|  | /* vim: set ts=8 sw=8 noexpandtab: */ | 
|  | //  qcms | 
|  | //  Copyright (C) 2009 Mozilla Corporation | 
|  | //  Copyright (C) 1998-2007 Marti Maria | 
|  | // | 
|  | // Permission is hereby granted, free of charge, to any person obtaining | 
|  | // a copy of this software and associated documentation files (the "Software"), | 
|  | // to deal in the Software without restriction, including without limitation | 
|  | // the rights to use, copy, modify, merge, publish, distribute, sublicense, | 
|  | // and/or sell copies of the Software, and to permit persons to whom the Software | 
|  | // is furnished to do so, subject to the following conditions: | 
|  | // | 
|  | // The above copyright notice and this permission notice shall be included in | 
|  | // all copies or substantial portions of the Software. | 
|  | // | 
|  | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
|  | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO | 
|  | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
|  | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE | 
|  | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION | 
|  | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION | 
|  | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. | 
|  |  | 
|  | #include <stdlib.h> | 
|  | #include <math.h> | 
|  | #include <assert.h> | 
|  | #include <string.h> //memcpy | 
|  | #include "qcmsint.h" | 
|  | #include "chain.h" | 
|  | #include "matrix.h" | 
|  | #include "transform_util.h" | 
|  |  | 
|  | /* for MSVC, GCC, Intel, and Sun compilers */ | 
|  | #if defined(_M_IX86) || defined(__i386__) || defined(__i386) || defined(_M_AMD64) || defined(__x86_64__) || defined(__x86_64) | 
|  | #define X86 | 
|  | #endif /* _M_IX86 || __i386__ || __i386 || _M_AMD64 || __x86_64__ || __x86_64 */ | 
|  |  | 
|  | // Build a White point, primary chromas transfer matrix from RGB to CIE XYZ | 
|  | // This is just an approximation, I am not handling all the non-linear | 
|  | // aspects of the RGB to XYZ process, and assumming that the gamma correction | 
|  | // has transitive property in the tranformation chain. | 
|  | // | 
|  | // the alghoritm: | 
|  | // | 
|  | //            - First I build the absolute conversion matrix using | 
|  | //              primaries in XYZ. This matrix is next inverted | 
|  | //            - Then I eval the source white point across this matrix | 
|  | //              obtaining the coeficients of the transformation | 
|  | //            - Then, I apply these coeficients to the original matrix | 
|  | static struct matrix build_RGB_to_XYZ_transfer_matrix(qcms_CIE_xyY white, qcms_CIE_xyYTRIPLE primrs) | 
|  | { | 
|  | struct matrix primaries; | 
|  | struct matrix primaries_invert; | 
|  | struct matrix result; | 
|  | struct vector white_point; | 
|  | struct vector coefs; | 
|  |  | 
|  | double xn, yn; | 
|  | double xr, yr; | 
|  | double xg, yg; | 
|  | double xb, yb; | 
|  |  | 
|  | xn = white.x; | 
|  | yn = white.y; | 
|  |  | 
|  | if (yn == 0.0) | 
|  | return matrix_invalid(); | 
|  |  | 
|  | xr = primrs.red.x; | 
|  | yr = primrs.red.y; | 
|  | xg = primrs.green.x; | 
|  | yg = primrs.green.y; | 
|  | xb = primrs.blue.x; | 
|  | yb = primrs.blue.y; | 
|  |  | 
|  | primaries.m[0][0] = xr; | 
|  | primaries.m[0][1] = xg; | 
|  | primaries.m[0][2] = xb; | 
|  |  | 
|  | primaries.m[1][0] = yr; | 
|  | primaries.m[1][1] = yg; | 
|  | primaries.m[1][2] = yb; | 
|  |  | 
|  | primaries.m[2][0] = 1 - xr - yr; | 
|  | primaries.m[2][1] = 1 - xg - yg; | 
|  | primaries.m[2][2] = 1 - xb - yb; | 
|  | primaries.invalid = false; | 
|  |  | 
|  | white_point.v[0] = xn/yn; | 
|  | white_point.v[1] = 1.; | 
|  | white_point.v[2] = (1.0-xn-yn)/yn; | 
|  |  | 
|  | primaries_invert = matrix_invert(primaries); | 
|  |  | 
|  | coefs = matrix_eval(primaries_invert, white_point); | 
|  |  | 
|  | result.m[0][0] = coefs.v[0]*xr; | 
|  | result.m[0][1] = coefs.v[1]*xg; | 
|  | result.m[0][2] = coefs.v[2]*xb; | 
|  |  | 
|  | result.m[1][0] = coefs.v[0]*yr; | 
|  | result.m[1][1] = coefs.v[1]*yg; | 
|  | result.m[1][2] = coefs.v[2]*yb; | 
|  |  | 
|  | result.m[2][0] = coefs.v[0]*(1.-xr-yr); | 
|  | result.m[2][1] = coefs.v[1]*(1.-xg-yg); | 
|  | result.m[2][2] = coefs.v[2]*(1.-xb-yb); | 
|  | result.invalid = primaries_invert.invalid; | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | struct CIE_XYZ { | 
|  | double X; | 
|  | double Y; | 
|  | double Z; | 
|  | }; | 
|  |  | 
|  | /* CIE Illuminant D50 */ | 
|  | static const struct CIE_XYZ D50_XYZ = { | 
|  | 0.9642, | 
|  | 1.0000, | 
|  | 0.8249 | 
|  | }; | 
|  |  | 
|  | /* from lcms: xyY2XYZ() | 
|  | * corresponds to argyll: icmYxy2XYZ() */ | 
|  | static struct CIE_XYZ xyY2XYZ(qcms_CIE_xyY source) | 
|  | { | 
|  | struct CIE_XYZ dest; | 
|  | dest.X = (source.x / source.y) * source.Y; | 
|  | dest.Y = source.Y; | 
|  | dest.Z = ((1 - source.x - source.y) / source.y) * source.Y; | 
|  | return dest; | 
|  | } | 
|  |  | 
|  | /* from lcms: ComputeChromaticAdaption */ | 
|  | // Compute chromatic adaption matrix using chad as cone matrix | 
|  | static struct matrix | 
|  | compute_chromatic_adaption(struct CIE_XYZ source_white_point, | 
|  | struct CIE_XYZ dest_white_point, | 
|  | struct matrix chad) | 
|  | { | 
|  | struct matrix chad_inv; | 
|  | struct vector cone_source_XYZ, cone_source_rgb; | 
|  | struct vector cone_dest_XYZ, cone_dest_rgb; | 
|  | struct matrix cone, tmp; | 
|  |  | 
|  | tmp = chad; | 
|  | chad_inv = matrix_invert(tmp); | 
|  |  | 
|  | cone_source_XYZ.v[0] = source_white_point.X; | 
|  | cone_source_XYZ.v[1] = source_white_point.Y; | 
|  | cone_source_XYZ.v[2] = source_white_point.Z; | 
|  |  | 
|  | cone_dest_XYZ.v[0] = dest_white_point.X; | 
|  | cone_dest_XYZ.v[1] = dest_white_point.Y; | 
|  | cone_dest_XYZ.v[2] = dest_white_point.Z; | 
|  |  | 
|  | cone_source_rgb = matrix_eval(chad, cone_source_XYZ); | 
|  | cone_dest_rgb   = matrix_eval(chad, cone_dest_XYZ); | 
|  |  | 
|  | cone.m[0][0] = cone_dest_rgb.v[0]/cone_source_rgb.v[0]; | 
|  | cone.m[0][1] = 0; | 
|  | cone.m[0][2] = 0; | 
|  | cone.m[1][0] = 0; | 
|  | cone.m[1][1] = cone_dest_rgb.v[1]/cone_source_rgb.v[1]; | 
|  | cone.m[1][2] = 0; | 
|  | cone.m[2][0] = 0; | 
|  | cone.m[2][1] = 0; | 
|  | cone.m[2][2] = cone_dest_rgb.v[2]/cone_source_rgb.v[2]; | 
|  | cone.invalid = false; | 
|  |  | 
|  | // Normalize | 
|  | return matrix_multiply(chad_inv, matrix_multiply(cone, chad)); | 
|  | } | 
|  |  | 
|  | /* from lcms: cmsAdaptionMatrix */ | 
|  | // Returns the final chrmatic adaptation from illuminant FromIll to Illuminant ToIll | 
|  | // Bradford is assumed | 
|  | static struct matrix | 
|  | adaption_matrix(struct CIE_XYZ source_illumination, struct CIE_XYZ target_illumination) | 
|  | { | 
|  | #if defined (_MSC_VER) | 
|  | #pragma warning(push) | 
|  | /* Disable double to float truncation warning 4305 */ | 
|  | #pragma warning(disable:4305) | 
|  | #endif | 
|  | struct matrix lam_rigg = {{ // Bradford matrix | 
