| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/quic/quic_sent_packet_manager.h" |
| |
| #include <algorithm> |
| |
| #include "base/logging.h" |
| #include "base/stl_util.h" |
| #include "net/quic/congestion_control/pacing_sender.h" |
| #include "net/quic/crypto/crypto_protocol.h" |
| #include "net/quic/quic_ack_notifier_manager.h" |
| #include "net/quic/quic_connection_stats.h" |
| #include "net/quic/quic_flags.h" |
| #include "net/quic/quic_utils_chromium.h" |
| |
| using std::make_pair; |
| using std::max; |
| using std::min; |
| |
| namespace net { |
| |
| // The length of the recent min rtt window in seconds. Windowing is disabled for |
| // values less than or equal to 0. |
| int32 FLAGS_quic_recent_min_rtt_window_s = 60; |
| |
| namespace { |
| static const int64 kDefaultRetransmissionTimeMs = 500; |
| // TCP RFC calls for 1 second RTO however Linux differs from this default and |
| // define the minimum RTO to 200ms, we will use the same until we have data to |
| // support a higher or lower value. |
| static const int64 kMinRetransmissionTimeMs = 200; |
| static const int64 kMaxRetransmissionTimeMs = 60000; |
| static const size_t kMaxRetransmissions = 10; |
| |
| // Ensure the handshake timer isnt't faster than 10ms. |
| // This limits the tenth retransmitted packet to 10s after the initial CHLO. |
| static const int64 kMinHandshakeTimeoutMs = 10; |
| |
| // Sends up to two tail loss probes before firing an RTO, |
| // per draft RFC draft-dukkipati-tcpm-tcp-loss-probe. |
| static const size_t kDefaultMaxTailLossProbes = 2; |
| static const int64 kMinTailLossProbeTimeoutMs = 10; |
| |
| // Number of samples before we force a new recent min rtt to be captured. |
| static const size_t kNumMinRttSamplesAfterQuiescence = 2; |
| |
| // Number of unpaced packets to send after quiescence. |
| static const size_t kInitialUnpacedBurst = 10; |
| |
| // Fraction of the receive buffer that can be used for encrypted bytes. |
| // Allows a 5% overhead for IP and UDP framing, as well as ack only packets. |
| static const float kUsableRecieveBufferFraction = 0.95f; |
| |
| bool HasCryptoHandshake(const TransmissionInfo& transmission_info) { |
| if (transmission_info.retransmittable_frames == nullptr) { |
| return false; |
| } |
| return transmission_info.retransmittable_frames->HasCryptoHandshake() == |
| IS_HANDSHAKE; |
| } |
| |
| } // namespace |
| |
| #define ENDPOINT (is_server_ ? "Server: " : " Client: ") |
| |
| QuicSentPacketManager::QuicSentPacketManager( |
| bool is_server, |
| const QuicClock* clock, |
| QuicConnectionStats* stats, |
| CongestionControlType congestion_control_type, |
| LossDetectionType loss_type, |
| bool is_secure) |
| : unacked_packets_(), |
| is_server_(is_server), |
| clock_(clock), |
| stats_(stats), |
| debug_delegate_(nullptr), |
| network_change_visitor_(nullptr), |
| initial_congestion_window_(is_secure ? kInitialCongestionWindowSecure |
| : kInitialCongestionWindowInsecure), |
| send_algorithm_( |
| SendAlgorithmInterface::Create(clock, |
| &rtt_stats_, |
| congestion_control_type, |
| stats, |
| initial_congestion_window_)), |
| loss_algorithm_(LossDetectionInterface::Create(loss_type)), |
| n_connection_simulation_(false), |
| receive_buffer_bytes_(kDefaultSocketReceiveBuffer), |
| least_packet_awaited_by_peer_(1), |
| first_rto_transmission_(0), |
| consecutive_rto_count_(0), |
| consecutive_tlp_count_(0), |
| consecutive_crypto_retransmission_count_(0), |
| pending_timer_transmission_count_(0), |
| max_tail_loss_probes_(kDefaultMaxTailLossProbes), |
| using_pacing_(false), |
| handshake_confirmed_(false) { |
| } |
| |
| QuicSentPacketManager::~QuicSentPacketManager() { |
| } |
| |
| void QuicSentPacketManager::SetFromConfig(const QuicConfig& config) { |
| if (config.HasReceivedInitialRoundTripTimeUs() && |
| config.ReceivedInitialRoundTripTimeUs() > 0) { |
| rtt_stats_.set_initial_rtt_us( |
| max(kMinInitialRoundTripTimeUs, |
| min(kMaxInitialRoundTripTimeUs, |
| config.ReceivedInitialRoundTripTimeUs()))); |
| } else if (config.HasInitialRoundTripTimeUsToSend() && |
| config.GetInitialRoundTripTimeUsToSend() > 0) { |
| rtt_stats_.set_initial_rtt_us( |
| max(kMinInitialRoundTripTimeUs, |
| min(kMaxInitialRoundTripTimeUs, |
| config.GetInitialRoundTripTimeUsToSend()))); |
| } |
| // TODO(ianswett): BBR is currently a server only feature. |
| if (FLAGS_quic_allow_bbr && |
| config.HasReceivedConnectionOptions() && |
| ContainsQuicTag(config.ReceivedConnectionOptions(), kTBBR)) { |
| if (FLAGS_quic_recent_min_rtt_window_s > 0) { |
| rtt_stats_.set_recent_min_rtt_window( |
| QuicTime::Delta::FromSeconds(FLAGS_quic_recent_min_rtt_window_s)); |
