|  | /* | 
|  | ** 2004 May 26 | 
|  | ** | 
|  | ** The author disclaims copyright to this source code.  In place of | 
|  | ** a legal notice, here is a blessing: | 
|  | ** | 
|  | **    May you do good and not evil. | 
|  | **    May you find forgiveness for yourself and forgive others. | 
|  | **    May you share freely, never taking more than you give. | 
|  | ** | 
|  | ************************************************************************* | 
|  | ** | 
|  | ** This file contains code use to implement APIs that are part of the | 
|  | ** VDBE. | 
|  | */ | 
|  | #include "sqliteInt.h" | 
|  | #include "vdbeInt.h" | 
|  |  | 
|  | #ifndef SQLITE_OMIT_DEPRECATED | 
|  | /* | 
|  | ** Return TRUE (non-zero) of the statement supplied as an argument needs | 
|  | ** to be recompiled.  A statement needs to be recompiled whenever the | 
|  | ** execution environment changes in a way that would alter the program | 
|  | ** that sqlite3_prepare() generates.  For example, if new functions or | 
|  | ** collating sequences are registered or if an authorizer function is | 
|  | ** added or changed. | 
|  | */ | 
|  | int sqlite3_expired(sqlite3_stmt *pStmt){ | 
|  | Vdbe *p = (Vdbe*)pStmt; | 
|  | return p==0 || p->expired; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Check on a Vdbe to make sure it has not been finalized.  Log | 
|  | ** an error and return true if it has been finalized (or is otherwise | 
|  | ** invalid).  Return false if it is ok. | 
|  | */ | 
|  | static int vdbeSafety(Vdbe *p){ | 
|  | if( p->db==0 ){ | 
|  | sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement"); | 
|  | return 1; | 
|  | }else{ | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | static int vdbeSafetyNotNull(Vdbe *p){ | 
|  | if( p==0 ){ | 
|  | sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement"); | 
|  | return 1; | 
|  | }else{ | 
|  | return vdbeSafety(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** The following routine destroys a virtual machine that is created by | 
|  | ** the sqlite3_compile() routine. The integer returned is an SQLITE_ | 
|  | ** success/failure code that describes the result of executing the virtual | 
|  | ** machine. | 
|  | ** | 
|  | ** This routine sets the error code and string returned by | 
|  | ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). | 
|  | */ | 
|  | int sqlite3_finalize(sqlite3_stmt *pStmt){ | 
|  | int rc; | 
|  | if( pStmt==0 ){ | 
|  | /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL | 
|  | ** pointer is a harmless no-op. */ | 
|  | rc = SQLITE_OK; | 
|  | }else{ | 
|  | Vdbe *v = (Vdbe*)pStmt; | 
|  | sqlite3 *db = v->db; | 
|  | #if SQLITE_THREADSAFE | 
|  | sqlite3_mutex *mutex; | 
|  | #endif | 
|  | if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT; | 
|  | #if SQLITE_THREADSAFE | 
|  | mutex = v->db->mutex; | 
|  | #endif | 
|  | sqlite3_mutex_enter(mutex); | 
|  | rc = sqlite3VdbeFinalize(v); | 
|  | rc = sqlite3ApiExit(db, rc); | 
|  | sqlite3_mutex_leave(mutex); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Terminate the current execution of an SQL statement and reset it | 
|  | ** back to its starting state so that it can be reused. A success code from | 
|  | ** the prior execution is returned. | 
|  | ** | 
|  | ** This routine sets the error code and string returned by | 
|  | ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16(). | 
|  | */ | 
|  | int sqlite3_reset(sqlite3_stmt *pStmt){ | 
|  | int rc; | 
|  | if( pStmt==0 ){ | 
|  | rc = SQLITE_OK; | 
|  | }else{ | 
|  | Vdbe *v = (Vdbe*)pStmt; | 
|  | sqlite3_mutex_enter(v->db->mutex); | 
|  | rc = sqlite3VdbeReset(v); | 
|  | sqlite3VdbeMakeReady(v, -1, 0, 0, 0, 0, 0); | 
|  | assert( (rc & (v->db->errMask))==rc ); | 
|  | rc = sqlite3ApiExit(v->db, rc); | 
|  | sqlite3_mutex_leave(v->db->mutex); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Set all the parameters in the compiled SQL statement to NULL. | 
|  | */ | 
|  | int sqlite3_clear_bindings(sqlite3_stmt *pStmt){ | 
|  | int i; | 
|  | int rc = SQLITE_OK; | 
|  | Vdbe *p = (Vdbe*)pStmt; | 
|  | #if SQLITE_THREADSAFE | 
|  | sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex; | 
|  | #endif | 
|  | sqlite3_mutex_enter(mutex); | 
|  | for(i=0; i<p->nVar; i++){ | 
|  | sqlite3VdbeMemRelease(&p->aVar[i]); | 
|  | p->aVar[i].flags = MEM_Null; | 
|  | } | 
|  | if( p->isPrepareV2 && p->expmask ){ | 
|  | p->expired = 1; | 
|  | } | 
|  | sqlite3_mutex_leave(mutex); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | /**************************** sqlite3_value_  ******************************* | 
|  | ** The following routines extract information from a Mem or sqlite3_value | 
|  | ** structure. | 
|  | */ | 
|  | const void *sqlite3_value_blob(sqlite3_value *pVal){ | 
|  | Mem *p = (Mem*)pVal; | 
|  | if( p->flags & (MEM_Blob|MEM_Str) ){ | 
|  | sqlite3VdbeMemExpandBlob(p); | 
|  | p->flags &= ~MEM_Str; | 
|  | p->flags |= MEM_Blob; | 
|  | return p->n ? p->z : 0; | 
|  | }else{ | 
|  | return sqlite3_value_text(pVal); | 
|  | } | 
|  | } | 
|  | int sqlite3_value_bytes(sqlite3_value *pVal){ | 
|  | return sqlite3ValueBytes(pVal, SQLITE_UTF8); | 
|  | } | 
|  | int sqlite3_value_bytes16(sqlite3_value *pVal){ | 
|  | return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE); | 
|  | } | 
|  | double sqlite3_value_double(sqlite3_value *pVal){ | 
|  | return sqlite3VdbeRealValue((Mem*)pVal); | 
|  | } | 
|  | int sqlite3_value_int(sqlite3_value *pVal){ | 
|  | return (int)sqlite3VdbeIntValue((Mem*)pVal); | 
|  | } | 
|  | sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){ | 
|  | return sqlite3VdbeIntValue((Mem*)pVal); | 
|  | } | 
|  | const unsigned char *sqlite3_value_text(sqlite3_value *pVal){ | 
|  | return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8); | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UTF16 | 
|  | const void *sqlite3_value_text16(sqlite3_value* pVal){ | 
|  | return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE); | 