|  | {  0.8951,  0.2664, -0.1614 }, | 
|  | { -0.7502,  1.7135,  0.0367 }, | 
|  | {  0.0389, -0.0685,  1.0296 } | 
|  | }}; | 
|  | #if defined (_MSC_VER) | 
|  | /* Restore warnings */ | 
|  | #pragma warning(pop) | 
|  | #endif | 
|  | return compute_chromatic_adaption(source_illumination, target_illumination, lam_rigg); | 
|  | } | 
|  |  | 
|  | /* from lcms: cmsAdaptMatrixToD50 */ | 
|  | static struct matrix adapt_matrix_to_D50(struct matrix r, qcms_CIE_xyY source_white_pt) | 
|  | { | 
|  | struct CIE_XYZ Dn; | 
|  | struct matrix Bradford; | 
|  |  | 
|  | if (source_white_pt.y == 0.0) | 
|  | return matrix_invalid(); | 
|  |  | 
|  | Dn = xyY2XYZ(source_white_pt); | 
|  |  | 
|  | Bradford = adaption_matrix(Dn, D50_XYZ); | 
|  | return matrix_multiply(Bradford, r); | 
|  | } | 
|  |  | 
|  | qcms_bool set_rgb_colorants(qcms_profile *profile, qcms_CIE_xyY white_point, qcms_CIE_xyYTRIPLE primaries) | 
|  | { | 
|  | struct matrix colorants; | 
|  | colorants = build_RGB_to_XYZ_transfer_matrix(white_point, primaries); | 
|  | colorants = adapt_matrix_to_D50(colorants, white_point); | 
|  |  | 
|  | if (colorants.invalid) | 
|  | return false; | 
|  |  | 
|  | /* note: there's a transpose type of operation going on here */ | 
|  | profile->redColorant.X = double_to_s15Fixed16Number(colorants.m[0][0]); | 
|  | profile->redColorant.Y = double_to_s15Fixed16Number(colorants.m[1][0]); | 
|  | profile->redColorant.Z = double_to_s15Fixed16Number(colorants.m[2][0]); | 
|  |  | 
|  | profile->greenColorant.X = double_to_s15Fixed16Number(colorants.m[0][1]); | 
|  | profile->greenColorant.Y = double_to_s15Fixed16Number(colorants.m[1][1]); | 
|  | profile->greenColorant.Z = double_to_s15Fixed16Number(colorants.m[2][1]); | 
|  |  | 
|  | profile->blueColorant.X = double_to_s15Fixed16Number(colorants.m[0][2]); | 
|  | profile->blueColorant.Y = double_to_s15Fixed16Number(colorants.m[1][2]); | 
|  | profile->blueColorant.Z = double_to_s15Fixed16Number(colorants.m[2][2]); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static void qcms_transform_data_rgb_out_pow(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | int i; | 
|  | float (*mat)[4] = transform->matrix; | 
|  | for (i=0; i<length; i++) { | 
|  | unsigned char device_r = *src++; | 
|  | unsigned char device_g = *src++; | 
|  | unsigned char device_b = *src++; | 
|  |  | 
|  | float linear_r = transform->input_gamma_table_r[device_r]; | 
|  | float linear_g = transform->input_gamma_table_g[device_g]; | 
|  | float linear_b = transform->input_gamma_table_b[device_b]; | 
|  |  | 
|  | float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; | 
|  | float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; | 
|  | float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; | 
|  |  | 
|  | float out_device_r = pow(out_linear_r, transform->out_gamma_r); | 
|  | float out_device_g = pow(out_linear_g, transform->out_gamma_g); | 
|  | float out_device_b = pow(out_linear_b, transform->out_gamma_b); | 
|  |  | 
|  | dest[r_out] = clamp_u8(out_device_r*255); | 
|  | dest[1]     = clamp_u8(out_device_g*255); | 
|  | dest[b_out] = clamp_u8(out_device_b*255); | 
|  | dest += 3; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void qcms_transform_data_gray_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | unsigned int i; | 
|  | for (i = 0; i < length; i++) { | 
|  | float out_device_r, out_device_g, out_device_b; | 
|  | unsigned char device = *src++; | 
|  |  | 
|  | float linear = transform->input_gamma_table_gray[device]; | 
|  |  | 
|  | out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); | 
|  | out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); | 
|  | out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); | 
|  |  | 
|  | dest[r_out] = clamp_u8(out_device_r*255); | 
|  | dest[1]     = clamp_u8(out_device_g*255); | 
|  | dest[b_out] = clamp_u8(out_device_b*255); | 
|  | dest += 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Alpha is not corrected. | 
|  | A rationale for this is found in Alvy Ray's "Should Alpha Be Nonlinear If | 
|  | RGB Is?" Tech Memo 17 (December 14, 1998). | 
|  | See: ftp://ftp.alvyray.com/Acrobat/17_Nonln.pdf | 
|  | */ | 
|  |  | 
|  | static void qcms_transform_data_graya_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | unsigned int i; | 
|  | for (i = 0; i < length; i++) { | 
|  | float out_device_r, out_device_g, out_device_b; | 
|  | unsigned char device = *src++; | 
|  | unsigned char alpha = *src++; | 
|  |  | 
|  | float linear = transform->input_gamma_table_gray[device]; | 
|  |  | 
|  | out_device_r = lut_interp_linear(linear, transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); | 
|  | out_device_g = lut_interp_linear(linear, transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); | 
|  | out_device_b = lut_interp_linear(linear, transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); | 
|  |  | 
|  | dest[r_out] = clamp_u8(out_device_r*255); | 
|  | dest[1]     = clamp_u8(out_device_g*255); | 
|  | dest[b_out] = clamp_u8(out_device_b*255); | 
|  | dest[3]     = alpha; | 
|  | dest += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void qcms_transform_data_gray_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | unsigned int i; | 
|  | for (i = 0; i < length; i++) { | 
|  | unsigned char device = *src++; | 
|  | uint16_t gray; | 
|  |  | 
|  | float linear = transform->input_gamma_table_gray[device]; | 
|  |  | 
|  | /* we could round here... */ | 
|  | gray = linear * PRECACHE_OUTPUT_MAX; | 
|  |  | 
|  | dest[r_out] = transform->output_table_r->data[gray]; | 
|  | dest[1]     = transform->output_table_g->data[gray]; | 
|  | dest[b_out] = transform->output_table_b->data[gray]; | 
|  | dest += 3; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | static void qcms_transform_data_graya_out_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | unsigned int i; | 
|  | for (i = 0; i < length; i++) { | 
|  | unsigned char device = *src++; | 
|  | unsigned char alpha = *src++; | 
|  | uint16_t gray; | 
|  |  | 
|  | float linear = transform->input_gamma_table_gray[device]; | 
|  |  | 
|  | /* we could round here... */ | 
|  | gray = linear * PRECACHE_OUTPUT_MAX; | 
|  |  | 
|  | dest[r_out] = transform->output_table_r->data[gray]; | 
|  | dest[1]     = transform->output_table_g->data[gray]; | 
|  | dest[b_out] = transform->output_table_b->data[gray]; | 
|  | dest[3]     = alpha; | 
|  | dest += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qcms_transform_data_rgb_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | unsigned int i; | 
|  | float (*mat)[4] = transform->matrix; | 
|  | for (i = 0; i < length; i++) { | 
|  | unsigned char device_r = *src++; | 
|  | unsigned char device_g = *src++; | 
|  | unsigned char device_b = *src++; | 
|  | uint16_t r, g, b; | 
|  |  | 
|  | float linear_r = transform->input_gamma_table_r[device_r]; | 
|  | float linear_g = transform->input_gamma_table_g[device_g]; | 
