullptr); |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 1) == nullptr); |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) != nullptr); |
| |
| // Create and return a group for 3. This will kill off 2. |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) != nullptr); |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 2) == nullptr); |
| |
| // Verify that adding 5 kills off 3, despite 4 being created before 3. |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 5) != nullptr); |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 4) != nullptr); |
| ASSERT_TRUE(QuicConnectionPeer::GetFecGroup(&connection_, 3) == nullptr); |
| } |
| |
| TEST_P(QuicConnectionTest, ProcessFramesIfPacketClosedConnection) { |
| // Construct a packet with stream frame and connection close frame. |
| header_.public_header.connection_id = connection_id_; |
| header_.packet_sequence_number = 1; |
| header_.public_header.reset_flag = false; |
| header_.public_header.version_flag = false; |
| header_.entropy_flag = false; |
| header_.fec_flag = false; |
| header_.fec_group = 0; |
| |
| QuicConnectionCloseFrame qccf; |
| qccf.error_code = QUIC_PEER_GOING_AWAY; |
| QuicFrame close_frame(&qccf); |
| QuicFrame stream_frame(&frame1_); |
| |
| QuicFrames frames; |
| frames.push_back(stream_frame); |
| frames.push_back(close_frame); |
| scoped_ptr<QuicPacket> packet( |
| BuildUnsizedDataPacket(&framer_, header_, frames).packet); |
| EXPECT_TRUE(nullptr != packet.get()); |
| scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket( |
| ENCRYPTION_NONE, 1, *packet)); |
| |
| EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_PEER_GOING_AWAY, true)); |
| EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted); |
| } |
| |
| TEST_P(QuicConnectionTest, SelectMutualVersion) { |
| connection_.SetSupportedVersions(QuicSupportedVersions()); |
| // Set the connection to speak the lowest quic version. |
| connection_.set_version(QuicVersionMin()); |
| EXPECT_EQ(QuicVersionMin(), connection_.version()); |
| |
| // Pass in available versions which includes a higher mutually supported |
| // version. The higher mutually supported version should be selected. |
| QuicVersionVector supported_versions; |
| for (size_t i = 0; i < arraysize(kSupportedQuicVersions); ++i) { |
| supported_versions.push_back(kSupportedQuicVersions[i]); |
| } |
| EXPECT_TRUE(connection_.SelectMutualVersion(supported_versions)); |
| EXPECT_EQ(QuicVersionMax(), connection_.version()); |
| |
| // Expect that the lowest version is selected. |
| // Ensure the lowest supported version is less than the max, unless they're |
| // the same. |
| EXPECT_LE(QuicVersionMin(), QuicVersionMax()); |
| QuicVersionVector lowest_version_vector; |
| lowest_version_vector.push_back(QuicVersionMin()); |
| EXPECT_TRUE(connection_.SelectMutualVersion(lowest_version_vector)); |
| EXPECT_EQ(QuicVersionMin(), connection_.version()); |
| |
| // Shouldn't be able to find a mutually supported version. |
| QuicVersionVector unsupported_version; |
| unsupported_version.push_back(QUIC_VERSION_UNSUPPORTED); |
| EXPECT_FALSE(connection_.SelectMutualVersion(unsupported_version)); |
| } |
| |
| TEST_P(QuicConnectionTest, ConnectionCloseWhenWritable) { |
| EXPECT_FALSE(writer_->IsWriteBlocked()); |
| |
| // Send a packet. |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); |
| EXPECT_EQ(0u, connection_.NumQueuedPackets()); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| |
| TriggerConnectionClose(); |
| EXPECT_EQ(2u, writer_->packets_write_attempts()); |
| } |
| |
| TEST_P(QuicConnectionTest, ConnectionCloseGettingWriteBlocked) { |
| BlockOnNextWrite(); |
| TriggerConnectionClose(); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| } |
| |
| TEST_P(QuicConnectionTest, ConnectionCloseWhenWriteBlocked) { |
| BlockOnNextWrite(); |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); |
| EXPECT_EQ(1u, connection_.NumQueuedPackets()); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| EXPECT_TRUE(writer_->IsWriteBlocked()); |
| TriggerConnectionClose(); |
| EXPECT_EQ(1u, writer_->packets_write_attempts()); |
| } |
| |
| TEST_P(QuicConnectionTest, AckNotifierTriggerCallback) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Create a delegate which we expect to be called. |
| scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate); |
| EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _, _, _)).Times(1); |
| |
| // Send some data, which will register the delegate to be notified. |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); |
| |
| // Process an ACK from the server which should trigger the callback. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicAckFrame frame = InitAckFrame(1); |
| ProcessAckPacket(&frame); |
| } |
| |
| TEST_P(QuicConnectionTest, AckNotifierFailToTriggerCallback) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Create a delegate which we don't expect to be called. |
| scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate); |
| EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _, _, _)).Times(0); |
| |
| // Send some data, which will register the delegate to be notified. This will |
| // not be ACKed and so the delegate should never be called. |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); |
| |
| // Send some other data which we will ACK. |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, nullptr); |
| connection_.SendStreamDataWithString(1, "bar", 0, !kFin, nullptr); |
| |
| // Now we receive ACK for packets 2 and 3, but importantly missing packet 1 |
| // which we registered to be notified about. |
| QuicAckFrame frame = InitAckFrame(3); |
| NackPacket(1, &frame); |
| SequenceNumberSet lost_packets; |
| lost_packets.insert(1); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| ProcessAckPacket(&frame); |
| } |
| |
| TEST_P(QuicConnectionTest, AckNotifierCallbackAfterRetransmission) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Create a delegate which we expect to be called. |
| scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate); |
| EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _, _, _)).Times(1); |
| |
| // Send four packets, and register to be notified on ACK of packet 2. |
| connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); |
| connection_.SendStreamDataWithString(3, "bar", 0, !kFin, delegate.get()); |
| connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr); |
| connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr); |
| |
| // Now we receive ACK for packets 1, 3, and 4 and lose 2. |
| QuicAckFrame frame = InitAckFrame(4); |
| NackPacket(2, &frame); |
| SequenceNumberSet lost_packets; |
| lost_packets.insert(2); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| ProcessAckPacket(&frame); |
| |
| // Now we get an ACK for packet 5 (retransmitted packet 2), which should |
| // trigger the callback. |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillRepeatedly(Return(SequenceNumberSet())); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicAckFrame second_ack_frame = InitAckFrame(5); |
| ProcessAckPacket(&second_ack_frame); |
| } |
| |
| // AckNotifierCallback is triggered by the ack of a packet that timed |
| // out and was retransmitted, even though the retransmission has a |
| // different sequence number. |
| TEST_P(QuicConnectionTest, AckNotifierCallbackForAckAfterRTO) { |
| InSequence s; |
| |
| // Create a delegate which we expect to be called. |
| scoped_refptr<MockAckNotifierDelegate> delegate( |
| new StrictMock<MockAckNotifierDelegate>); |
| |
| QuicTime default_retransmission_time = clock_.ApproximateNow().Add( |
| DefaultRetransmissionTime()); |
| connection_.SendStreamDataWithString(3, "foo", 0, !kFin, delegate.get()); |
| EXPECT_EQ(1u, stop_waiting()->least_unacked); |
| |
| EXPECT_EQ(1u, writer_->header().packet_sequence_number); |
| EXPECT_EQ(default_retransmission_time, |
| connection_.GetRetransmissionAlarm()->deadline()); |
| // Simulate the retransmission alarm firing. |
| clock_.AdvanceTime(DefaultRetransmissionTime()); |
| EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _)); |
| connection_.GetRetransmissionAlarm()->Fire(); |
| EXPECT_EQ(2u, writer_->header().packet_sequence_number); |
| // We do not raise the high water mark yet. |
| EXPECT_EQ(1u, stop_waiting()->least_unacked); |
| |
| // Ack the original packet, which will revert the RTO. |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*delegate.get(), OnAckNotification(1, _, 1, _, _)); |
| EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout()); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicAckFrame ack_frame = InitAckFrame(1); |