|  | } | 
|  | const void *sqlite3_value_text16be(sqlite3_value *pVal){ | 
|  | return sqlite3ValueText(pVal, SQLITE_UTF16BE); | 
|  | } | 
|  | const void *sqlite3_value_text16le(sqlite3_value *pVal){ | 
|  | return sqlite3ValueText(pVal, SQLITE_UTF16LE); | 
|  | } | 
|  | #endif /* SQLITE_OMIT_UTF16 */ | 
|  | int sqlite3_value_type(sqlite3_value* pVal){ | 
|  | return pVal->type; | 
|  | } | 
|  |  | 
|  | /**************************** sqlite3_result_  ******************************* | 
|  | ** The following routines are used by user-defined functions to specify | 
|  | ** the function result. | 
|  | ** | 
|  | ** The setStrOrError() funtion calls sqlite3VdbeMemSetStr() to store the | 
|  | ** result as a string or blob but if the string or blob is too large, it | 
|  | ** then sets the error code to SQLITE_TOOBIG | 
|  | */ | 
|  | static void setResultStrOrError( | 
|  | sqlite3_context *pCtx,  /* Function context */ | 
|  | const char *z,          /* String pointer */ | 
|  | int n,                  /* Bytes in string, or negative */ | 
|  | u8 enc,                 /* Encoding of z.  0 for BLOBs */ | 
|  | void (*xDel)(void*)     /* Destructor function */ | 
|  | ){ | 
|  | if( sqlite3VdbeMemSetStr(&pCtx->s, z, n, enc, xDel)==SQLITE_TOOBIG ){ | 
|  | sqlite3_result_error_toobig(pCtx); | 
|  | } | 
|  | } | 
|  | void sqlite3_result_blob( | 
|  | sqlite3_context *pCtx, | 
|  | const void *z, | 
|  | int n, | 
|  | void (*xDel)(void *) | 
|  | ){ | 
|  | assert( n>=0 ); | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | setResultStrOrError(pCtx, z, n, 0, xDel); | 
|  | } | 
|  | void sqlite3_result_double(sqlite3_context *pCtx, double rVal){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | sqlite3VdbeMemSetDouble(&pCtx->s, rVal); | 
|  | } | 
|  | void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | pCtx->isError = SQLITE_ERROR; | 
|  | sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF8, SQLITE_TRANSIENT); | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UTF16 | 
|  | void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | pCtx->isError = SQLITE_ERROR; | 
|  | sqlite3VdbeMemSetStr(&pCtx->s, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT); | 
|  | } | 
|  | #endif | 
|  | void sqlite3_result_int(sqlite3_context *pCtx, int iVal){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | sqlite3VdbeMemSetInt64(&pCtx->s, (i64)iVal); | 
|  | } | 
|  | void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | sqlite3VdbeMemSetInt64(&pCtx->s, iVal); | 
|  | } | 
|  | void sqlite3_result_null(sqlite3_context *pCtx){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | sqlite3VdbeMemSetNull(&pCtx->s); | 
|  | } | 
|  | void sqlite3_result_text( | 
|  | sqlite3_context *pCtx, | 
|  | const char *z, | 
|  | int n, | 
|  | void (*xDel)(void *) | 
|  | ){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel); | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UTF16 | 
|  | void sqlite3_result_text16( | 
|  | sqlite3_context *pCtx, | 
|  | const void *z, | 
|  | int n, | 
|  | void (*xDel)(void *) | 
|  | ){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel); | 
|  | } | 
|  | void sqlite3_result_text16be( | 
|  | sqlite3_context *pCtx, | 
|  | const void *z, | 
|  | int n, | 
|  | void (*xDel)(void *) | 
|  | ){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel); | 
|  | } | 
|  | void sqlite3_result_text16le( | 
|  | sqlite3_context *pCtx, | 
|  | const void *z, | 
|  | int n, | 
|  | void (*xDel)(void *) | 
|  | ){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel); | 
|  | } | 
|  | #endif /* SQLITE_OMIT_UTF16 */ | 
|  | void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | sqlite3VdbeMemCopy(&pCtx->s, pValue); | 
|  | } | 
|  | void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | sqlite3VdbeMemSetZeroBlob(&pCtx->s, n); | 
|  | } | 
|  | void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){ | 
|  | pCtx->isError = errCode; | 
|  | if( pCtx->s.flags & MEM_Null ){ | 
|  | sqlite3VdbeMemSetStr(&pCtx->s, sqlite3ErrStr(errCode), -1, | 
|  | SQLITE_UTF8, SQLITE_STATIC); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Force an SQLITE_TOOBIG error. */ | 
|  | void sqlite3_result_error_toobig(sqlite3_context *pCtx){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | pCtx->isError = SQLITE_TOOBIG; | 
|  | sqlite3VdbeMemSetStr(&pCtx->s, "string or blob too big", -1, | 
|  | SQLITE_UTF8, SQLITE_STATIC); | 
|  | } | 
|  |  | 
|  | /* An SQLITE_NOMEM error. */ | 
|  | void sqlite3_result_error_nomem(sqlite3_context *pCtx){ | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | sqlite3VdbeMemSetNull(&pCtx->s); | 
|  | pCtx->isError = SQLITE_NOMEM; | 
|  | pCtx->s.db->mallocFailed = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This function is called after a transaction has been committed. It | 
|  | ** invokes callbacks registered with sqlite3_wal_hook() as required. | 
|  | */ | 
|  | static int doWalCallbacks(sqlite3 *db){ | 
|  | int rc = SQLITE_OK; | 
|  | #ifndef SQLITE_OMIT_WAL | 
|  | int i; | 
|  | for(i=0; i<db->nDb; i++){ | 
|  | Btree *pBt = db->aDb[i].pBt; | 
|  | if( pBt ){ | 
|  | int nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt)); | 
|  | if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){ | 
|  | rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry); | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Execute the statement pStmt, either until a row of data is ready, the | 
|  | ** statement is completely executed or an error occurs. | 
|  | ** | 
|  | ** This routine implements the bulk of the logic behind the sqlite_step() | 
|  | ** API.  The only thing omitted is the automatic recompile if a | 
|  | ** schema change has occurred.  That detail is handled by the | 
|  | ** outer sqlite3_step() wrapper procedure. | 
|  | */ | 
|  | static int sqlite3Step(Vdbe *p){ | 
|  | sqlite3 *db; | 
|  | int rc; | 
|  |  | 
|  | assert(p); | 
