blob: 2139c312a88c0e8ecdd7571bc836f8c3ecbfe46f [file] [log] [blame]
// Copyright 2014 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file tests the C++ Mojo system core wrappers.
// TODO(vtl): Maybe rename "CoreCppTest" -> "CoreTest" if/when this gets
// compiled into a different binary from the C API tests.
#include <stddef.h>
#include <map>
#include "mojo/public/cpp/system/buffer.h"
#include "mojo/public/cpp/system/data_pipe.h"
#include "mojo/public/cpp/system/handle.h"
#include "mojo/public/cpp/system/macros.h"
#include "mojo/public/cpp/system/message_pipe.h"
#include "mojo/public/cpp/system/time.h"
#include "mojo/public/cpp/system/wait.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace mojo {
namespace {
TEST(CoreCppTest, GetTimeTicksNow) {
const MojoTimeTicks start = GetTimeTicksNow();
EXPECT_NE(static_cast<MojoTimeTicks>(0), start)
<< "GetTimeTicksNow should return nonzero value";
}
TEST(CoreCppTest, Basic) {
// Basic |Handle| implementation:
{
EXPECT_EQ(MOJO_HANDLE_INVALID, kInvalidHandleValue);
Handle h0;
EXPECT_EQ(kInvalidHandleValue, h0.value());
EXPECT_EQ(kInvalidHandleValue, *h0.mutable_value());
EXPECT_FALSE(h0.is_valid());
Handle h1(static_cast<MojoHandle>(123));
EXPECT_EQ(static_cast<MojoHandle>(123), h1.value());
EXPECT_EQ(static_cast<MojoHandle>(123), *h1.mutable_value());
EXPECT_TRUE(h1.is_valid());
*h1.mutable_value() = static_cast<MojoHandle>(456);
EXPECT_EQ(static_cast<MojoHandle>(456), h1.value());
EXPECT_TRUE(h1.is_valid());
h1.swap(h0);
EXPECT_EQ(static_cast<MojoHandle>(456), h0.value());
EXPECT_TRUE(h0.is_valid());
EXPECT_FALSE(h1.is_valid());
h1.set_value(static_cast<MojoHandle>(789));
h0.swap(h1);
EXPECT_EQ(static_cast<MojoHandle>(789), h0.value());
EXPECT_TRUE(h0.is_valid());
EXPECT_EQ(static_cast<MojoHandle>(456), h1.value());
EXPECT_TRUE(h1.is_valid());
// Make sure copy constructor works.
Handle h2(h0);
EXPECT_EQ(static_cast<MojoHandle>(789), h2.value());
// And assignment.
h2 = h1;
EXPECT_EQ(static_cast<MojoHandle>(456), h2.value());
// Make sure that we can put |Handle|s into |std::map|s.
h0 = Handle(static_cast<MojoHandle>(987));
h1 = Handle(static_cast<MojoHandle>(654));
h2 = Handle(static_cast<MojoHandle>(321));
Handle h3;
std::map<Handle, int> handle_to_int;
handle_to_int[h0] = 0;
handle_to_int[h1] = 1;
handle_to_int[h2] = 2;
handle_to_int[h3] = 3;
EXPECT_EQ(4u, handle_to_int.size());
EXPECT_FALSE(handle_to_int.find(h0) == handle_to_int.end());
EXPECT_EQ(0, handle_to_int[h0]);
EXPECT_FALSE(handle_to_int.find(h1) == handle_to_int.end());
EXPECT_EQ(1, handle_to_int[h1]);
EXPECT_FALSE(handle_to_int.find(h2) == handle_to_int.end());
EXPECT_EQ(2, handle_to_int[h2]);
EXPECT_FALSE(handle_to_int.find(h3) == handle_to_int.end());
EXPECT_EQ(3, handle_to_int[h3]);
EXPECT_TRUE(handle_to_int.find(Handle(static_cast<MojoHandle>(13579))) ==
handle_to_int.end());
// TODO(vtl): With C++11, support |std::unordered_map|s, etc. (Or figure out
// how to support the variations of |hash_map|.)
