| // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | #include <algorithm> | 
 |  | 
 | #include "base/logging.h" | 
 | #include "skia/ext/convolver.h" | 
 | #include "skia/ext/convolver_SSE2.h" | 
 | #include "skia/ext/convolver_mips_dspr2.h" | 
 | #include "third_party/skia/include/core/SkSize.h" | 
 | #include "third_party/skia/include/core/SkTypes.h" | 
 |  | 
 | namespace skia { | 
 |  | 
 | namespace { | 
 |  | 
 | // Converts the argument to an 8-bit unsigned value by clamping to the range | 
 | // 0-255. | 
 | inline unsigned char ClampTo8(int a) { | 
 |   if (static_cast<unsigned>(a) < 256) | 
 |     return a;  // Avoid the extra check in the common case. | 
 |   if (a < 0) | 
 |     return 0; | 
 |   return 255; | 
 | } | 
 |  | 
 | // Takes the value produced by accumulating element-wise product of image with | 
 | // a kernel and brings it back into range. | 
 | // All of the filter scaling factors are in fixed point with kShiftBits bits of | 
 | // fractional part. | 
 | inline unsigned char BringBackTo8(int a, bool take_absolute) { | 
 |   a >>= ConvolutionFilter1D::kShiftBits; | 
 |   if (take_absolute) | 
 |     a = std::abs(a); | 
 |   return ClampTo8(a); | 
 | } | 
 |  | 
 | // Stores a list of rows in a circular buffer. The usage is you write into it | 
 | // by calling AdvanceRow. It will keep track of which row in the buffer it | 
 | // should use next, and the total number of rows added. | 
 | class CircularRowBuffer { | 
 |  public: | 
 |   // The number of pixels in each row is given in |source_row_pixel_width|. | 
 |   // The maximum number of rows needed in the buffer is |max_y_filter_size| | 
 |   // (we only need to store enough rows for the biggest filter). | 
 |   // | 
 |   // We use the |first_input_row| to compute the coordinates of all of the | 
 |   // following rows returned by Advance(). | 
 |   CircularRowBuffer(int dest_row_pixel_width, int max_y_filter_size, | 
 |                     int first_input_row) | 
 |       : row_byte_width_(dest_row_pixel_width * 4), | 
 |         num_rows_(max_y_filter_size), | 
 |         next_row_(0), | 
 |         next_row_coordinate_(first_input_row) { | 
 |     buffer_.resize(row_byte_width_ * max_y_filter_size); | 
 |     row_addresses_.resize(num_rows_); | 
 |   } | 
 |  | 
 |   // Moves to the next row in the buffer, returning a pointer to the beginning | 
 |   // of it. | 
 |   unsigned char* AdvanceRow() { | 
 |     unsigned char* row = &buffer_[next_row_ * row_byte_width_]; | 
 |     next_row_coordinate_++; | 
 |  | 
 |     // Set the pointer to the next row to use, wrapping around if necessary. | 
 |     next_row_++; | 
 |     if (next_row_ == num_rows_) | 
 |       next_row_ = 0; | 
 |     return row; | 
 |   } | 
 |  | 
 |   // Returns a pointer to an "unrolled" array of rows. These rows will start | 
 |   // at the y coordinate placed into |*first_row_index| and will continue in | 
 |   // order for the maximum number of rows in this circular buffer. | 
 |   // | 
 |   // The |first_row_index_| may be negative. This means the circular buffer | 
 |   // starts before the top of the image (it hasn't been filled yet). | 
 |   unsigned char* const* GetRowAddresses(int* first_row_index) { | 
 |     // Example for a 4-element circular buffer holding coords 6-9. | 
 |     //   Row 0   Coord 8 | 
 |     //   Row 1   Coord 9 | 
 |     //   Row 2   Coord 6  <- next_row_ = 2, next_row_coordinate_ = 10. | 
 |     //   Row 3   Coord 7 | 
 |     // | 
 |     // The "next" row is also the first (lowest) coordinate. This computation | 
 |     // may yield a negative value, but that's OK, the math will work out | 
 |     // since the user of this buffer will compute the offset relative | 
 |     // to the first_row_index and the negative rows will never be used. | 
 |     *first_row_index = next_row_coordinate_ - num_rows_; | 
 |  | 
 |     int cur_row = next_row_; | 
 |     for (int i = 0; i < num_rows_; i++) { | 
 |       row_addresses_[i] = &buffer_[cur_row * row_byte_width_]; | 