| } |
| send_algorithm_.reset(SendAlgorithmInterface::Create( |
| clock_, &rtt_stats_, kBBR, stats_, initial_congestion_window_)); |
| } |
| if (config.HasReceivedConnectionOptions() && |
| ContainsQuicTag(config.ReceivedConnectionOptions(), kRENO)) { |
| send_algorithm_.reset(SendAlgorithmInterface::Create( |
| clock_, &rtt_stats_, kReno, stats_, initial_congestion_window_)); |
| } |
| if (HasClientSentConnectionOption(config, kPACE) || |
| (FLAGS_quic_allow_bbr && |
| HasClientSentConnectionOption(config, kTBBR))) { |
| EnablePacing(); |
| } |
| if (HasClientSentConnectionOption(config, k1CON)) { |
| send_algorithm_->SetNumEmulatedConnections(1); |
| } |
| if (HasClientSentConnectionOption(config, kNCON)) { |
| n_connection_simulation_ = true; |
| } |
| if (HasClientSentConnectionOption(config, kNTLP)) { |
| max_tail_loss_probes_ = 0; |
| } |
| if (config.HasReceivedConnectionOptions() && |
| ContainsQuicTag(config.ReceivedConnectionOptions(), kTIME)) { |
| loss_algorithm_.reset(LossDetectionInterface::Create(kTime)); |
| } |
| if (config.HasReceivedSocketReceiveBuffer()) { |
| receive_buffer_bytes_ = |
| max(kMinSocketReceiveBuffer, |
| static_cast<QuicByteCount>(config.ReceivedSocketReceiveBuffer())); |
| } |
| send_algorithm_->SetFromConfig(config, is_server_, using_pacing_); |
| |
| if (network_change_visitor_ != nullptr) { |
| network_change_visitor_->OnCongestionWindowChange(); |
| } |
| } |
| |
| void QuicSentPacketManager::ResumeConnectionState( |
| const CachedNetworkParameters& cached_network_params) { |
| send_algorithm_->ResumeConnectionState(cached_network_params); |
| } |
| |
| void QuicSentPacketManager::SetNumOpenStreams(size_t num_streams) { |
| if (n_connection_simulation_) { |
| // Ensure the number of connections is between 1 and 5. |
| send_algorithm_->SetNumEmulatedConnections( |
| min<size_t>(5, max<size_t>(1, num_streams))); |
| } |
| } |
| |
| bool QuicSentPacketManager::HasClientSentConnectionOption( |
| const QuicConfig& config, QuicTag tag) const { |
| if (is_server_) { |
| if (config.HasReceivedConnectionOptions() && |
| ContainsQuicTag(config.ReceivedConnectionOptions(), tag)) { |
| return true; |
| } |
| } else if (config.HasSendConnectionOptions() && |
| ContainsQuicTag(config.SendConnectionOptions(), tag)) { |
| return true; |
| } |
| return false; |
| } |
| |
| void QuicSentPacketManager::OnIncomingAck(const QuicAckFrame& ack_frame, |
| QuicTime ack_receive_time) { |
| QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight(); |
| |
| UpdatePacketInformationReceivedByPeer(ack_frame); |
| // We rely on delta_time_largest_observed to compute an RTT estimate, so |
| // we only update rtt when the largest observed gets acked. |
| bool largest_observed_acked = MaybeUpdateRTT(ack_frame, ack_receive_time); |
| DCHECK_GE(ack_frame.largest_observed, unacked_packets_.largest_observed()); |
| unacked_packets_.IncreaseLargestObserved(ack_frame.largest_observed); |
| |
| HandleAckForSentPackets(ack_frame); |
| InvokeLossDetection(ack_receive_time); |
| MaybeInvokeCongestionEvent(largest_observed_acked, bytes_in_flight); |
| unacked_packets_.RemoveObsoletePackets(); |
| |
| sustained_bandwidth_recorder_.RecordEstimate( |
| send_algorithm_->InRecovery(), |
| send_algorithm_->InSlowStart(), |
| send_algorithm_->BandwidthEstimate(), |
| ack_receive_time, |
| clock_->WallNow(), |
| rtt_stats_.smoothed_rtt()); |
| |
| // If we have received a truncated ack, then we need to clear out some |
| // previous transmissions to allow the peer to actually ACK new packets. |
| if (ack_frame.is_truncated) { |
| unacked_packets_.ClearAllPreviousRetransmissions(); |
| } |
| |
| // Anytime we are making forward progress and have a new RTT estimate, reset |
| // the backoff counters. |
| if (largest_observed_acked) { |
| // Reset all retransmit counters any time a new packet is acked. |
| consecutive_rto_count_ = 0; |
| consecutive_tlp_count_ = 0; |
| consecutive_crypto_retransmission_count_ = 0; |
| } |
| |
| if (debug_delegate_ != nullptr) { |
| debug_delegate_->OnIncomingAck(ack_frame, |
| ack_receive_time, |
| unacked_packets_.largest_observed(), |
| largest_observed_acked, |
| GetLeastUnacked()); |
| } |
| } |
| |
| void QuicSentPacketManager::UpdatePacketInformationReceivedByPeer( |
| const QuicAckFrame& ack_frame) { |
| if (ack_frame.missing_packets.empty()) { |
| least_packet_awaited_by_peer_ = ack_frame.largest_observed + 1; |
| } else { |
| least_packet_awaited_by_peer_ = *(ack_frame.missing_packets.begin()); |
| } |
| } |
| |
| void QuicSentPacketManager::MaybeInvokeCongestionEvent( |
| bool rtt_updated, QuicByteCount bytes_in_flight) { |
