|  | // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include "base/debug/stack_trace.h" | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <fcntl.h> | 
|  | #include <signal.h> | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <sys/param.h> | 
|  | #include <sys/stat.h> | 
|  | #include <sys/types.h> | 
|  | #include <unistd.h> | 
|  |  | 
|  | #include <map> | 
|  | #include <ostream> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #if defined(__GLIBCXX__) | 
|  | #include <cxxabi.h> | 
|  | #endif | 
|  | #if !defined(__UCLIBC__) | 
|  | #include <execinfo.h> | 
|  | #endif | 
|  |  | 
|  | #if defined(OS_MACOSX) | 
|  | #include <AvailabilityMacros.h> | 
|  | #endif | 
|  |  | 
|  | #include "base/basictypes.h" | 
|  | #include "base/debug/debugger.h" | 
|  | #include "base/debug/proc_maps_linux.h" | 
|  | #include "base/logging.h" | 
|  | #include "base/memory/scoped_ptr.h" | 
|  | #include "base/memory/singleton.h" | 
|  | #include "base/numerics/safe_conversions.h" | 
|  | #include "base/posix/eintr_wrapper.h" | 
|  | #include "base/strings/string_number_conversions.h" | 
|  | #include "build/build_config.h" | 
|  |  | 
|  | #if defined(USE_SYMBOLIZE) | 
|  | #include "base/third_party/symbolize/symbolize.h" | 
|  | #endif | 
|  |  | 
|  | namespace base { | 
|  | namespace debug { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | volatile sig_atomic_t in_signal_handler = 0; | 
|  |  | 
|  | #if !defined(USE_SYMBOLIZE) && defined(__GLIBCXX__) | 
|  | // The prefix used for mangled symbols, per the Itanium C++ ABI: | 
|  | // http://www.codesourcery.com/cxx-abi/abi.html#mangling | 
|  | const char kMangledSymbolPrefix[] = "_Z"; | 
|  |  | 
|  | // Characters that can be used for symbols, generated by Ruby: | 
|  | // (('a'..'z').to_a+('A'..'Z').to_a+('0'..'9').to_a + ['_']).join | 
|  | const char kSymbolCharacters[] = | 
|  | "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_"; | 
|  | #endif  // !defined(USE_SYMBOLIZE) && defined(__GLIBCXX__) | 
|  |  | 
|  | #if !defined(USE_SYMBOLIZE) | 
|  | // Demangles C++ symbols in the given text. Example: | 
|  | // | 
|  | // "out/Debug/base_unittests(_ZN10StackTraceC1Ev+0x20) [0x817778c]" | 
|  | // => | 
|  | // "out/Debug/base_unittests(StackTrace::StackTrace()+0x20) [0x817778c]" | 
|  | void DemangleSymbols(std::string* text) { | 
|  | // Note: code in this function is NOT async-signal safe (std::string uses | 
|  | // malloc internally). | 
|  |  | 
|  | #if defined(__GLIBCXX__) && !defined(__UCLIBC__) | 
|  |  | 
|  | std::string::size_type search_from = 0; | 
|  | while (search_from < text->size()) { | 
|  | // Look for the start of a mangled symbol, from search_from. | 
|  | std::string::size_type mangled_start = | 
|  | text->find(kMangledSymbolPrefix, search_from); | 
|  | if (mangled_start == std::string::npos) { | 
|  | break;  // Mangled symbol not found. | 
|  | } | 
|  |  | 
|  | // Look for the end of the mangled symbol. | 
|  | std::string::size_type mangled_end = | 
|  | text->find_first_not_of(kSymbolCharacters, mangled_start); | 