}
// |Handle|/|ScopedHandle| functions:
{
ScopedHandle h;
EXPECT_EQ(kInvalidHandleValue, h.get().value());
// This should be a no-op.
Close(h.Pass());
// It should still be invalid.
EXPECT_EQ(kInvalidHandleValue, h.get().value());
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
Wait(h.get(), ~MOJO_HANDLE_SIGNAL_NONE, 1000000, nullptr));
std::vector<Handle> wh;
wh.push_back(h.get());
std::vector<MojoHandleSignals> sigs;
sigs.push_back(~MOJO_HANDLE_SIGNAL_NONE);
WaitManyResult wait_many_result =
WaitMany(wh, sigs, MOJO_DEADLINE_INDEFINITE, nullptr);
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, wait_many_result.result);
EXPECT_TRUE(wait_many_result.IsIndexValid());
EXPECT_FALSE(wait_many_result.AreSignalsStatesValid());
// Make sure that our specialized template correctly handles |NULL| as well
// as |nullptr|.
wait_many_result = WaitMany(wh, sigs, MOJO_DEADLINE_INDEFINITE, NULL);
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, wait_many_result.result);
EXPECT_EQ(0u, wait_many_result.index);
EXPECT_TRUE(wait_many_result.IsIndexValid());
EXPECT_FALSE(wait_many_result.AreSignalsStatesValid());
}
// |MakeScopedHandle| (just compilation tests):
{
EXPECT_FALSE(MakeScopedHandle(Handle()).is_valid());
EXPECT_FALSE(MakeScopedHandle(MessagePipeHandle()).is_valid());
EXPECT_FALSE(MakeScopedHandle(DataPipeProducerHandle()).is_valid());
EXPECT_FALSE(MakeScopedHandle(DataPipeConsumerHandle()).is_valid());
EXPECT_FALSE(MakeScopedHandle(SharedBufferHandle()).is_valid());
}
// |MessagePipeHandle|/|ScopedMessagePipeHandle| functions:
{
MessagePipeHandle h_invalid;
EXPECT_FALSE(h_invalid.is_valid());
EXPECT_EQ(
MOJO_RESULT_INVALID_ARGUMENT,
WriteMessageRaw(
h_invalid, nullptr, 0, nullptr, 0, MOJO_WRITE_MESSAGE_FLAG_NONE));
char buffer[10] = {0};
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
WriteMessageRaw(h_invalid,
buffer,
sizeof(buffer),
nullptr,
0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
ReadMessageRaw(h_invalid,
nullptr,
nullptr,
nullptr,
nullptr,
MOJO_READ_MESSAGE_FLAG_NONE));
uint32_t buffer_size = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
ReadMessageRaw(h_invalid,
buffer,
&buffer_size,
nullptr,
nullptr,
MOJO_READ_MESSAGE_FLAG_NONE));
// Basic tests of waiting and closing.
MojoHandle hv0 = kInvalidHandleValue;
{
ScopedMessagePipeHandle h0;
ScopedMessagePipeHandle h1;
EXPECT_FALSE(h0.get().is_valid());
EXPECT_FALSE(h1.get().is_valid());
ASSERT_EQ(MOJO_RESULT_OK, CreateMessagePipe(nullptr, &h0, &h1));
EXPECT_TRUE(h0.get().is_valid());
EXPECT_TRUE(h1.get().is_valid());
EXPECT_NE(h0.get().value(), h1.get().value());
// Save the handle values, so we can check that things got closed
// correctly.