| if (!rtt_updated && packets_acked_.empty() && packets_lost_.empty()) { |
| return; |
| } |
| send_algorithm_->OnCongestionEvent(rtt_updated, bytes_in_flight, |
| packets_acked_, packets_lost_); |
| packets_acked_.clear(); |
| packets_lost_.clear(); |
| if (network_change_visitor_ != nullptr) { |
| network_change_visitor_->OnCongestionWindowChange(); |
| } |
| } |
| |
| void QuicSentPacketManager::HandleAckForSentPackets( |
| const QuicAckFrame& ack_frame) { |
| // Go through the packets we have not received an ack for and see if this |
| // incoming_ack shows they've been seen by the peer. |
| QuicTime::Delta delta_largest_observed = |
| ack_frame.delta_time_largest_observed; |
| QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++sequence_number) { |
| if (sequence_number > ack_frame.largest_observed) { |
| // These packets are still in flight. |
| break; |
| } |
| |
| if (ContainsKey(ack_frame.missing_packets, sequence_number)) { |
| // Don't continue to increase the nack count for packets not in flight. |
| if (!it->in_flight) { |
| continue; |
| } |
| // Consider it multiple nacks when there is a gap between the missing |
| // packet and the largest observed, since the purpose of a nack |
| // threshold is to tolerate re-ordering. This handles both StretchAcks |
| // and Forward Acks. |
| // The nack count only increases when the largest observed increases. |
| size_t min_nacks = ack_frame.largest_observed - sequence_number; |
| // Truncated acks can nack the largest observed, so use a min of 1. |
| if (min_nacks == 0) { |
| min_nacks = 1; |
| } |
| unacked_packets_.NackPacket(sequence_number, min_nacks); |
| continue; |
| } |
| // Packet was acked, so remove it from our unacked packet list. |
| DVLOG(1) << ENDPOINT << "Got an ack for packet " << sequence_number; |
| // If data is associated with the most recent transmission of this |
| // packet, then inform the caller. |
| if (it->in_flight) { |
| packets_acked_.push_back(make_pair(sequence_number, *it)); |
| } |
| MarkPacketHandled(sequence_number, *it, delta_largest_observed); |
| } |
| |
| // Discard any retransmittable frames associated with revived packets. |
| for (SequenceNumberSet::const_iterator revived_it = |
| ack_frame.revived_packets.begin(); |
| revived_it != ack_frame.revived_packets.end(); ++revived_it) { |
| MarkPacketRevived(*revived_it, delta_largest_observed); |
| } |
| } |
| |
| bool QuicSentPacketManager::HasRetransmittableFrames( |
| QuicPacketSequenceNumber sequence_number) const { |
| return unacked_packets_.HasRetransmittableFrames(sequence_number); |
| } |
| |
| void QuicSentPacketManager::RetransmitUnackedPackets( |
| TransmissionType retransmission_type) { |
| DCHECK(retransmission_type == ALL_UNACKED_RETRANSMISSION || |
| retransmission_type == ALL_INITIAL_RETRANSMISSION); |
| QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++sequence_number) { |
| const RetransmittableFrames* frames = it->retransmittable_frames; |
| if (frames != nullptr && |
| (retransmission_type == ALL_UNACKED_RETRANSMISSION || |
| frames->encryption_level() == ENCRYPTION_INITIAL)) { |
| MarkForRetransmission(sequence_number, retransmission_type); |
| } else if (it->is_fec_packet) { |
| // Remove FEC packets from the packet map, since we can't retransmit them. |
| unacked_packets_.RemoveFromInFlight(sequence_number); |
| } |
| } |
| } |
| |
| void QuicSentPacketManager::NeuterUnencryptedPackets() { |
| QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++sequence_number) { |
| const RetransmittableFrames* frames = it->retransmittable_frames; |
| if (frames != nullptr && frames->encryption_level() == ENCRYPTION_NONE) { |
| // Once you're forward secure, no unencrypted packets will be sent, crypto |
| // or otherwise. Unencrypted packets are neutered and abandoned, to ensure |
| // they are not retransmitted or considered lost from a congestion control |
| // perspective. |
| pending_retransmissions_.erase(sequence_number); |
| unacked_packets_.RemoveFromInFlight(sequence_number); |
| unacked_packets_.RemoveRetransmittability(sequence_number); |
| } |
| } |
| } |
| |
| void QuicSentPacketManager::MarkForRetransmission( |
| QuicPacketSequenceNumber sequence_number, |
| TransmissionType transmission_type) { |
| const TransmissionInfo& transmission_info = |
| unacked_packets_.GetTransmissionInfo(sequence_number); |
| LOG_IF(DFATAL, transmission_info.retransmittable_frames == nullptr); |
| if (transmission_type != TLP_RETRANSMISSION) { |
| unacked_packets_.RemoveFromInFlight(sequence_number); |
| } |
| // TODO(ianswett): Currently the RTO can fire while there are pending NACK |