|  | if (mangled_end == std::string::npos) { | 
|  | mangled_end = text->size(); | 
|  | } | 
|  | std::string mangled_symbol = | 
|  | text->substr(mangled_start, mangled_end - mangled_start); | 
|  |  | 
|  | // Try to demangle the mangled symbol candidate. | 
|  | int status = 0; | 
|  | scoped_ptr<char, base::FreeDeleter> demangled_symbol( | 
|  | abi::__cxa_demangle(mangled_symbol.c_str(), NULL, 0, &status)); | 
|  | if (status == 0) {  // Demangling is successful. | 
|  | // Remove the mangled symbol. | 
|  | text->erase(mangled_start, mangled_end - mangled_start); | 
|  | // Insert the demangled symbol. | 
|  | text->insert(mangled_start, demangled_symbol.get()); | 
|  | // Next time, we'll start right after the demangled symbol we inserted. | 
|  | search_from = mangled_start + strlen(demangled_symbol.get()); | 
|  | } else { | 
|  | // Failed to demangle.  Retry after the "_Z" we just found. | 
|  | search_from = mangled_start + 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | #endif  // defined(__GLIBCXX__) && !defined(__UCLIBC__) | 
|  | } | 
|  | #endif  // !defined(USE_SYMBOLIZE) | 
|  |  | 
|  | class BacktraceOutputHandler { | 
|  | public: | 
|  | virtual void HandleOutput(const char* output) = 0; | 
|  |  | 
|  | protected: | 
|  | virtual ~BacktraceOutputHandler() {} | 
|  | }; | 
|  |  | 
|  | void OutputPointer(void* pointer, BacktraceOutputHandler* handler) { | 
|  | // This should be more than enough to store a 64-bit number in hex: | 
|  | // 16 hex digits + 1 for null-terminator. | 
|  | char buf[17] = { '\0' }; | 
|  | handler->HandleOutput("0x"); | 
|  | internal::itoa_r(reinterpret_cast<intptr_t>(pointer), | 
|  | buf, sizeof(buf), 16, 12); | 
|  | handler->HandleOutput(buf); | 
|  | } | 
|  |  | 
|  | #if defined(USE_SYMBOLIZE) | 
|  | void OutputFrameId(intptr_t frame_id, BacktraceOutputHandler* handler) { | 
|  | // Max unsigned 64-bit number in decimal has 20 digits (18446744073709551615). | 
|  | // Hence, 30 digits should be more than enough to represent it in decimal | 
|  | // (including the null-terminator). | 
|  | char buf[30] = { '\0' }; | 
|  | handler->HandleOutput("#"); | 
|  | internal::itoa_r(frame_id, buf, sizeof(buf), 10, 1); | 
|  | handler->HandleOutput(buf); | 
|  | } | 
|  | #endif  // defined(USE_SYMBOLIZE) | 
|  |  | 
|  | void ProcessBacktrace(void *const *trace, | 
|  | size_t size, | 
|  | BacktraceOutputHandler* handler) { | 
|  | // NOTE: This code MUST be async-signal safe (it's used by in-process | 
|  | // stack dumping signal handler). NO malloc or stdio is allowed here. | 
|  |  | 
|  | #if defined(USE_SYMBOLIZE) | 
|  | for (size_t i = 0; i < size; ++i) { | 
|  | OutputFrameId(i, handler); | 
|  | handler->HandleOutput(" "); | 
|  | OutputPointer(trace[i], handler); | 
|  | handler->HandleOutput(" "); | 
|  |  | 
|  | char buf[1024] = { '\0' }; | 
|  |  | 
|  | // Subtract by one as return address of function may be in the next | 
|  | // function when a function is annotated as noreturn. | 
|  | void* address = static_cast<char*>(trace[i]) - 1; | 