| ProcessAckPacket(&ack_frame); |
| |
| // Delegate is not notified again when the retransmit is acked. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicAckFrame second_ack_frame = InitAckFrame(2); |
| ProcessAckPacket(&second_ack_frame); |
| } |
| |
| // AckNotifierCallback is triggered by the ack of a packet that was |
| // previously nacked, even though the retransmission has a different |
| // sequence number. |
| TEST_P(QuicConnectionTest, AckNotifierCallbackForAckOfNackedPacket) { |
| InSequence s; |
| |
| // Create a delegate which we expect to be called. |
| scoped_refptr<MockAckNotifierDelegate> delegate( |
| new StrictMock<MockAckNotifierDelegate>); |
| |
| // Send four packets, and register to be notified on ACK of packet 2. |
| connection_.SendStreamDataWithString(3, "foo", 0, !kFin, nullptr); |
| connection_.SendStreamDataWithString(3, "bar", 0, !kFin, delegate.get()); |
| connection_.SendStreamDataWithString(3, "baz", 0, !kFin, nullptr); |
| connection_.SendStreamDataWithString(3, "qux", 0, !kFin, nullptr); |
| |
| // Now we receive ACK for packets 1, 3, and 4 and lose 2. |
| QuicAckFrame frame = InitAckFrame(4); |
| NackPacket(2, &frame); |
| SequenceNumberSet lost_packets; |
| lost_packets.insert(2); |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)); |
| ProcessAckPacket(&frame); |
| |
| // Now we get an ACK for packet 2, which was previously nacked. |
| SequenceNumberSet no_lost_packets; |
| EXPECT_CALL(*delegate.get(), OnAckNotification(1, _, 1, _, _)); |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(no_lost_packets)); |
| QuicAckFrame second_ack_frame = InitAckFrame(4); |
| ProcessAckPacket(&second_ack_frame); |
| |
| // Verify that the delegate is not notified again when the |
| // retransmit is acked. |
| EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _)) |
| .WillOnce(Return(no_lost_packets)); |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicAckFrame third_ack_frame = InitAckFrame(5); |
| ProcessAckPacket(&third_ack_frame); |
| } |
| |
| TEST_P(QuicConnectionTest, AckNotifierFECTriggerCallback) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Create a delegate which we expect to be called. |
| scoped_refptr<MockAckNotifierDelegate> delegate( |
| new MockAckNotifierDelegate); |
| EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _, _, _)).Times(1); |
| |
| // Send some data, which will register the delegate to be notified. |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); |
| connection_.SendStreamDataWithString(2, "bar", 0, !kFin, nullptr); |
| |
| // Process an ACK from the server with a revived packet, which should trigger |
| // the callback. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| QuicAckFrame frame = InitAckFrame(2); |
| NackPacket(1, &frame); |
| frame.revived_packets.insert(1); |
| ProcessAckPacket(&frame); |
| // If the ack is processed again, the notifier should not be called again. |
| ProcessAckPacket(&frame); |
| } |
| |
| TEST_P(QuicConnectionTest, AckNotifierCallbackAfterFECRecovery) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| EXPECT_CALL(visitor_, OnCanWrite()); |
| |
| // Create a delegate which we expect to be called. |
| scoped_refptr<MockAckNotifierDelegate> delegate(new MockAckNotifierDelegate); |
| EXPECT_CALL(*delegate.get(), OnAckNotification(_, _, _, _, _)).Times(1); |
| |
| // Expect ACKs for 1 packet. |
| EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _)); |
| |
| // Send one packet, and register to be notified on ACK. |
| connection_.SendStreamDataWithString(1, "foo", 0, !kFin, delegate.get()); |
| |
| // Ack packet gets dropped, but we receive an FEC packet that covers it. |
| // Should recover the Ack packet and trigger the notification callback. |
| QuicFrames frames; |
| |
| QuicAckFrame ack_frame = InitAckFrame(1); |
| frames.push_back(QuicFrame(&ack_frame)); |
| |
| // Dummy stream frame to satisfy expectations set elsewhere. |
| frames.push_back(QuicFrame(&frame1_)); |
| |
| QuicPacketHeader ack_header; |
| ack_header.public_header.connection_id = connection_id_; |
| ack_header.public_header.reset_flag = false; |
| ack_header.public_header.version_flag = false; |
| ack_header.entropy_flag = !kEntropyFlag; |