|  | if( p->magic!=VDBE_MAGIC_RUN ){ | 
|  | /* We used to require that sqlite3_reset() be called before retrying | 
|  | ** sqlite3_step() after any error or after SQLITE_DONE.  But beginning | 
|  | ** with version 3.7.0, we changed this so that sqlite3_reset() would | 
|  | ** be called automatically instead of throwing the SQLITE_MISUSE error. | 
|  | ** This "automatic-reset" change is not technically an incompatibility, | 
|  | ** since any application that receives an SQLITE_MISUSE is broken by | 
|  | ** definition. | 
|  | ** | 
|  | ** Nevertheless, some published applications that were originally written | 
|  | ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE | 
|  | ** returns, and the so were broken by the automatic-reset change.  As a | 
|  | ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the | 
|  | ** legacy behavior of returning SQLITE_MISUSE for cases where the | 
|  | ** previous sqlite3_step() returned something other than a SQLITE_LOCKED | 
|  | ** or SQLITE_BUSY error. | 
|  | */ | 
|  | #ifdef SQLITE_OMIT_AUTORESET | 
|  | if( p->rc==SQLITE_BUSY || p->rc==SQLITE_LOCKED ){ | 
|  | sqlite3_reset((sqlite3_stmt*)p); | 
|  | }else{ | 
|  | return SQLITE_MISUSE_BKPT; | 
|  | } | 
|  | #else | 
|  | sqlite3_reset((sqlite3_stmt*)p); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Check that malloc() has not failed. If it has, return early. */ | 
|  | db = p->db; | 
|  | if( db->mallocFailed ){ | 
|  | p->rc = SQLITE_NOMEM; | 
|  | return SQLITE_NOMEM; | 
|  | } | 
|  |  | 
|  | if( p->pc<=0 && p->expired ){ | 
|  | p->rc = SQLITE_SCHEMA; | 
|  | rc = SQLITE_ERROR; | 
|  | goto end_of_step; | 
|  | } | 
|  | if( p->pc<0 ){ | 
|  | /* If there are no other statements currently running, then | 
|  | ** reset the interrupt flag.  This prevents a call to sqlite3_interrupt | 
|  | ** from interrupting a statement that has not yet started. | 
|  | */ | 
|  | if( db->activeVdbeCnt==0 ){ | 
|  | db->u1.isInterrupted = 0; | 
|  | } | 
|  |  | 
|  | assert( db->writeVdbeCnt>0 || db->autoCommit==0 || db->nDeferredCons==0 ); | 
|  |  | 
|  | #ifndef SQLITE_OMIT_TRACE | 
|  | if( db->xProfile && !db->init.busy ){ | 
|  | sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | db->activeVdbeCnt++; | 
|  | if( p->readOnly==0 ) db->writeVdbeCnt++; | 
|  | p->pc = 0; | 
|  | } | 
|  | #ifndef SQLITE_OMIT_EXPLAIN | 
|  | if( p->explain ){ | 
|  | rc = sqlite3VdbeList(p); | 
|  | }else | 
|  | #endif /* SQLITE_OMIT_EXPLAIN */ | 
|  | { | 
|  | db->vdbeExecCnt++; | 
|  | rc = sqlite3VdbeExec(p); | 
|  | db->vdbeExecCnt--; | 
|  | } | 
|  |  | 
|  | #ifndef SQLITE_OMIT_TRACE | 
|  | /* Invoke the profile callback if there is one | 
|  | */ | 
|  | if( rc!=SQLITE_ROW && db->xProfile && !db->init.busy && p->zSql ){ | 
|  | sqlite3_int64 iNow; | 
|  | sqlite3OsCurrentTimeInt64(db->pVfs, &iNow); | 
|  | db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if( rc==SQLITE_DONE ){ | 
|  | assert( p->rc==SQLITE_OK ); | 
|  | p->rc = doWalCallbacks(db); | 
|  | if( p->rc!=SQLITE_OK ){ | 
|  | rc = SQLITE_ERROR; | 
|  | } | 
|  | } | 
|  |  | 
|  | db->errCode = rc; | 
|  | if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){ | 
|  | p->rc = SQLITE_NOMEM; | 
|  | } | 
|  | end_of_step: | 
|  | /* At this point local variable rc holds the value that should be | 
|  | ** returned if this statement was compiled using the legacy | 
|  | ** sqlite3_prepare() interface. According to the docs, this can only | 
|  | ** be one of the values in the first assert() below. Variable p->rc | 
|  | ** contains the value that would be returned if sqlite3_finalize() | 
|  | ** were called on statement p. | 
|  | */ | 
|  | assert( rc==SQLITE_ROW  || rc==SQLITE_DONE   || rc==SQLITE_ERROR | 
|  | || rc==SQLITE_BUSY || rc==SQLITE_MISUSE | 
|  | ); | 
|  | assert( p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE ); | 
|  | if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){ | 
|  | /* If this statement was prepared using sqlite3_prepare_v2(), and an | 
|  | ** error has occured, then return the error code in p->rc to the | 
|  | ** caller. Set the error code in the database handle to the same value. | 
|  | */ | 
|  | rc = db->errCode = p->rc; | 
|  | } | 
|  | return (rc&db->errMask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This is the top-level implementation of sqlite3_step().  Call | 
|  | ** sqlite3Step() to do most of the work.  If a schema error occurs, | 
|  | ** call sqlite3Reprepare() and try again. | 
|  | */ | 
|  | int sqlite3_step(sqlite3_stmt *pStmt){ | 
|  | int rc = SQLITE_OK;      /* Result from sqlite3Step() */ | 
|  | int rc2 = SQLITE_OK;     /* Result from sqlite3Reprepare() */ | 
|  | Vdbe *v = (Vdbe*)pStmt;  /* the prepared statement */ | 
|  | int cnt = 0;             /* Counter to prevent infinite loop of reprepares */ | 
|  | sqlite3 *db;             /* The database connection */ | 
|  |  | 
|  | if( vdbeSafetyNotNull(v) ){ | 
|  | return SQLITE_MISUSE_BKPT; | 
|  | } | 
|  | db = v->db; | 
|  | sqlite3_mutex_enter(db->mutex); | 
|  | while( (rc = sqlite3Step(v))==SQLITE_SCHEMA | 
|  | && cnt++ < 5 | 
|  | && (rc2 = rc = sqlite3Reprepare(v))==SQLITE_OK ){ | 
|  | sqlite3_reset(pStmt); | 
|  | v->expired = 0; | 
|  | } | 
|  | if( rc2!=SQLITE_OK && ALWAYS(v->isPrepareV2) && ALWAYS(db->pErr) ){ | 
|  | /* This case occurs after failing to recompile an sql statement. | 
|  | ** The error message from the SQL compiler has already been loaded | 
|  | ** into the database handle. This block copies the error message | 
|  | ** from the database handle into the statement and sets the statement | 
|  | ** program counter to 0 to ensure that when the statement is | 
|  | ** finalized or reset the parser error message is available via | 
|  | ** sqlite3_errmsg() and sqlite3_errcode(). | 
|  | */ | 
|  | const char *zErr = (const char *)sqlite3_value_text(db->pErr); | 
|  | sqlite3DbFree(db, v->zErrMsg); | 
|  | if( !db->mallocFailed ){ | 
