| // Copyright 2015 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| /* |
| * Copyright (C) 2011 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| |
| #include <stdint.h> |
| |
| #include <iostream> |
| #include <limits> |
| |
| #include "mojo/public/cpp/environment/logging.h" |
| #include "mojo/services/media/common/cpp/linear_transform.h" |
| |
| namespace mojo { |
| namespace media { |
| |
| template<class T> |
| static inline constexpr T ABS(T x) { |
| return (x < 0) ? -x : x; |
| } |
| |
| namespace internal { |
| |
| template <class T> |
| void Reduce(T* numerator, T* denominator) { |
| MOJO_DCHECK(numerator && denominator); |
| if (!numerator || !denominator) { return; } |
| |
| T a, b; |
| a = *numerator; |
| b = *denominator; |
| |
| if (a == 0) { |
| *denominator = 1; |
| return; |
| } |
| |
| // This implements Euclid's method to find GCD. |
| if (a < b) { |
| T tmp = a; |
| a = b; |
| b = tmp; |
| } |
| |
| while (1) { |
| // a is now the greater of the two. |
| const T remainder = a % b; |
| if (remainder == 0) { |
| *numerator /= b; |
| *denominator /= b; |
| return; |
| } |
| // by swapping remainder and b, we are guaranteeing that a is |
| // still the greater of the two upon entrance to the loop. |
| a = b; |
| b = remainder; |
| } |
| } |
| |
| template void Reduce<uint64_t>(uint64_t* numerator, uint64_t* denominator); |
| template void Reduce<uint32_t>(uint32_t* numerator, uint32_t* denominator); |
| |
| } // namespace internal |
| |
| |
| // Compute A + B and store in out. Return false if the sum would have either |
| // over or underflowed, and true otherwise. |
| static inline bool sum_check_ovfl(int64_t a, int64_t b, int64_t* out) { |
| // Compute result = a + b, then check for under/overflow. |
| // |
| // We know that if both a and b have the same sign bit, and the result has a |
| // different sign bit, then we have under/overflow. An easy way to compute |
| // this is |
| // |
| // (A_signbit XNOR B_signbit) & (B_signbit XOR result_signbit) |
| // |
| // which is equivalent to |
| // |
| // (A_signbit XOR B_signbit XOR 1) & (A_signbit XOR result_signbit) |
| *out = a + b; |
| |
| if ((a ^ b ^ std::numeric_limits<int64_t>::min()) & |
| (a ^ *out) & std::numeric_limits<int64_t>::min()) |
| return false; |
| |
| return true; |
| } |
| |
| // Static math methods involving linear transformations |
| static bool scale_u64_to_u64( |
| uint64_t value, |
| uint32_t numerator, |
| uint32_t denominator, |
| uint64_t* out, |
| bool round_up_not_down) { |
| uint64_t tmp1, tmp2; |
| uint32_t r; |
| |
| MOJO_DCHECK(out); |
| MOJO_DCHECK(denominator); |
| |
| // Let U32(X) denote a uint32_t containing the upper 32 bits of a 64 bit |
| // integer X. |
| // Let L32(X) denote a uint32_t containing the lower 32 bits of a 64 bit |
| // integer X. |
| // Let X[A, B] with A <= B denote bits A through B of the integer X. |
| // Let (A | B) denote the concatenation of two 32 bit ints, A and B. |
| // IOW X = (A | B) => U32(X) == A && L32(X) == B |
| // |
| // compute M = value * numerator (a 96 bit int) |
| // --------------------------------- |
| // tmp2 = U32(value) * numerator (a 64 bit int) |
| // tmp1 = L32(value) * numerator (a 64 bit int) |
| // which means |
| // M = value * numerator = (tmp2 << 32) + tmp1 |
| tmp2 = (value >> 32) * numerator; |
| tmp1 = (value & std::numeric_limits<uint32_t>::max()) * numerator; |
| |
| // compute M[32, 95] |
| // tmp2 = tmp2 + U32(tmp1) |
| // = (U32(value) * numerator) + U32(L32(value) * numerator) |
| // = M[32, 95] |
| tmp2 += tmp1 >> 32; |
| |
| // if M[64, 95] >= denominator, then M/denominator has bits > 63 set and we |
| // have an overflow. |
| if ((tmp2 >> 32) >= denominator) { |
| *out = std::numeric_limits<uint64_t>::max(); |
| return false; |
| } |
| |
| // Divide. Going in we know |
| // tmp2 = M[32, 95] |
| // U32(tmp2) < denominator |
| r = tmp2 % denominator; |
| tmp2 /= denominator; |
| |
| // At this point |
| // tmp1 = L32(value) * numerator |
| // tmp2 = M[32, 95] / denominator |
| // = (M / denominator)[32, 95] |
| // r = M[32, 95] % denominator |
| // U32(tmp2) = 0 |
| // |
| // compute tmp1 = (r | M[0, 31]) |
| tmp1 = (tmp1 & std::numeric_limits<uint32_t>::max()) | ((uint64_t)r << 32); |
| |
| // Divide again. Keep the remainder around in order to round properly. |
| r = tmp1 % denominator; |
| tmp1 /= denominator; |
| |
| // At this point |