 |  | 
 |       // Advance to the next row, wrapping if necessary. | 
 |       cur_row++; | 
 |       if (cur_row == num_rows_) | 
 |         cur_row = 0; | 
 |     } | 
 |     return &row_addresses_[0]; | 
 |   } | 
 |  | 
 |  private: | 
 |   // The buffer storing the rows. They are packed, each one row_byte_width_. | 
 |   std::vector<unsigned char> buffer_; | 
 |  | 
 |   // Number of bytes per row in the |buffer_|. | 
 |   int row_byte_width_; | 
 |  | 
 |   // The number of rows available in the buffer. | 
 |   int num_rows_; | 
 |  | 
 |   // The next row index we should write into. This wraps around as the | 
 |   // circular buffer is used. | 
 |   int next_row_; | 
 |  | 
 |   // The y coordinate of the |next_row_|. This is incremented each time a | 
 |   // new row is appended and does not wrap. | 
 |   int next_row_coordinate_; | 
 |  | 
 |   // Buffer used by GetRowAddresses(). | 
 |   std::vector<unsigned char*> row_addresses_; | 
 | }; | 
 |  | 
 | // Convolves horizontally along a single row. The row data is given in | 
 | // |src_data| and continues for the num_values() of the filter. | 
 | template<bool has_alpha> | 
 | void ConvolveHorizontally(const unsigned char* src_data, | 
 |                           const ConvolutionFilter1D& filter, | 
 |                           unsigned char* out_row) { | 
 |   // Loop over each pixel on this row in the output image. | 
 |   int num_values = filter.num_values(); | 
 |   for (int out_x = 0; out_x < num_values; out_x++) { | 
 |     // Get the filter that determines the current output pixel. | 
 |     int filter_offset, filter_length; | 
 |     const ConvolutionFilter1D::Fixed* filter_values = | 
 |         filter.FilterForValue(out_x, &filter_offset, &filter_length); | 
 |  | 
 |     // Compute the first pixel in this row that the filter affects. It will | 
 |     // touch |filter_length| pixels (4 bytes each) after this. | 
 |     const unsigned char* row_to_filter = &src_data[filter_offset * 4]; | 
 |  | 
 |     // Apply the filter to the row to get the destination pixel in |accum|. | 
 |     int accum[4] = {0}; | 
 |     for (int filter_x = 0; filter_x < filter_length; filter_x++) { | 
 |       ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_x]; | 
 |       accum[0] += cur_filter * row_to_filter[filter_x * 4 + 0]; | 
 |       accum[1] += cur_filter * row_to_filter[filter_x * 4 + 1]; | 
 |       accum[2] += cur_filter * row_to_filter[filter_x * 4 + 2]; | 
 |       if (has_alpha) | 
 |         accum[3] += cur_filter * row_to_filter[filter_x * 4 + 3]; | 
 |     } | 
 |  | 
 |     // Bring this value back in range. All of the filter scaling factors | 
 |     // are in fixed point with kShiftBits bits of fractional part. | 
 |     accum[0] >>= ConvolutionFilter1D::kShiftBits; | 
 |     accum[1] >>= ConvolutionFilter1D::kShiftBits; | 
 |     accum[2] >>= ConvolutionFilter1D::kShiftBits; | 
 |     if (has_alpha) | 
 |       accum[3] >>= ConvolutionFilter1D::kShiftBits; | 
 |  | 
 |     // Store the new pixel. | 
 |     out_row[out_x * 4 + 0] = ClampTo8(accum[0]); | 
 |     out_row[out_x * 4 + 1] = ClampTo8(accum[1]); | 
 |     out_row[out_x * 4 + 2] = ClampTo8(accum[2]); | 
 |     if (has_alpha) | 
 |       out_row[out_x * 4 + 3] = ClampTo8(accum[3]); | 
 |   } | 
 | } | 
 |  | 
 | // Does vertical convolution to produce one output row. The filter values and | 
 | // length are given in the first two parameters. These are applied to each | 
 | // of the rows pointed to in the |source_data_rows| array, with each row | 
 | // being |pixel_width| wide. | 
 | // | 
 | // The output must have room for |pixel_width * 4| bytes. | 
 | template<bool has_alpha> | 
 | void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, | 
 |                         int filter_length, | 
 |                         unsigned char* const* source_data_rows, | 
 |                         int pixel_width, | 
 |                         unsigned char* out_row) { | 