|  | v->zErrMsg = sqlite3DbStrDup(db, zErr); | 
|  | v->rc = rc2; | 
|  | } else { | 
|  | v->zErrMsg = 0; | 
|  | v->rc = rc = SQLITE_NOMEM; | 
|  | } | 
|  | } | 
|  | rc = sqlite3ApiExit(db, rc); | 
|  | sqlite3_mutex_leave(db->mutex); | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Extract the user data from a sqlite3_context structure and return a | 
|  | ** pointer to it. | 
|  | */ | 
|  | void *sqlite3_user_data(sqlite3_context *p){ | 
|  | assert( p && p->pFunc ); | 
|  | return p->pFunc->pUserData; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Extract the user data from a sqlite3_context structure and return a | 
|  | ** pointer to it. | 
|  | ** | 
|  | ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface | 
|  | ** returns a copy of the pointer to the database connection (the 1st | 
|  | ** parameter) of the sqlite3_create_function() and | 
|  | ** sqlite3_create_function16() routines that originally registered the | 
|  | ** application defined function. | 
|  | */ | 
|  | sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){ | 
|  | assert( p && p->pFunc ); | 
|  | return p->s.db; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** The following is the implementation of an SQL function that always | 
|  | ** fails with an error message stating that the function is used in the | 
|  | ** wrong context.  The sqlite3_overload_function() API might construct | 
|  | ** SQL function that use this routine so that the functions will exist | 
|  | ** for name resolution but are actually overloaded by the xFindFunction | 
|  | ** method of virtual tables. | 
|  | */ | 
|  | void sqlite3InvalidFunction( | 
|  | sqlite3_context *context,  /* The function calling context */ | 
|  | int NotUsed,               /* Number of arguments to the function */ | 
|  | sqlite3_value **NotUsed2   /* Value of each argument */ | 
|  | ){ | 
|  | const char *zName = context->pFunc->zName; | 
|  | char *zErr; | 
|  | UNUSED_PARAMETER2(NotUsed, NotUsed2); | 
|  | zErr = sqlite3_mprintf( | 
|  | "unable to use function %s in the requested context", zName); | 
|  | sqlite3_result_error(context, zErr, -1); | 
|  | sqlite3_free(zErr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Allocate or return the aggregate context for a user function.  A new | 
|  | ** context is allocated on the first call.  Subsequent calls return the | 
|  | ** same context that was returned on prior calls. | 
|  | */ | 
|  | void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){ | 
|  | Mem *pMem; | 
|  | assert( p && p->pFunc && p->pFunc->xStep ); | 
|  | assert( sqlite3_mutex_held(p->s.db->mutex) ); | 
|  | pMem = p->pMem; | 
|  | testcase( nByte<0 ); | 
|  | if( (pMem->flags & MEM_Agg)==0 ){ | 
|  | if( nByte<=0 ){ | 
|  | sqlite3VdbeMemReleaseExternal(pMem); | 
|  | pMem->flags = MEM_Null; | 
|  | pMem->z = 0; | 
|  | }else{ | 
|  | sqlite3VdbeMemGrow(pMem, nByte, 0); | 
|  | pMem->flags = MEM_Agg; | 
|  | pMem->u.pDef = p->pFunc; | 
|  | if( pMem->z ){ | 
|  | memset(pMem->z, 0, nByte); | 
|  | } | 
|  | } | 
|  | } | 
|  | return (void*)pMem->z; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the auxilary data pointer, if any, for the iArg'th argument to | 
|  | ** the user-function defined by pCtx. | 
|  | */ | 
|  | void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){ | 
|  | VdbeFunc *pVdbeFunc; | 
|  |  | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | pVdbeFunc = pCtx->pVdbeFunc; | 
|  | if( !pVdbeFunc || iArg>=pVdbeFunc->nAux || iArg<0 ){ | 
|  | return 0; | 
|  | } | 
|  | return pVdbeFunc->apAux[iArg].pAux; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Set the auxilary data pointer and delete function, for the iArg'th | 
|  | ** argument to the user-function defined by pCtx. Any previous value is | 
|  | ** deleted by calling the delete function specified when it was set. | 
|  | */ | 
|  | void sqlite3_set_auxdata( | 
|  | sqlite3_context *pCtx, | 
|  | int iArg, | 
|  | void *pAux, | 
|  | void (*xDelete)(void*) | 
|  | ){ | 
|  | struct AuxData *pAuxData; | 
|  | VdbeFunc *pVdbeFunc; | 
|  | if( iArg<0 ) goto failed; | 
|  |  | 
|  | assert( sqlite3_mutex_held(pCtx->s.db->mutex) ); | 
|  | pVdbeFunc = pCtx->pVdbeFunc; | 
|  | if( !pVdbeFunc || pVdbeFunc->nAux<=iArg ){ | 
|  | int nAux = (pVdbeFunc ? pVdbeFunc->nAux : 0); | 
|  | int nMalloc = sizeof(VdbeFunc) + sizeof(struct AuxData)*iArg; | 
|  | pVdbeFunc = sqlite3DbRealloc(pCtx->s.db, pVdbeFunc, nMalloc); | 
|  | if( !pVdbeFunc ){ | 
|  | goto failed; | 
|  | } | 
|  | pCtx->pVdbeFunc = pVdbeFunc; | 
|  | memset(&pVdbeFunc->apAux[nAux], 0, sizeof(struct AuxData)*(iArg+1-nAux)); | 
|  | pVdbeFunc->nAux = iArg+1; | 
|  | pVdbeFunc->pFunc = pCtx->pFunc; | 
|  | } | 
|  |  | 
|  | pAuxData = &pVdbeFunc->apAux[iArg]; | 
|  | if( pAuxData->pAux && pAuxData->xDelete ){ | 
|  | pAuxData->xDelete(pAuxData->pAux); | 
|  | } | 
|  | pAuxData->pAux = pAux; | 
|  | pAuxData->xDelete = xDelete; | 
|  | return; | 
|  |  | 
|  | failed: | 
|  | if( xDelete ){ | 
|  | xDelete(pAux); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifndef SQLITE_OMIT_DEPRECATED | 
|  | /* | 
|  | ** Return the number of times the Step function of a aggregate has been | 
|  | ** called. | 
|  | ** | 
|  | ** This function is deprecated.  Do not use it for new code.  It is | 
|  | ** provide only to avoid breaking legacy code.  New aggregate function | 
|  | ** implementations should keep their own counts within their aggregate | 
|  | ** context. | 
|  | */ | 
|  | int sqlite3_aggregate_count(sqlite3_context *p){ | 
|  | assert( p && p->pMem && p->pFunc && p->pFunc->xStep ); | 
|  | return p->pMem->n; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Return the number of columns in the result set for the statement pStmt. | 
|  | */ | 
|  | int sqlite3_column_count(sqlite3_stmt *pStmt){ | 
|  | Vdbe *pVm = (Vdbe *)pStmt; | 
|  | return pVm ? pVm->nResColumn : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the number of values available from the current row of the | 