hv0 = h0.get().value();
MojoHandle hv1 = h1.get().value();
MojoHandleSignalsState state;
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED,
Wait(h0.get(), MOJO_HANDLE_SIGNAL_READABLE, 0, &state));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, state.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED,
state.satisfiable_signals);
std::vector<Handle> wh;
wh.push_back(h0.get());
wh.push_back(h1.get());
std::vector<MojoHandleSignals> sigs;
sigs.push_back(MOJO_HANDLE_SIGNAL_READABLE);
sigs.push_back(MOJO_HANDLE_SIGNAL_WRITABLE);
std::vector<MojoHandleSignalsState> states(sigs.size());
WaitManyResult wait_many_result = WaitMany(wh, sigs, 1000, &states);
EXPECT_EQ(MOJO_RESULT_OK, wait_many_result.result);
EXPECT_EQ(1u, wait_many_result.index);
EXPECT_TRUE(wait_many_result.IsIndexValid());
EXPECT_TRUE(wait_many_result.AreSignalsStatesValid());
EXPECT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, states[0].satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED,
states[0].satisfiable_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, states[1].satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED,
states[1].satisfiable_signals);
// Test closing |h1| explicitly.
Close(h1.Pass());
EXPECT_FALSE(h1.get().is_valid());
// Make sure |h1| is closed.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
Wait(Handle(hv1), ~MOJO_HANDLE_SIGNAL_NONE,
MOJO_DEADLINE_INDEFINITE, nullptr));
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
Wait(h0.get(), MOJO_HANDLE_SIGNAL_READABLE,
MOJO_DEADLINE_INDEFINITE, &state));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, state.satisfiable_signals);
}
// |hv0| should have been closed when |h0| went out of scope, so this close
// should fail.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(hv0));
// Actually test writing/reading messages.
{
ScopedMessagePipeHandle h0;
ScopedMessagePipeHandle h1;
ASSERT_EQ(MOJO_RESULT_OK, CreateMessagePipe(nullptr, &h0, &h1));
const char kHello[] = "hello";
const uint32_t kHelloSize = static_cast<uint32_t>(sizeof(kHello));
EXPECT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(h0.get(),
kHello,
kHelloSize,
nullptr,
0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
MojoHandleSignalsState state;
EXPECT_EQ(MOJO_RESULT_OK, Wait(h1.get(), MOJO_HANDLE_SIGNAL_READABLE,
MOJO_DEADLINE_INDEFINITE, &state));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE,
state.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED,
state.satisfiable_signals);
char buffer[10] = {0};
uint32_t buffer_size = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK,
ReadMessageRaw(h1.get(),
buffer,
&buffer_size,
nullptr,
nullptr,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kHelloSize, buffer_size);
EXPECT_STREQ(kHello, buffer);
// Send a handle over the previously-establish message pipe. Use the
// |MessagePipe| wrapper (to test it), which automatically creates a
// message pipe.
MessagePipe mp;
// Write a message to |mp.handle0|, before we send |mp.handle1|.
const char kWorld[] = "world!";
const uint32_t kWorldSize = static_cast<uint32_t>(sizeof(kWorld));
EXPECT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(mp.handle0.get(),
kWorld,
kWorldSize,
nullptr,
0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// Send |mp.handle1| over |h1| to |h0|.
MojoHandle handles[5];
handles[0] = mp.handle1.release().value();
EXPECT_NE(kInvalidHandleValue, handles[0]);
EXPECT_FALSE(mp.handle1.get().is_valid());
uint32_t handles_count = 1;
EXPECT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(h1.get(),
kHello,
kHelloSize,
handles,
handles_count,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// |handles[0]| should actually be invalid now.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(handles[0]));
// Read "hello" and the sent handle.
EXPECT_EQ(MOJO_RESULT_OK, Wait(h0.get(), MOJO_HANDLE_SIGNAL_READABLE,
MOJO_DEADLINE_INDEFINITE, &state));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE,
state.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED,
state.satisfiable_signals);
memset(buffer, 0, sizeof(buffer));
buffer_size = static_cast<uint32_t>(sizeof(buffer));
for (size_t i = 0; i < MOJO_ARRAYSIZE(handles); i++)
handles[i] = kInvalidHandleValue;
handles_count = static_cast<uint32_t>(MOJO_ARRAYSIZE(handles));
EXPECT_EQ(MOJO_RESULT_OK,
ReadMessageRaw(h0.get(),
buffer,
&buffer_size,
handles,
&handles_count,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kHelloSize, buffer_size);
EXPECT_STREQ(kHello, buffer);
EXPECT_EQ(1u, handles_count);
EXPECT_NE(kInvalidHandleValue, handles[0]);
// Read from the sent/received handle.
