| /* | 
 |  * Copyright (C) 2006, 2008 Apple Inc. All rights reserved. | 
 |  * Copyright (C) 2009 Google Inc. All rights reserved. | 
 |  * | 
 |  * Redistribution and use in source and binary forms, with or without | 
 |  * modification, are permitted provided that the following conditions | 
 |  * are met: | 
 |  * 1. Redistributions of source code must retain the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer. | 
 |  * 2. Redistributions in binary form must reproduce the above copyright | 
 |  *    notice, this list of conditions and the following disclaimer in the | 
 |  *    documentation and/or other materials provided with the distribution. | 
 |  * | 
 |  * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY | 
 |  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | 
 |  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR | 
 |  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR | 
 |  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, | 
 |  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, | 
 |  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR | 
 |  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY | 
 |  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 |  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
 |  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  */ | 
 |  | 
 | #include "sky/engine/config.h" | 
 | #include "sky/engine/platform/Timer.h" | 
 |  | 
 | #include <limits.h> | 
 | #include <math.h> | 
 | #include <limits> | 
 | #include "sky/engine/platform/PlatformThreadData.h" | 
 | #include "sky/engine/platform/ThreadTimers.h" | 
 | #include "sky/engine/wtf/CurrentTime.h" | 
 | #include "sky/engine/wtf/HashSet.h" | 
 |  | 
 | namespace blink { | 
 |  | 
 | class TimerHeapReference; | 
 |  | 
 | // Timers are stored in a heap data structure, used to implement a priority queue. | 
 | // This allows us to efficiently determine which timer needs to fire the soonest. | 
 | // Then we set a single shared system timer to fire at that time. | 
 | // | 
 | // When a timer's "next fire time" changes, we need to move it around in the priority queue. | 
 | static Vector<TimerBase*>& threadGlobalTimerHeap() | 
 | { | 
 |     return PlatformThreadData::current().threadTimers().timerHeap(); | 
 | } | 
 | // ---------------- | 
 |  | 
 | class TimerHeapPointer { | 
 | public: | 
 |     TimerHeapPointer(TimerBase** pointer) : m_pointer(pointer) { } | 
 |     TimerHeapReference operator*() const; | 
 |     TimerBase* operator->() const { return *m_pointer; } | 
 | private: | 
 |     TimerBase** m_pointer; | 
 | }; | 
 |  | 
 | class TimerHeapReference { | 
 | public: | 
 |     TimerHeapReference(TimerBase*& reference) : m_reference(reference) { } | 
 |     operator TimerBase*() const { return m_reference; } | 
 |     TimerHeapPointer operator&() const { return &m_reference; } | 
 |     TimerHeapReference& operator=(TimerBase*); | 
 |     TimerHeapReference& operator=(TimerHeapReference); | 
 | private: | 
 |     TimerBase*& m_reference; | 
 | }; | 
 |  | 
 | inline TimerHeapReference TimerHeapPointer::operator*() const | 
 | { | 
 |     return *m_pointer; | 
 | } | 
 |  | 
 | inline TimerHeapReference& TimerHeapReference::operator=(TimerBase* timer) | 
 | { | 
 |     m_reference = timer; | 
 |     Vector<TimerBase*>& heap = timer->timerHeap(); | 
 |     if (&m_reference >= heap.data() && &m_reference < heap.data() + heap.size()) | 
 |         timer->m_heapIndex = &m_reference - heap.data(); | 
 |     return *this; | 
 | } | 
 |  | 
 | inline TimerHeapReference& TimerHeapReference::operator=(TimerHeapReference b) | 
 | { | 
 |     TimerBase* timer = b; | 
 |     return *this = timer; | 
 | } | 
 |  | 
 | inline void swap(TimerHeapReference a, TimerHeapReference b) | 
 | { | 
 |     TimerBase* timerA = a; | 
 |     TimerBase* timerB = b; | 
 |  | 
 |     // Invoke the assignment operator, since that takes care of updating m_heapIndex. | 
 |     a = timerB; | 
 |     b = timerA; | 
 | } | 
 |  | 
 | // ---------------- | 
 |  | 
 | // Class to represent iterators in the heap when calling the standard library heap algorithms. | 