|  | ** currently executing statement pStmt. | 
|  | */ | 
|  | int sqlite3_data_count(sqlite3_stmt *pStmt){ | 
|  | Vdbe *pVm = (Vdbe *)pStmt; | 
|  | if( pVm==0 || pVm->pResultSet==0 ) return 0; | 
|  | return pVm->nResColumn; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Check to see if column iCol of the given statement is valid.  If | 
|  | ** it is, return a pointer to the Mem for the value of that column. | 
|  | ** If iCol is not valid, return a pointer to a Mem which has a value | 
|  | ** of NULL. | 
|  | */ | 
|  | static Mem *columnMem(sqlite3_stmt *pStmt, int i){ | 
|  | Vdbe *pVm; | 
|  | Mem *pOut; | 
|  |  | 
|  | pVm = (Vdbe *)pStmt; | 
|  | if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){ | 
|  | sqlite3_mutex_enter(pVm->db->mutex); | 
|  | pOut = &pVm->pResultSet[i]; | 
|  | }else{ | 
|  | /* If the value passed as the second argument is out of range, return | 
|  | ** a pointer to the following static Mem object which contains the | 
|  | ** value SQL NULL. Even though the Mem structure contains an element | 
|  | ** of type i64, on certain architecture (x86) with certain compiler | 
|  | ** switches (-Os), gcc may align this Mem object on a 4-byte boundary | 
|  | ** instead of an 8-byte one. This all works fine, except that when | 
|  | ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s | 
|  | ** that a Mem structure is located on an 8-byte boundary. To prevent | 
|  | ** this assert() from failing, when building with SQLITE_DEBUG defined | 
|  | ** using gcc, force nullMem to be 8-byte aligned using the magical | 
|  | ** __attribute__((aligned(8))) macro.  */ | 
|  | static const Mem nullMem | 
|  | #if defined(SQLITE_DEBUG) && defined(__GNUC__) | 
|  | __attribute__((aligned(8))) | 
|  | #endif | 
|  | = {0, "", (double)0, {0}, 0, MEM_Null, SQLITE_NULL, 0, | 
|  | #ifdef SQLITE_DEBUG | 
|  | 0, 0,  /* pScopyFrom, pFiller */ | 
|  | #endif | 
|  | 0, 0 }; | 
|  |  | 
|  | if( pVm && ALWAYS(pVm->db) ){ | 
|  | sqlite3_mutex_enter(pVm->db->mutex); | 
|  | sqlite3Error(pVm->db, SQLITE_RANGE, 0); | 
|  | } | 
|  | pOut = (Mem*)&nullMem; | 
|  | } | 
|  | return pOut; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** This function is called after invoking an sqlite3_value_XXX function on a | 
|  | ** column value (i.e. a value returned by evaluating an SQL expression in the | 
|  | ** select list of a SELECT statement) that may cause a malloc() failure. If | 
|  | ** malloc() has failed, the threads mallocFailed flag is cleared and the result | 
|  | ** code of statement pStmt set to SQLITE_NOMEM. | 
|  | ** | 
|  | ** Specifically, this is called from within: | 
|  | ** | 
|  | **     sqlite3_column_int() | 
|  | **     sqlite3_column_int64() | 
|  | **     sqlite3_column_text() | 
|  | **     sqlite3_column_text16() | 
|  | **     sqlite3_column_real() | 
|  | **     sqlite3_column_bytes() | 
|  | **     sqlite3_column_bytes16() | 
|  | **     sqiite3_column_blob() | 
|  | */ | 
|  | static void columnMallocFailure(sqlite3_stmt *pStmt) | 
|  | { | 
|  | /* If malloc() failed during an encoding conversion within an | 
|  | ** sqlite3_column_XXX API, then set the return code of the statement to | 
|  | ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR | 
|  | ** and _finalize() will return NOMEM. | 
|  | */ | 
|  | Vdbe *p = (Vdbe *)pStmt; | 
|  | if( p ){ | 
|  | p->rc = sqlite3ApiExit(p->db, p->rc); | 
|  | sqlite3_mutex_leave(p->db->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | /**************************** sqlite3_column_  ******************************* | 
|  | ** The following routines are used to access elements of the current row | 
|  | ** in the result set. | 
|  | */ | 
|  | const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){ | 
|  | const void *val; | 
|  | val = sqlite3_value_blob( columnMem(pStmt,i) ); | 
|  | /* Even though there is no encoding conversion, value_blob() might | 
|  | ** need to call malloc() to expand the result of a zeroblob() | 
|  | ** expression. | 
|  | */ | 
|  | columnMallocFailure(pStmt); | 
|  | return val; | 
|  | } | 
|  | int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){ | 
|  | int val = sqlite3_value_bytes( columnMem(pStmt,i) ); | 
|  | columnMallocFailure(pStmt); | 
|  | return val; | 
|  | } | 
|  | int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){ | 
|  | int val = sqlite3_value_bytes16( columnMem(pStmt,i) ); | 
|  | columnMallocFailure(pStmt); | 
|  | return val; | 
|  | } | 
|  | double sqlite3_column_double(sqlite3_stmt *pStmt, int i){ | 
|  | double val = sqlite3_value_double( columnMem(pStmt,i) ); | 
|  | columnMallocFailure(pStmt); | 
|  | return val; | 
|  | } | 
|  | int sqlite3_column_int(sqlite3_stmt *pStmt, int i){ | 
|  | int val = sqlite3_value_int( columnMem(pStmt,i) ); | 
|  | columnMallocFailure(pStmt); | 
|  | return val; | 
|  | } | 
|  | sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){ | 
|  | sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) ); | 
|  | columnMallocFailure(pStmt); | 
|  | return val; | 
|  | } | 
|  | const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){ | 
|  | const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) ); | 
|  | columnMallocFailure(pStmt); | 
|  | return val; | 
|  | } | 
|  | sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){ | 
|  | Mem *pOut = columnMem(pStmt, i); | 
|  | if( pOut->flags&MEM_Static ){ | 
|  | pOut->flags &= ~MEM_Static; | 
|  | pOut->flags |= MEM_Ephem; | 
|  | } | 
|  | columnMallocFailure(pStmt); | 
|  | return (sqlite3_value *)pOut; | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UTF16 | 
|  | const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){ | 
|  | const void *val = sqlite3_value_text16( columnMem(pStmt,i) ); | 
|  | columnMallocFailure(pStmt); | 
|  | return val; | 
|  | } | 
|  | #endif /* SQLITE_OMIT_UTF16 */ | 
|  | int sqlite3_column_type(sqlite3_stmt *pStmt, int i){ | 