|  | float linear_b = transform->input_gamma_table_b[device_b]; | 
|  |  | 
|  | float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; | 
|  | float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; | 
|  | float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; | 
|  |  | 
|  | out_linear_r = clamp_float(out_linear_r); | 
|  | out_linear_g = clamp_float(out_linear_g); | 
|  | out_linear_b = clamp_float(out_linear_b); | 
|  |  | 
|  | /* we could round here... */ | 
|  | r = out_linear_r * PRECACHE_OUTPUT_MAX; | 
|  | g = out_linear_g * PRECACHE_OUTPUT_MAX; | 
|  | b = out_linear_b * PRECACHE_OUTPUT_MAX; | 
|  |  | 
|  | dest[r_out] = transform->output_table_r->data[r]; | 
|  | dest[1]     = transform->output_table_g->data[g]; | 
|  | dest[b_out] = transform->output_table_b->data[b]; | 
|  | dest += 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qcms_transform_data_rgba_out_lut_precache(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | unsigned int i; | 
|  | float (*mat)[4] = transform->matrix; | 
|  | for (i = 0; i < length; i++) { | 
|  | unsigned char device_r = *src++; | 
|  | unsigned char device_g = *src++; | 
|  | unsigned char device_b = *src++; | 
|  | unsigned char alpha = *src++; | 
|  | uint16_t r, g, b; | 
|  |  | 
|  | float linear_r = transform->input_gamma_table_r[device_r]; | 
|  | float linear_g = transform->input_gamma_table_g[device_g]; | 
|  | float linear_b = transform->input_gamma_table_b[device_b]; | 
|  |  | 
|  | float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; | 
|  | float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; | 
|  | float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; | 
|  |  | 
|  | out_linear_r = clamp_float(out_linear_r); | 
|  | out_linear_g = clamp_float(out_linear_g); | 
|  | out_linear_b = clamp_float(out_linear_b); | 
|  |  | 
|  | /* we could round here... */ | 
|  | r = out_linear_r * PRECACHE_OUTPUT_MAX; | 
|  | g = out_linear_g * PRECACHE_OUTPUT_MAX; | 
|  | b = out_linear_b * PRECACHE_OUTPUT_MAX; | 
|  |  | 
|  | dest[r_out] = transform->output_table_r->data[r]; | 
|  | dest[1]     = transform->output_table_g->data[g]; | 
|  | dest[b_out] = transform->output_table_b->data[b]; | 
|  | dest[3]     = alpha; | 
|  | dest += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Not used | 
|  | /* | 
|  | static void qcms_transform_data_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | unsigned int i; | 
|  | int xy_len = 1; | 
|  | int x_len = transform->grid_size; | 
|  | int len = x_len * x_len; | 
|  | float* r_table = transform->r_clut; | 
|  | float* g_table = transform->g_clut; | 
|  | float* b_table = transform->b_clut; | 
|  |  | 
|  | for (i = 0; i < length; i++) { | 
|  | unsigned char in_r = *src++; | 
|  | unsigned char in_g = *src++; | 
|  | unsigned char in_b = *src++; | 
|  | float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f; | 
|  |  | 
|  | int x = floor(linear_r * (transform->grid_size-1)); | 
|  | int y = floor(linear_g * (transform->grid_size-1)); | 
|  | int z = floor(linear_b * (transform->grid_size-1)); | 
|  | int x_n = ceil(linear_r * (transform->grid_size-1)); | 
|  | int y_n = ceil(linear_g * (transform->grid_size-1)); | 
|  | int z_n = ceil(linear_b * (transform->grid_size-1)); | 
|  | float x_d = linear_r * (transform->grid_size-1) - x; | 
|  | float y_d = linear_g * (transform->grid_size-1) - y; | 
|  | float z_d = linear_b * (transform->grid_size-1) - z; | 
|  |  | 
|  | float r_x1 = lerp(CLU(r_table,x,y,z), CLU(r_table,x_n,y,z), x_d); | 
|  | float r_x2 = lerp(CLU(r_table,x,y_n,z), CLU(r_table,x_n,y_n,z), x_d); | 
|  | float r_y1 = lerp(r_x1, r_x2, y_d); | 
|  | float r_x3 = lerp(CLU(r_table,x,y,z_n), CLU(r_table,x_n,y,z_n), x_d); | 
|  | float r_x4 = lerp(CLU(r_table,x,y_n,z_n), CLU(r_table,x_n,y_n,z_n), x_d); | 
|  | float r_y2 = lerp(r_x3, r_x4, y_d); | 
|  | float clut_r = lerp(r_y1, r_y2, z_d); | 
|  |  | 
|  | float g_x1 = lerp(CLU(g_table,x,y,z), CLU(g_table,x_n,y,z), x_d); | 
|  | float g_x2 = lerp(CLU(g_table,x,y_n,z), CLU(g_table,x_n,y_n,z), x_d); | 
|  | float g_y1 = lerp(g_x1, g_x2, y_d); | 
|  | float g_x3 = lerp(CLU(g_table,x,y,z_n), CLU(g_table,x_n,y,z_n), x_d); | 
|  | float g_x4 = lerp(CLU(g_table,x,y_n,z_n), CLU(g_table,x_n,y_n,z_n), x_d); | 
|  | float g_y2 = lerp(g_x3, g_x4, y_d); | 
|  | float clut_g = lerp(g_y1, g_y2, z_d); | 
|  |  | 
|  | float b_x1 = lerp(CLU(b_table,x,y,z), CLU(b_table,x_n,y,z), x_d); | 
|  | float b_x2 = lerp(CLU(b_table,x,y_n,z), CLU(b_table,x_n,y_n,z), x_d); | 
|  | float b_y1 = lerp(b_x1, b_x2, y_d); | 
|  | float b_x3 = lerp(CLU(b_table,x,y,z_n), CLU(b_table,x_n,y,z_n), x_d); | 
|  | float b_x4 = lerp(CLU(b_table,x,y_n,z_n), CLU(b_table,x_n,y_n,z_n), x_d); | 
|  | float b_y2 = lerp(b_x3, b_x4, y_d); | 
|  | float clut_b = lerp(b_y1, b_y2, z_d); | 
|  |  | 
|  | dest[r_out] = clamp_u8(clut_r*255.0f); | 
|  | dest[1]     = clamp_u8(clut_g*255.0f); | 
|  | dest[b_out] = clamp_u8(clut_b*255.0f); | 
|  | dest += 3; | 
|  | } | 
|  | } | 
|  | */ | 
|  |  | 
|  | // Using lcms' tetra interpolation algorithm. | 
|  | static void qcms_transform_data_tetra_clut_rgba(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | unsigned int i; | 
|  | int xy_len = 1; | 
|  | int x_len = transform->grid_size; | 
|  | int len = x_len * x_len; | 
|  | float* r_table = transform->r_clut; | 
|  | float* g_table = transform->g_clut; | 
|  | float* b_table = transform->b_clut; | 
|  | float c0_r, c1_r, c2_r, c3_r; | 
|  | float c0_g, c1_g, c2_g, c3_g; | 
|  | float c0_b, c1_b, c2_b, c3_b; | 
|  | float clut_r, clut_g, clut_b; | 
|  | for (i = 0; i < length; i++) { | 
|  | unsigned char in_r = *src++; | 
|  | unsigned char in_g = *src++; | 
|  | unsigned char in_b = *src++; | 
|  | unsigned char in_a = *src++; | 
|  | float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f; | 
|  |  | 
|  | int x = floor(linear_r * (transform->grid_size-1)); | 
|  | int y = floor(linear_g * (transform->grid_size-1)); | 
|  | int z = floor(linear_b * (transform->grid_size-1)); | 
|  | int x_n = ceil(linear_r * (transform->grid_size-1)); | 
|  | int y_n = ceil(linear_g * (transform->grid_size-1)); | 
|  | int z_n = ceil(linear_b * (transform->grid_size-1)); | 
|  | float rx = linear_r * (transform->grid_size-1) - x; | 
|  | float ry = linear_g * (transform->grid_size-1) - y; | 
|  | float rz = linear_b * (transform->grid_size-1) - z; | 
|  |  | 
|  | c0_r = CLU(r_table, x, y, z); | 
|  | c0_g = CLU(g_table, x, y, z); | 
|  | c0_b = CLU(b_table, x, y, z); | 
|  |  | 
|  | if( rx >= ry ) { | 
|  | if (ry >= rz) { //rx >= ry && ry >= rz | 
|  | c1_r = CLU(r_table, x_n, y, z) - c0_r; | 
|  | c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z); | 
|  | c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); | 
|  | c1_g = CLU(g_table, x_n, y, z) - c0_g; | 
|  | c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z); | 
|  | c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); | 
|  | c1_b = CLU(b_table, x_n, y, z) - c0_b; | 