| ack_header.fec_flag = true; |
| ack_header.packet_sequence_number = 1; |
| ack_header.is_in_fec_group = IN_FEC_GROUP; |
| ack_header.fec_group = 1; |
| |
| QuicPacket* packet = |
| BuildUnsizedDataPacket(&framer_, ack_header, frames).packet; |
| |
| // Take the packet which contains the ACK frame, and construct and deliver an |
| // FEC packet which allows the ACK packet to be recovered. |
| ProcessFecPacket(2, 1, true, !kEntropyFlag, packet); |
| } |
| |
| TEST_P(QuicConnectionTest, NetworkChangeVisitorCallbacksChangeFecState) { |
| QuicPacketCreator* creator = |
| QuicConnectionPeer::GetPacketCreator(&connection_); |
| size_t max_packets_per_fec_group = creator->max_packets_per_fec_group(); |
| |
| QuicSentPacketManager::NetworkChangeVisitor* visitor = |
| QuicSentPacketManagerPeer::GetNetworkChangeVisitor( |
| QuicConnectionPeer::GetSentPacketManager(&connection_)); |
| EXPECT_TRUE(visitor); |
| |
| // Increase FEC group size by increasing congestion window to a large number. |
| EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly( |
| Return(1000 * kDefaultTCPMSS)); |
| visitor->OnCongestionWindowChange(); |
| EXPECT_LT(max_packets_per_fec_group, creator->max_packets_per_fec_group()); |
| } |
| |
| class MockQuicConnectionDebugVisitor |
| : public QuicConnectionDebugVisitor { |
| public: |
| MOCK_METHOD1(OnFrameAddedToPacket, |
| void(const QuicFrame&)); |
| |
| MOCK_METHOD6(OnPacketSent, |
| void(const SerializedPacket&, |
| QuicPacketSequenceNumber, |
| EncryptionLevel, |
| TransmissionType, |
| const QuicEncryptedPacket&, |
| QuicTime)); |
| |
| MOCK_METHOD3(OnPacketReceived, |
| void(const IPEndPoint&, |
| const IPEndPoint&, |
| const QuicEncryptedPacket&)); |
| |
| MOCK_METHOD1(OnProtocolVersionMismatch, |
| void(QuicVersion)); |
| |
| MOCK_METHOD1(OnPacketHeader, |
| void(const QuicPacketHeader& header)); |
| |
| MOCK_METHOD1(OnStreamFrame, |
| void(const QuicStreamFrame&)); |
| |
| MOCK_METHOD1(OnAckFrame, |
| void(const QuicAckFrame& frame)); |
| |
| MOCK_METHOD1(OnCongestionFeedbackFrame, |
| void(const QuicCongestionFeedbackFrame&)); |
| |
| MOCK_METHOD1(OnStopWaitingFrame, |
| void(const QuicStopWaitingFrame&)); |
| |
| MOCK_METHOD1(OnRstStreamFrame, |
| void(const QuicRstStreamFrame&)); |
| |
| MOCK_METHOD1(OnConnectionCloseFrame, |
| void(const QuicConnectionCloseFrame&)); |
| |
| MOCK_METHOD1(OnPublicResetPacket, |
| void(const QuicPublicResetPacket&)); |
| |
| MOCK_METHOD1(OnVersionNegotiationPacket, |
| void(const QuicVersionNegotiationPacket&)); |
| |
| MOCK_METHOD2(OnRevivedPacket, |
| void(const QuicPacketHeader&, StringPiece payload)); |
| }; |
| |
| TEST_P(QuicConnectionTest, OnPacketHeaderDebugVisitor) { |
| QuicPacketHeader header; |
| |
| MockQuicConnectionDebugVisitor* debug_visitor = |
| new MockQuicConnectionDebugVisitor(); |
| connection_.set_debug_visitor(debug_visitor); |
| EXPECT_CALL(*debug_visitor, OnPacketHeader(Ref(header))).Times(1); |
| connection_.OnPacketHeader(header); |
| } |
| |
| TEST_P(QuicConnectionTest, Pacing) { |
| TestConnection server(connection_id_, IPEndPoint(), helper_.get(), |
| factory_, /* is_server= */ true, version()); |
| TestConnection client(connection_id_, IPEndPoint(), helper_.get(), |
| factory_, /* is_server= */ false, version()); |
| EXPECT_FALSE(client.sent_packet_manager().using_pacing()); |
| EXPECT_FALSE(server.sent_packet_manager().using_pacing()); |
| } |
| |
| TEST_P(QuicConnectionTest, ControlFramesInstigateAcks) { |
| EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_)); |
| |
| // Send a WINDOW_UPDATE frame. |
| QuicWindowUpdateFrame window_update; |
| window_update.stream_id = 3; |
| window_update.byte_offset = 1234; |
| EXPECT_CALL(visitor_, OnWindowUpdateFrames(_)); |
| ProcessFramePacket(QuicFrame(&window_update)); |
| |
| // Ensure that this has caused the ACK alarm to be set. |
| QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_); |
| EXPECT_TRUE(ack_alarm->IsSet()); |
| |
| // Cancel alarm, and try again with BLOCKED frame. |
| ack_alarm->Cancel(); |
| QuicBlockedFrame blocked; |
| blocked.stream_id = 3; |
| EXPECT_CALL(visitor_, OnBlockedFrames(_)); |
| ProcessFramePacket(QuicFrame(&blocked)); |
| EXPECT_TRUE(ack_alarm->IsSet()); |
| } |
| |
| } // namespace |
| } // namespace test |
| } // namespace net |