|  | int iType = sqlite3_value_type( columnMem(pStmt,i) ); | 
|  | columnMallocFailure(pStmt); | 
|  | return iType; | 
|  | } | 
|  |  | 
|  | /* The following function is experimental and subject to change or | 
|  | ** removal */ | 
|  | /*int sqlite3_column_numeric_type(sqlite3_stmt *pStmt, int i){ | 
|  | **  return sqlite3_value_numeric_type( columnMem(pStmt,i) ); | 
|  | **} | 
|  | */ | 
|  |  | 
|  | /* | 
|  | ** Convert the N-th element of pStmt->pColName[] into a string using | 
|  | ** xFunc() then return that string.  If N is out of range, return 0. | 
|  | ** | 
|  | ** There are up to 5 names for each column.  useType determines which | 
|  | ** name is returned.  Here are the names: | 
|  | ** | 
|  | **    0      The column name as it should be displayed for output | 
|  | **    1      The datatype name for the column | 
|  | **    2      The name of the database that the column derives from | 
|  | **    3      The name of the table that the column derives from | 
|  | **    4      The name of the table column that the result column derives from | 
|  | ** | 
|  | ** If the result is not a simple column reference (if it is an expression | 
|  | ** or a constant) then useTypes 2, 3, and 4 return NULL. | 
|  | */ | 
|  | static const void *columnName( | 
|  | sqlite3_stmt *pStmt, | 
|  | int N, | 
|  | const void *(*xFunc)(Mem*), | 
|  | int useType | 
|  | ){ | 
|  | const void *ret = 0; | 
|  | Vdbe *p = (Vdbe *)pStmt; | 
|  | int n; | 
|  | sqlite3 *db = p->db; | 
|  |  | 
|  | assert( db!=0 ); | 
|  | n = sqlite3_column_count(pStmt); | 
|  | if( N<n && N>=0 ){ | 
|  | N += useType*n; | 
|  | sqlite3_mutex_enter(db->mutex); | 
|  | assert( db->mallocFailed==0 ); | 
|  | ret = xFunc(&p->aColName[N]); | 
|  | /* A malloc may have failed inside of the xFunc() call. If this | 
|  | ** is the case, clear the mallocFailed flag and return NULL. | 
|  | */ | 
|  | if( db->mallocFailed ){ | 
|  | db->mallocFailed = 0; | 
|  | ret = 0; | 
|  | } | 
|  | sqlite3_mutex_leave(db->mutex); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the name of the Nth column of the result set returned by SQL | 
|  | ** statement pStmt. | 
|  | */ | 
|  | const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){ | 
|  | return columnName( | 
|  | pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME); | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UTF16 | 
|  | const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){ | 
|  | return columnName( | 
|  | pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Constraint:  If you have ENABLE_COLUMN_METADATA then you must | 
|  | ** not define OMIT_DECLTYPE. | 
|  | */ | 
|  | #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA) | 
|  | # error "Must not define both SQLITE_OMIT_DECLTYPE \ | 
|  | and SQLITE_ENABLE_COLUMN_METADATA" | 
|  | #endif | 
|  |  | 
|  | #ifndef SQLITE_OMIT_DECLTYPE | 
|  | /* | 
|  | ** Return the column declaration type (if applicable) of the 'i'th column | 
|  | ** of the result set of SQL statement pStmt. | 
|  | */ | 
|  | const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){ | 
|  | return columnName( | 
|  | pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE); | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UTF16 | 
|  | const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){ | 
|  | return columnName( | 
|  | pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE); | 
|  | } | 
|  | #endif /* SQLITE_OMIT_UTF16 */ | 
|  | #endif /* SQLITE_OMIT_DECLTYPE */ | 
|  |  | 
|  | #ifdef SQLITE_ENABLE_COLUMN_METADATA | 
|  | /* | 
|  | ** Return the name of the database from which a result column derives. | 
|  | ** NULL is returned if the result column is an expression or constant or | 
|  | ** anything else which is not an unabiguous reference to a database column. | 
|  | */ | 
|  | const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){ | 
|  | return columnName( | 
|  | pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE); | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UTF16 | 
|  | const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){ | 
|  | return columnName( | 
|  | pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE); | 
|  | } | 
|  | #endif /* SQLITE_OMIT_UTF16 */ | 
|  |  | 
|  | /* | 
|  | ** Return the name of the table from which a result column derives. | 
|  | ** NULL is returned if the result column is an expression or constant or | 
|  | ** anything else which is not an unabiguous reference to a database column. | 
|  | */ | 
|  | const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){ | 
|  | return columnName( | 
|  | pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE); | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UTF16 | 
|  | const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){ | 
|  | return columnName( | 
|  | pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE); | 
|  | } | 
|  | #endif /* SQLITE_OMIT_UTF16 */ | 
|  |  | 
|  | /* | 
|  | ** Return the name of the table column from which a result column derives. | 
|  | ** NULL is returned if the result column is an expression or constant or | 
|  | ** anything else which is not an unabiguous reference to a database column. | 
|  | */ | 
|  | const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){ | 
|  | return columnName( | 
|  | pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN); | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UTF16 | 
|  | const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){ | 
|  | return columnName( | 
|  | pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN); | 
|  | } | 
|  | #endif /* SQLITE_OMIT_UTF16 */ | 
|  | #endif /* SQLITE_ENABLE_COLUMN_METADATA */ | 
|  |  | 
|  |  | 
|  | /******************************* sqlite3_bind_  *************************** | 
|  | ** | 
|  | ** Routines used to attach values to wildcards in a compiled SQL statement. | 
|  | */ | 
|  | /* | 