|  | if (google::Symbolize(address, buf, sizeof(buf))) | 
|  | handler->HandleOutput(buf); | 
|  | else | 
|  | handler->HandleOutput("<unknown>"); | 
|  |  | 
|  | handler->HandleOutput("\n"); | 
|  | } | 
|  | #elif !defined(__UCLIBC__) | 
|  | bool printed = false; | 
|  |  | 
|  | // Below part is async-signal unsafe (uses malloc), so execute it only | 
|  | // when we are not executing the signal handler. | 
|  | if (in_signal_handler == 0) { | 
|  | scoped_ptr<char*, FreeDeleter> | 
|  | trace_symbols(backtrace_symbols(trace, size)); | 
|  | if (trace_symbols.get()) { | 
|  | for (size_t i = 0; i < size; ++i) { | 
|  | std::string trace_symbol = trace_symbols.get()[i]; | 
|  | DemangleSymbols(&trace_symbol); | 
|  | handler->HandleOutput(trace_symbol.c_str()); | 
|  | handler->HandleOutput("\n"); | 
|  | } | 
|  |  | 
|  | printed = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!printed) { | 
|  | for (size_t i = 0; i < size; ++i) { | 
|  | handler->HandleOutput(" ["); | 
|  | OutputPointer(trace[i], handler); | 
|  | handler->HandleOutput("]\n"); | 
|  | } | 
|  | } | 
|  | #endif  // defined(USE_SYMBOLIZE) | 
|  | } | 
|  |  | 
|  | void PrintToStderr(const char* output) { | 
|  | // NOTE: This code MUST be async-signal safe (it's used by in-process | 
|  | // stack dumping signal handler). NO malloc or stdio is allowed here. | 
|  | ignore_result(HANDLE_EINTR(write(STDERR_FILENO, output, strlen(output)))); | 
|  | } | 
|  |  | 
|  | void StackDumpSignalHandler(int signal, siginfo_t* info, void* void_context) { | 
|  | // NOTE: This code MUST be async-signal safe. | 
|  | // NO malloc or stdio is allowed here. | 
|  |  | 
|  | // Record the fact that we are in the signal handler now, so that the rest | 
|  | // of StackTrace can behave in an async-signal-safe manner. | 
|  | in_signal_handler = 1; | 
|  |  | 
|  | if (BeingDebugged()) | 
|  | BreakDebugger(); | 
|  |  | 
|  | PrintToStderr("Received signal "); | 
|  | char buf[1024] = { 0 }; | 
|  | internal::itoa_r(signal, buf, sizeof(buf), 10, 0); | 
|  | PrintToStderr(buf); | 
|  | if (signal == SIGBUS) { | 
|  | if (info->si_code == BUS_ADRALN) | 
|  | PrintToStderr(" BUS_ADRALN "); | 
|  | else if (info->si_code == BUS_ADRERR) | 
|  | PrintToStderr(" BUS_ADRERR "); | 
|  | else if (info->si_code == BUS_OBJERR) | 
|  | PrintToStderr(" BUS_OBJERR "); | 
|  | else | 
|  | PrintToStderr(" <unknown> "); | 
|  | } else if (signal == SIGFPE) { | 
|  | if (info->si_code == FPE_FLTDIV) | 
|  | PrintToStderr(" FPE_FLTDIV "); | 
|  | else if (info->si_code == FPE_FLTINV) | 
|  | PrintToStderr(" FPE_FLTINV "); | 
|  | else if (info->si_code == FPE_FLTOVF) | 
|  | PrintToStderr(" FPE_FLTOVF "); | 
|  | else if (info->si_code == FPE_FLTRES) | 
|  | PrintToStderr(" FPE_FLTRES "); | 
|  | else if (info->si_code == FPE_FLTSUB) | 
|  | PrintToStderr(" FPE_FLTSUB "); | 
|  | else if (info->si_code == FPE_FLTUND) | 
|  | PrintToStderr(" FPE_FLTUND "); | 
|  | else if (info->si_code == FPE_INTDIV) | 
|  | PrintToStderr(" FPE_INTDIV "); | 
|  | else if (info->si_code == FPE_INTOVF) | 