| // retransmissions for the same data, which is not ideal. |
| if (ContainsKey(pending_retransmissions_, sequence_number)) { |
| return; |
| } |
| |
| pending_retransmissions_[sequence_number] = transmission_type; |
| } |
| |
| void QuicSentPacketManager::RecordSpuriousRetransmissions( |
| const SequenceNumberList& all_transmissions, |
| QuicPacketSequenceNumber acked_sequence_number) { |
| if (acked_sequence_number < first_rto_transmission_) { |
| // Cancel all pending RTO transmissions and restore their in flight status. |
| // Replace SRTT with latest_rtt and increase the variance to prevent |
| // a spurious RTO from happening again. |
| rtt_stats_.ExpireSmoothedMetrics(); |
| for (PendingRetransmissionMap::const_iterator it = |
| pending_retransmissions_.begin(); |
| it != pending_retransmissions_.end(); ++it) { |
| DCHECK_EQ(it->second, RTO_RETRANSMISSION); |
| unacked_packets_.RestoreInFlight(it->first); |
| } |
| pending_retransmissions_.clear(); |
| send_algorithm_->RevertRetransmissionTimeout(); |
| first_rto_transmission_ = 0; |
| ++stats_->spurious_rto_count; |
| } |
| for (SequenceNumberList::const_reverse_iterator it = |
| all_transmissions.rbegin(); |
| it != all_transmissions.rend() && *it > acked_sequence_number; ++it) { |
| const TransmissionInfo& retransmit_info = |
| unacked_packets_.GetTransmissionInfo(*it); |
| |
| stats_->bytes_spuriously_retransmitted += retransmit_info.bytes_sent; |
| ++stats_->packets_spuriously_retransmitted; |
| if (debug_delegate_ != nullptr) { |
| debug_delegate_->OnSpuriousPacketRetransmition( |
| retransmit_info.transmission_type, |
| retransmit_info.bytes_sent); |
| } |
| } |
| } |
| |
| bool QuicSentPacketManager::HasPendingRetransmissions() const { |
| return !pending_retransmissions_.empty(); |
| } |
| |
| QuicSentPacketManager::PendingRetransmission |
| QuicSentPacketManager::NextPendingRetransmission() { |
| DCHECK(!pending_retransmissions_.empty()); |
| QuicPacketSequenceNumber sequence_number = |
| pending_retransmissions_.begin()->first; |
| TransmissionType transmission_type = pending_retransmissions_.begin()->second; |
| if (unacked_packets_.HasPendingCryptoPackets()) { |
| // Ensure crypto packets are retransmitted before other packets. |
| PendingRetransmissionMap::const_iterator it = |
| pending_retransmissions_.begin(); |
| do { |
| if (HasCryptoHandshake(unacked_packets_.GetTransmissionInfo(it->first))) { |
| sequence_number = it->first; |
| transmission_type = it->second; |
| break; |
| } |
| ++it; |
| } while (it != pending_retransmissions_.end()); |
| } |
| DCHECK(unacked_packets_.IsUnacked(sequence_number)) << sequence_number; |
| const TransmissionInfo& transmission_info = |
| unacked_packets_.GetTransmissionInfo(sequence_number); |
| DCHECK(transmission_info.retransmittable_frames); |
| |
| return PendingRetransmission(sequence_number, |
| transmission_type, |
| *transmission_info.retransmittable_frames, |
| transmission_info.sequence_number_length); |
| } |
| |
| void QuicSentPacketManager::MarkPacketRevived( |
| QuicPacketSequenceNumber sequence_number, |
| QuicTime::Delta delta_largest_observed) { |
| if (!unacked_packets_.IsUnacked(sequence_number)) { |
| return; |
| } |
| |
| const TransmissionInfo& transmission_info = |
| unacked_packets_.GetTransmissionInfo(sequence_number); |
| QuicPacketSequenceNumber newest_transmission = |
| transmission_info.all_transmissions == nullptr |
| ? sequence_number |
| : *transmission_info.all_transmissions->rbegin(); |
| // This packet has been revived at the receiver. If we were going to |
| // retransmit it, do not retransmit it anymore. |
| pending_retransmissions_.erase(newest_transmission); |
| |
| // The AckNotifierManager needs to be notified for revived packets, |
| // since it indicates the packet arrived from the appliction's perspective. |
| if (transmission_info.retransmittable_frames) { |
| ack_notifier_manager_.OnPacketAcked( |
| newest_transmission, delta_largest_observed); |
| } |
| |
| unacked_packets_.RemoveRetransmittability(sequence_number); |
| } |
| |
| void QuicSentPacketManager::MarkPacketHandled( |
| QuicPacketSequenceNumber sequence_number, |
| const TransmissionInfo& info, |
| QuicTime::Delta delta_largest_observed) { |
| QuicPacketSequenceNumber newest_transmission = |
| info.all_transmissions == nullptr ? |
| sequence_number : *info.all_transmissions->rbegin(); |
| // Remove the most recent packet, if it is pending retransmission. |
| pending_retransmissions_.erase(newest_transmission); |
| |
| // The AckNotifierManager needs to be notified about the most recent |
| // transmission, since that's the one only one it tracks. |
