|  | /* | 
|  | * jchuff.c | 
|  | * | 
|  | * Copyright (C) 1991-1997, Thomas G. Lane. | 
|  | * This file is part of the Independent JPEG Group's software. | 
|  | * For conditions of distribution and use, see the accompanying README file. | 
|  | * | 
|  | * This file contains Huffman entropy encoding routines. | 
|  | * | 
|  | * Much of the complexity here has to do with supporting output suspension. | 
|  | * If the data destination module demands suspension, we want to be able to | 
|  | * back up to the start of the current MCU.  To do this, we copy state | 
|  | * variables into local working storage, and update them back to the | 
|  | * permanent JPEG objects only upon successful completion of an MCU. | 
|  | */ | 
|  |  | 
|  | #define JPEG_INTERNALS | 
|  | #include "jinclude.h" | 
|  | #include "jpeglib.h" | 
|  | #include "jchuff.h"		/* Declarations shared with jcphuff.c */ | 
|  |  | 
|  |  | 
|  | /* Expanded entropy encoder object for Huffman encoding. | 
|  | * | 
|  | * The savable_state subrecord contains fields that change within an MCU, | 
|  | * but must not be updated permanently until we complete the MCU. | 
|  | */ | 
|  |  | 
|  | typedef struct { | 
|  | INT32 put_buffer;		/* current bit-accumulation buffer */ | 
|  | int put_bits;			/* # of bits now in it */ | 
|  | int last_dc_val[MAX_COMPS_IN_SCAN]; /* last DC coef for each component */ | 
|  | } savable_state; | 
|  |  | 
|  | /* This macro is to work around compilers with missing or broken | 
|  | * structure assignment.  You'll need to fix this code if you have | 
|  | * such a compiler and you change MAX_COMPS_IN_SCAN. | 
|  | */ | 
|  |  | 
|  | #ifndef NO_STRUCT_ASSIGN | 
|  | #define ASSIGN_STATE(dest,src)  ((dest) = (src)) | 
|  | #else | 
|  | #if MAX_COMPS_IN_SCAN == 4 | 
|  | #define ASSIGN_STATE(dest,src)  \ | 
|  | ((dest).put_buffer = (src).put_buffer, \ | 
|  | (dest).put_bits = (src).put_bits, \ | 
|  | (dest).last_dc_val[0] = (src).last_dc_val[0], \ | 
|  | (dest).last_dc_val[1] = (src).last_dc_val[1], \ | 
|  | (dest).last_dc_val[2] = (src).last_dc_val[2], \ | 
|  | (dest).last_dc_val[3] = (src).last_dc_val[3]) | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  |  | 
|  | typedef struct { | 
|  | struct jpeg_entropy_encoder pub; /* public fields */ | 
|  |  | 
|  | savable_state saved;		/* Bit buffer & DC state at start of MCU */ | 
|  |  | 
|  | /* These fields are NOT loaded into local working state. */ | 
|  | unsigned int restarts_to_go;	/* MCUs left in this restart interval */ | 
|  | int next_restart_num;		/* next restart number to write (0-7) */ | 
|  |  | 
|  | /* Pointers to derived tables (these workspaces have image lifespan) */ | 
|  | c_derived_tbl * dc_derived_tbls[NUM_HUFF_TBLS]; | 
|  | c_derived_tbl * ac_derived_tbls[NUM_HUFF_TBLS]; | 
|  |  | 
|  | #ifdef ENTROPY_OPT_SUPPORTED	/* Statistics tables for optimization */ | 
|  | long * dc_count_ptrs[NUM_HUFF_TBLS]; | 
|  | long * ac_count_ptrs[NUM_HUFF_TBLS]; | 
|  | #endif | 
|  | } huff_entropy_encoder; | 
|  |  | 
|  | typedef huff_entropy_encoder * huff_entropy_ptr; | 
|  |  | 
|  | /* Working state while writing an MCU. | 
|  | * This struct contains all the fields that are needed by subroutines. | 
|  | */ | 
|  |  | 
|  | typedef struct { | 
|  | JOCTET * next_output_byte;	/* => next byte to write in buffer */ | 
|  | size_t free_in_buffer;	/* # of byte spaces remaining in buffer */ | 
|  | savable_state cur;		/* Current bit buffer & DC state */ | 
|  | j_compress_ptr cinfo;		/* dump_buffer needs access to this */ | 
|  | } working_state; | 
|  |  | 
|  |  | 
|  | /* Forward declarations */ | 
|  | METHODDEF(boolean) encode_mcu_huff JPP((j_compress_ptr cinfo, | 
|  | JBLOCKROW *MCU_data)); | 
|  | METHODDEF(void) finish_pass_huff JPP((j_compress_ptr cinfo)); | 
|  | #ifdef ENTROPY_OPT_SUPPORTED | 
|  | METHODDEF(boolean) encode_mcu_gather JPP((j_compress_ptr cinfo, | 
|  | JBLOCKROW *MCU_data)); | 
|  | METHODDEF(void) finish_pass_gather JPP((j_compress_ptr cinfo)); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize for a Huffman-compressed scan. | 
|  | * If gather_statistics is TRUE, we do not output anything during the scan, | 
