|  | /* | 
|  | * Copyright (C) 2005, 2006 Apple Computer, Inc.  All rights reserved. | 
|  | * | 
|  | * Redistribution and use in source and binary forms, with or without | 
|  | * modification, are permitted provided that the following conditions | 
|  | * are met: | 
|  | * 1. Redistributions of source code must retain the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer. | 
|  | * 2. Redistributions in binary form must reproduce the above copyright | 
|  | *    notice, this list of conditions and the following disclaimer in the | 
|  | *    documentation and/or other materials provided with the distribution. | 
|  | * | 
|  | * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY | 
|  | * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
|  | * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
|  | * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR | 
|  | * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
|  | * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
|  | * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
|  | * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
|  | * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | */ | 
|  |  | 
|  | #ifndef SKY_ENGINE_PLATFORM_TRANSFORMS_TRANSFORMATIONMATRIX_H_ | 
|  | #define SKY_ENGINE_PLATFORM_TRANSFORMS_TRANSFORMATIONMATRIX_H_ | 
|  |  | 
|  | #include <string.h> //for memcpy | 
|  | #include "sky/engine/platform/geometry/FloatPoint.h" | 
|  | #include "sky/engine/platform/geometry/FloatPoint3D.h" | 
|  | #include "sky/engine/platform/geometry/IntPoint.h" | 
|  | #include "sky/engine/wtf/CPU.h" | 
|  | #include "sky/engine/wtf/FastAllocBase.h" | 
|  | #include "third_party/skia/include/utils/SkMatrix44.h" | 
|  |  | 
|  | namespace blink { | 
|  |  | 
|  | class AffineTransform; | 
|  | class IntRect; | 
|  | class LayoutRect; | 
|  | class FloatRect; | 
|  | class FloatQuad; | 
|  | class FloatBox; | 
|  | #if CPU(X86_64) | 
|  | #define TRANSFORMATION_MATRIX_USE_X86_64_SSE2 | 
|  | #endif | 
|  |  | 
|  | class PLATFORM_EXPORT TransformationMatrix { | 
|  | WTF_MAKE_FAST_ALLOCATED; | 
|  | public: | 
|  |  | 
|  | #if CPU(APPLE_ARMV7S) || defined(TRANSFORMATION_MATRIX_USE_X86_64_SSE2) | 
|  | typedef double Matrix4[4][4] __attribute__((aligned (16))); | 
|  | #else | 
|  | typedef double Matrix4[4][4]; | 
|  | #endif | 
|  |  | 
|  | TransformationMatrix() { makeIdentity(); } | 
|  | TransformationMatrix(const AffineTransform& t); | 
|  | TransformationMatrix(const TransformationMatrix& t) { *this = t; } | 
|  | TransformationMatrix(double a, double b, double c, double d, double e, double f) { setMatrix(a, b, c, d, e, f); } | 
|  | TransformationMatrix(double m11, double m12, double m13, double m14, | 
|  | double m21, double m22, double m23, double m24, | 
|  | double m31, double m32, double m33, double m34, | 
|  | double m41, double m42, double m43, double m44) | 
|  | { | 
|  | setMatrix(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44); | 
|  | } | 
|  |  | 
|  | void setMatrix(double a, double b, double c, double d, double e, double f) | 
|  | { | 
|  | m_matrix[0][0] = a; m_matrix[0][1] = b; m_matrix[0][2] = 0; m_matrix[0][3] = 0; | 
|  | m_matrix[1][0] = c; m_matrix[1][1] = d; m_matrix[1][2] = 0; m_matrix[1][3] = 0; | 
|  | m_matrix[2][0] = 0; m_matrix[2][1] = 0; m_matrix[2][2] = 1; m_matrix[2][3] = 0; | 
|  | m_matrix[3][0] = e; m_matrix[3][1] = f; m_matrix[3][2] = 0; m_matrix[3][3] = 1; | 
|  | } | 
|  |  | 
|  | void setMatrix(double m11, double m12, double m13, double m14, | 
|  | double m21, double m22, double m23, double m24, | 
|  | double m31, double m32, double m33, double m34, | 
|  | double m41, double m42, double m43, double m44) | 
|  | { | 
|  | m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; m_matrix[0][3] = m14; | 
|  | m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; m_matrix[1][3] = m24; | 