 |   // We go through each column in the output and do a vertical convolution, | 
 |   // generating one output pixel each time. | 
 |   for (int out_x = 0; out_x < pixel_width; out_x++) { | 
 |     // Compute the number of bytes over in each row that the current column | 
 |     // we're convolving starts at. The pixel will cover the next 4 bytes. | 
 |     int byte_offset = out_x * 4; | 
 |  | 
 |     // Apply the filter to one column of pixels. | 
 |     int accum[4] = {0}; | 
 |     for (int filter_y = 0; filter_y < filter_length; filter_y++) { | 
 |       ConvolutionFilter1D::Fixed cur_filter = filter_values[filter_y]; | 
 |       accum[0] += cur_filter * source_data_rows[filter_y][byte_offset + 0]; | 
 |       accum[1] += cur_filter * source_data_rows[filter_y][byte_offset + 1]; | 
 |       accum[2] += cur_filter * source_data_rows[filter_y][byte_offset + 2]; | 
 |       if (has_alpha) | 
 |         accum[3] += cur_filter * source_data_rows[filter_y][byte_offset + 3]; | 
 |     } | 
 |  | 
 |     // Bring this value back in range. All of the filter scaling factors | 
 |     // are in fixed point with kShiftBits bits of precision. | 
 |     accum[0] >>= ConvolutionFilter1D::kShiftBits; | 
 |     accum[1] >>= ConvolutionFilter1D::kShiftBits; | 
 |     accum[2] >>= ConvolutionFilter1D::kShiftBits; | 
 |     if (has_alpha) | 
 |       accum[3] >>= ConvolutionFilter1D::kShiftBits; | 
 |  | 
 |     // Store the new pixel. | 
 |     out_row[byte_offset + 0] = ClampTo8(accum[0]); | 
 |     out_row[byte_offset + 1] = ClampTo8(accum[1]); | 
 |     out_row[byte_offset + 2] = ClampTo8(accum[2]); | 
 |     if (has_alpha) { | 
 |       unsigned char alpha = ClampTo8(accum[3]); | 
 |  | 
 |       // Make sure the alpha channel doesn't come out smaller than any of the | 
 |       // color channels. We use premultipled alpha channels, so this should | 
 |       // never happen, but rounding errors will cause this from time to time. | 
 |       // These "impossible" colors will cause overflows (and hence random pixel | 
 |       // values) when the resulting bitmap is drawn to the screen. | 
 |       // | 
 |       // We only need to do this when generating the final output row (here). | 
 |       int max_color_channel = std::max(out_row[byte_offset + 0], | 
 |           std::max(out_row[byte_offset + 1], out_row[byte_offset + 2])); | 
 |       if (alpha < max_color_channel) | 
 |         out_row[byte_offset + 3] = max_color_channel; | 
 |       else | 
 |         out_row[byte_offset + 3] = alpha; | 
 |     } else { | 
 |       // No alpha channel, the image is opaque. | 
 |       out_row[byte_offset + 3] = 0xff; | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void ConvolveVertically(const ConvolutionFilter1D::Fixed* filter_values, | 
 |                         int filter_length, | 
 |                         unsigned char* const* source_data_rows, | 
 |                         int pixel_width, | 
 |                         unsigned char* out_row, | 
 |                         bool source_has_alpha) { | 
 |   if (source_has_alpha) { | 
 |     ConvolveVertically<true>(filter_values, filter_length, | 
 |                              source_data_rows, | 
 |                              pixel_width, | 
 |                              out_row); | 
 |   } else { | 
 |     ConvolveVertically<false>(filter_values, filter_length, | 
 |                               source_data_rows, | 
 |                               pixel_width, | 
 |                               out_row); | 
 |   } | 
 | } | 
 |  | 
 | }  // namespace | 
 |  | 
 | // ConvolutionFilter1D --------------------------------------------------------- | 
 |  | 
 | ConvolutionFilter1D::ConvolutionFilter1D() | 
 |     : max_filter_(0) { | 
 | } | 
 |  | 
 | ConvolutionFilter1D::~ConvolutionFilter1D() { | 
 | } | 
 |  | 
 | void ConvolutionFilter1D::AddFilter(int filter_offset, | 
 |                                     const float* filter_values, | 
 |                                     int filter_length) { | 