|  | * just count the Huffman symbols used and generate Huffman code tables. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | start_pass_huff (j_compress_ptr cinfo, boolean gather_statistics) | 
|  | { | 
|  | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 
|  | int ci, dctbl, actbl; | 
|  | jpeg_component_info * compptr; | 
|  |  | 
|  | if (gather_statistics) { | 
|  | #ifdef ENTROPY_OPT_SUPPORTED | 
|  | entropy->pub.encode_mcu = encode_mcu_gather; | 
|  | entropy->pub.finish_pass = finish_pass_gather; | 
|  | #else | 
|  | ERREXIT(cinfo, JERR_NOT_COMPILED); | 
|  | #endif | 
|  | } else { | 
|  | entropy->pub.encode_mcu = encode_mcu_huff; | 
|  | entropy->pub.finish_pass = finish_pass_huff; | 
|  | } | 
|  |  | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | dctbl = compptr->dc_tbl_no; | 
|  | actbl = compptr->ac_tbl_no; | 
|  | if (gather_statistics) { | 
|  | #ifdef ENTROPY_OPT_SUPPORTED | 
|  | /* Check for invalid table indexes */ | 
|  | /* (make_c_derived_tbl does this in the other path) */ | 
|  | if (dctbl < 0 || dctbl >= NUM_HUFF_TBLS) | 
|  | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, dctbl); | 
|  | if (actbl < 0 || actbl >= NUM_HUFF_TBLS) | 
|  | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, actbl); | 
|  | /* Allocate and zero the statistics tables */ | 
|  | /* Note that jpeg_gen_optimal_table expects 257 entries in each table! */ | 
|  | if (entropy->dc_count_ptrs[dctbl] == NULL) | 
|  | entropy->dc_count_ptrs[dctbl] = (long *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | 257 * SIZEOF(long)); | 
|  | MEMZERO(entropy->dc_count_ptrs[dctbl], 257 * SIZEOF(long)); | 
|  | if (entropy->ac_count_ptrs[actbl] == NULL) | 
|  | entropy->ac_count_ptrs[actbl] = (long *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | 257 * SIZEOF(long)); | 
|  | MEMZERO(entropy->ac_count_ptrs[actbl], 257 * SIZEOF(long)); | 
|  | #endif | 
|  | } else { | 
|  | /* Compute derived values for Huffman tables */ | 
|  | /* We may do this more than once for a table, but it's not expensive */ | 
|  | jpeg_make_c_derived_tbl(cinfo, TRUE, dctbl, | 
|  | & entropy->dc_derived_tbls[dctbl]); | 
|  | jpeg_make_c_derived_tbl(cinfo, FALSE, actbl, | 
|  | & entropy->ac_derived_tbls[actbl]); | 
|  | } | 
|  | /* Initialize DC predictions to 0 */ | 
|  | entropy->saved.last_dc_val[ci] = 0; | 
|  | } | 
|  |  | 
|  | /* Initialize bit buffer to empty */ | 
|  | entropy->saved.put_buffer = 0; | 
|  | entropy->saved.put_bits = 0; | 
|  |  | 
|  | /* Initialize restart stuff */ | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num = 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Compute the derived values for a Huffman table. | 
|  | * This routine also performs some validation checks on the table. | 
|  | * | 
|  | * Note this is also used by jcphuff.c. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jpeg_make_c_derived_tbl (j_compress_ptr cinfo, boolean isDC, int tblno, | 
|  | c_derived_tbl ** pdtbl) | 
|  | { | 
|  | JHUFF_TBL *htbl; | 
|  | c_derived_tbl *dtbl; | 
|  | int p, i, l, lastp, si, maxsymbol; | 
|  | char huffsize[257]; | 
|  | unsigned int huffcode[257]; | 
|  | unsigned int code; | 
|  |  | 
|  | /* Note that huffsize[] and huffcode[] are filled in code-length order, | 
|  | * paralleling the order of the symbols themselves in htbl->huffval[]. | 
|  | */ | 
|  |  | 
|  | /* Find the input Huffman table */ | 
|  | if (tblno < 0 || tblno >= NUM_HUFF_TBLS) | 
|  | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | 
|  | htbl = | 
|  | isDC ? cinfo->dc_huff_tbl_ptrs[tblno] : cinfo->ac_huff_tbl_ptrs[tblno]; | 
|  | if (htbl == NULL) | 
|  | ERREXIT1(cinfo, JERR_NO_HUFF_TABLE, tblno); | 
|  |  | 
|  | /* Allocate a workspace if we haven't already done so. */ | 
|  | if (*pdtbl == NULL) | 
|  | *pdtbl = (c_derived_tbl *) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | SIZEOF(c_derived_tbl)); | 
|  | dtbl = *pdtbl; | 
|  |  | 
|  | /* Figure C.1: make table of Huffman code length for each symbol */ | 
|  |  | 
|  | p = 0; | 
|  | for (l = 1; l <= 16; l++) { | 
|  | i = (int) htbl->bits[l]; | 