|  | m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; m_matrix[2][3] = m34; | 
|  | m_matrix[3][0] = m41; m_matrix[3][1] = m42; m_matrix[3][2] = m43; m_matrix[3][3] = m44; | 
|  | } | 
|  |  | 
|  | TransformationMatrix& operator =(const TransformationMatrix &t) | 
|  | { | 
|  | setMatrix(t.m_matrix); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | TransformationMatrix& makeIdentity() | 
|  | { | 
|  | setMatrix(1, 0, 0, 0,  0, 1, 0, 0,  0, 0, 1, 0,  0, 0, 0, 1); | 
|  | return *this; | 
|  | } | 
|  |  | 
|  | bool isIdentity() const | 
|  | { | 
|  | return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0 && | 
|  | m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0 && | 
|  | m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 && | 
|  | m_matrix[3][0] == 0 && m_matrix[3][1] == 0 && m_matrix[3][2] == 0 && m_matrix[3][3] == 1; | 
|  | } | 
|  |  | 
|  | // This form preserves the double math from input to output | 
|  | void map(double x, double y, double& x2, double& y2) const { multVecMatrix(x, y, x2, y2); } | 
|  |  | 
|  | // Map a 3D point through the transform, returning a 3D point. | 
|  | FloatPoint3D mapPoint(const FloatPoint3D&) const; | 
|  |  | 
|  | // Map a 2D point through the transform, returning a 2D point. | 
|  | // Note that this ignores the z component, effectively projecting the point into the z=0 plane. | 
|  | FloatPoint mapPoint(const FloatPoint&) const; | 
|  |  | 
|  | // Like the version above, except that it rounds the mapped point to the nearest integer value. | 
|  | IntPoint mapPoint(const IntPoint& p) const | 
|  | { | 
|  | return roundedIntPoint(mapPoint(FloatPoint(p))); | 
|  | } | 
|  |  | 
|  | // If the matrix has 3D components, the z component of the result is | 
|  | // dropped, effectively projecting the rect into the z=0 plane | 
|  | FloatRect mapRect(const FloatRect&) const; | 
|  |  | 
|  | // Rounds the resulting mapped rectangle out. This is helpful for bounding | 
|  | // box computations but may not be what is wanted in other contexts. | 
|  | IntRect mapRect(const IntRect&) const; | 
|  | LayoutRect mapRect(const LayoutRect&) const; | 
|  |  | 
|  | // If the matrix has 3D components, the z component of the result is | 
|  | // dropped, effectively projecting the quad into the z=0 plane | 
|  | FloatQuad mapQuad(const FloatQuad&) const; | 
|  |  | 
|  | // Map a point on the z=0 plane into a point on | 
|  | // the plane with with the transform applied, by extending | 
|  | // a ray perpendicular to the source plane and computing | 
|  | // the local x,y position of the point where that ray intersects | 
|  | // with the destination plane. | 
|  | FloatPoint projectPoint(const FloatPoint&, bool* clamped = 0) const; | 
|  | // Projects the four corners of the quad | 
|  | FloatQuad projectQuad(const FloatQuad&,  bool* clamped = 0) const; | 
|  | // Projects the four corners of the quad and takes a bounding box, | 
|  | // while sanitizing values created when the w component is negative. | 
|  | LayoutRect clampedBoundsOfProjectedQuad(const FloatQuad&) const; | 
|  |  | 
|  | void transformBox(FloatBox&) const; | 
|  |  | 
|  | double m11() const { return m_matrix[0][0]; } | 
|  | void setM11(double f) { m_matrix[0][0] = f; } | 
|  | double m12() const { return m_matrix[0][1]; } | 
|  | void setM12(double f) { m_matrix[0][1] = f; } | 
|  | double m13() const { return m_matrix[0][2]; } | 
|  | void setM13(double f) { m_matrix[0][2] = f; } | 
|  | double m14() const { return m_matrix[0][3]; } | 
|  | void setM14(double f) { m_matrix[0][3] = f; } | 
|  | double m21() const { return m_matrix[1][0]; } | 
|  | void setM21(double f) { m_matrix[1][0] = f; } | 
|  | double m22() const { return m_matrix[1][1]; } | 
|  | void setM22(double f) { m_matrix[1][1] = f; } | 
|  | double m23() const { return m_matrix[1][2]; } | 
|  | void setM23(double f) { m_matrix[1][2] = f; } | 
|  | double m24() const { return m_matrix[1][3]; } | 