|  | c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z); | 
|  | c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); | 
|  | } else { | 
|  | if (rx >= rz) { //rx >= rz && rz >= ry | 
|  | c1_r = CLU(r_table, x_n, y, z) - c0_r; | 
|  | c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); | 
|  | c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z); | 
|  | c1_g = CLU(g_table, x_n, y, z) - c0_g; | 
|  | c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); | 
|  | c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z); | 
|  | c1_b = CLU(b_table, x_n, y, z) - c0_b; | 
|  | c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); | 
|  | c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z); | 
|  | } else { //rz > rx && rx >= ry | 
|  | c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n); | 
|  | c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); | 
|  | c3_r = CLU(r_table, x, y, z_n) - c0_r; | 
|  | c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n); | 
|  | c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); | 
|  | c3_g = CLU(g_table, x, y, z_n) - c0_g; | 
|  | c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n); | 
|  | c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); | 
|  | c3_b = CLU(b_table, x, y, z_n) - c0_b; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (rx >= rz) { //ry > rx && rx >= rz | 
|  | c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z); | 
|  | c2_r = CLU(r_table, x, y_n, z) - c0_r; | 
|  | c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); | 
|  | c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z); | 
|  | c2_g = CLU(g_table, x, y_n, z) - c0_g; | 
|  | c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); | 
|  | c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z); | 
|  | c2_b = CLU(b_table, x, y_n, z) - c0_b; | 
|  | c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); | 
|  | } else { | 
|  | if (ry >= rz) { //ry >= rz && rz > rx | 
|  | c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); | 
|  | c2_r = CLU(r_table, x, y_n, z) - c0_r; | 
|  | c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z); | 
|  | c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); | 
|  | c2_g = CLU(g_table, x, y_n, z) - c0_g; | 
|  | c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z); | 
|  | c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); | 
|  | c2_b = CLU(b_table, x, y_n, z) - c0_b; | 
|  | c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z); | 
|  | } else { //rz > ry && ry > rx | 
|  | c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); | 
|  | c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n); | 
|  | c3_r = CLU(r_table, x, y, z_n) - c0_r; | 
|  | c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); | 
|  | c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n); | 
|  | c3_g = CLU(g_table, x, y, z_n) - c0_g; | 
|  | c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); | 
|  | c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n); | 
|  | c3_b = CLU(b_table, x, y, z_n) - c0_b; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz; | 
|  | clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz; | 
|  | clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz; | 
|  |  | 
|  | dest[r_out] = clamp_u8(clut_r*255.0f); | 
|  | dest[1]     = clamp_u8(clut_g*255.0f); | 
|  | dest[b_out] = clamp_u8(clut_b*255.0f); | 
|  | dest[3]     = in_a; | 
|  | dest += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Using lcms' tetra interpolation code. | 
|  | static void qcms_transform_data_tetra_clut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | unsigned int i; | 
|  | int xy_len = 1; | 
|  | int x_len = transform->grid_size; | 
|  | int len = x_len * x_len; | 
|  | float* r_table = transform->r_clut; | 
|  | float* g_table = transform->g_clut; | 
|  | float* b_table = transform->b_clut; | 
|  | float c0_r, c1_r, c2_r, c3_r; | 
|  | float c0_g, c1_g, c2_g, c3_g; | 
|  | float c0_b, c1_b, c2_b, c3_b; | 
|  | float clut_r, clut_g, clut_b; | 
|  | for (i = 0; i < length; i++) { | 
|  | unsigned char in_r = *src++; | 
|  | unsigned char in_g = *src++; | 
|  | unsigned char in_b = *src++; | 
|  | float linear_r = in_r/255.0f, linear_g=in_g/255.0f, linear_b = in_b/255.0f; | 
|  |  | 
|  | int x = floor(linear_r * (transform->grid_size-1)); | 
|  | int y = floor(linear_g * (transform->grid_size-1)); | 
|  | int z = floor(linear_b * (transform->grid_size-1)); | 
|  | int x_n = ceil(linear_r * (transform->grid_size-1)); | 
|  | int y_n = ceil(linear_g * (transform->grid_size-1)); | 
|  | int z_n = ceil(linear_b * (transform->grid_size-1)); | 
|  | float rx = linear_r * (transform->grid_size-1) - x; | 
|  | float ry = linear_g * (transform->grid_size-1) - y; | 
|  | float rz = linear_b * (transform->grid_size-1) - z; | 
|  |  | 
|  | c0_r = CLU(r_table, x, y, z); | 
|  | c0_g = CLU(g_table, x, y, z); | 
|  | c0_b = CLU(b_table, x, y, z); | 
|  |  | 
|  | if( rx >= ry ) { | 
|  | if (ry >= rz) { //rx >= ry && ry >= rz | 
|  | c1_r = CLU(r_table, x_n, y, z) - c0_r; | 
|  | c2_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x_n, y, z); | 
|  | c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); | 
|  | c1_g = CLU(g_table, x_n, y, z) - c0_g; | 
|  | c2_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x_n, y, z); | 
|  | c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); | 
|  | c1_b = CLU(b_table, x_n, y, z) - c0_b; | 
|  | c2_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x_n, y, z); | 
|  | c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); | 
|  | } else { | 
|  | if (rx >= rz) { //rx >= rz && rz >= ry | 
|  | c1_r = CLU(r_table, x_n, y, z) - c0_r; | 
|  | c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); | 
|  | c3_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x_n, y, z); | 
|  | c1_g = CLU(g_table, x_n, y, z) - c0_g; | 
|  | c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); | 
|  | c3_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x_n, y, z); | 
|  | c1_b = CLU(b_table, x_n, y, z) - c0_b; | 
|  | c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); | 
|  | c3_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x_n, y, z); | 
|  | } else { //rz > rx && rx >= ry | 
|  | c1_r = CLU(r_table, x_n, y, z_n) - CLU(r_table, x, y, z_n); | 
|  | c2_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y, z_n); | 
|  | c3_r = CLU(r_table, x, y, z_n) - c0_r; | 
|  | c1_g = CLU(g_table, x_n, y, z_n) - CLU(g_table, x, y, z_n); | 
|  | c2_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y, z_n); | 
|  | c3_g = CLU(g_table, x, y, z_n) - c0_g; | 
|  | c1_b = CLU(b_table, x_n, y, z_n) - CLU(b_table, x, y, z_n); | 
|  | c2_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y, z_n); | 
|  | c3_b = CLU(b_table, x, y, z_n) - c0_b; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (rx >= rz) { //ry > rx && rx >= rz | 
|  | c1_r = CLU(r_table, x_n, y_n, z) - CLU(r_table, x, y_n, z); | 
|  | c2_r = CLU(r_table, x, y_n, z) - c0_r; | 