 |   SkASSERT(filter_length > 0); | 
 |  | 
 |   std::vector<Fixed> fixed_values; | 
 |   fixed_values.reserve(filter_length); | 
 |  | 
 |   for (int i = 0; i < filter_length; ++i) | 
 |     fixed_values.push_back(FloatToFixed(filter_values[i])); | 
 |  | 
 |   AddFilter(filter_offset, &fixed_values[0], filter_length); | 
 | } | 
 |  | 
 | void ConvolutionFilter1D::AddFilter(int filter_offset, | 
 |                                     const Fixed* filter_values, | 
 |                                     int filter_length) { | 
 |   // It is common for leading/trailing filter values to be zeros. In such | 
 |   // cases it is beneficial to only store the central factors. | 
 |   // For a scaling to 1/4th in each dimension using a Lanczos-2 filter on | 
 |   // a 1080p image this optimization gives a ~10% speed improvement. | 
 |   int filter_size = filter_length; | 
 |   int first_non_zero = 0; | 
 |   while (first_non_zero < filter_length && filter_values[first_non_zero] == 0) | 
 |     first_non_zero++; | 
 |  | 
 |   if (first_non_zero < filter_length) { | 
 |     // Here we have at least one non-zero factor. | 
 |     int last_non_zero = filter_length - 1; | 
 |     while (last_non_zero >= 0 && filter_values[last_non_zero] == 0) | 
 |       last_non_zero--; | 
 |  | 
 |     filter_offset += first_non_zero; | 
 |     filter_length = last_non_zero + 1 - first_non_zero; | 
 |     SkASSERT(filter_length > 0); | 
 |  | 
 |     for (int i = first_non_zero; i <= last_non_zero; i++) | 
 |       filter_values_.push_back(filter_values[i]); | 
 |   } else { | 
 |     // Here all the factors were zeroes. | 
 |     filter_length = 0; | 
 |   } | 
 |  | 
 |   FilterInstance instance; | 
 |  | 
 |   // We pushed filter_length elements onto filter_values_ | 
 |   instance.data_location = (static_cast<int>(filter_values_.size()) - | 
 |                             filter_length); | 
 |   instance.offset = filter_offset; | 
 |   instance.trimmed_length = filter_length; | 
 |   instance.length = filter_size; | 
 |   filters_.push_back(instance); | 
 |  | 
 |   max_filter_ = std::max(max_filter_, filter_length); | 
 | } | 
 |  | 
 | const ConvolutionFilter1D::Fixed* ConvolutionFilter1D::GetSingleFilter( | 
 |     int* specified_filter_length, | 
 |     int* filter_offset, | 
 |     int* filter_length) const { | 
 |   const FilterInstance& filter = filters_[0]; | 
 |   *filter_offset = filter.offset; | 
 |   *filter_length = filter.trimmed_length; | 
 |   *specified_filter_length = filter.length; | 
 |   if (filter.trimmed_length == 0) | 
 |     return NULL; | 
 |  | 
 |   return &filter_values_[filter.data_location]; | 
 | } | 
 |  | 
 | typedef void (*ConvolveVertically_pointer)( | 
 |     const ConvolutionFilter1D::Fixed* filter_values, | 
 |     int filter_length, | 
 |     unsigned char* const* source_data_rows, | 
 |     int pixel_width, | 
 |     unsigned char* out_row, | 
 |     bool has_alpha); | 
 | typedef void (*Convolve4RowsHorizontally_pointer)( | 
 |     const unsigned char* src_data[4], | 
 |     const ConvolutionFilter1D& filter, | 
 |     unsigned char* out_row[4]); | 
 | typedef void (*ConvolveHorizontally_pointer)( | 
 |     const unsigned char* src_data, | 
 |     const ConvolutionFilter1D& filter, | 
 |     unsigned char* out_row, | 
 |     bool has_alpha); | 
 |  | 
 | struct ConvolveProcs { | 
 |   // This is how many extra pixels may be read by the | 
 |   // conolve*horizontally functions. | 
 |   int extra_horizontal_reads; | 
 |   ConvolveVertically_pointer convolve_vertically; | 
 |   Convolve4RowsHorizontally_pointer convolve_4rows_horizontally; | 
 |   ConvolveHorizontally_pointer convolve_horizontally; | 
 | }; | 
 |  | 
 | void SetupSIMD(ConvolveProcs *procs) { | 
 | #ifdef SIMD_SSE2 | 
 |   procs->extra_horizontal_reads = 3; | 
 |   procs->convolve_vertically = &ConvolveVertically_SSE2; | 
 |   procs->convolve_4rows_horizontally = &Convolve4RowsHorizontally_SSE2; | 
 |   procs->convolve_horizontally = &ConvolveHorizontally_SSE2; | 