|  | if (i < 0 || p + i > 256)	/* protect against table overrun */ | 
|  | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | 
|  | while (i--) | 
|  | huffsize[p++] = (char) l; | 
|  | } | 
|  | huffsize[p] = 0; | 
|  | lastp = p; | 
|  |  | 
|  | /* Figure C.2: generate the codes themselves */ | 
|  | /* We also validate that the counts represent a legal Huffman code tree. */ | 
|  |  | 
|  | code = 0; | 
|  | si = huffsize[0]; | 
|  | p = 0; | 
|  | while (huffsize[p]) { | 
|  | while (((int) huffsize[p]) == si) { | 
|  | huffcode[p++] = code; | 
|  | code++; | 
|  | } | 
|  | /* code is now 1 more than the last code used for codelength si; but | 
|  | * it must still fit in si bits, since no code is allowed to be all ones. | 
|  | */ | 
|  | if (((INT32) code) >= (((INT32) 1) << si)) | 
|  | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | 
|  | code <<= 1; | 
|  | si++; | 
|  | } | 
|  |  | 
|  | /* Figure C.3: generate encoding tables */ | 
|  | /* These are code and size indexed by symbol value */ | 
|  |  | 
|  | /* Set all codeless symbols to have code length 0; | 
|  | * this lets us detect duplicate VAL entries here, and later | 
|  | * allows emit_bits to detect any attempt to emit such symbols. | 
|  | */ | 
|  | MEMZERO(dtbl->ehufsi, SIZEOF(dtbl->ehufsi)); | 
|  |  | 
|  | /* This is also a convenient place to check for out-of-range | 
|  | * and duplicated VAL entries.  We allow 0..255 for AC symbols | 
|  | * but only 0..15 for DC.  (We could constrain them further | 
|  | * based on data depth and mode, but this seems enough.) | 
|  | */ | 
|  | maxsymbol = isDC ? 15 : 255; | 
|  |  | 
|  | for (p = 0; p < lastp; p++) { | 
|  | i = htbl->huffval[p]; | 
|  | if (i < 0 || i > maxsymbol || dtbl->ehufsi[i]) | 
|  | ERREXIT(cinfo, JERR_BAD_HUFF_TABLE); | 
|  | dtbl->ehufco[i] = huffcode[p]; | 
|  | dtbl->ehufsi[i] = huffsize[p]; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Outputting bytes to the file */ | 
|  |  | 
|  | /* Emit a byte, taking 'action' if must suspend. */ | 
|  | #define emit_byte(state,val,action)  \ | 
|  | { *(state)->next_output_byte++ = (JOCTET) (val);  \ | 
|  | if (--(state)->free_in_buffer == 0)  \ | 
|  | if (! dump_buffer(state))  \ | 
|  | { action; } } | 
|  |  | 
|  |  | 
|  | LOCAL(boolean) | 
|  | dump_buffer (working_state * state) | 
|  | /* Empty the output buffer; return TRUE if successful, FALSE if must suspend */ | 
|  | { | 
|  | struct jpeg_destination_mgr * dest = state->cinfo->dest; | 
|  |  | 
|  | if (! (*dest->empty_output_buffer) (state->cinfo)) | 
|  | return FALSE; | 
|  | /* After a successful buffer dump, must reset buffer pointers */ | 
|  | state->next_output_byte = dest->next_output_byte; | 
|  | state->free_in_buffer = dest->free_in_buffer; | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Outputting bits to the file */ | 
|  |  | 
|  | /* Only the right 24 bits of put_buffer are used; the valid bits are | 
|  | * left-justified in this part.  At most 16 bits can be passed to emit_bits | 
|  | * in one call, and we never retain more than 7 bits in put_buffer | 
|  | * between calls, so 24 bits are sufficient. | 
|  | */ | 
|  |  | 
|  | INLINE | 
|  | LOCAL(boolean) | 
|  | emit_bits (working_state * state, unsigned int code, int size) | 
|  | /* Emit some bits; return TRUE if successful, FALSE if must suspend */ | 
|  | { | 
|  | /* This routine is heavily used, so it's worth coding tightly. */ | 
|  | register INT32 put_buffer = (INT32) code; | 
|  | register int put_bits = state->cur.put_bits; | 
|  |  | 
|  | /* if size is 0, caller used an invalid Huffman table entry */ | 
|  | if (size == 0) | 
|  | ERREXIT(state->cinfo, JERR_HUFF_MISSING_CODE); | 
|  |  | 
|  | put_buffer &= (((INT32) 1)<<size) - 1; /* mask off any extra bits in code */ | 
|  |  | 
|  | put_bits += size;		/* new number of bits in buffer */ | 
|  |  | 
|  | put_buffer <<= 24 - put_bits; /* align incoming bits */ | 
|  |  | 
|  | put_buffer |= state->cur.put_buffer; /* and merge with old buffer contents */ | 
|  |  | 
|  | while (put_bits >= 8) { | 
|  | int c = (int) ((put_buffer >> 16) & 0xFF); | 
|  |  | 