|  | c3_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x_n, y_n, z); | 
|  | c1_g = CLU(g_table, x_n, y_n, z) - CLU(g_table, x, y_n, z); | 
|  | c2_g = CLU(g_table, x, y_n, z) - c0_g; | 
|  | c3_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x_n, y_n, z); | 
|  | c1_b = CLU(b_table, x_n, y_n, z) - CLU(b_table, x, y_n, z); | 
|  | c2_b = CLU(b_table, x, y_n, z) - c0_b; | 
|  | c3_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x_n, y_n, z); | 
|  | } else { | 
|  | if (ry >= rz) { //ry >= rz && rz > rx | 
|  | c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); | 
|  | c2_r = CLU(r_table, x, y_n, z) - c0_r; | 
|  | c3_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y_n, z); | 
|  | c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); | 
|  | c2_g = CLU(g_table, x, y_n, z) - c0_g; | 
|  | c3_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y_n, z); | 
|  | c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); | 
|  | c2_b = CLU(b_table, x, y_n, z) - c0_b; | 
|  | c3_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y_n, z); | 
|  | } else { //rz > ry && ry > rx | 
|  | c1_r = CLU(r_table, x_n, y_n, z_n) - CLU(r_table, x, y_n, z_n); | 
|  | c2_r = CLU(r_table, x, y_n, z_n) - CLU(r_table, x, y, z_n); | 
|  | c3_r = CLU(r_table, x, y, z_n) - c0_r; | 
|  | c1_g = CLU(g_table, x_n, y_n, z_n) - CLU(g_table, x, y_n, z_n); | 
|  | c2_g = CLU(g_table, x, y_n, z_n) - CLU(g_table, x, y, z_n); | 
|  | c3_g = CLU(g_table, x, y, z_n) - c0_g; | 
|  | c1_b = CLU(b_table, x_n, y_n, z_n) - CLU(b_table, x, y_n, z_n); | 
|  | c2_b = CLU(b_table, x, y_n, z_n) - CLU(b_table, x, y, z_n); | 
|  | c3_b = CLU(b_table, x, y, z_n) - c0_b; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | clut_r = c0_r + c1_r*rx + c2_r*ry + c3_r*rz; | 
|  | clut_g = c0_g + c1_g*rx + c2_g*ry + c3_g*rz; | 
|  | clut_b = c0_b + c1_b*rx + c2_b*ry + c3_b*rz; | 
|  |  | 
|  | dest[r_out] = clamp_u8(clut_r*255.0f); | 
|  | dest[1]     = clamp_u8(clut_g*255.0f); | 
|  | dest[b_out] = clamp_u8(clut_b*255.0f); | 
|  | dest += 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qcms_transform_data_rgb_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | unsigned int i; | 
|  | float (*mat)[4] = transform->matrix; | 
|  | for (i = 0; i < length; i++) { | 
|  | unsigned char device_r = *src++; | 
|  | unsigned char device_g = *src++; | 
|  | unsigned char device_b = *src++; | 
|  | float out_device_r, out_device_g, out_device_b; | 
|  |  | 
|  | float linear_r = transform->input_gamma_table_r[device_r]; | 
|  | float linear_g = transform->input_gamma_table_g[device_g]; | 
|  | float linear_b = transform->input_gamma_table_b[device_b]; | 
|  |  | 
|  | float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; | 
|  | float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; | 
|  | float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; | 
|  |  | 
|  | out_linear_r = clamp_float(out_linear_r); | 
|  | out_linear_g = clamp_float(out_linear_g); | 
|  | out_linear_b = clamp_float(out_linear_b); | 
|  |  | 
|  | out_device_r = lut_interp_linear(out_linear_r, | 
|  | transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); | 
|  | out_device_g = lut_interp_linear(out_linear_g, | 
|  | transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); | 
|  | out_device_b = lut_interp_linear(out_linear_b, | 
|  | transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); | 
|  |  | 
|  | dest[r_out] = clamp_u8(out_device_r*255); | 
|  | dest[1]     = clamp_u8(out_device_g*255); | 
|  | dest[b_out] = clamp_u8(out_device_b*255); | 
|  | dest += 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void qcms_transform_data_rgba_out_lut(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | unsigned int i; | 
|  | float (*mat)[4] = transform->matrix; | 
|  | for (i = 0; i < length; i++) { | 
|  | unsigned char device_r = *src++; | 
|  | unsigned char device_g = *src++; | 
|  | unsigned char device_b = *src++; | 
|  | unsigned char alpha = *src++; | 
|  | float out_device_r, out_device_g, out_device_b; | 
|  |  | 
|  | float linear_r = transform->input_gamma_table_r[device_r]; | 
|  | float linear_g = transform->input_gamma_table_g[device_g]; | 
|  | float linear_b = transform->input_gamma_table_b[device_b]; | 
|  |  | 
|  | float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; | 
|  | float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; | 
|  | float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; | 
|  |  | 
|  | out_linear_r = clamp_float(out_linear_r); | 
|  | out_linear_g = clamp_float(out_linear_g); | 
|  | out_linear_b = clamp_float(out_linear_b); | 
|  |  | 
|  | out_device_r = lut_interp_linear(out_linear_r, | 
|  | transform->output_gamma_lut_r, transform->output_gamma_lut_r_length); | 
|  | out_device_g = lut_interp_linear(out_linear_g, | 
|  | transform->output_gamma_lut_g, transform->output_gamma_lut_g_length); | 
|  | out_device_b = lut_interp_linear(out_linear_b, | 
|  | transform->output_gamma_lut_b, transform->output_gamma_lut_b_length); | 
|  |  | 
|  | dest[r_out] = clamp_u8(out_device_r*255); | 
|  | dest[1]     = clamp_u8(out_device_g*255); | 
|  | dest[b_out] = clamp_u8(out_device_b*255); | 
|  | dest[3]     = alpha; | 
|  | dest += 4; | 
|  | } | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static void qcms_transform_data_rgb_out_linear(qcms_transform *transform, unsigned char *src, unsigned char *dest, size_t length, qcms_format_type output_format) | 
|  | { | 
|  | const int r_out = output_format.r; | 
|  | const int b_out = output_format.b; | 
|  |  | 
|  | int i; | 
|  | float (*mat)[4] = transform->matrix; | 
|  | for (i = 0; i < length; i++) { | 
|  | unsigned char device_r = *src++; | 
|  | unsigned char device_g = *src++; | 
|  | unsigned char device_b = *src++; | 
|  |  | 
|  | float linear_r = transform->input_gamma_table_r[device_r]; | 
|  | float linear_g = transform->input_gamma_table_g[device_g]; | 
|  | float linear_b = transform->input_gamma_table_b[device_b]; | 
|  |  | 
|  | float out_linear_r = mat[0][0]*linear_r + mat[1][0]*linear_g + mat[2][0]*linear_b; | 
|  | float out_linear_g = mat[0][1]*linear_r + mat[1][1]*linear_g + mat[2][1]*linear_b; | 
|  | float out_linear_b = mat[0][2]*linear_r + mat[1][2]*linear_g + mat[2][2]*linear_b; | 
|  |  | 
|  | dest[r_out] = clamp_u8(out_linear_r*255); | 
|  | dest[1]     = clamp_u8(out_linear_g*255); | 
|  | dest[b_out] = clamp_u8(out_linear_b*255); | 
|  | dest += 3; | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * If users create and destroy objects on different threads, even if the same | 
|  | * objects aren't used on different threads at the same time, we can still run | 
|  | * in to trouble with refcounts if they aren't atomic. | 
|  | * | 
|  | * This can lead to us prematurely deleting the precache if threads get unlucky | 
|  | * and write the wrong value to the ref count. | 
|  | */ | 
|  | static struct precache_output *precache_reference(struct precache_output *p) | 