mp.handle1.reset(MessagePipeHandle(handles[0]));
// Save |handles[0]| to check that it gets properly closed.
hv0 = handles[0];
EXPECT_EQ(MOJO_RESULT_OK,
Wait(mp.handle1.get(), MOJO_HANDLE_SIGNAL_READABLE,
MOJO_DEADLINE_INDEFINITE, &state));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE,
state.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED,
state.satisfiable_signals);
memset(buffer, 0, sizeof(buffer));
buffer_size = static_cast<uint32_t>(sizeof(buffer));
for (size_t i = 0; i < MOJO_ARRAYSIZE(handles); i++)
handles[i] = kInvalidHandleValue;
handles_count = static_cast<uint32_t>(MOJO_ARRAYSIZE(handles));
EXPECT_EQ(MOJO_RESULT_OK,
ReadMessageRaw(mp.handle1.get(),
buffer,
&buffer_size,
handles,
&handles_count,
MOJO_READ_MESSAGE_FLAG_NONE));
EXPECT_EQ(kWorldSize, buffer_size);
EXPECT_STREQ(kWorld, buffer);
EXPECT_EQ(0u, handles_count);
}
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(hv0));
}
// TODO(vtl): Test |CloseRaw()|.
// TODO(vtl): Test |reset()| more thoroughly?
}
TEST(CoreCppTest, TearDownWithMessagesEnqueued) {
// Tear down a message pipe which still has a message enqueued, with the
// message also having a valid message pipe handle.
{
ScopedMessagePipeHandle h0;
ScopedMessagePipeHandle h1;
ASSERT_EQ(MOJO_RESULT_OK, CreateMessagePipe(nullptr, &h0, &h1));
// Send a handle over the previously-establish message pipe.
ScopedMessagePipeHandle h2;
ScopedMessagePipeHandle h3;
ASSERT_EQ(MOJO_RESULT_OK, CreateMessagePipe(nullptr, &h2, &h3));
// Write a message to |h2|, before we send |h3|.
const char kWorld[] = "world!";
const uint32_t kWorldSize = static_cast<uint32_t>(sizeof(kWorld));
EXPECT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(h2.get(),
kWorld,
kWorldSize,
nullptr,
0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// And also a message to |h3|.
EXPECT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(h3.get(),
kWorld,
kWorldSize,
nullptr,
0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// Send |h3| over |h1| to |h0|.
const char kHello[] = "hello";
const uint32_t kHelloSize = static_cast<uint32_t>(sizeof(kHello));
MojoHandle h3_value;
h3_value = h3.release().value();
EXPECT_NE(kInvalidHandleValue, h3_value);
EXPECT_FALSE(h3.get().is_valid());
EXPECT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(h1.get(),
kHello,
kHelloSize,
&h3_value,
1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// |h3_value| should actually be invalid now.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(h3_value));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(h0.release().value()));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(h1.release().value()));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(h2.release().value()));
}
// Do this in a different order: make the enqueued message pipe handle only
// half-alive.
{
ScopedMessagePipeHandle h0;
ScopedMessagePipeHandle h1;
ASSERT_EQ(MOJO_RESULT_OK, CreateMessagePipe(nullptr, &h0, &h1));
// Send a handle over the previously-establish message pipe.
ScopedMessagePipeHandle h2;
ScopedMessagePipeHandle h3;
ASSERT_EQ(MOJO_RESULT_OK, CreateMessagePipe(nullptr, &h2, &h3));
// Write a message to |h2|, before we send |h3|.
const char kWorld[] = "world!";
const uint32_t kWorldSize = static_cast<uint32_t>(sizeof(kWorld));
EXPECT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(h2.get(),
kWorld,
kWorldSize,
nullptr,
0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// And also a message to |h3|.