|  | ** Unbind the value bound to variable i in virtual machine p. This is the | 
|  | ** the same as binding a NULL value to the column. If the "i" parameter is | 
|  | ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK. | 
|  | ** | 
|  | ** A successful evaluation of this routine acquires the mutex on p. | 
|  | ** the mutex is released if any kind of error occurs. | 
|  | ** | 
|  | ** The error code stored in database p->db is overwritten with the return | 
|  | ** value in any case. | 
|  | */ | 
|  | static int vdbeUnbind(Vdbe *p, int i){ | 
|  | Mem *pVar; | 
|  | if( vdbeSafetyNotNull(p) ){ | 
|  | return SQLITE_MISUSE_BKPT; | 
|  | } | 
|  | sqlite3_mutex_enter(p->db->mutex); | 
|  | if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){ | 
|  | sqlite3Error(p->db, SQLITE_MISUSE, 0); | 
|  | sqlite3_mutex_leave(p->db->mutex); | 
|  | sqlite3_log(SQLITE_MISUSE, | 
|  | "bind on a busy prepared statement: [%s]", p->zSql); | 
|  | return SQLITE_MISUSE_BKPT; | 
|  | } | 
|  | if( i<1 || i>p->nVar ){ | 
|  | sqlite3Error(p->db, SQLITE_RANGE, 0); | 
|  | sqlite3_mutex_leave(p->db->mutex); | 
|  | return SQLITE_RANGE; | 
|  | } | 
|  | i--; | 
|  | pVar = &p->aVar[i]; | 
|  | sqlite3VdbeMemRelease(pVar); | 
|  | pVar->flags = MEM_Null; | 
|  | sqlite3Error(p->db, SQLITE_OK, 0); | 
|  |  | 
|  | /* If the bit corresponding to this variable in Vdbe.expmask is set, then | 
|  | ** binding a new value to this variable invalidates the current query plan. | 
|  | ** | 
|  | ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host | 
|  | ** parameter in the WHERE clause might influence the choice of query plan | 
|  | ** for a statement, then the statement will be automatically recompiled, | 
|  | ** as if there had been a schema change, on the first sqlite3_step() call | 
|  | ** following any change to the bindings of that parameter. | 
|  | */ | 
|  | if( p->isPrepareV2 && | 
|  | ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff) | 
|  | ){ | 
|  | p->expired = 1; | 
|  | } | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Bind a text or BLOB value. | 
|  | */ | 
|  | static int bindText( | 
|  | sqlite3_stmt *pStmt,   /* The statement to bind against */ | 
|  | int i,                 /* Index of the parameter to bind */ | 
|  | const void *zData,     /* Pointer to the data to be bound */ | 
|  | int nData,             /* Number of bytes of data to be bound */ | 
|  | void (*xDel)(void*),   /* Destructor for the data */ | 
|  | u8 encoding            /* Encoding for the data */ | 
|  | ){ | 
|  | Vdbe *p = (Vdbe *)pStmt; | 
|  | Mem *pVar; | 
|  | int rc; | 
|  |  | 
|  | rc = vdbeUnbind(p, i); | 
|  | if( rc==SQLITE_OK ){ | 
|  | if( zData!=0 ){ | 
|  | pVar = &p->aVar[i-1]; | 
|  | rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel); | 
|  | if( rc==SQLITE_OK && encoding!=0 ){ | 
|  | rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db)); | 
|  | } | 
|  | sqlite3Error(p->db, rc, 0); | 
|  | rc = sqlite3ApiExit(p->db, rc); | 
|  | } | 
|  | sqlite3_mutex_leave(p->db->mutex); | 
|  | }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){ | 
|  | xDel((void*)zData); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ** Bind a blob value to an SQL statement variable. | 
|  | */ | 
|  | int sqlite3_bind_blob( | 
|  | sqlite3_stmt *pStmt, | 
|  | int i, | 
|  | const void *zData, | 
|  | int nData, | 
|  | void (*xDel)(void*) | 
|  | ){ | 
|  | return bindText(pStmt, i, zData, nData, xDel, 0); | 
|  | } | 
|  | int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){ | 
|  | int rc; | 
|  | Vdbe *p = (Vdbe *)pStmt; | 
|  | rc = vdbeUnbind(p, i); | 
|  | if( rc==SQLITE_OK ){ | 
|  | sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue); | 
|  | sqlite3_mutex_leave(p->db->mutex); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  | int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){ | 
|  | return sqlite3_bind_int64(p, i, (i64)iValue); | 
|  | } | 
|  | int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){ | 
|  | int rc; | 
|  | Vdbe *p = (Vdbe *)pStmt; | 
|  | rc = vdbeUnbind(p, i); | 
|  | if( rc==SQLITE_OK ){ | 
|  | sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue); | 
|  | sqlite3_mutex_leave(p->db->mutex); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  | int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){ | 
|  | int rc; | 
|  | Vdbe *p = (Vdbe*)pStmt; | 
|  | rc = vdbeUnbind(p, i); | 
|  | if( rc==SQLITE_OK ){ | 
|  | sqlite3_mutex_leave(p->db->mutex); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  | int sqlite3_bind_text( | 
|  | sqlite3_stmt *pStmt, | 
|  | int i, | 
|  | const char *zData, | 
|  | int nData, | 
|  | void (*xDel)(void*) | 
|  | ){ | 
|  | return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8); | 
|  | } | 
|  | #ifndef SQLITE_OMIT_UTF16 | 
|  | int sqlite3_bind_text16( | 
|  | sqlite3_stmt *pStmt, | 
|  | int i, | 
|  | const void *zData, | 
|  | int nData, | 
|  | void (*xDel)(void*) | 
|  | ){ | 
|  | return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE); | 
|  | } | 
|  | #endif /* SQLITE_OMIT_UTF16 */ | 
|  | int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){ | 
|  | int rc; | 
|  | switch( pValue->type ){ | 
|  | case SQLITE_INTEGER: { | 
|  | rc = sqlite3_bind_int64(pStmt, i, pValue->u.i); | 
|  | break; | 
|  | } | 
|  | case SQLITE_FLOAT: { | 
|  | rc = sqlite3_bind_double(pStmt, i, pValue->r); | 
|  | break; | 
|  | } | 
|  | case SQLITE_BLOB: { | 
|  | if( pValue->flags & MEM_Zero ){ | 
|  | rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero); | 
|  | }else{ | 
|  | rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT); | 
|  | } | 
|  | break; | 
|  | } | 
|  | case SQLITE_TEXT: { | 
|  | rc = bindText(pStmt,i,  pValue->z, pValue->n, SQLITE_TRANSIENT, | 
|  | pValue->enc); | 
|  | break; | 
|  | } | 
|  | default: { | 
|  | rc = sqlite3_bind_null(pStmt, i); | 
|  | break; | 
|  | } | 
|  | } | 
|  | return rc; | 
|  | } | 