|  | emit_byte(state, c, return FALSE); | 
|  | if (c == 0xFF) {		/* need to stuff a zero byte? */ | 
|  | emit_byte(state, 0, return FALSE); | 
|  | } | 
|  | put_buffer <<= 8; | 
|  | put_bits -= 8; | 
|  | } | 
|  |  | 
|  | state->cur.put_buffer = put_buffer; /* update state variables */ | 
|  | state->cur.put_bits = put_bits; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | LOCAL(boolean) | 
|  | flush_bits (working_state * state) | 
|  | { | 
|  | if (! emit_bits(state, 0x7F, 7)) /* fill any partial byte with ones */ | 
|  | return FALSE; | 
|  | state->cur.put_buffer = 0;	/* and reset bit-buffer to empty */ | 
|  | state->cur.put_bits = 0; | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Encode a single block's worth of coefficients */ | 
|  |  | 
|  | LOCAL(boolean) | 
|  | encode_one_block (working_state * state, JCOEFPTR block, int last_dc_val, | 
|  | c_derived_tbl *dctbl, c_derived_tbl *actbl) | 
|  | { | 
|  | register int temp, temp2; | 
|  | register int nbits; | 
|  | register int k, r, i; | 
|  |  | 
|  | /* Encode the DC coefficient difference per section F.1.2.1 */ | 
|  |  | 
|  | temp = temp2 = block[0] - last_dc_val; | 
|  |  | 
|  | if (temp < 0) { | 
|  | temp = -temp;		/* temp is abs value of input */ | 
|  | /* For a negative input, want temp2 = bitwise complement of abs(input) */ | 
|  | /* This code assumes we are on a two's complement machine */ | 
|  | temp2--; | 
|  | } | 
|  |  | 
|  | /* Find the number of bits needed for the magnitude of the coefficient */ | 
|  | nbits = 0; | 
|  | while (temp) { | 
|  | nbits++; | 
|  | temp >>= 1; | 
|  | } | 
|  | /* Check for out-of-range coefficient values. | 
|  | * Since we're encoding a difference, the range limit is twice as much. | 
|  | */ | 
|  | if (nbits > MAX_COEF_BITS+1) | 
|  | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); | 
|  |  | 
|  | /* Emit the Huffman-coded symbol for the number of bits */ | 
|  | if (! emit_bits(state, dctbl->ehufco[nbits], dctbl->ehufsi[nbits])) | 
|  | return FALSE; | 
|  |  | 
|  | /* Emit that number of bits of the value, if positive, */ | 
|  | /* or the complement of its magnitude, if negative. */ | 
|  | if (nbits)			/* emit_bits rejects calls with size 0 */ | 
|  | if (! emit_bits(state, (unsigned int) temp2, nbits)) | 
|  | return FALSE; | 
|  |  | 
|  | /* Encode the AC coefficients per section F.1.2.2 */ | 
|  |  | 
|  | r = 0;			/* r = run length of zeros */ | 
|  |  | 
|  | for (k = 1; k < DCTSIZE2; k++) { | 
|  | if ((temp = block[jpeg_natural_order[k]]) == 0) { | 
|  | r++; | 
|  | } else { | 
|  | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ | 
|  | while (r > 15) { | 
|  | if (! emit_bits(state, actbl->ehufco[0xF0], actbl->ehufsi[0xF0])) | 
|  | return FALSE; | 
|  | r -= 16; | 
|  | } | 
|  |  | 
|  | temp2 = temp; | 
|  | if (temp < 0) { | 
|  | temp = -temp;		/* temp is abs value of input */ | 
|  | /* This code assumes we are on a two's complement machine */ | 
|  | temp2--; | 
|  | } | 
|  |  | 
|  | /* Find the number of bits needed for the magnitude of the coefficient */ | 
|  | nbits = 1;		/* there must be at least one 1 bit */ | 
|  | while ((temp >>= 1)) | 
|  | nbits++; | 
|  | /* Check for out-of-range coefficient values */ | 
|  | if (nbits > MAX_COEF_BITS) | 
|  | ERREXIT(state->cinfo, JERR_BAD_DCT_COEF); | 
|  |  | 
|  | /* Emit Huffman symbol for run length / number of bits */ | 
|  | i = (r << 4) + nbits; | 
|  | if (! emit_bits(state, actbl->ehufco[i], actbl->ehufsi[i])) | 
|  | return FALSE; | 
|  |  | 
|  | /* Emit that number of bits of the value, if positive, */ | 
|  | /* or the complement of its magnitude, if negative. */ | 
|  | if (! emit_bits(state, (unsigned int) temp2, nbits)) | 
|  | return FALSE; | 
|  |  | 
|  | r = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the last coef(s) were zero, emit an end-of-block code */ | 
|  | if (r > 0) | 
|  | if (! emit_bits(state, actbl->ehufco[0], actbl->ehufsi[0])) | 
|  | return FALSE; | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Emit a restart marker & resynchronize predictions. | 
|  | */ | 
|  |  | 
|  | LOCAL(boolean) | 