 | #elif defined SIMD_MIPS_DSPR2 | 
 |   procs->extra_horizontal_reads = 3; | 
 |   procs->convolve_vertically = &ConvolveVertically_mips_dspr2; | 
 |   procs->convolve_horizontally = &ConvolveHorizontally_mips_dspr2; | 
 | #endif | 
 | } | 
 |  | 
 | void BGRAConvolve2D(const unsigned char* source_data, | 
 |                     int source_byte_row_stride, | 
 |                     bool source_has_alpha, | 
 |                     const ConvolutionFilter1D& filter_x, | 
 |                     const ConvolutionFilter1D& filter_y, | 
 |                     int output_byte_row_stride, | 
 |                     unsigned char* output, | 
 |                     bool use_simd_if_possible) { | 
 |   ConvolveProcs simd; | 
 |   simd.extra_horizontal_reads = 0; | 
 |   simd.convolve_vertically = NULL; | 
 |   simd.convolve_4rows_horizontally = NULL; | 
 |   simd.convolve_horizontally = NULL; | 
 |   if (use_simd_if_possible) { | 
 |     SetupSIMD(&simd); | 
 |   } | 
 |  | 
 |   int max_y_filter_size = filter_y.max_filter(); | 
 |  | 
 |   // The next row in the input that we will generate a horizontally | 
 |   // convolved row for. If the filter doesn't start at the beginning of the | 
 |   // image (this is the case when we are only resizing a subset), then we | 
 |   // don't want to generate any output rows before that. Compute the starting | 
 |   // row for convolution as the first pixel for the first vertical filter. | 
 |   int filter_offset, filter_length; | 
 |   const ConvolutionFilter1D::Fixed* filter_values = | 
 |       filter_y.FilterForValue(0, &filter_offset, &filter_length); | 
 |   int next_x_row = filter_offset; | 
 |  | 
 |   // We loop over each row in the input doing a horizontal convolution. This | 
 |   // will result in a horizontally convolved image. We write the results into | 
 |   // a circular buffer of convolved rows and do vertical convolution as rows | 
 |   // are available. This prevents us from having to store the entire | 
 |   // intermediate image and helps cache coherency. | 
 |   // We will need four extra rows to allow horizontal convolution could be done | 
 |   // simultaneously. We also padding each row in row buffer to be aligned-up to | 
 |   // 16 bytes. | 
 |   // TODO(jiesun): We do not use aligned load from row buffer in vertical | 
 |   // convolution pass yet. Somehow Windows does not like it. | 
 |   int row_buffer_width = (filter_x.num_values() + 15) & ~0xF; | 
 |   int row_buffer_height = max_y_filter_size + | 
 |       (simd.convolve_4rows_horizontally ? 4 : 0); | 
 |   CircularRowBuffer row_buffer(row_buffer_width, | 
 |                                row_buffer_height, | 
 |                                filter_offset); | 
 |  | 
 |   // Loop over every possible output row, processing just enough horizontal | 
 |   // convolutions to run each subsequent vertical convolution. | 
 |   SkASSERT(output_byte_row_stride >= filter_x.num_values() * 4); | 
 |   int num_output_rows = filter_y.num_values(); | 
 |  | 
 |   // We need to check which is the last line to convolve before we advance 4 | 
 |   // lines in one iteration. | 
 |   int last_filter_offset, last_filter_length; | 
 |  | 
 |   // SSE2 can access up to 3 extra pixels past the end of the | 
 |   // buffer. At the bottom of the image, we have to be careful | 
 |   // not to access data past the end of the buffer. Normally | 
 |   // we fall back to the C++ implementation for the last row. | 
 |   // If the last row is less than 3 pixels wide, we may have to fall | 
 |   // back to the C++ version for more rows. Compute how many | 
 |   // rows we need to avoid the SSE implementation for here. | 
 |   filter_x.FilterForValue(filter_x.num_values() - 1, &last_filter_offset, | 
 |                           &last_filter_length); | 
 |   int avoid_simd_rows = 1 + simd.extra_horizontal_reads / | 
 |       (last_filter_offset + last_filter_length); | 
 |  | 
 |   filter_y.FilterForValue(num_output_rows - 1, &last_filter_offset, | 