EXPECT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(h3.get(),
kWorld,
kWorldSize,
nullptr,
0,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// Send |h3| over |h1| to |h0|.
const char kHello[] = "hello";
const uint32_t kHelloSize = static_cast<uint32_t>(sizeof(kHello));
MojoHandle h3_value;
h3_value = h3.release().value();
EXPECT_NE(kInvalidHandleValue, h3_value);
EXPECT_FALSE(h3.get().is_valid());
EXPECT_EQ(MOJO_RESULT_OK,
WriteMessageRaw(h1.get(),
kHello,
kHelloSize,
&h3_value,
1,
MOJO_WRITE_MESSAGE_FLAG_NONE));
// |h3_value| should actually be invalid now.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(h3_value));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(h2.release().value()));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(h0.release().value()));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(h1.release().value()));
}
}
TEST(CoreCppTest, ScopedHandleMoveCtor) {
ScopedSharedBufferHandle buffer1;
EXPECT_EQ(MOJO_RESULT_OK, CreateSharedBuffer(nullptr, 1024, &buffer1));
EXPECT_TRUE(buffer1.is_valid());
ScopedSharedBufferHandle buffer2;
EXPECT_EQ(MOJO_RESULT_OK, CreateSharedBuffer(nullptr, 1024, &buffer2));
EXPECT_TRUE(buffer2.is_valid());
// If this fails to close buffer1, ScopedHandleBase::CloseIfNecessary() will
// assert.
buffer1 = buffer2.Pass();
EXPECT_TRUE(buffer1.is_valid());
EXPECT_FALSE(buffer2.is_valid());
}
TEST(CoreCppTest, ScopedHandleMoveCtorSelf) {
ScopedSharedBufferHandle buffer1;
EXPECT_EQ(MOJO_RESULT_OK, CreateSharedBuffer(nullptr, 1024, &buffer1));
EXPECT_TRUE(buffer1.is_valid());
buffer1 = buffer1.Pass();
EXPECT_TRUE(buffer1.is_valid());
}
TEST(CoreCppTest, WaitManyResult) {
{
WaitManyResult wmr(MOJO_RESULT_OK);
EXPECT_FALSE(wmr.IsIndexValid());
EXPECT_TRUE(wmr.AreSignalsStatesValid());
EXPECT_EQ(MOJO_RESULT_OK, wmr.result);
}
{
WaitManyResult wmr(MOJO_RESULT_FAILED_PRECONDITION);
EXPECT_FALSE(wmr.IsIndexValid());
EXPECT_TRUE(wmr.AreSignalsStatesValid());
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, wmr.result);
}
{
WaitManyResult wmr(MOJO_RESULT_INVALID_ARGUMENT);
EXPECT_FALSE(wmr.IsIndexValid());
EXPECT_FALSE(wmr.AreSignalsStatesValid());
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, wmr.result);
}
// These should be like "invalid argument".
EXPECT_FALSE(
WaitManyResult(MOJO_RESULT_RESOURCE_EXHAUSTED).AreSignalsStatesValid());
EXPECT_FALSE(WaitManyResult(MOJO_RESULT_BUSY).AreSignalsStatesValid());
{
WaitManyResult wmr(MOJO_RESULT_OK, 5u);
EXPECT_TRUE(wmr.IsIndexValid());
EXPECT_TRUE(wmr.AreSignalsStatesValid());
EXPECT_EQ(MOJO_RESULT_OK, wmr.result);
EXPECT_EQ(5u, wmr.index);
}
{
WaitManyResult wmr(MOJO_RESULT_FAILED_PRECONDITION, 5u);
EXPECT_TRUE(wmr.IsIndexValid());
EXPECT_TRUE(wmr.AreSignalsStatesValid());
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, wmr.result);
EXPECT_EQ(5u, wmr.index);
}
}
// TODO(ncbray): enable this test once NaCl supports the corresponding APIs.