|  | emit_restart (working_state * state, int restart_num) | 
|  | { | 
|  | int ci; | 
|  |  | 
|  | if (! flush_bits(state)) | 
|  | return FALSE; | 
|  |  | 
|  | emit_byte(state, 0xFF, return FALSE); | 
|  | emit_byte(state, JPEG_RST0 + restart_num, return FALSE); | 
|  |  | 
|  | /* Re-initialize DC predictions to 0 */ | 
|  | for (ci = 0; ci < state->cinfo->comps_in_scan; ci++) | 
|  | state->cur.last_dc_val[ci] = 0; | 
|  |  | 
|  | /* The restart counter is not updated until we successfully write the MCU. */ | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Encode and output one MCU's worth of Huffman-compressed coefficients. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | encode_mcu_huff (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 
|  | working_state state; | 
|  | int blkn, ci; | 
|  | jpeg_component_info * compptr; | 
|  |  | 
|  | /* Load up working state */ | 
|  | state.next_output_byte = cinfo->dest->next_output_byte; | 
|  | state.free_in_buffer = cinfo->dest->free_in_buffer; | 
|  | ASSIGN_STATE(state.cur, entropy->saved); | 
|  | state.cinfo = cinfo; | 
|  |  | 
|  | /* Emit restart marker if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) | 
|  | if (! emit_restart(&state, entropy->next_restart_num)) | 
|  | return FALSE; | 
|  | } | 
|  |  | 
|  | /* Encode the MCU data blocks */ | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | ci = cinfo->MCU_membership[blkn]; | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | if (! encode_one_block(&state, | 
|  | MCU_data[blkn][0], state.cur.last_dc_val[ci], | 
|  | entropy->dc_derived_tbls[compptr->dc_tbl_no], | 
|  | entropy->ac_derived_tbls[compptr->ac_tbl_no])) | 
|  | return FALSE; | 
|  | /* Update last_dc_val */ | 
|  | state.cur.last_dc_val[ci] = MCU_data[blkn][0][0]; | 
|  | } | 
|  |  | 
|  | /* Completed MCU, so update state */ | 
|  | cinfo->dest->next_output_byte = state.next_output_byte; | 
|  | cinfo->dest->free_in_buffer = state.free_in_buffer; | 
|  | ASSIGN_STATE(entropy->saved, state.cur); | 
|  |  | 
|  | /* Update restart-interval state too */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) { | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | entropy->next_restart_num++; | 
|  | entropy->next_restart_num &= 7; | 
|  | } | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Finish up at the end of a Huffman-compressed scan. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | finish_pass_huff (j_compress_ptr cinfo) | 
|  | { | 
|  | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 
|  | working_state state; | 
|  |  | 
|  | /* Load up working state ... flush_bits needs it */ | 
|  | state.next_output_byte = cinfo->dest->next_output_byte; | 
|  | state.free_in_buffer = cinfo->dest->free_in_buffer; | 
|  | ASSIGN_STATE(state.cur, entropy->saved); | 
|  | state.cinfo = cinfo; | 
|  |  | 
|  | /* Flush out the last data */ | 
|  | if (! flush_bits(&state)) | 
|  | ERREXIT(cinfo, JERR_CANT_SUSPEND); | 
|  |  | 
|  | /* Update state */ | 
|  | cinfo->dest->next_output_byte = state.next_output_byte; | 
|  | cinfo->dest->free_in_buffer = state.free_in_buffer; | 
|  | ASSIGN_STATE(entropy->saved, state.cur); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Huffman coding optimization. | 
|  | * | 
|  | * We first scan the supplied data and count the number of uses of each symbol | 
|  | * that is to be Huffman-coded. (This process MUST agree with the code above.) | 
|  | * Then we build a Huffman coding tree for the observed counts. | 
|  | * Symbols which are not needed at all for the particular image are not | 
|  | * assigned any code, which saves space in the DHT marker as well as in | 
|  | * the compressed data. | 
|  | */ | 
|  |  | 
|  | #ifdef ENTROPY_OPT_SUPPORTED | 
|  |  | 
|  |  | 
|  | /* Process a single block's worth of coefficients */ | 
|  |  | 
|  | LOCAL(void) | 
|  | htest_one_block (j_compress_ptr cinfo, JCOEFPTR block, int last_dc_val, | 
|  | long dc_counts[], long ac_counts[]) | 
|  | { | 
|  | register int temp; | 
|  | register int nbits; | 
|  | register int k, r; | 
|  |  | 
|  | /* Encode the DC coefficient difference per section F.1.2.1 */ | 