|  | void setM24(double f) { m_matrix[1][3] = f; } | 
|  | double m31() const { return m_matrix[2][0]; } | 
|  | void setM31(double f) { m_matrix[2][0] = f; } | 
|  | double m32() const { return m_matrix[2][1]; } | 
|  | void setM32(double f) { m_matrix[2][1] = f; } | 
|  | double m33() const { return m_matrix[2][2]; } | 
|  | void setM33(double f) { m_matrix[2][2] = f; } | 
|  | double m34() const { return m_matrix[2][3]; } | 
|  | void setM34(double f) { m_matrix[2][3] = f; } | 
|  | double m41() const { return m_matrix[3][0]; } | 
|  | void setM41(double f) { m_matrix[3][0] = f; } | 
|  | double m42() const { return m_matrix[3][1]; } | 
|  | void setM42(double f) { m_matrix[3][1] = f; } | 
|  | double m43() const { return m_matrix[3][2]; } | 
|  | void setM43(double f) { m_matrix[3][2] = f; } | 
|  | double m44() const { return m_matrix[3][3]; } | 
|  | void setM44(double f) { m_matrix[3][3] = f; } | 
|  |  | 
|  | double a() const { return m_matrix[0][0]; } | 
|  | void setA(double a) { m_matrix[0][0] = a; } | 
|  |  | 
|  | double b() const { return m_matrix[0][1]; } | 
|  | void setB(double b) { m_matrix[0][1] = b; } | 
|  |  | 
|  | double c() const { return m_matrix[1][0]; } | 
|  | void setC(double c) { m_matrix[1][0] = c; } | 
|  |  | 
|  | double d() const { return m_matrix[1][1]; } | 
|  | void setD(double d) { m_matrix[1][1] = d; } | 
|  |  | 
|  | double e() const { return m_matrix[3][0]; } | 
|  | void setE(double e) { m_matrix[3][0] = e; } | 
|  |  | 
|  | double f() const { return m_matrix[3][1]; } | 
|  | void setF(double f) { m_matrix[3][1] = f; } | 
|  |  | 
|  | // this = mat * this. | 
|  | TransformationMatrix& multiply(const TransformationMatrix&); | 
|  |  | 
|  | TransformationMatrix& scale(double); | 
|  | TransformationMatrix& scaleNonUniform(double sx, double sy); | 
|  | TransformationMatrix& scale3d(double sx, double sy, double sz); | 
|  |  | 
|  | TransformationMatrix& rotate(double d) { return rotate3d(0, 0, d); } | 
|  | TransformationMatrix& rotateFromVector(double x, double y); | 
|  | TransformationMatrix& rotate3d(double rx, double ry, double rz); | 
|  |  | 
|  | // The vector (x,y,z) is normalized if it's not already. A vector of | 
|  | // (0,0,0) uses a vector of (0,0,1). | 
|  | TransformationMatrix& rotate3d(double x, double y, double z, double angle); | 
|  |  | 
|  | TransformationMatrix& translate(double tx, double ty); | 
|  | TransformationMatrix& translate3d(double tx, double ty, double tz); | 
|  |  | 
|  | // translation added with a post-multiply | 
|  | TransformationMatrix& translateRight(double tx, double ty); | 
|  | TransformationMatrix& translateRight3d(double tx, double ty, double tz); | 
|  |  | 
|  | TransformationMatrix& flipX(); | 
|  | TransformationMatrix& flipY(); | 
|  | TransformationMatrix& skew(double angleX, double angleY); | 
|  | TransformationMatrix& skewX(double angle) { return skew(angle, 0); } | 
|  | TransformationMatrix& skewY(double angle) { return skew(0, angle); } | 
|  |  | 
|  | TransformationMatrix& applyPerspective(double p); | 
|  | bool hasPerspective() const { return m_matrix[2][3] != 0.0f; } | 
|  |  | 
|  | // returns a transformation that maps a rect to a rect | 
|  | static TransformationMatrix rectToRect(const FloatRect&, const FloatRect&); | 
|  |  | 
|  | bool isInvertible() const; | 
|  |  | 
|  | // This method returns the identity matrix if it is not invertible. | 
|  | // Use isInvertible() before calling this if you need to know. | 
|  | TransformationMatrix inverse() const; | 
|  |  | 
|  | // decompose the matrix into its component parts | 
|  | typedef struct { | 
|  | double scaleX, scaleY, scaleZ; | 
|  | double skewXY, skewXZ, skewYZ; | 
|  | double quaternionX, quaternionY, quaternionZ, quaternionW; | 
|  | double translateX, translateY, translateZ; | 
|  | double perspectiveX, perspectiveY, perspectiveZ, perspectiveW; | 
|  | } DecomposedType; | 