 |                           &last_filter_length); | 
 |  | 
 |   for (int out_y = 0; out_y < num_output_rows; out_y++) { | 
 |     filter_values = filter_y.FilterForValue(out_y, | 
 |                                             &filter_offset, &filter_length); | 
 |  | 
 |     // Generate output rows until we have enough to run the current filter. | 
 |     while (next_x_row < filter_offset + filter_length) { | 
 |       if (simd.convolve_4rows_horizontally && | 
 |           next_x_row + 3 < last_filter_offset + last_filter_length - | 
 |           avoid_simd_rows) { | 
 |         const unsigned char* src[4]; | 
 |         unsigned char* out_row[4]; | 
 |         for (int i = 0; i < 4; ++i) { | 
 |           src[i] = &source_data[(next_x_row + i) * source_byte_row_stride]; | 
 |           out_row[i] = row_buffer.AdvanceRow(); | 
 |         } | 
 |         simd.convolve_4rows_horizontally(src, filter_x, out_row); | 
 |         next_x_row += 4; | 
 |       } else { | 
 |         // Check if we need to avoid SSE2 for this row. | 
 |         if (simd.convolve_horizontally && | 
 |             next_x_row < last_filter_offset + last_filter_length - | 
 |             avoid_simd_rows) { | 
 |           simd.convolve_horizontally( | 
 |               &source_data[next_x_row * source_byte_row_stride], | 
 |               filter_x, row_buffer.AdvanceRow(), source_has_alpha); | 
 |         } else { | 
 |           if (source_has_alpha) { | 
 |             ConvolveHorizontally<true>( | 
 |                 &source_data[next_x_row * source_byte_row_stride], | 
 |                 filter_x, row_buffer.AdvanceRow()); | 
 |           } else { | 
 |             ConvolveHorizontally<false>( | 
 |                 &source_data[next_x_row * source_byte_row_stride], | 
 |                 filter_x, row_buffer.AdvanceRow()); | 
 |           } | 
 |         } | 
 |         next_x_row++; | 
 |       } | 
 |     } | 
 |  | 
 |     // Compute where in the output image this row of final data will go. | 
 |     unsigned char* cur_output_row = &output[out_y * output_byte_row_stride]; | 
 |  | 
 |     // Get the list of rows that the circular buffer has, in order. | 
 |     int first_row_in_circular_buffer; | 
 |     unsigned char* const* rows_to_convolve = | 
 |         row_buffer.GetRowAddresses(&first_row_in_circular_buffer); | 
 |  | 
 |     // Now compute the start of the subset of those rows that the filter | 
 |     // needs. | 
 |     unsigned char* const* first_row_for_filter = | 
 |         &rows_to_convolve[filter_offset - first_row_in_circular_buffer]; | 
 |  | 
 |     if (simd.convolve_vertically) { | 
 |       simd.convolve_vertically(filter_values, filter_length, | 
 |                                first_row_for_filter, | 
 |                                filter_x.num_values(), cur_output_row, | 
 |                                source_has_alpha); | 
 |     } else { | 
 |       ConvolveVertically(filter_values, filter_length, | 
 |                          first_row_for_filter, | 
 |                          filter_x.num_values(), cur_output_row, | 
 |                          source_has_alpha); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SingleChannelConvolveX1D(const unsigned char* source_data, | 
 |                               int source_byte_row_stride, | 
 |                               int input_channel_index, | 
 |                               int input_channel_count, | 
 |                               const ConvolutionFilter1D& filter, | 
 |                               const SkISize& image_size, | 
 |                               unsigned char* output, | 
 |                               int output_byte_row_stride, | 
 |                               int output_channel_index, | 
 |                               int output_channel_count, | 
 |                               bool absolute_values) { | 
 |   int filter_offset, filter_length, filter_size; | 
 |   // Very much unlike BGRAConvolve2D, here we expect to have the same filter | 