|  |  | 
|  | temp = block[0] - last_dc_val; | 
|  | if (temp < 0) | 
|  | temp = -temp; | 
|  |  | 
|  | /* Find the number of bits needed for the magnitude of the coefficient */ | 
|  | nbits = 0; | 
|  | while (temp) { | 
|  | nbits++; | 
|  | temp >>= 1; | 
|  | } | 
|  | /* Check for out-of-range coefficient values. | 
|  | * Since we're encoding a difference, the range limit is twice as much. | 
|  | */ | 
|  | if (nbits > MAX_COEF_BITS+1) | 
|  | ERREXIT(cinfo, JERR_BAD_DCT_COEF); | 
|  |  | 
|  | /* Count the Huffman symbol for the number of bits */ | 
|  | dc_counts[nbits]++; | 
|  |  | 
|  | /* Encode the AC coefficients per section F.1.2.2 */ | 
|  |  | 
|  | r = 0;			/* r = run length of zeros */ | 
|  |  | 
|  | for (k = 1; k < DCTSIZE2; k++) { | 
|  | if ((temp = block[jpeg_natural_order[k]]) == 0) { | 
|  | r++; | 
|  | } else { | 
|  | /* if run length > 15, must emit special run-length-16 codes (0xF0) */ | 
|  | while (r > 15) { | 
|  | ac_counts[0xF0]++; | 
|  | r -= 16; | 
|  | } | 
|  |  | 
|  | /* Find the number of bits needed for the magnitude of the coefficient */ | 
|  | if (temp < 0) | 
|  | temp = -temp; | 
|  |  | 
|  | /* Find the number of bits needed for the magnitude of the coefficient */ | 
|  | nbits = 1;		/* there must be at least one 1 bit */ | 
|  | while ((temp >>= 1)) | 
|  | nbits++; | 
|  | /* Check for out-of-range coefficient values */ | 
|  | if (nbits > MAX_COEF_BITS) | 
|  | ERREXIT(cinfo, JERR_BAD_DCT_COEF); | 
|  |  | 
|  | /* Count Huffman symbol for run length / number of bits */ | 
|  | ac_counts[(r << 4) + nbits]++; | 
|  |  | 
|  | r = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the last coef(s) were zero, emit an end-of-block code */ | 
|  | if (r > 0) | 
|  | ac_counts[0]++; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Trial-encode one MCU's worth of Huffman-compressed coefficients. | 
|  | * No data is actually output, so no suspension return is possible. | 
|  | */ | 
|  |  | 
|  | METHODDEF(boolean) | 
|  | encode_mcu_gather (j_compress_ptr cinfo, JBLOCKROW *MCU_data) | 
|  | { | 
|  | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 
|  | int blkn, ci; | 
|  | jpeg_component_info * compptr; | 
|  |  | 
|  | /* Take care of restart intervals if needed */ | 
|  | if (cinfo->restart_interval) { | 
|  | if (entropy->restarts_to_go == 0) { | 
|  | /* Re-initialize DC predictions to 0 */ | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) | 
|  | entropy->saved.last_dc_val[ci] = 0; | 
|  | /* Update restart state */ | 
|  | entropy->restarts_to_go = cinfo->restart_interval; | 
|  | } | 
|  | entropy->restarts_to_go--; | 
|  | } | 
|  |  | 
|  | for (blkn = 0; blkn < cinfo->blocks_in_MCU; blkn++) { | 
|  | ci = cinfo->MCU_membership[blkn]; | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | htest_one_block(cinfo, MCU_data[blkn][0], entropy->saved.last_dc_val[ci], | 
|  | entropy->dc_count_ptrs[compptr->dc_tbl_no], | 
|  | entropy->ac_count_ptrs[compptr->ac_tbl_no]); | 
|  | entropy->saved.last_dc_val[ci] = MCU_data[blkn][0][0]; | 
|  | } | 
|  |  | 
|  | return TRUE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Generate the best Huffman code table for the given counts, fill htbl. | 
|  | * Note this is also used by jcphuff.c. | 
|  | * | 
|  | * The JPEG standard requires that no symbol be assigned a codeword of all | 
|  | * one bits (so that padding bits added at the end of a compressed segment | 
|  | * can't look like a valid code).  Because of the canonical ordering of | 
|  | * codewords, this just means that there must be an unused slot in the | 
|  | * longest codeword length category.  Section K.2 of the JPEG spec suggests | 
|  | * reserving such a slot by pretending that symbol 256 is a valid symbol | 
|  | * with count 1.  In theory that's not optimal; giving it count zero but | 
|  | * including it in the symbol set anyway should give a better Huffman code. | 
|  | * But the theoretically better code actually seems to come out worse in | 
|  | * practice, because it produces more all-ones bytes (which incur stuffed | 