|  |  | 
|  | bool decompose(DecomposedType& decomp) const; | 
|  | void recompose(const DecomposedType& decomp); | 
|  |  | 
|  | void blend(const TransformationMatrix& from, double progress); | 
|  |  | 
|  | bool isAffine() const | 
|  | { | 
|  | return (m13() == 0 && m14() == 0 && m23() == 0 && m24() == 0 && | 
|  | m31() == 0 && m32() == 0 && m33() == 1 && m34() == 0 && m43() == 0 && m44() == 1); | 
|  | } | 
|  |  | 
|  | // Throw away the non-affine parts of the matrix (lossy!) | 
|  | void makeAffine(); | 
|  |  | 
|  | AffineTransform toAffineTransform() const; | 
|  |  | 
|  | bool operator==(const TransformationMatrix& m2) const | 
|  | { | 
|  | return (m_matrix[0][0] == m2.m_matrix[0][0] && | 
|  | m_matrix[0][1] == m2.m_matrix[0][1] && | 
|  | m_matrix[0][2] == m2.m_matrix[0][2] && | 
|  | m_matrix[0][3] == m2.m_matrix[0][3] && | 
|  | m_matrix[1][0] == m2.m_matrix[1][0] && | 
|  | m_matrix[1][1] == m2.m_matrix[1][1] && | 
|  | m_matrix[1][2] == m2.m_matrix[1][2] && | 
|  | m_matrix[1][3] == m2.m_matrix[1][3] && | 
|  | m_matrix[2][0] == m2.m_matrix[2][0] && | 
|  | m_matrix[2][1] == m2.m_matrix[2][1] && | 
|  | m_matrix[2][2] == m2.m_matrix[2][2] && | 
|  | m_matrix[2][3] == m2.m_matrix[2][3] && | 
|  | m_matrix[3][0] == m2.m_matrix[3][0] && | 
|  | m_matrix[3][1] == m2.m_matrix[3][1] && | 
|  | m_matrix[3][2] == m2.m_matrix[3][2] && | 
|  | m_matrix[3][3] == m2.m_matrix[3][3]); | 
|  | } | 
|  |  | 
|  | bool operator!=(const TransformationMatrix& other) const { return !(*this == other); } | 
|  |  | 
|  | // *this = *this * t | 
|  | TransformationMatrix& operator*=(const TransformationMatrix& t) | 
|  | { | 
|  | return multiply(t); | 
|  | } | 
|  |  | 
|  | // result = *this * t | 
|  | TransformationMatrix operator*(const TransformationMatrix& t) const | 
|  | { | 
|  | TransformationMatrix result = *this; | 
|  | result.multiply(t); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | bool isIdentityOrTranslation() const | 
|  | { | 
|  | return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0 | 
|  | && m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0 | 
|  | && m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 | 
|  | && m_matrix[3][3] == 1; | 
|  | } | 
|  |  | 
|  | bool isIntegerTranslation() const; | 
|  |  | 
|  | // This method returns the matrix without 3D components. | 
|  | TransformationMatrix to2dTransform() const; | 
|  |  | 
|  | typedef float FloatMatrix4[16]; | 
|  | void toColumnMajorFloatArray(FloatMatrix4& result) const; | 
|  |  | 
|  | static SkMatrix44 toSkMatrix44(const TransformationMatrix&); | 
|  |  | 
|  | private: | 
|  | // multiply passed 2D point by matrix (assume z=0) | 
|  | void multVecMatrix(double x, double y, double& dstX, double& dstY) const; | 
|  | FloatPoint internalMapPoint(const FloatPoint& sourcePoint) const | 
|  | { | 
|  | double resultX; | 
|  | double resultY; | 
|  | multVecMatrix(sourcePoint.x(), sourcePoint.y(), resultX, resultY); | 
|  | return FloatPoint(static_cast<float>(resultX), static_cast<float>(resultY)); | 
|  | } | 
|  |  | 
|  | // multiply passed 3D point by matrix | 
|  | void multVecMatrix(double x, double y, double z, double& dstX, double& dstY, double& dstZ) const; | 
|  | FloatPoint3D internalMapPoint(const FloatPoint3D& sourcePoint) const | 
|  | { | 
|  | double resultX; | 
|  | double resultY; | 
|  | double resultZ; | 
|  | multVecMatrix(sourcePoint.x(), sourcePoint.y(), sourcePoint.z(), resultX, resultY, resultZ); | 
|  | return FloatPoint3D(static_cast<float>(resultX), static_cast<float>(resultY), static_cast<float>(resultZ)); | 
|  | } | 
|  |  | 
|  | void setMatrix(const Matrix4 m) | 
|  | { | 
|  | if (m && m != m_matrix) | 
|  | memcpy(m_matrix, m, sizeof(Matrix4)); | 
|  | } | 
|  |  | 
|  | Matrix4 m_matrix; | 
|  | }; | 
|  |  | 
|  | } // namespace blink | 
|  |  | 
|  | #endif  // SKY_ENGINE_PLATFORM_TRANSFORMS_TRANSFORMATIONMATRIX_H_ |