|  | PrintToStderr(" FPE_INTOVF "); | 
|  | else | 
|  | PrintToStderr(" <unknown> "); | 
|  | } else if (signal == SIGILL) { | 
|  | if (info->si_code == ILL_BADSTK) | 
|  | PrintToStderr(" ILL_BADSTK "); | 
|  | else if (info->si_code == ILL_COPROC) | 
|  | PrintToStderr(" ILL_COPROC "); | 
|  | else if (info->si_code == ILL_ILLOPN) | 
|  | PrintToStderr(" ILL_ILLOPN "); | 
|  | else if (info->si_code == ILL_ILLADR) | 
|  | PrintToStderr(" ILL_ILLADR "); | 
|  | else if (info->si_code == ILL_ILLTRP) | 
|  | PrintToStderr(" ILL_ILLTRP "); | 
|  | else if (info->si_code == ILL_PRVOPC) | 
|  | PrintToStderr(" ILL_PRVOPC "); | 
|  | else if (info->si_code == ILL_PRVREG) | 
|  | PrintToStderr(" ILL_PRVREG "); | 
|  | else | 
|  | PrintToStderr(" <unknown> "); | 
|  | } else if (signal == SIGSEGV) { | 
|  | if (info->si_code == SEGV_MAPERR) | 
|  | PrintToStderr(" SEGV_MAPERR "); | 
|  | else if (info->si_code == SEGV_ACCERR) | 
|  | PrintToStderr(" SEGV_ACCERR "); | 
|  | else | 
|  | PrintToStderr(" <unknown> "); | 
|  | } | 
|  | if (signal == SIGBUS || signal == SIGFPE || | 
|  | signal == SIGILL || signal == SIGSEGV) { | 
|  | internal::itoa_r(reinterpret_cast<intptr_t>(info->si_addr), | 
|  | buf, sizeof(buf), 16, 12); | 
|  | PrintToStderr(buf); | 
|  | } | 
|  | PrintToStderr("\n"); | 
|  |  | 
|  | debug::StackTrace().Print(); | 
|  |  | 
|  | #if defined(OS_LINUX) | 
|  | #if ARCH_CPU_X86_FAMILY | 
|  | ucontext_t* context = reinterpret_cast<ucontext_t*>(void_context); | 
|  | const struct { | 
|  | const char* label; | 
|  | greg_t value; | 
|  | } registers[] = { | 
|  | #if ARCH_CPU_32_BITS | 
|  | { "  gs: ", context->uc_mcontext.gregs[REG_GS] }, | 
|  | { "  fs: ", context->uc_mcontext.gregs[REG_FS] }, | 
|  | { "  es: ", context->uc_mcontext.gregs[REG_ES] }, | 
|  | { "  ds: ", context->uc_mcontext.gregs[REG_DS] }, | 
|  | { " edi: ", context->uc_mcontext.gregs[REG_EDI] }, | 
|  | { " esi: ", context->uc_mcontext.gregs[REG_ESI] }, | 
|  | { " ebp: ", context->uc_mcontext.gregs[REG_EBP] }, | 
|  | { " esp: ", context->uc_mcontext.gregs[REG_ESP] }, | 
|  | { " ebx: ", context->uc_mcontext.gregs[REG_EBX] }, | 
|  | { " edx: ", context->uc_mcontext.gregs[REG_EDX] }, | 
|  | { " ecx: ", context->uc_mcontext.gregs[REG_ECX] }, | 
|  | { " eax: ", context->uc_mcontext.gregs[REG_EAX] }, | 
|  | { " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] }, | 
|  | { " err: ", context->uc_mcontext.gregs[REG_ERR] }, | 
|  | { "  ip: ", context->uc_mcontext.gregs[REG_EIP] }, | 
|  | { "  cs: ", context->uc_mcontext.gregs[REG_CS] }, | 
|  | { " efl: ", context->uc_mcontext.gregs[REG_EFL] }, | 
|  | { " usp: ", context->uc_mcontext.gregs[REG_UESP] }, | 
|  | { "  ss: ", context->uc_mcontext.gregs[REG_SS] }, | 
|  | #elif ARCH_CPU_64_BITS | 
|  | { "  r8: ", context->uc_mcontext.gregs[REG_R8] }, | 
|  | { "  r9: ", context->uc_mcontext.gregs[REG_R9] }, | 
|  | { " r10: ", context->uc_mcontext.gregs[REG_R10] }, | 
|  | { " r11: ", context->uc_mcontext.gregs[REG_R11] }, | 
|  | { " r12: ", context->uc_mcontext.gregs[REG_R12] }, | 