 | // Uses a custom pointer and reference type that update indices for pointers in the heap. | 
 | class TimerHeapIterator : public std::iterator<std::random_access_iterator_tag, TimerBase*, ptrdiff_t, TimerHeapPointer, TimerHeapReference> { | 
 | public: | 
 |     explicit TimerHeapIterator(TimerBase** pointer) : m_pointer(pointer) { checkConsistency(); } | 
 |  | 
 |     TimerHeapIterator& operator++() { checkConsistency(); ++m_pointer; checkConsistency(); return *this; } | 
 |     TimerHeapIterator operator++(int) { checkConsistency(1); return TimerHeapIterator(m_pointer++); } | 
 |  | 
 |     TimerHeapIterator& operator--() { checkConsistency(); --m_pointer; checkConsistency(); return *this; } | 
 |     TimerHeapIterator operator--(int) { checkConsistency(-1); return TimerHeapIterator(m_pointer--); } | 
 |  | 
 |     TimerHeapIterator& operator+=(ptrdiff_t i) { checkConsistency(); m_pointer += i; checkConsistency(); return *this; } | 
 |     TimerHeapIterator& operator-=(ptrdiff_t i) { checkConsistency(); m_pointer -= i; checkConsistency(); return *this; } | 
 |  | 
 |     TimerHeapReference operator*() const { return TimerHeapReference(*m_pointer); } | 
 |     TimerHeapReference operator[](ptrdiff_t i) const { return TimerHeapReference(m_pointer[i]); } | 
 |     TimerBase* operator->() const { return *m_pointer; } | 
 |  | 
 | private: | 
 |     void checkConsistency(ptrdiff_t offset = 0) const | 
 |     { | 
 |         ASSERT(m_pointer >= threadGlobalTimerHeap().data()); | 
 |         ASSERT(m_pointer <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); | 
 |         ASSERT_UNUSED(offset, m_pointer + offset >= threadGlobalTimerHeap().data()); | 
 |         ASSERT_UNUSED(offset, m_pointer + offset <= threadGlobalTimerHeap().data() + threadGlobalTimerHeap().size()); | 
 |     } | 
 |  | 
 |     friend bool operator==(TimerHeapIterator, TimerHeapIterator); | 
 |     friend bool operator!=(TimerHeapIterator, TimerHeapIterator); | 
 |     friend bool operator<(TimerHeapIterator, TimerHeapIterator); | 
 |     friend bool operator>(TimerHeapIterator, TimerHeapIterator); | 
 |     friend bool operator<=(TimerHeapIterator, TimerHeapIterator); | 
 |     friend bool operator>=(TimerHeapIterator, TimerHeapIterator); | 
 |  | 
 |     friend TimerHeapIterator operator+(TimerHeapIterator, size_t); | 
 |     friend TimerHeapIterator operator+(size_t, TimerHeapIterator); | 
 |  | 
 |     friend TimerHeapIterator operator-(TimerHeapIterator, size_t); | 
 |     friend ptrdiff_t operator-(TimerHeapIterator, TimerHeapIterator); | 
 |  | 
 |     TimerBase** m_pointer; | 
 | }; | 
 |  | 
 | inline bool operator==(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer == b.m_pointer; } | 
 | inline bool operator!=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer != b.m_pointer; } | 
 | inline bool operator<(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer < b.m_pointer; } | 
 | inline bool operator>(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer > b.m_pointer; } | 
 | inline bool operator<=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer <= b.m_pointer; } | 
 | inline bool operator>=(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer >= b.m_pointer; } | 
 |  | 
 | inline TimerHeapIterator operator+(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer + b); } | 
 | inline TimerHeapIterator operator+(size_t a, TimerHeapIterator b) { return TimerHeapIterator(a + b.m_pointer); } | 
 |  | 
 | inline TimerHeapIterator operator-(TimerHeapIterator a, size_t b) { return TimerHeapIterator(a.m_pointer - b); } | 
 | inline ptrdiff_t operator-(TimerHeapIterator a, TimerHeapIterator b) { return a.m_pointer - b.m_pointer; } | 
 |  | 
 | // ---------------- | 
 |  | 
 | class TimerHeapLessThanFunction { | 
 | public: | 
 |     bool operator()(const TimerBase*, const TimerBase*) const; | 
 | }; | 
 |  | 
 | inline bool TimerHeapLessThanFunction::operator()(const TimerBase* a, const TimerBase* b) const | 
 | { | 
 |     // The comparisons below are "backwards" because the heap puts the largest | 