|  | * zero bytes in the final file).  In any case the difference is tiny. | 
|  | * | 
|  | * The JPEG standard requires Huffman codes to be no more than 16 bits long. | 
|  | * If some symbols have a very small but nonzero probability, the Huffman tree | 
|  | * must be adjusted to meet the code length restriction.  We currently use | 
|  | * the adjustment method suggested in JPEG section K.2.  This method is *not* | 
|  | * optimal; it may not choose the best possible limited-length code.  But | 
|  | * typically only very-low-frequency symbols will be given less-than-optimal | 
|  | * lengths, so the code is almost optimal.  Experimental comparisons against | 
|  | * an optimal limited-length-code algorithm indicate that the difference is | 
|  | * microscopic --- usually less than a hundredth of a percent of total size. | 
|  | * So the extra complexity of an optimal algorithm doesn't seem worthwhile. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jpeg_gen_optimal_table (j_compress_ptr cinfo, JHUFF_TBL * htbl, long freq[]) | 
|  | { | 
|  | #define MAX_CLEN 32		/* assumed maximum initial code length */ | 
|  | UINT8 bits[MAX_CLEN+1];	/* bits[k] = # of symbols with code length k */ | 
|  | int codesize[257];		/* codesize[k] = code length of symbol k */ | 
|  | int others[257];		/* next symbol in current branch of tree */ | 
|  | int c1, c2; | 
|  | int p, i, j; | 
|  | long v; | 
|  |  | 
|  | /* This algorithm is explained in section K.2 of the JPEG standard */ | 
|  |  | 
|  | MEMZERO(bits, SIZEOF(bits)); | 
|  | MEMZERO(codesize, SIZEOF(codesize)); | 
|  | for (i = 0; i < 257; i++) | 
|  | others[i] = -1;		/* init links to empty */ | 
|  |  | 
|  | freq[256] = 1;		/* make sure 256 has a nonzero count */ | 
|  | /* Including the pseudo-symbol 256 in the Huffman procedure guarantees | 
|  | * that no real symbol is given code-value of all ones, because 256 | 
|  | * will be placed last in the largest codeword category. | 
|  | */ | 
|  |  | 
|  | /* Huffman's basic algorithm to assign optimal code lengths to symbols */ | 
|  |  | 
|  | for (;;) { | 
|  | /* Find the smallest nonzero frequency, set c1 = its symbol */ | 
|  | /* In case of ties, take the larger symbol number */ | 
|  | c1 = -1; | 
|  | v = 1000000000L; | 
|  | for (i = 0; i <= 256; i++) { | 
|  | if (freq[i] && freq[i] <= v) { | 
|  | v = freq[i]; | 
|  | c1 = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Find the next smallest nonzero frequency, set c2 = its symbol */ | 
|  | /* In case of ties, take the larger symbol number */ | 
|  | c2 = -1; | 
|  | v = 1000000000L; | 
|  | for (i = 0; i <= 256; i++) { | 
|  | if (freq[i] && freq[i] <= v && i != c1) { | 
|  | v = freq[i]; | 
|  | c2 = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Done if we've merged everything into one frequency */ | 
|  | if (c2 < 0) | 
|  | break; | 
|  |  | 
|  | /* Else merge the two counts/trees */ | 
|  | freq[c1] += freq[c2]; | 
|  | freq[c2] = 0; | 
|  |  | 
|  | /* Increment the codesize of everything in c1's tree branch */ | 
|  | codesize[c1]++; | 
|  | while (others[c1] >= 0) { | 
|  | c1 = others[c1]; | 
|  | codesize[c1]++; | 
|  | } | 
|  |  | 
|  | others[c1] = c2;		/* chain c2 onto c1's tree branch */ | 
|  |  | 
|  | /* Increment the codesize of everything in c2's tree branch */ | 
|  | codesize[c2]++; | 
|  | while (others[c2] >= 0) { | 
|  | c2 = others[c2]; | 
|  | codesize[c2]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now count the number of symbols of each code length */ | 
|  | for (i = 0; i <= 256; i++) { | 
|  | if (codesize[i]) { | 
|  | /* The JPEG standard seems to think that this can't happen, */ | 
|  | /* but I'm paranoid... */ | 
|  | if (codesize[i] > MAX_CLEN) | 
|  | ERREXIT(cinfo, JERR_HUFF_CLEN_OVERFLOW); | 
|  |  | 
|  | bits[codesize[i]]++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* JPEG doesn't allow symbols with code lengths over 16 bits, so if the pure | 
|  | * Huffman procedure assigned any such lengths, we must adjust the coding. | 
|  | * Here is what the JPEG spec says about how this next bit works: | 
|  | * Since symbols are paired for the longest Huffman code, the symbols are | 