 |   // for all pixels. | 
 |   const ConvolutionFilter1D::Fixed* filter_values = | 
 |       filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length); | 
 |  | 
 |   if (filter_values == NULL || image_size.width() < filter_size) { | 
 |     NOTREACHED(); | 
 |     return; | 
 |   } | 
 |  | 
 |   int centrepoint = filter_length / 2; | 
 |   if (filter_size - filter_offset != 2 * filter_offset) { | 
 |     // This means the original filter was not symmetrical AND | 
 |     // got clipped from one side more than from the other. | 
 |     centrepoint = filter_size / 2 - filter_offset; | 
 |   } | 
 |  | 
 |   const unsigned char* source_data_row = source_data; | 
 |   unsigned char* output_row = output; | 
 |  | 
 |   for (int r = 0; r < image_size.height(); ++r) { | 
 |     unsigned char* target_byte = output_row + output_channel_index; | 
 |     // Process the lead part, padding image to the left with the first pixel. | 
 |     int c = 0; | 
 |     for (; c < centrepoint; ++c, target_byte += output_channel_count) { | 
 |       int accval = 0; | 
 |       int i = 0; | 
 |       int pixel_byte_index = input_channel_index; | 
 |       for (; i < centrepoint - c; ++i)  // Padding part. | 
 |         accval += filter_values[i] * source_data_row[pixel_byte_index]; | 
 |  | 
 |       for (; i < filter_length; ++i, pixel_byte_index += input_channel_count) | 
 |         accval += filter_values[i] * source_data_row[pixel_byte_index]; | 
 |  | 
 |       *target_byte = BringBackTo8(accval, absolute_values); | 
 |     } | 
 |  | 
 |     // Now for the main event. | 
 |     for (; c < image_size.width() - centrepoint; | 
 |          ++c, target_byte += output_channel_count) { | 
 |       int accval = 0; | 
 |       int pixel_byte_index = (c - centrepoint) * input_channel_count + | 
 |           input_channel_index; | 
 |  | 
 |       for (int i = 0; i < filter_length; | 
 |            ++i, pixel_byte_index += input_channel_count) { | 
 |         accval += filter_values[i] * source_data_row[pixel_byte_index]; | 
 |       } | 
 |  | 
 |       *target_byte = BringBackTo8(accval, absolute_values); | 
 |     } | 
 |  | 
 |     for (; c < image_size.width(); ++c, target_byte += output_channel_count) { | 
 |       int accval = 0; | 
 |       int overlap_taps = image_size.width() - c + centrepoint; | 
 |       int pixel_byte_index = (c - centrepoint) * input_channel_count + | 
 |           input_channel_index; | 
 |       int i = 0; | 
 |       for (; i < overlap_taps - 1; ++i, pixel_byte_index += input_channel_count) | 
 |         accval += filter_values[i] * source_data_row[pixel_byte_index]; | 
 |  | 
 |       for (; i < filter_length; ++i) | 
 |         accval += filter_values[i] * source_data_row[pixel_byte_index]; | 
 |  | 
 |       *target_byte = BringBackTo8(accval, absolute_values); | 
 |     } | 
 |  | 
 |     source_data_row += source_byte_row_stride; | 
 |     output_row += output_byte_row_stride; | 
 |   } | 
 | } | 
 |  | 
 | void SingleChannelConvolveY1D(const unsigned char* source_data, | 
 |                               int source_byte_row_stride, | 
 |                               int input_channel_index, | 
 |                               int input_channel_count, | 
 |                               const ConvolutionFilter1D& filter, | 
 |                               const SkISize& image_size, | 
 |                               unsigned char* output, | 
 |                               int output_byte_row_stride, | 
 |                               int output_channel_index, | 
 |                               int output_channel_count, | 
 |                               bool absolute_values) { | 
 |   int filter_offset, filter_length, filter_size; | 
 |   // Very much unlike BGRAConvolve2D, here we expect to have the same filter | 
 |   // for all pixels. | 
 |   const ConvolutionFilter1D::Fixed* filter_values = | 
 |       filter.GetSingleFilter(&filter_size, &filter_offset, &filter_length); | 
 |  | 