#ifdef __native_client__
#define MAYBE_DataPipe DISABLED_DataPipe
#else
#define MAYBE_DataPipe DataPipe
#endif
TEST(CoreCppTest, MAYBE_DataPipe) {
ScopedDataPipeProducerHandle ph;
ScopedDataPipeConsumerHandle ch;
ASSERT_EQ(MOJO_RESULT_OK, CreateDataPipe(nullptr, &ph, &ch));
ASSERT_TRUE(ph.get().is_valid());
ASSERT_TRUE(ch.get().is_valid());
uint32_t read_threshold = 123u;
EXPECT_EQ(MOJO_RESULT_OK,
GetDataPipeConsumerOptions(ch.get(), &read_threshold));
EXPECT_EQ(0u, read_threshold);
EXPECT_EQ(MOJO_RESULT_OK, SetDataPipeConsumerOptions(ch.get(), 2u));
EXPECT_EQ(MOJO_RESULT_OK,
GetDataPipeConsumerOptions(ch.get(), &read_threshold));
EXPECT_EQ(2u, read_threshold);
// Write a byte.
static const char kA = 'A';
uint32_t num_bytes = 1u;
EXPECT_EQ(MOJO_RESULT_OK,
WriteDataRaw(ph.get(), &kA, &num_bytes, MOJO_WRITE_DATA_FLAG_NONE));
// Waiting for "read threshold" should fail. (Wait a nonzero amount, in case
// there's some latency.)
MojoHandleSignalsState state;
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED,
Wait(ch.get(), MOJO_HANDLE_SIGNAL_READ_THRESHOLD, 1000, &state));
// ... but it should be readable.
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE, state.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_READ_THRESHOLD,
state.satisfiable_signals);
// Do a two-phase write of another byte.
void* write_buffer = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK,
BeginWriteDataRaw(ph.get(), &write_buffer, &num_bytes,
MOJO_WRITE_DATA_FLAG_NONE));
ASSERT_TRUE(write_buffer);
ASSERT_GT(num_bytes, 0u);
static_cast<char*>(write_buffer)[0] = 'B';
EXPECT_EQ(MOJO_RESULT_OK, EndWriteDataRaw(ph.get(), 1u));
// Now waiting for "read threshold" should succeed. (Wait a nonzero amount, in
// case there's some latency.)
state = MojoHandleSignalsState();
EXPECT_EQ(MOJO_RESULT_OK,
Wait(ch.get(), MOJO_HANDLE_SIGNAL_READ_THRESHOLD, 1000, &state));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_READ_THRESHOLD,
state.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_READ_THRESHOLD,
state.satisfiable_signals);
// Read a byte.
char read_byte = 'x';
num_bytes = 1u;
EXPECT_EQ(MOJO_RESULT_OK, ReadDataRaw(ch.get(), &read_byte, &num_bytes,
MOJO_READ_DATA_FLAG_NONE));
EXPECT_EQ(1u, num_bytes);
EXPECT_EQ('A', read_byte);
// Waiting for "read threshold" should now fail.
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED,
Wait(ch.get(), MOJO_HANDLE_SIGNAL_READ_THRESHOLD, 0, nullptr));
// Reset the read threshold/options.
EXPECT_EQ(MOJO_RESULT_OK, SetDataPipeConsumerOptionsToDefault(ch.get()));
// Waiting for "read threshold" should now succeed.
EXPECT_EQ(MOJO_RESULT_OK,
Wait(ch.get(), MOJO_HANDLE_SIGNAL_READ_THRESHOLD, 0, nullptr));
// Do a two-phase read.
const void* read_buffer = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK, BeginReadDataRaw(ch.get(), &read_buffer, &num_bytes,
MOJO_READ_DATA_FLAG_NONE));
ASSERT_TRUE(read_buffer);
ASSERT_EQ(1u, num_bytes);
EXPECT_EQ('B', static_cast<const char*>(read_buffer)[0]);
EXPECT_EQ(MOJO_RESULT_OK, EndReadDataRaw(ch.get(), 1u));
// Waiting for "read" should now fail (time out).
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED,
Wait(ch.get(), MOJO_HANDLE_SIGNAL_READ_THRESHOLD, 1000, nullptr));
// Close the producer.
ph.reset();
// Waiting for "read" should now fail.
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
Wait(ch.get(), MOJO_HANDLE_SIGNAL_READ_THRESHOLD, 1000, nullptr));
}
} // namespace
} // namespace mojo