| ack_notifier_manager_.OnPacketAcked(newest_transmission, |
| delta_largest_observed); |
| if (newest_transmission != sequence_number) { |
| RecordSpuriousRetransmissions(*info.all_transmissions, sequence_number); |
| // Remove the most recent packet from flight if it's a crypto handshake |
| // packet, since they won't be acked now that one has been processed. |
| // Other crypto handshake packets won't be in flight, only the newest |
| // transmission of a crypto packet is in flight at once. |
| // TODO(ianswett): Instead of handling all crypto packets special, |
| // only handle nullptr encrypted packets in a special way. |
| if (HasCryptoHandshake( |
| unacked_packets_.GetTransmissionInfo(newest_transmission))) { |
| unacked_packets_.RemoveFromInFlight(newest_transmission); |
| } |
| } |
| |
| unacked_packets_.RemoveFromInFlight(sequence_number); |
| unacked_packets_.RemoveRetransmittability(sequence_number); |
| } |
| |
| bool QuicSentPacketManager::IsUnacked( |
| QuicPacketSequenceNumber sequence_number) const { |
| return unacked_packets_.IsUnacked(sequence_number); |
| } |
| |
| bool QuicSentPacketManager::HasUnackedPackets() const { |
| return unacked_packets_.HasUnackedPackets(); |
| } |
| |
| QuicPacketSequenceNumber |
| QuicSentPacketManager::GetLeastUnacked() const { |
| return unacked_packets_.GetLeastUnacked(); |
| } |
| |
| bool QuicSentPacketManager::OnPacketSent( |
| SerializedPacket* serialized_packet, |
| QuicPacketSequenceNumber original_sequence_number, |
| QuicTime sent_time, |
| QuicByteCount bytes, |
| TransmissionType transmission_type, |
| HasRetransmittableData has_retransmittable_data) { |
| QuicPacketSequenceNumber sequence_number = serialized_packet->sequence_number; |
| DCHECK_LT(0u, sequence_number); |
| DCHECK(!unacked_packets_.IsUnacked(sequence_number)); |
| LOG_IF(DFATAL, bytes == 0) << "Cannot send empty packets."; |
| |
| if (original_sequence_number == 0) { |
| if (serialized_packet->retransmittable_frames) { |
| ack_notifier_manager_.OnSerializedPacket(*serialized_packet); |
| } |
| } else { |
| PendingRetransmissionMap::iterator it = |
| pending_retransmissions_.find(original_sequence_number); |
| if (it != pending_retransmissions_.end()) { |
| pending_retransmissions_.erase(it); |
| } else { |
| DLOG(DFATAL) << "Expected sequence number to be in " |
| << "pending_retransmissions_. sequence_number: " |
| << original_sequence_number; |
| } |
| // A notifier may be waiting to hear about ACKs for the original sequence |
| // number. Inform them that the sequence number has changed. |
| ack_notifier_manager_.UpdateSequenceNumber(original_sequence_number, |
| sequence_number); |
| } |
| |
| if (pending_timer_transmission_count_ > 0) { |
| --pending_timer_transmission_count_; |
| } |
| |
| if (unacked_packets_.bytes_in_flight() == 0) { |
| // TODO(ianswett): Consider being less aggressive to force a new |
| // recent_min_rtt, likely by not discarding a relatively new sample. |
| DVLOG(1) << "Sampling a new recent min rtt within 2 samples. currently:" |
| << rtt_stats_.recent_min_rtt().ToMilliseconds() << "ms"; |
| rtt_stats_.SampleNewRecentMinRtt(kNumMinRttSamplesAfterQuiescence); |
| } |
| |
| // Only track packets as in flight that the send algorithm wants us to track. |
| // Since FEC packets should also be counted towards the congestion window, |
| // consider them as retransmittable for the purposes of congestion control. |
| HasRetransmittableData has_congestion_controlled_data = |
| serialized_packet->packet->is_fec_packet() ? |
| HAS_RETRANSMITTABLE_DATA : has_retransmittable_data; |
| const bool in_flight = |
| send_algorithm_->OnPacketSent(sent_time, |
| unacked_packets_.bytes_in_flight(), |
| sequence_number, |
| bytes, |
| has_congestion_controlled_data); |
| |
| unacked_packets_.AddSentPacket(*serialized_packet, |
| original_sequence_number, |
| transmission_type, |
| sent_time, |
| bytes, |
| in_flight); |
| |
| // Take ownership of the retransmittable frames before exiting. |
| serialized_packet->retransmittable_frames = nullptr; |
| // Reset the retransmission timer anytime a pending packet is sent. |
| return in_flight; |
| } |
| |
| void QuicSentPacketManager::OnRetransmissionTimeout() { |
| DCHECK(unacked_packets_.HasInFlightPackets()); |
| DCHECK_EQ(0u, pending_timer_transmission_count_); |
| // Handshake retransmission, timer based loss detection, TLP, and RTO are |
| // implemented with a single alarm. The handshake alarm is set when the |
| // handshake has not completed, the loss alarm is set when the loss detection |
| // algorithm says to, and the TLP and RTO alarms are set after that. |
| // The TLP alarm is always set to run for under an RTO. |