|  | int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){ | 
|  | int rc; | 
|  | Vdbe *p = (Vdbe *)pStmt; | 
|  | rc = vdbeUnbind(p, i); | 
|  | if( rc==SQLITE_OK ){ | 
|  | sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n); | 
|  | sqlite3_mutex_leave(p->db->mutex); | 
|  | } | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the number of wildcards that can be potentially bound to. | 
|  | ** This routine is added to support DBD::SQLite. | 
|  | */ | 
|  | int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){ | 
|  | Vdbe *p = (Vdbe*)pStmt; | 
|  | return p ? p->nVar : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Create a mapping from variable numbers to variable names | 
|  | ** in the Vdbe.azVar[] array, if such a mapping does not already | 
|  | ** exist. | 
|  | */ | 
|  | static void createVarMap(Vdbe *p){ | 
|  | if( !p->okVar ){ | 
|  | int j; | 
|  | Op *pOp; | 
|  | sqlite3_mutex_enter(p->db->mutex); | 
|  | /* The race condition here is harmless.  If two threads call this | 
|  | ** routine on the same Vdbe at the same time, they both might end | 
|  | ** up initializing the Vdbe.azVar[] array.  That is a little extra | 
|  | ** work but it results in the same answer. | 
|  | */ | 
|  | for(j=0, pOp=p->aOp; j<p->nOp; j++, pOp++){ | 
|  | if( pOp->opcode==OP_Variable ){ | 
|  | assert( pOp->p1>0 && pOp->p1<=p->nVar ); | 
|  | p->azVar[pOp->p1-1] = pOp->p4.z; | 
|  | } | 
|  | } | 
|  | p->okVar = 1; | 
|  | sqlite3_mutex_leave(p->db->mutex); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the name of a wildcard parameter.  Return NULL if the index | 
|  | ** is out of range or if the wildcard is unnamed. | 
|  | ** | 
|  | ** The result is always UTF-8. | 
|  | */ | 
|  | const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){ | 
|  | Vdbe *p = (Vdbe*)pStmt; | 
|  | if( p==0 || i<1 || i>p->nVar ){ | 
|  | return 0; | 
|  | } | 
|  | createVarMap(p); | 
|  | return p->azVar[i-1]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Given a wildcard parameter name, return the index of the variable | 
|  | ** with that name.  If there is no variable with the given name, | 
|  | ** return 0. | 
|  | */ | 
|  | int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){ | 
|  | int i; | 
|  | if( p==0 ){ | 
|  | return 0; | 
|  | } | 
|  | createVarMap(p); | 
|  | if( zName ){ | 
|  | for(i=0; i<p->nVar; i++){ | 
|  | const char *z = p->azVar[i]; | 
|  | if( z && memcmp(z,zName,nName)==0 && z[nName]==0 ){ | 
|  | return i+1; | 
|  | } | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){ | 
|  | return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Transfer all bindings from the first statement over to the second. | 
|  | */ | 
|  | int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ | 
|  | Vdbe *pFrom = (Vdbe*)pFromStmt; | 
|  | Vdbe *pTo = (Vdbe*)pToStmt; | 
|  | int i; | 
|  | assert( pTo->db==pFrom->db ); | 
|  | assert( pTo->nVar==pFrom->nVar ); | 
|  | sqlite3_mutex_enter(pTo->db->mutex); | 
|  | for(i=0; i<pFrom->nVar; i++){ | 
|  | sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]); | 
|  | } | 
|  | sqlite3_mutex_leave(pTo->db->mutex); | 
|  | return SQLITE_OK; | 
|  | } | 
|  |  | 
|  | #ifndef SQLITE_OMIT_DEPRECATED | 
|  | /* | 
|  | ** Deprecated external interface.  Internal/core SQLite code | 
|  | ** should call sqlite3TransferBindings. | 
|  | ** | 
|  | ** Is is misuse to call this routine with statements from different | 
|  | ** database connections.  But as this is a deprecated interface, we | 
|  | ** will not bother to check for that condition. | 
|  | ** | 
|  | ** If the two statements contain a different number of bindings, then | 
|  | ** an SQLITE_ERROR is returned.  Nothing else can go wrong, so otherwise | 
|  | ** SQLITE_OK is returned. | 
|  | */ | 
|  | int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){ | 
|  | Vdbe *pFrom = (Vdbe*)pFromStmt; | 
|  | Vdbe *pTo = (Vdbe*)pToStmt; | 
|  | if( pFrom->nVar!=pTo->nVar ){ | 
|  | return SQLITE_ERROR; | 
|  | } | 
|  | if( pTo->isPrepareV2 && pTo->expmask ){ | 
|  | pTo->expired = 1; | 
|  | } | 
|  | if( pFrom->isPrepareV2 && pFrom->expmask ){ | 
|  | pFrom->expired = 1; | 
|  | } | 
|  | return sqlite3TransferBindings(pFromStmt, pToStmt); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | ** Return the sqlite3* database handle to which the prepared statement given | 
|  | ** in the argument belongs.  This is the same database handle that was | 
|  | ** the first argument to the sqlite3_prepare() that was used to create | 
|  | ** the statement in the first place. | 
|  | */ | 
|  | sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){ | 
|  | return pStmt ? ((Vdbe*)pStmt)->db : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return true if the prepared statement is guaranteed to not modify the | 
|  | ** database. | 
|  | */ | 
|  | int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){ | 
|  | return pStmt ? ((Vdbe*)pStmt)->readOnly : 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return a pointer to the next prepared statement after pStmt associated | 
|  | ** with database connection pDb.  If pStmt is NULL, return the first | 
|  | ** prepared statement for the database connection.  Return NULL if there | 
|  | ** are no more. | 
|  | */ | 
|  | sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){ | 
|  | sqlite3_stmt *pNext; | 
|  | sqlite3_mutex_enter(pDb->mutex); | 
|  | if( pStmt==0 ){ | 
|  | pNext = (sqlite3_stmt*)pDb->pVdbe; | 
|  | }else{ | 
|  | pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext; | 
|  | } | 
|  | sqlite3_mutex_leave(pDb->mutex); | 
|  | return pNext; | 
|  | } | 
|  |  | 
|  | /* | 
|  | ** Return the value of a status counter for a prepared statement | 
|  | */ | 
|  | int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){ | 
|  | Vdbe *pVdbe = (Vdbe*)pStmt; | 
|  | int v = pVdbe->aCounter[op-1]; | 
|  | if( resetFlag ) pVdbe->aCounter[op-1] = 0; | 
|  | return v; | 
|  | } |