 |     // element first and we want the lowest time to be the first one in the heap. | 
 |     double aFireTime = a->m_nextFireTime; | 
 |     double bFireTime = b->m_nextFireTime; | 
 |     if (bFireTime != aFireTime) | 
 |         return bFireTime < aFireTime; | 
 |  | 
 |     // We need to look at the difference of the insertion orders instead of comparing the two | 
 |     // outright in case of overflow. | 
 |     unsigned difference = a->m_heapInsertionOrder - b->m_heapInsertionOrder; | 
 |     return difference < std::numeric_limits<unsigned>::max() / 2; | 
 | } | 
 |  | 
 | // ---------------- | 
 |  | 
 | TimerBase::TimerBase() | 
 |     : m_nextFireTime(0) | 
 |     , m_unalignedNextFireTime(0) | 
 |     , m_repeatInterval(0) | 
 |     , m_heapIndex(-1) | 
 |     , m_cachedThreadGlobalTimerHeap(0) | 
 | #if ENABLE(ASSERT) | 
 |     , m_thread(currentThread()) | 
 | #endif | 
 | { | 
 | } | 
 |  | 
 | TimerBase::~TimerBase() | 
 | { | 
 |     stop(); | 
 |     ASSERT(!inHeap()); | 
 | } | 
 |  | 
 | void TimerBase::start(double nextFireInterval, double repeatInterval, const tracked_objects::Location& caller) | 
 | { | 
 |     ASSERT(m_thread == currentThread()); | 
 |  | 
 |     m_location = caller; | 
 |     m_repeatInterval = repeatInterval; | 
 |     setNextFireTime(monotonicallyIncreasingTime() + nextFireInterval); | 
 | } | 
 |  | 
 | void TimerBase::stop() | 
 | { | 
 |     ASSERT(m_thread == currentThread()); | 
 |  | 
 |     m_repeatInterval = 0; | 
 |     setNextFireTime(0); | 
 |  | 
 |     ASSERT(m_nextFireTime == 0); | 
 |     ASSERT(m_repeatInterval == 0); | 
 |     ASSERT(!inHeap()); | 
 | } | 
 |  | 
 | double TimerBase::nextFireInterval() const | 
 | { | 
 |     ASSERT(isActive()); | 
 |     double current = monotonicallyIncreasingTime(); | 
 |     if (m_nextFireTime < current) | 
 |         return 0; | 
 |     return m_nextFireTime - current; | 
 | } | 
 |  | 
 | inline void TimerBase::checkHeapIndex() const | 
 | { | 
 |     ASSERT(timerHeap() == threadGlobalTimerHeap()); | 
 |     ASSERT(!timerHeap().isEmpty()); | 
 |     ASSERT(m_heapIndex >= 0); | 
 |     ASSERT(m_heapIndex < static_cast<int>(timerHeap().size())); | 
 |     ASSERT(timerHeap()[m_heapIndex] == this); | 
 | } | 
 |  | 
 | inline void TimerBase::checkConsistency() const | 
 | { | 
 |     // Timers should be in the heap if and only if they have a non-zero next fire time. | 
 |     ASSERT(inHeap() == (m_nextFireTime != 0)); | 
 |     if (inHeap()) | 
 |         checkHeapIndex(); | 
 | } | 
 |  | 
 | void TimerBase::heapDecreaseKey() | 
 | { | 
 |     ASSERT(m_nextFireTime != 0); | 
 |     checkHeapIndex(); | 
 |     TimerBase** heapData = timerHeap().data(); | 
 |     push_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + m_heapIndex + 1), TimerHeapLessThanFunction()); | 
 |     checkHeapIndex(); | 
 | } | 
 |  | 
 | inline void TimerBase::heapDelete() | 
 | { | 
 |     ASSERT(m_nextFireTime == 0); | 
 |     heapPop(); | 
 |     timerHeap().removeLast(); | 
 |     m_heapIndex = -1; | 
 | } | 
 |  | 
 | void TimerBase::heapDeleteMin() | 
 | { | 
 |     ASSERT(m_nextFireTime == 0); | 
 |     heapPopMin(); | 
 |     timerHeap().removeLast(); | 
 |     m_heapIndex = -1; | 
 | } | 
 |  | 
 | inline void TimerBase::heapIncreaseKey() | 
 | { | 
 |     ASSERT(m_nextFireTime != 0); | 
 |     heapPop(); | 
 |     heapDecreaseKey(); | 
 | } | 
 |  | 
 | inline void TimerBase::heapInsert() | 
 | { | 
 |     ASSERT(!inHeap()); | 
 |     timerHeap().append(this); | 
 |     m_heapIndex = timerHeap().size() - 1; | 
 |     heapDecreaseKey(); | 
 | } | 
 |  | 
 | inline void TimerBase::heapPop() | 
 | { | 
 |     // Temporarily force this timer to have the minimum key so we can pop it. | 
 |     double fireTime = m_nextFireTime; | 
 |     m_nextFireTime = -std::numeric_limits<double>::infinity(); | 
 |     heapDecreaseKey(); | 
 |     heapPopMin(); | 
 |     m_nextFireTime = fireTime; | 
 | } | 
 |  | 
 | void TimerBase::heapPopMin() | 
 | { | 
 |     ASSERT(this == timerHeap().first()); | 
 |     checkHeapIndex(); | 
 |     Vector<TimerBase*>& heap = timerHeap(); | 