 |   if (filter_values == NULL || image_size.height() < filter_size) { | 
 |     NOTREACHED(); | 
 |     return; | 
 |   } | 
 |  | 
 |   int centrepoint = filter_length / 2; | 
 |   if (filter_size - filter_offset != 2 * filter_offset) { | 
 |     // This means the original filter was not symmetrical AND | 
 |     // got clipped from one side more than from the other. | 
 |     centrepoint = filter_size / 2 - filter_offset; | 
 |   } | 
 |  | 
 |   for (int c = 0; c < image_size.width(); ++c) { | 
 |     unsigned char* target_byte = output + c * output_channel_count + | 
 |         output_channel_index; | 
 |     int r = 0; | 
 |  | 
 |     for (; r < centrepoint; ++r, target_byte += output_byte_row_stride) { | 
 |       int accval = 0; | 
 |       int i = 0; | 
 |       int pixel_byte_index = c * input_channel_count + input_channel_index; | 
 |  | 
 |       for (; i < centrepoint - r; ++i)  // Padding part. | 
 |         accval += filter_values[i] * source_data[pixel_byte_index]; | 
 |  | 
 |       for (; i < filter_length; ++i, pixel_byte_index += source_byte_row_stride) | 
 |         accval += filter_values[i] * source_data[pixel_byte_index]; | 
 |  | 
 |       *target_byte = BringBackTo8(accval, absolute_values); | 
 |     } | 
 |  | 
 |     for (; r < image_size.height() - centrepoint; | 
 |          ++r, target_byte += output_byte_row_stride) { | 
 |       int accval = 0; | 
 |       int pixel_byte_index = (r - centrepoint) * source_byte_row_stride + | 
 |           c * input_channel_count + input_channel_index; | 
 |       for (int i = 0; i < filter_length; | 
 |            ++i, pixel_byte_index += source_byte_row_stride) { | 
 |         accval += filter_values[i] * source_data[pixel_byte_index]; | 
 |       } | 
 |  | 
 |       *target_byte = BringBackTo8(accval, absolute_values); | 
 |     } | 
 |  | 
 |     for (; r < image_size.height(); | 
 |          ++r, target_byte += output_byte_row_stride) { | 
 |       int accval = 0; | 
 |       int overlap_taps = image_size.height() - r + centrepoint; | 
 |       int pixel_byte_index = (r - centrepoint) * source_byte_row_stride + | 
 |           c * input_channel_count + input_channel_index; | 
 |       int i = 0; | 
 |       for (; i < overlap_taps - 1; | 
 |            ++i, pixel_byte_index += source_byte_row_stride) { | 
 |         accval += filter_values[i] * source_data[pixel_byte_index]; | 
 |       } | 
 |  | 
 |       for (; i < filter_length; ++i) | 
 |         accval += filter_values[i] * source_data[pixel_byte_index]; | 
 |  | 
 |       *target_byte = BringBackTo8(accval, absolute_values); | 
 |     } | 
 |   } | 
 | } | 
 |  | 
 | void SetUpGaussianConvolutionKernel(ConvolutionFilter1D* filter, | 
 |                                     float kernel_sigma, | 
 |                                     bool derivative) { | 
 |   DCHECK(filter != NULL); | 
 |   DCHECK_GT(kernel_sigma, 0.0); | 
 |   const int tail_length = static_cast<int>(4.0f * kernel_sigma + 0.5f); | 
 |   const int kernel_size = tail_length * 2 + 1; | 
 |   const float sigmasq = kernel_sigma * kernel_sigma; | 
 |   std::vector<float> kernel_weights(kernel_size, 0.0); | 
 |   float kernel_sum = 1.0f; | 
 |  | 
 |   kernel_weights[tail_length] = 1.0f; | 
 |  | 
 |   for (int ii = 1; ii <= tail_length; ++ii) { | 
 |     float v = std::exp(-0.5f * ii * ii / sigmasq); | 
 |     kernel_weights[tail_length + ii] = v; | 
 |     kernel_weights[tail_length - ii] = v; | 
 |     kernel_sum += 2.0f * v; | 
 |   } | 
 |  | 
 |   for (int i = 0; i < kernel_size; ++i) | 
 |     kernel_weights[i] /= kernel_sum; | 
 |  | 
 |   if (derivative) { | 
 |     kernel_weights[tail_length] = 0.0; | 
 |     for (int ii = 1; ii <= tail_length; ++ii) { | 
 |       float v = sigmasq * kernel_weights[tail_length + ii] / ii; | 
 |       kernel_weights[tail_length + ii] = v; | 
 |       kernel_weights[tail_length - ii] = -v; | 
 |     } | 
 |   } | 
 |  | 
 |   filter->AddFilter(0, &kernel_weights[0], kernel_weights.size()); | 
 | } | 
 |  | 
 | }  // namespace skia |