| switch (GetRetransmissionMode()) { |
| case HANDSHAKE_MODE: |
| ++stats_->crypto_retransmit_count; |
| RetransmitCryptoPackets(); |
| return; |
| case LOSS_MODE: { |
| ++stats_->loss_timeout_count; |
| QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight(); |
| InvokeLossDetection(clock_->Now()); |
| MaybeInvokeCongestionEvent(false, bytes_in_flight); |
| return; |
| } |
| case TLP_MODE: |
| // If no tail loss probe can be sent, because there are no retransmittable |
| // packets, execute a conventional RTO to abandon old packets. |
| ++stats_->tlp_count; |
| ++consecutive_tlp_count_; |
| pending_timer_transmission_count_ = 1; |
| // TLPs prefer sending new data instead of retransmitting data, so |
| // give the connection a chance to write before completing the TLP. |
| return; |
| case RTO_MODE: |
| ++stats_->rto_count; |
| RetransmitAllPackets(); |
| return; |
| } |
| } |
| |
| void QuicSentPacketManager::RetransmitCryptoPackets() { |
| DCHECK_EQ(HANDSHAKE_MODE, GetRetransmissionMode()); |
| ++consecutive_crypto_retransmission_count_; |
| bool packet_retransmitted = false; |
| QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++sequence_number) { |
| // Only retransmit frames which are in flight, and therefore have been sent. |
| if (!it->in_flight || it->retransmittable_frames == nullptr || |
| it->retransmittable_frames->HasCryptoHandshake() != IS_HANDSHAKE) { |
| continue; |
| } |
| packet_retransmitted = true; |
| MarkForRetransmission(sequence_number, HANDSHAKE_RETRANSMISSION); |
| ++pending_timer_transmission_count_; |
| } |
| DCHECK(packet_retransmitted) << "No crypto packets found to retransmit."; |
| } |
| |
| bool QuicSentPacketManager::MaybeRetransmitTailLossProbe() { |
| if (pending_timer_transmission_count_ == 0) { |
| return false; |
| } |
| QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++sequence_number) { |
| // Only retransmit frames which are in flight, and therefore have been sent. |
| if (!it->in_flight || it->retransmittable_frames == nullptr) { |
| continue; |
| } |
| if (!handshake_confirmed_) { |
| DCHECK_NE(IS_HANDSHAKE, it->retransmittable_frames->HasCryptoHandshake()); |
| } |
| MarkForRetransmission(sequence_number, TLP_RETRANSMISSION); |
| return true; |
| } |
| DLOG(FATAL) |
| << "No retransmittable packets, so RetransmitOldestPacket failed."; |
| return false; |
| } |
| |
| void QuicSentPacketManager::RetransmitAllPackets() { |
| DVLOG(1) << "RetransmitAllPackets() called with " |
| << unacked_packets_.GetNumUnackedPacketsDebugOnly() |
| << " unacked packets."; |
| // Request retransmission of all retransmittable packets when the RTO |
| // fires, and let the congestion manager decide how many to send |
| // immediately and the remaining packets will be queued. |
| // Abandon any non-retransmittable packets that are sufficiently old. |
| bool packets_retransmitted = false; |
| QuicPacketSequenceNumber sequence_number = unacked_packets_.GetLeastUnacked(); |
| for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin(); |
| it != unacked_packets_.end(); ++it, ++sequence_number) { |
| if (it->retransmittable_frames != nullptr) { |
| packets_retransmitted = true; |
| MarkForRetransmission(sequence_number, RTO_RETRANSMISSION); |
| } else { |
| unacked_packets_.RemoveFromInFlight(sequence_number); |
| } |
| } |
| |
| send_algorithm_->OnRetransmissionTimeout(packets_retransmitted); |
| if (packets_retransmitted) { |
| if (consecutive_rto_count_ == 0) { |
| first_rto_transmission_ = unacked_packets_.largest_sent_packet() + 1; |
| } |
| ++consecutive_rto_count_; |
| } |
| |
| if (network_change_visitor_ != nullptr) { |
| network_change_visitor_->OnCongestionWindowChange(); |
| } |
| } |
| |
| QuicSentPacketManager::RetransmissionTimeoutMode |
| QuicSentPacketManager::GetRetransmissionMode() const { |
| DCHECK(unacked_packets_.HasInFlightPackets()); |
| if (!handshake_confirmed_ && unacked_packets_.HasPendingCryptoPackets()) { |
| return HANDSHAKE_MODE; |
| } |
| if (loss_algorithm_->GetLossTimeout() != QuicTime::Zero()) { |
| return LOSS_MODE; |
| } |
| if (consecutive_tlp_count_ < max_tail_loss_probes_) { |
| if (unacked_packets_.HasUnackedRetransmittableFrames()) { |
| return TLP_MODE; |
| } |
| } |
| return RTO_MODE; |
| } |
| |
| void QuicSentPacketManager::OnIncomingQuicCongestionFeedbackFrame( |
| const QuicCongestionFeedbackFrame& frame, |
| const QuicTime& feedback_receive_time) { |
| if (frame.type == kTCP) { |
| receive_buffer_bytes_ = frame.tcp.receive_window; |
| } |
| } |
| |
| void QuicSentPacketManager::InvokeLossDetection(QuicTime time) { |
| SequenceNumberSet lost_packets = |