|  | { | 
|  | qcms_atomic_increment(p->ref_count); | 
|  | return p; | 
|  | } | 
|  |  | 
|  | static struct precache_output *precache_create() | 
|  | { | 
|  | struct precache_output *p = malloc(sizeof(struct precache_output)); | 
|  | if (p) | 
|  | p->ref_count = 1; | 
|  | return p; | 
|  | } | 
|  |  | 
|  | void precache_release(struct precache_output *p) | 
|  | { | 
|  | if (qcms_atomic_decrement(p->ref_count) == 0) { | 
|  | free(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef HAVE_POSIX_MEMALIGN | 
|  | static qcms_transform *transform_alloc(void) | 
|  | { | 
|  | qcms_transform *t; | 
|  | if (!posix_memalign(&t, 16, sizeof(*t))) { | 
|  | return t; | 
|  | } else { | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  | static void transform_free(qcms_transform *t) | 
|  | { | 
|  | free(t); | 
|  | } | 
|  | #else | 
|  | static qcms_transform *transform_alloc(void) | 
|  | { | 
|  | /* transform needs to be aligned on a 16byte boundrary */ | 
|  | char *original_block = calloc(sizeof(qcms_transform) + sizeof(void*) + 16, 1); | 
|  | /* make room for a pointer to the block returned by calloc */ | 
|  | void *transform_start = original_block + sizeof(void*); | 
|  | /* align transform_start */ | 
|  | qcms_transform *transform_aligned = (qcms_transform*)(((uintptr_t)transform_start + 15) & ~0xf); | 
|  |  | 
|  | /* store a pointer to the block returned by calloc so that we can free it later */ | 
|  | void **(original_block_ptr) = (void**)transform_aligned; | 
|  | if (!original_block) | 
|  | return NULL; | 
|  | original_block_ptr--; | 
|  | *original_block_ptr = original_block; | 
|  |  | 
|  | return transform_aligned; | 
|  | } | 
|  | static void transform_free(qcms_transform *t) | 
|  | { | 
|  | /* get at the pointer to the unaligned block returned by calloc */ | 
|  | void **p = (void**)t; | 
|  | p--; | 
|  | free(*p); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void qcms_transform_release(qcms_transform *t) | 
|  | { | 
|  | /* ensure we only free the gamma tables once even if there are | 
|  | * multiple references to the same data */ | 
|  |  | 
|  | if (t->output_table_r) | 
|  | precache_release(t->output_table_r); | 
|  | if (t->output_table_g) | 
|  | precache_release(t->output_table_g); | 
|  | if (t->output_table_b) | 
|  | precache_release(t->output_table_b); | 
|  |  | 
|  | free(t->input_gamma_table_r); | 
|  | if (t->input_gamma_table_g != t->input_gamma_table_r) | 
|  | free(t->input_gamma_table_g); | 
|  | if (t->input_gamma_table_g != t->input_gamma_table_r && | 
|  | t->input_gamma_table_g != t->input_gamma_table_b) | 
|  | free(t->input_gamma_table_b); | 
|  |  | 
|  | free(t->input_gamma_table_gray); | 
|  |  | 
|  | free(t->output_gamma_lut_r); | 
|  | free(t->output_gamma_lut_g); | 
|  | free(t->output_gamma_lut_b); | 
|  |  | 
|  | transform_free(t); | 
|  | } | 
|  |  | 
|  | #ifdef X86 | 
|  | // Determine if we can build with SSE2 (this was partly copied from jmorecfg.h in | 
|  | // mozilla/jpeg) | 
|  | // ------------------------------------------------------------------------- | 
|  | #if defined(_M_IX86) && defined(_MSC_VER) | 
|  | #define HAS_CPUID | 
|  | /* Get us a CPUID function. Avoid clobbering EBX because sometimes it's the PIC | 
|  | register - I'm not sure if that ever happens on windows, but cpuid isn't | 
|  | on the critical path so we just preserve the register to be safe and to be | 
|  | consistent with the non-windows version. */ | 
|  | static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) { | 
|  | uint32_t a_, b_, c_, d_; | 
|  | __asm { | 
|  | xchg   ebx, esi | 
|  | mov    eax, fxn | 
|  | cpuid | 
|  | mov    a_, eax | 
|  | mov    b_, ebx | 
|  | mov    c_, ecx | 
|  | mov    d_, edx | 
|  | xchg   ebx, esi | 
|  | } | 
|  | *a = a_; | 
|  | *b = b_; | 
|  | *c = c_; | 
|  | *d = d_; | 
|  | } | 
|  | #elif (defined(__GNUC__) || defined(__SUNPRO_C)) && (defined(__i386__) || defined(__i386)) | 
|  | #define HAS_CPUID | 
|  | /* Get us a CPUID function. We can't use ebx because it's the PIC register on | 
|  | some platforms, so we use ESI instead and save ebx to avoid clobbering it. */ | 
|  | static void cpuid(uint32_t fxn, uint32_t *a, uint32_t *b, uint32_t *c, uint32_t *d) { | 
|  |  | 
|  | uint32_t a_, b_, c_, d_; | 
|  | __asm__ __volatile__ ("xchgl %%ebx, %%esi; cpuid; xchgl %%ebx, %%esi;" | 
|  | : "=a" (a_), "=S" (b_), "=c" (c_), "=d" (d_) : "a" (fxn)); | 
|  | *a = a_; | 
|  | *b = b_; | 
|  | *c = c_; | 
|  | *d = d_; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | // -------------------------Runtime SSEx Detection----------------------------- | 
|  |  | 
|  | /* MMX is always supported per | 
|  | *  Gecko v1.9.1 minimum CPU requirements */ | 
|  | #define SSE1_EDX_MASK (1UL << 25) | 
|  | #define SSE2_EDX_MASK (1UL << 26) | 
|  | #define SSE3_ECX_MASK (1UL <<  0) | 
|  |  | 
|  | static int sse_version_available(void) | 
|  | { | 
|  | #if defined(__x86_64__) || defined(__x86_64) || defined(_M_AMD64) | 
|  | /* we know at build time that 64-bit CPUs always have SSE2 | 
|  | * this tells the compiler that non-SSE2 branches will never be | 
|  | * taken (i.e. OK to optimze away the SSE1 and non-SIMD code */ | 
|  | return 2; | 
|  | #elif defined(HAS_CPUID) | 
|  | static int sse_version = -1; | 
|  | uint32_t a, b, c, d; | 
|  | uint32_t function = 0x00000001; | 
|  |  | 
|  | if (sse_version == -1) { | 
|  | sse_version = 0; | 
|  | cpuid(function, &a, &b, &c, &d); | 
|  | if (c & SSE3_ECX_MASK) | 
|  | sse_version = 3; | 
|  | else if (d & SSE2_EDX_MASK) | 
|  | sse_version = 2; | 
|  | else if (d & SSE1_EDX_MASK) | 
|  | sse_version = 1; | 
|  | } | 
|  |  | 
|  | return sse_version; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static const struct matrix bradford_matrix = {{	{ 0.8951f, 0.2664f,-0.1614f}, | 
|  | {-0.7502f, 1.7135f, 0.0367f}, | 
|  | { 0.0389f,-0.0685f, 1.0296f}}, | 
|  | false}; | 
|  |  | 
|  | static const struct matrix bradford_matrix_inv = {{ { 0.9869929f,-0.1470543f, 0.1599627f}, | 
|  | { 0.4323053f, 0.5183603f, 0.0492912f}, | 
|  | {-0.0085287f, 0.0400428f, 0.9684867f}}, | 
|  | false}; | 
|  |  | 
|  | // See ICCv4 E.3 | 
|  | struct matrix compute_whitepoint_adaption(float X, float Y, float Z) { | 
|  | float p = (0.96422f*bradford_matrix.m[0][0] + 1.000f*bradford_matrix.m[1][0] + 0.82521f*bradford_matrix.m[2][0]) / | 
|  | (X*bradford_matrix.m[0][0]      + Y*bradford_matrix.m[1][0]      + Z*bradford_matrix.m[2][0]     ); | 
|  | float y = (0.96422f*bradford_matrix.m[0][1] + 1.000f*bradford_matrix.m[1][1] + 0.82521f*bradford_matrix.m[2][1]) / | 
|  | (X*bradford_matrix.m[0][1]      + Y*bradford_matrix.m[1][1]      + Z*bradford_matrix.m[2][1]     ); | 
|  | float b = (0.96422f*bradford_matrix.m[0][2] + 1.000f*bradford_matrix.m[1][2] + 0.82521f*bradford_matrix.m[2][2]) / | 
|  | (X*bradford_matrix.m[0][2]      + Y*bradford_matrix.m[1][2]      + Z*bradford_matrix.m[2][2]     ); | 
|  | struct matrix white_adaption = {{ {p,0,0}, {0,y,0}, {0,0,b}}, false}; | 