| // tmp2 = (M / denominator)[32, 95] |
| // tmp1 = (M / denominator)[ 0, 31] |
| // r = M % denominator |
| // U32(tmp1) = 0 |
| // U32(tmp2) = 0 |
| |
| // Pack the result and deal with the round-up case (As well as the |
| // remote possibility of over overflow in such a case). |
| *out = (tmp2 << 32) | tmp1; |
| if (r && round_up_not_down) { |
| ++(*out); |
| if (!(*out)) { |
| *out = std::numeric_limits<uint64_t>::max(); |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static bool linear_transform_s64_to_s64( |
| int64_t val, |
| int64_t basis1, |
| uint32_t numerator, |
| uint32_t denominator, |
| bool invert_frac, |
| int64_t basis2, |
| int64_t* out) { |
| uint64_t scaled; |
| uint64_t abs_val; |
| bool is_neg; |
| |
| if (!out) { |
| return false; |
| } |
| |
| // Compute abs(val - basis_64). Keep track of whether or not this delta |
| // will be negative after the scale operation. |
| if (val < basis1) { |
| is_neg = true; |
| abs_val = basis1 - val; |
| } else { |
| is_neg = false; |
| abs_val = val - basis1; |
| } |
| |
| if (!scale_u64_to_u64(abs_val, |
| invert_frac ? denominator : numerator, |
| invert_frac ? numerator : denominator, |
| &scaled, |
| is_neg)) { |
| return false; // overflow/underflow |
| } |
| |
| // if scaled is >= 0x8000<etc>, then we are going to overflow or |
| // underflow unless ABS(basis2) is large enough to pull us back into the |
| // non-overflow/underflow region. |
| if (scaled & std::numeric_limits<int64_t>::min()) { |
| if (is_neg && (basis2 < 0)) { |
| return false; // certain underflow |
| } |
| |
| if (!is_neg && (basis2 >= 0)) { |
| return false; // certain overflow |
| } |
| |
| if (ABS(basis2) <= static_cast<int64_t>( |
| scaled & std::numeric_limits<int64_t>::max())) { |
| return false; // not enough |
| } |
| |
| // Looks like we are OK |
| *out = (is_neg ? (-scaled) : scaled) + basis2; |
| } else { |
| // Scaled fits within signed bounds, so we just need reapply the sign bit to |
| // scaled, compute the sum, and check for over/underflow. |
| |
| if (is_neg) |
| scaled = -scaled; |
| |
| if (!sum_check_ovfl(scaled, basis2, out)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool LinearTransform::DoForwardTransform(int64_t a_in, int64_t* b_out) const { |
| if (0 == scale.denominator) |
| return false; |
| |
| return linear_transform_s64_to_s64(a_in, |
| a_zero, |
| scale.numerator, |
| scale.denominator, |
| false, |
| b_zero, |
| b_out); |
| } |
| |
| bool LinearTransform::DoReverseTransform(int64_t b_in, int64_t* a_out) const { |
| if (0 == scale.numerator) |
| return false; |
| |
| return linear_transform_s64_to_s64(b_in, |
| b_zero, |
| scale.numerator, |
| scale.denominator, |
| true, |
| a_zero, |
| a_out); |
| } |
| |
| void LinearTransform::Ratio::Reduce( |
| uint32_t* numerator, uint32_t* denominator) { |
| MOJO_DCHECK(numerator && denominator); |
| if (!numerator || !denominator) { return; } |
| |
| if (*denominator) { |
| internal::Reduce(reinterpret_cast<uint32_t*>(numerator), denominator); |
| } else { |
| *numerator = *numerator ? 1 : 0; |
| } |
| } |
| |
| bool LinearTransform::Ratio::Compose(const Ratio& a, |
| const Ratio& b, |
| Ratio* out) { |
| MOJO_DCHECK(out); |
| if (!out) { return false; } |
| |
| uint64_t numerator = static_cast<uint64_t>(a.numerator) * b.numerator; |
| uint64_t denominator = static_cast<uint64_t>(a.denominator) * b.denominator; |
| |
| if (!numerator || !denominator) { |
| out->numerator = numerator ? 1 : 0; |
| out->denominator = denominator ? 1 : 0; |
| return true; |
| } |
| |
| internal::Reduce(reinterpret_cast<uint64_t*>(&numerator), &denominator); |
| |
| unsigned int leading_zeros = __builtin_clzl((numerator << 1) | denominator); |
| bool lossy = leading_zeros < 32; |
| if (lossy) { |
| unsigned int shift = 32 - leading_zeros; |
| numerator >>= shift; |
| denominator >>= shift; |
| } |
| |
| out->numerator = static_cast<uint32_t>(numerator); |
| out->denominator = static_cast<uint32_t>(denominator); |
| return !lossy; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, |
| const LinearTransform::Ratio& r) { |
| os << r.numerator << "/" << r.denominator; |
| return os; |
| } |
| |
| std::ostream& operator<<(std::ostream& os, |
| const LinearTransform& lt) { |
| os << "[" << lt.a_zero |
| << " (" << lt.scale |
| << ") " << lt.b_zero |
| << "]"; |
| return os; |
| } |
| |
| } // namespace media |
| } // namespace mojo |