| loss_algorithm_->DetectLostPackets(unacked_packets_, |
| time, |
| unacked_packets_.largest_observed(), |
| rtt_stats_); |
| for (SequenceNumberSet::const_iterator it = lost_packets.begin(); |
| it != lost_packets.end(); ++it) { |
| QuicPacketSequenceNumber sequence_number = *it; |
| const TransmissionInfo& transmission_info = |
| unacked_packets_.GetTransmissionInfo(sequence_number); |
| // TODO(ianswett): If it's expected the FEC packet may repair the loss, it |
| // should be recorded as a loss to the send algorithm, but not retransmitted |
| // until it's known whether the FEC packet arrived. |
| ++stats_->packets_lost; |
| packets_lost_.push_back(make_pair(sequence_number, transmission_info)); |
| DVLOG(1) << ENDPOINT << "Lost packet " << sequence_number; |
| |
| if (transmission_info.retransmittable_frames != nullptr) { |
| MarkForRetransmission(sequence_number, LOSS_RETRANSMISSION); |
| } else { |
| // Since we will not retransmit this, we need to remove it from |
| // unacked_packets_. This is either the current transmission of |
| // a packet whose previous transmission has been acked, a packet that has |
| // been TLP retransmitted, or an FEC packet. |
| unacked_packets_.RemoveFromInFlight(sequence_number); |
| } |
| } |
| } |
| |
| bool QuicSentPacketManager::MaybeUpdateRTT( |
| const QuicAckFrame& ack_frame, |
| const QuicTime& ack_receive_time) { |
| if (!unacked_packets_.IsUnacked(ack_frame.largest_observed)) { |
| return false; |
| } |
| // We calculate the RTT based on the highest ACKed sequence number, the lower |
| // sequence numbers will include the ACK aggregation delay. |
| const TransmissionInfo& transmission_info = |
| unacked_packets_.GetTransmissionInfo(ack_frame.largest_observed); |
| // Ensure the packet has a valid sent time. |
| if (transmission_info.sent_time == QuicTime::Zero()) { |
| LOG(DFATAL) << "Acked packet has zero sent time, largest_observed:" |
| << ack_frame.largest_observed; |
| return false; |
| } |
| |
| QuicTime::Delta send_delta = |
| ack_receive_time.Subtract(transmission_info.sent_time); |
| rtt_stats_.UpdateRtt( |
| send_delta, ack_frame.delta_time_largest_observed, ack_receive_time); |
| return true; |
| } |
| |
| QuicTime::Delta QuicSentPacketManager::TimeUntilSend( |
| QuicTime now, |
| HasRetransmittableData retransmittable) { |
| // The TLP logic is entirely contained within QuicSentPacketManager, so the |
| // send algorithm does not need to be consulted. |
| if (pending_timer_transmission_count_ > 0) { |
| return QuicTime::Delta::Zero(); |
| } |
| if (unacked_packets_.bytes_in_flight() >= |
| kUsableRecieveBufferFraction * receive_buffer_bytes_) { |
| return QuicTime::Delta::Infinite(); |
| } |
| return send_algorithm_->TimeUntilSend( |
| now, unacked_packets_.bytes_in_flight(), retransmittable); |
| } |
| |
| // Uses a 25ms delayed ack timer. Also helps with better signaling |
| // in low-bandwidth (< ~384 kbps), where an ack is sent per packet. |
| // Ensures that the Delayed Ack timer is always set to a value lesser |
| // than the retransmission timer's minimum value (MinRTO). We want the |
| // delayed ack to get back to the QUIC peer before the sender's |
| // retransmission timer triggers. Since we do not know the |
| // reverse-path one-way delay, we assume equal delays for forward and |
| // reverse paths, and ensure that the timer is set to less than half |
| // of the MinRTO. |
| // There may be a value in making this delay adaptive with the help of |
| // the sender and a signaling mechanism -- if the sender uses a |
| // different MinRTO, we may get spurious retransmissions. May not have |
| // any benefits, but if the delayed ack becomes a significant source |
| // of (likely, tail) latency, then consider such a mechanism. |
| const QuicTime::Delta QuicSentPacketManager::DelayedAckTime() const { |
| return QuicTime::Delta::FromMilliseconds(min(kMaxDelayedAckTimeMs, |
| kMinRetransmissionTimeMs / 2)); |
| } |
| |
| const QuicTime QuicSentPacketManager::GetRetransmissionTime() const { |
| // Don't set the timer if there are no packets in flight or we've already |
| // queued a tlp transmission and it hasn't been sent yet. |
| if (!unacked_packets_.HasInFlightPackets() || |
| pending_timer_transmission_count_ > 0) { |
| return QuicTime::Zero(); |
| } |
| switch (GetRetransmissionMode()) { |
| case HANDSHAKE_MODE: |
| return clock_->ApproximateNow().Add(GetCryptoRetransmissionDelay()); |
| case LOSS_MODE: |
| return loss_algorithm_->GetLossTimeout(); |
| case TLP_MODE: { |
| // TODO(ianswett): When CWND is available, it would be preferable to |
| // set the timer based on the earliest retransmittable packet. |