|  | * removed from this length category two at a time.  The prefix for the pair | 
|  | * (which is one bit shorter) is allocated to one of the pair; then, | 
|  | * skipping the BITS entry for that prefix length, a code word from the next | 
|  | * shortest nonzero BITS entry is converted into a prefix for two code words | 
|  | * one bit longer. | 
|  | */ | 
|  |  | 
|  | for (i = MAX_CLEN; i > 16; i--) { | 
|  | while (bits[i] > 0) { | 
|  | j = i - 2;		/* find length of new prefix to be used */ | 
|  | while (bits[j] == 0) | 
|  | j--; | 
|  |  | 
|  | bits[i] -= 2;		/* remove two symbols */ | 
|  | bits[i-1]++;		/* one goes in this length */ | 
|  | bits[j+1] += 2;		/* two new symbols in this length */ | 
|  | bits[j]--;		/* symbol of this length is now a prefix */ | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Remove the count for the pseudo-symbol 256 from the largest codelength */ | 
|  | while (bits[i] == 0)		/* find largest codelength still in use */ | 
|  | i--; | 
|  | bits[i]--; | 
|  |  | 
|  | /* Return final symbol counts (only for lengths 0..16) */ | 
|  | MEMCOPY(htbl->bits, bits, SIZEOF(htbl->bits)); | 
|  |  | 
|  | /* Return a list of the symbols sorted by code length */ | 
|  | /* It's not real clear to me why we don't need to consider the codelength | 
|  | * changes made above, but the JPEG spec seems to think this works. | 
|  | */ | 
|  | p = 0; | 
|  | for (i = 1; i <= MAX_CLEN; i++) { | 
|  | for (j = 0; j <= 255; j++) { | 
|  | if (codesize[j] == i) { | 
|  | htbl->huffval[p] = (UINT8) j; | 
|  | p++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set sent_table FALSE so updated table will be written to JPEG file. */ | 
|  | htbl->sent_table = FALSE; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Finish up a statistics-gathering pass and create the new Huffman tables. | 
|  | */ | 
|  |  | 
|  | METHODDEF(void) | 
|  | finish_pass_gather (j_compress_ptr cinfo) | 
|  | { | 
|  | huff_entropy_ptr entropy = (huff_entropy_ptr) cinfo->entropy; | 
|  | int ci, dctbl, actbl; | 
|  | jpeg_component_info * compptr; | 
|  | JHUFF_TBL **htblptr; | 
|  | boolean did_dc[NUM_HUFF_TBLS]; | 
|  | boolean did_ac[NUM_HUFF_TBLS]; | 
|  |  | 
|  | /* It's important not to apply jpeg_gen_optimal_table more than once | 
|  | * per table, because it clobbers the input frequency counts! | 
|  | */ | 
|  | MEMZERO(did_dc, SIZEOF(did_dc)); | 
|  | MEMZERO(did_ac, SIZEOF(did_ac)); | 
|  |  | 
|  | for (ci = 0; ci < cinfo->comps_in_scan; ci++) { | 
|  | compptr = cinfo->cur_comp_info[ci]; | 
|  | dctbl = compptr->dc_tbl_no; | 
|  | actbl = compptr->ac_tbl_no; | 
|  | if (! did_dc[dctbl]) { | 
|  | htblptr = & cinfo->dc_huff_tbl_ptrs[dctbl]; | 
|  | if (*htblptr == NULL) | 
|  | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); | 
|  | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->dc_count_ptrs[dctbl]); | 
|  | did_dc[dctbl] = TRUE; | 
|  | } | 
|  | if (! did_ac[actbl]) { | 
|  | htblptr = & cinfo->ac_huff_tbl_ptrs[actbl]; | 
|  | if (*htblptr == NULL) | 
|  | *htblptr = jpeg_alloc_huff_table((j_common_ptr) cinfo); | 
|  | jpeg_gen_optimal_table(cinfo, *htblptr, entropy->ac_count_ptrs[actbl]); | 
|  | did_ac[actbl] = TRUE; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | #endif /* ENTROPY_OPT_SUPPORTED */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Module initialization routine for Huffman entropy encoding. | 
|  | */ | 
|  |  | 
|  | GLOBAL(void) | 
|  | jinit_huff_encoder (j_compress_ptr cinfo) | 
|  | { | 
|  | huff_entropy_ptr entropy; | 
|  | int i; | 
|  |  | 
|  | entropy = (huff_entropy_ptr) | 
|  | (*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE, | 
|  | SIZEOF(huff_entropy_encoder)); | 
|  | cinfo->entropy = (struct jpeg_entropy_encoder *) entropy; | 
|  | entropy->pub.start_pass = start_pass_huff; | 
|  |  | 
|  | /* Mark tables unallocated */ | 
|  | for (i = 0; i < NUM_HUFF_TBLS; i++) { | 
|  | entropy->dc_derived_tbls[i] = entropy->ac_derived_tbls[i] = NULL; | 
|  | #ifdef ENTROPY_OPT_SUPPORTED | 
|  | entropy->dc_count_ptrs[i] = entropy->ac_count_ptrs[i] = NULL; | 
|  | #endif | 
|  | } | 
|  | } |