 |     TimerBase** heapData = heap.data(); | 
 |     pop_heap(TimerHeapIterator(heapData), TimerHeapIterator(heapData + heap.size()), TimerHeapLessThanFunction()); | 
 |     checkHeapIndex(); | 
 |     ASSERT(this == timerHeap().last()); | 
 | } | 
 |  | 
 | static inline bool parentHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned currentIndex) | 
 | { | 
 |     if (!currentIndex) | 
 |         return true; | 
 |     unsigned parentIndex = (currentIndex - 1) / 2; | 
 |     TimerHeapLessThanFunction compareHeapPosition; | 
 |     return compareHeapPosition(current, heap[parentIndex]); | 
 | } | 
 |  | 
 | static inline bool childHeapPropertyHolds(const TimerBase* current, const Vector<TimerBase*>& heap, unsigned childIndex) | 
 | { | 
 |     if (childIndex >= heap.size()) | 
 |         return true; | 
 |     TimerHeapLessThanFunction compareHeapPosition; | 
 |     return compareHeapPosition(heap[childIndex], current); | 
 | } | 
 |  | 
 | bool TimerBase::hasValidHeapPosition() const | 
 | { | 
 |     ASSERT(m_nextFireTime); | 
 |     if (!inHeap()) | 
 |         return false; | 
 |     // Check if the heap property still holds with the new fire time. If it does we don't need to do anything. | 
 |     // This assumes that the STL heap is a standard binary heap. In an unlikely event it is not, the assertions | 
 |     // in updateHeapIfNeeded() will get hit. | 
 |     const Vector<TimerBase*>& heap = timerHeap(); | 
 |     if (!parentHeapPropertyHolds(this, heap, m_heapIndex)) | 
 |         return false; | 
 |     unsigned childIndex1 = 2 * m_heapIndex + 1; | 
 |     unsigned childIndex2 = childIndex1 + 1; | 
 |     return childHeapPropertyHolds(this, heap, childIndex1) && childHeapPropertyHolds(this, heap, childIndex2); | 
 | } | 
 |  | 
 | void TimerBase::updateHeapIfNeeded(double oldTime) | 
 | { | 
 |     if (m_nextFireTime && hasValidHeapPosition()) | 
 |         return; | 
 | #if ENABLE(ASSERT) | 
 |     int oldHeapIndex = m_heapIndex; | 
 | #endif | 
 |     if (!oldTime) | 
 |         heapInsert(); | 
 |     else if (!m_nextFireTime) | 
 |         heapDelete(); | 
 |     else if (m_nextFireTime < oldTime) | 
 |         heapDecreaseKey(); | 
 |     else | 
 |         heapIncreaseKey(); | 
 |     ASSERT(m_heapIndex != oldHeapIndex); | 
 |     ASSERT(!inHeap() || hasValidHeapPosition()); | 
 | } | 
 |  | 
 | void TimerBase::setNextFireTime(double newUnalignedTime) | 
 | { | 
 |     ASSERT(m_thread == currentThread()); | 
 |  | 
 |     if (m_unalignedNextFireTime != newUnalignedTime) | 
 |         m_unalignedNextFireTime = newUnalignedTime; | 
 |  | 
 |     // Accessing thread global data is slow. Cache the heap pointer. | 
 |     if (!m_cachedThreadGlobalTimerHeap) | 
 |         m_cachedThreadGlobalTimerHeap = &threadGlobalTimerHeap(); | 
 |  | 
 |     // Keep heap valid while changing the next-fire time. | 
 |     double oldTime = m_nextFireTime; | 
 |     double newTime = alignedFireTime(newUnalignedTime); | 
 |     if (oldTime != newTime) { | 
 |         m_nextFireTime = newTime; | 
 |         static unsigned currentHeapInsertionOrder; | 
 |         m_heapInsertionOrder = currentHeapInsertionOrder++; | 
 |  | 
 |         bool wasFirstTimerInHeap = m_heapIndex == 0; | 
 |  | 
 |         updateHeapIfNeeded(oldTime); | 
 |  | 
 |         bool isFirstTimerInHeap = m_heapIndex == 0; | 
 |  | 
 |         if (wasFirstTimerInHeap || isFirstTimerInHeap) | 
 |             PlatformThreadData::current().threadTimers().updateSharedTimer(); | 
 |     } | 
 |  | 
 |     checkConsistency(); | 
 | } | 
 |  | 
 | void TimerBase::fireTimersInNestedEventLoop() | 
 | { | 
 |     // Redirect to ThreadTimers. | 
 |     PlatformThreadData::current().threadTimers().fireTimersInNestedEventLoop(); | 
 | } | 
 |  | 
 | void TimerBase::didChangeAlignmentInterval() | 
 | { | 
 |     setNextFireTime(m_unalignedNextFireTime); | 
 | } | 
 |  | 
 | double TimerBase::nextUnalignedFireInterval() const | 
 | { | 
 |     ASSERT(isActive()); | 
 |     return std::max(m_unalignedNextFireTime - monotonicallyIncreasingTime(), 0.0); | 
 | } | 
 |  | 
 | } // namespace blink | 
 |  |