|  | return matrix_multiply( bradford_matrix_inv, matrix_multiply(white_adaption, bradford_matrix) ); | 
|  | } | 
|  |  | 
|  | void qcms_profile_precache_output_transform(qcms_profile *profile) | 
|  | { | 
|  | /* we only support precaching on rgb profiles */ | 
|  | if (profile->color_space != RGB_SIGNATURE) | 
|  | return; | 
|  |  | 
|  | if (qcms_supports_iccv4) { | 
|  | /* don't precache since we will use the B2A LUT */ | 
|  | if (profile->B2A0) | 
|  | return; | 
|  |  | 
|  | /* don't precache since we will use the mBA LUT */ | 
|  | if (profile->mBA) | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* don't precache if we do not have the TRC curves */ | 
|  | if (!profile->redTRC || !profile->greenTRC || !profile->blueTRC) | 
|  | return; | 
|  |  | 
|  | if (!profile->output_table_r) { | 
|  | profile->output_table_r = precache_create(); | 
|  | if (profile->output_table_r && | 
|  | !compute_precache(profile->redTRC, profile->output_table_r->data)) { | 
|  | precache_release(profile->output_table_r); | 
|  | profile->output_table_r = NULL; | 
|  | } | 
|  | } | 
|  | if (!profile->output_table_g) { | 
|  | profile->output_table_g = precache_create(); | 
|  | if (profile->output_table_g && | 
|  | !compute_precache(profile->greenTRC, profile->output_table_g->data)) { | 
|  | precache_release(profile->output_table_g); | 
|  | profile->output_table_g = NULL; | 
|  | } | 
|  | } | 
|  | if (!profile->output_table_b) { | 
|  | profile->output_table_b = precache_create(); | 
|  | if (profile->output_table_b && | 
|  | !compute_precache(profile->blueTRC, profile->output_table_b->data)) { | 
|  | precache_release(profile->output_table_b); | 
|  | profile->output_table_b = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Replace the current transformation with a LUT transformation using a given number of sample points */ | 
|  | qcms_transform* qcms_transform_precacheLUT_float(qcms_transform *transform, qcms_profile *in, qcms_profile *out, | 
|  | int samples, qcms_data_type in_type) | 
|  | { | 
|  | /* The range between which 2 consecutive sample points can be used to interpolate */ | 
|  | uint16_t x,y,z; | 
|  | uint32_t l; | 
|  | uint32_t lutSize = 3 * samples * samples * samples; | 
|  | float* src = NULL; | 
|  | float* dest = NULL; | 
|  | float* lut = NULL; | 
|  | float inverse; | 
|  |  | 
|  | src = malloc(lutSize*sizeof(float)); | 
|  | dest = malloc(lutSize*sizeof(float)); | 
|  |  | 
|  | if (src && dest) { | 
|  | /* Prepare a list of points we want to sample: x, y, z order */ | 
|  | l = 0; | 
|  | inverse = 1 / (float)(samples-1); | 
|  | for (x = 0; x < samples; x++) { | 
|  | for (y = 0; y < samples; y++) { | 
|  | for (z = 0; z < samples; z++) { | 
|  | src[l++] = x * inverse; // r | 
|  | src[l++] = y * inverse; // g | 
|  | src[l++] = z * inverse; // b | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | lut = qcms_chain_transform(in, out, src, dest, lutSize); | 
|  |  | 
|  | if (lut) { | 
|  | transform->r_clut = &lut[0]; // r | 
|  | transform->g_clut = &lut[1]; // g | 
|  | transform->b_clut = &lut[2]; // b | 
|  | transform->grid_size = samples; | 
|  | if (in_type == QCMS_DATA_RGBA_8) { | 
|  | transform->transform_fn = qcms_transform_data_tetra_clut_rgba; | 
|  | } else { | 
|  | transform->transform_fn = qcms_transform_data_tetra_clut; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // XXX: qcms_modular_transform_data may return the lut in either the src or the | 
|  | // dest buffer. If so, it must not be free-ed. | 
|  | if (src && lut != src) { | 
|  | free(src); | 
|  | } | 
|  | if (dest && lut != dest) { | 
|  | free(dest); | 
|  | } | 
|  |  | 
|  | if (lut == NULL) { | 
|  | return NULL; | 
|  | } | 
|  | return transform; | 
|  | } | 
|  |  | 
|  | /* Create a transform LUT using the given number of sample points. The transform LUT data is stored | 
|  | in the output (cube) in bgra format in zyx sample order. */ | 
|  | qcms_bool qcms_transform_create_LUT_zyx_bgra(qcms_profile *in, qcms_profile *out, qcms_intent intent, | 
|  | int samples, unsigned char* cube) | 
|  | { | 
|  | uint16_t z,y,x; | 
|  | uint32_t l,index; | 
|  | uint32_t lutSize = 3 * samples * samples * samples; | 
|  |  | 
|  | float* src = NULL; | 
|  | float* dest = NULL; | 
|  | float* lut = NULL; | 
|  | float inverse; | 
|  |  | 
|  | src = malloc(lutSize*sizeof(float)); | 
|  | dest = malloc(lutSize*sizeof(float)); | 
|  |  | 
|  | if (src && dest) { | 
|  | /* Prepare a list of points we want to sample: z, y, x order */ | 
|  | l = 0; | 
|  | inverse = 1 / (float)(samples-1); | 
|  | for (z = 0; z < samples; z++) { | 
|  | for (y = 0; y < samples; y++) { | 
|  | for (x = 0; x < samples; x++) { | 
|  | src[l++] = x * inverse; // r | 
|  | src[l++] = y * inverse; // g | 
|  | src[l++] = z * inverse; // b | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | lut = qcms_chain_transform(in, out, src, dest, lutSize); | 
|  |  | 
|  | if (lut) { | 
|  | index = l = 0; | 
|  | for (z = 0; z < samples; z++) { | 
|  | for (y = 0; y < samples; y++) { | 
|  | for (x = 0; x < samples; x++) { | 
|  | cube[index++] = (int)floorf(lut[l + 2] * 255.0f + 0.5f); // b | 
|  | cube[index++] = (int)floorf(lut[l + 1] * 255.0f + 0.5f); // g | 
|  | cube[index++] = (int)floorf(lut[l + 0] * 255.0f + 0.5f); // r | 
|  | cube[index++] = 255;                                     // a | 
|  | l += 3; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // XXX: qcms_modular_transform_data may return the lut data in either the src or | 
|  | // dest buffer so free src, dest, and lut with care. | 
|  |  | 
|  | if (src && lut != src) | 
|  | free(src); | 
|  | if (dest && lut != dest) | 
|  | free(dest); | 
|  |  | 
|  | if (lut) { | 
|  | free(lut); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  | #define NO_MEM_TRANSFORM NULL | 
|  |  | 
|  | qcms_transform* qcms_transform_create( | 
|  | qcms_profile *in, qcms_data_type in_type, | 
|  | qcms_profile *out, qcms_data_type out_type, | 
|  | qcms_intent intent) | 
|  | { | 
|  | bool precache = false; | 
|  |  | 
|  | qcms_transform *transform = transform_alloc(); | 
|  | if (!transform) { | 
|  | return NULL; | 
|  | } | 
|  | if (out_type != QCMS_DATA_RGB_8 && | 
|  | out_type != QCMS_DATA_RGBA_8) { | 
|  | assert(0 && "output type"); | 
|  | transform_free(transform); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (out->output_table_r && | 
|  | out->output_table_g && | 
|  | out->output_table_b) { | 
|  | precache = true; | 
|  | } | 
|  |  | 
|  | if (qcms_supports_iccv4 && (in->A2B0 || out->B2A0 || in->mAB || out->mAB)) { | 
|  | // Precache the transformation to a CLUT 33x33x33 in size. | 
|  | // 33 is used by many profiles and works well in pratice. | 
|  | // This evenly divides 256 into blocks of 8x8x8. | 
|  | // TODO For transforming small data sets of about 200x200 or less | 
|  | // precaching should be avoided. | 
|  | qcms_transform *result = qcms_transform_precacheLUT_float(transform, in, out, 33, in_type); | 