| // Base the updated timer on the send time of the last packet. |
| const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime(); |
| const QuicTime tlp_time = sent_time.Add(GetTailLossProbeDelay()); |
| // Ensure the TLP timer never gets set to a time in the past. |
| return QuicTime::Max(clock_->ApproximateNow(), tlp_time); |
| } |
| case RTO_MODE: { |
| // The RTO is based on the first outstanding packet. |
| const QuicTime sent_time = |
| unacked_packets_.GetFirstInFlightPacketSentTime(); |
| QuicTime rto_time = sent_time.Add(GetRetransmissionDelay()); |
| // Wait for TLP packets to be acked before an RTO fires. |
| QuicTime tlp_time = |
| unacked_packets_.GetLastPacketSentTime().Add(GetTailLossProbeDelay()); |
| return QuicTime::Max(tlp_time, rto_time); |
| } |
| } |
| DCHECK(false); |
| return QuicTime::Zero(); |
| } |
| |
| const QuicTime::Delta QuicSentPacketManager::GetCryptoRetransmissionDelay() |
| const { |
| // This is equivalent to the TailLossProbeDelay, but slightly more aggressive |
| // because crypto handshake messages don't incur a delayed ack time. |
| QuicTime::Delta srtt = rtt_stats_.smoothed_rtt(); |
| if (srtt.IsZero()) { |
| srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_.initial_rtt_us()); |
| } |
| int64 delay_ms = max(kMinHandshakeTimeoutMs, |
| static_cast<int64>(1.5 * srtt.ToMilliseconds())); |
| return QuicTime::Delta::FromMilliseconds( |
| delay_ms << consecutive_crypto_retransmission_count_); |
| } |
| |
| const QuicTime::Delta QuicSentPacketManager::GetTailLossProbeDelay() const { |
| QuicTime::Delta srtt = rtt_stats_.smoothed_rtt(); |
| if (srtt.IsZero()) { |
| srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_.initial_rtt_us()); |
| } |
| if (!unacked_packets_.HasMultipleInFlightPackets()) { |
| return QuicTime::Delta::Max( |
| srtt.Multiply(2), srtt.Multiply(1.5).Add( |
| QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs / 2))); |
| } |
| return QuicTime::Delta::FromMilliseconds( |
| max(kMinTailLossProbeTimeoutMs, |
| static_cast<int64>(2 * srtt.ToMilliseconds()))); |
| } |
| |
| const QuicTime::Delta QuicSentPacketManager::GetRetransmissionDelay() const { |
| QuicTime::Delta retransmission_delay = send_algorithm_->RetransmissionDelay(); |
| // TODO(rch): This code should move to |send_algorithm_|. |
| if (retransmission_delay.IsZero()) { |
| // We are in the initial state, use default timeout values. |
| retransmission_delay = |
| QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs); |
| } else if (retransmission_delay.ToMilliseconds() < kMinRetransmissionTimeMs) { |
| retransmission_delay = |
| QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs); |
| } |
| |
| // Calculate exponential back off. |
| retransmission_delay = retransmission_delay.Multiply( |
| 1 << min<size_t>(consecutive_rto_count_, kMaxRetransmissions)); |
| |
| if (retransmission_delay.ToMilliseconds() > kMaxRetransmissionTimeMs) { |
| return QuicTime::Delta::FromMilliseconds(kMaxRetransmissionTimeMs); |
| } |
| return retransmission_delay; |
| } |
| |
| const RttStats* QuicSentPacketManager::GetRttStats() const { |
| return &rtt_stats_; |
| } |
| |
| QuicBandwidth QuicSentPacketManager::BandwidthEstimate() const { |
| // TODO(ianswett): Remove BandwidthEstimate from SendAlgorithmInterface |
| // and implement the logic here. |
| return send_algorithm_->BandwidthEstimate(); |
| } |
| |
| bool QuicSentPacketManager::HasReliableBandwidthEstimate() const { |
| return send_algorithm_->HasReliableBandwidthEstimate(); |
| } |
| |
| const QuicSustainedBandwidthRecorder& |
| QuicSentPacketManager::SustainedBandwidthRecorder() const { |
| return sustained_bandwidth_recorder_; |
| } |
| |
| QuicPacketCount QuicSentPacketManager::EstimateMaxPacketsInFlight( |
| QuicByteCount max_packet_length) const { |
| return send_algorithm_->GetCongestionWindow() / max_packet_length; |
| } |
| |
| QuicPacketCount QuicSentPacketManager::GetCongestionWindowInTcpMss() const { |
| return send_algorithm_->GetCongestionWindow() / kDefaultTCPMSS; |
| } |
| |
| QuicPacketCount QuicSentPacketManager::GetSlowStartThresholdInTcpMss() const { |
| return send_algorithm_->GetSlowStartThreshold() / kDefaultTCPMSS; |
| } |
| |
| void QuicSentPacketManager::EnablePacing() { |
| if (using_pacing_) { |
| return; |
| } |
| |
| // Set up a pacing sender with a 1 millisecond alarm granularity, the same as |
| // the default granularity of the Linux kernel's FQ qdisc. |
| using_pacing_ = true; |
| send_algorithm_.reset( |
| new PacingSender(send_algorithm_.release(), |
| QuicTime::Delta::FromMilliseconds(1), |
| kInitialUnpacedBurst)); |
| } |
| |
| } // namespace net |