|  | if (!result) { | 
|  | assert(0 && "precacheLUT failed"); | 
|  | transform_free(transform); | 
|  | return NULL; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | if (precache) { | 
|  | transform->output_table_r = precache_reference(out->output_table_r); | 
|  | transform->output_table_g = precache_reference(out->output_table_g); | 
|  | transform->output_table_b = precache_reference(out->output_table_b); | 
|  | } else { | 
|  | if (!out->redTRC || !out->greenTRC || !out->blueTRC) { | 
|  | qcms_transform_release(transform); | 
|  | return NO_MEM_TRANSFORM; | 
|  | } | 
|  | build_output_lut(out->redTRC, &transform->output_gamma_lut_r, &transform->output_gamma_lut_r_length); | 
|  | build_output_lut(out->greenTRC, &transform->output_gamma_lut_g, &transform->output_gamma_lut_g_length); | 
|  | build_output_lut(out->blueTRC, &transform->output_gamma_lut_b, &transform->output_gamma_lut_b_length); | 
|  | if (!transform->output_gamma_lut_r || !transform->output_gamma_lut_g || !transform->output_gamma_lut_b) { | 
|  | qcms_transform_release(transform); | 
|  | return NO_MEM_TRANSFORM; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (in->color_space == RGB_SIGNATURE) { | 
|  | struct matrix in_matrix, out_matrix, result; | 
|  |  | 
|  | if (in_type != QCMS_DATA_RGB_8 && | 
|  | in_type != QCMS_DATA_RGBA_8){ | 
|  | assert(0 && "input type"); | 
|  | transform_free(transform); | 
|  | return NULL; | 
|  | } | 
|  | if (precache) { | 
|  | #if defined(SSE2_ENABLE) && defined(X86) | 
|  | if (sse_version_available() >= 2) { | 
|  | if (in_type == QCMS_DATA_RGB_8) | 
|  | transform->transform_fn = qcms_transform_data_rgb_out_lut_sse2; | 
|  | else | 
|  | transform->transform_fn = qcms_transform_data_rgba_out_lut_sse2; | 
|  |  | 
|  | #if defined(SSE2_ENABLE) && !(defined(_MSC_VER) && defined(_M_AMD64)) | 
|  | /* Microsoft Compiler for x64 doesn't support MMX. | 
|  | * SSE code uses MMX so that we disable on x64 */ | 
|  | } else | 
|  | if (sse_version_available() >= 1) { | 
|  | if (in_type == QCMS_DATA_RGB_8) | 
|  | transform->transform_fn = qcms_transform_data_rgb_out_lut_sse1; | 
|  | else | 
|  | transform->transform_fn = qcms_transform_data_rgba_out_lut_sse1; | 
|  | #endif | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | if (in_type == QCMS_DATA_RGB_8) | 
|  | transform->transform_fn = qcms_transform_data_rgb_out_lut_precache; | 
|  | else | 
|  | transform->transform_fn = qcms_transform_data_rgba_out_lut_precache; | 
|  | } | 
|  | } else { | 
|  | if (in_type == QCMS_DATA_RGB_8) | 
|  | transform->transform_fn = qcms_transform_data_rgb_out_lut; | 
|  | else | 
|  | transform->transform_fn = qcms_transform_data_rgba_out_lut; | 
|  | } | 
|  |  | 
|  | //XXX: avoid duplicating tables if we can | 
|  | transform->input_gamma_table_r = build_input_gamma_table(in->redTRC); | 
|  | transform->input_gamma_table_g = build_input_gamma_table(in->greenTRC); | 
|  | transform->input_gamma_table_b = build_input_gamma_table(in->blueTRC); | 
|  | if (!transform->input_gamma_table_r || !transform->input_gamma_table_g || !transform->input_gamma_table_b) { | 
|  | qcms_transform_release(transform); | 
|  | return NO_MEM_TRANSFORM; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* build combined colorant matrix */ | 
|  | in_matrix = build_colorant_matrix(in); | 
|  | out_matrix = build_colorant_matrix(out); | 
|  | out_matrix = matrix_invert(out_matrix); | 
|  | if (out_matrix.invalid) { | 
|  | qcms_transform_release(transform); | 
|  | return NULL; | 
|  | } | 
|  | result = matrix_multiply(out_matrix, in_matrix); | 
|  |  | 
|  | /* store the results in column major mode | 
|  | * this makes doing the multiplication with sse easier */ | 
|  | transform->matrix[0][0] = result.m[0][0]; | 
|  | transform->matrix[1][0] = result.m[0][1]; | 
|  | transform->matrix[2][0] = result.m[0][2]; | 
|  | transform->matrix[0][1] = result.m[1][0]; | 
|  | transform->matrix[1][1] = result.m[1][1]; | 
|  | transform->matrix[2][1] = result.m[1][2]; | 
|  | transform->matrix[0][2] = result.m[2][0]; | 
|  | transform->matrix[1][2] = result.m[2][1]; | 
|  | transform->matrix[2][2] = result.m[2][2]; | 
|  |  | 
|  | } else if (in->color_space == GRAY_SIGNATURE) { | 
|  | if (in_type != QCMS_DATA_GRAY_8 && | 
|  | in_type != QCMS_DATA_GRAYA_8){ | 
|  | assert(0 && "input type"); | 
|  | transform_free(transform); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | transform->input_gamma_table_gray = build_input_gamma_table(in->grayTRC); | 
|  | if (!transform->input_gamma_table_gray) { | 
|  | qcms_transform_release(transform); | 
|  | return NO_MEM_TRANSFORM; | 
|  | } | 
|  |  | 
|  | if (precache) { | 
|  | if (in_type == QCMS_DATA_GRAY_8) { | 
|  | transform->transform_fn = qcms_transform_data_gray_out_precache; | 
|  | } else { | 
|  | transform->transform_fn = qcms_transform_data_graya_out_precache; | 
|  | } | 
|  | } else { | 
|  | if (in_type == QCMS_DATA_GRAY_8) { | 
|  | transform->transform_fn = qcms_transform_data_gray_out_lut; | 
|  | } else { | 
|  | transform->transform_fn = qcms_transform_data_graya_out_lut; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | assert(0 && "unexpected colorspace"); | 
|  | transform_free(transform); | 
|  | return NULL; | 
|  | } | 
|  | return transform; | 
|  | } | 
|  |  | 
|  | /* __force_align_arg_pointer__ is an x86-only attribute, and gcc/clang warns on unused | 
|  | * attributes. Don't use this on ARM or AMD64. __has_attribute can detect the presence | 
|  | * of the attribute but is currently only supported by clang */ | 
|  | #if defined(__has_attribute) | 
|  | #define HAS_FORCE_ALIGN_ARG_POINTER __has_attribute(__force_align_arg_pointer__) | 
|  | #elif defined(__GNUC__) && !defined(__x86_64__) && !defined(__amd64__) && !defined(__arm__) && !defined(__mips__) | 
|  | #define HAS_FORCE_ALIGN_ARG_POINTER 1 | 
|  | #else | 
|  | #define HAS_FORCE_ALIGN_ARG_POINTER 0 | 
|  | #endif | 
|  |  | 
|  | #if HAS_FORCE_ALIGN_ARG_POINTER | 
|  | /* we need this to avoid crashes when gcc assumes the stack is 128bit aligned */ | 
|  | __attribute__((__force_align_arg_pointer__)) | 
|  | #endif | 
|  | void qcms_transform_data(qcms_transform *transform, void *src, void *dest, size_t length) | 
|  | { | 
|  | static const struct _qcms_format_type output_rgbx = { 0, 2 }; | 
|  |  | 
|  | transform->transform_fn(transform, src, dest, length, output_rgbx); | 
|  | } | 
|  |  | 
|  | void qcms_transform_data_type(qcms_transform *transform, void *src, void *dest, size_t length, qcms_output_type type) | 
|  | { | 
|  | static const struct _qcms_format_type output_rgbx = { 0, 2 }; | 
|  | static const struct _qcms_format_type output_bgrx = { 2, 0 }; | 
|  |  | 
|  | transform->transform_fn(transform, src, dest, length, type == QCMS_OUTPUT_BGRX ? output_bgrx : output_rgbx); | 
|  | } | 
|  |  | 
|  | qcms_bool qcms_supports_iccv4; | 
|  | void qcms_enable_iccv4() | 
|  | { | 
|  | qcms_supports_iccv4 = true; | 
|  | } |