|  | { " r13: ", context->uc_mcontext.gregs[REG_R13] }, | 
|  | { " r14: ", context->uc_mcontext.gregs[REG_R14] }, | 
|  | { " r15: ", context->uc_mcontext.gregs[REG_R15] }, | 
|  | { "  di: ", context->uc_mcontext.gregs[REG_RDI] }, | 
|  | { "  si: ", context->uc_mcontext.gregs[REG_RSI] }, | 
|  | { "  bp: ", context->uc_mcontext.gregs[REG_RBP] }, | 
|  | { "  bx: ", context->uc_mcontext.gregs[REG_RBX] }, | 
|  | { "  dx: ", context->uc_mcontext.gregs[REG_RDX] }, | 
|  | { "  ax: ", context->uc_mcontext.gregs[REG_RAX] }, | 
|  | { "  cx: ", context->uc_mcontext.gregs[REG_RCX] }, | 
|  | { "  sp: ", context->uc_mcontext.gregs[REG_RSP] }, | 
|  | { "  ip: ", context->uc_mcontext.gregs[REG_RIP] }, | 
|  | { " efl: ", context->uc_mcontext.gregs[REG_EFL] }, | 
|  | { " cgf: ", context->uc_mcontext.gregs[REG_CSGSFS] }, | 
|  | { " erf: ", context->uc_mcontext.gregs[REG_ERR] }, | 
|  | { " trp: ", context->uc_mcontext.gregs[REG_TRAPNO] }, | 
|  | { " msk: ", context->uc_mcontext.gregs[REG_OLDMASK] }, | 
|  | { " cr2: ", context->uc_mcontext.gregs[REG_CR2] }, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | #if ARCH_CPU_32_BITS | 
|  | const int kRegisterPadding = 8; | 
|  | #elif ARCH_CPU_64_BITS | 
|  | const int kRegisterPadding = 16; | 
|  | #endif | 
|  |  | 
|  | for (size_t i = 0; i < arraysize(registers); i++) { | 
|  | PrintToStderr(registers[i].label); | 
|  | internal::itoa_r(registers[i].value, buf, sizeof(buf), | 
|  | 16, kRegisterPadding); | 
|  | PrintToStderr(buf); | 
|  |  | 
|  | if ((i + 1) % 4 == 0) | 
|  | PrintToStderr("\n"); | 
|  | } | 
|  | PrintToStderr("\n"); | 
|  | #endif | 
|  | #elif defined(OS_MACOSX) | 
|  | // TODO(shess): Port to 64-bit, and ARM architecture (32 and 64-bit). | 
|  | #if ARCH_CPU_X86_FAMILY && ARCH_CPU_32_BITS | 
|  | ucontext_t* context = reinterpret_cast<ucontext_t*>(void_context); | 
|  | size_t len; | 
|  |  | 
|  | // NOTE: Even |snprintf()| is not on the approved list for signal | 
|  | // handlers, but buffered I/O is definitely not on the list due to | 
|  | // potential for |malloc()|. | 
|  | len = static_cast<size_t>( | 
|  | snprintf(buf, sizeof(buf), | 
|  | "ax: %x, bx: %x, cx: %x, dx: %x\n", | 
|  | context->uc_mcontext->__ss.__eax, | 
|  | context->uc_mcontext->__ss.__ebx, | 
|  | context->uc_mcontext->__ss.__ecx, | 
|  | context->uc_mcontext->__ss.__edx)); | 
|  | write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1)); | 
|  |  | 
|  | len = static_cast<size_t>( | 
|  | snprintf(buf, sizeof(buf), | 
|  | "di: %x, si: %x, bp: %x, sp: %x, ss: %x, flags: %x\n", | 
|  | context->uc_mcontext->__ss.__edi, | 
|  | context->uc_mcontext->__ss.__esi, | 
|  | context->uc_mcontext->__ss.__ebp, | 
|  | context->uc_mcontext->__ss.__esp, | 
|  | context->uc_mcontext->__ss.__ss, | 
|  | context->uc_mcontext->__ss.__eflags)); | 
|  | write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1)); | 
|  |  | 
|  | len = static_cast<size_t>( | 
|  | snprintf(buf, sizeof(buf), | 
|  | "ip: %x, cs: %x, ds: %x, es: %x, fs: %x, gs: %x\n", | 
|  | context->uc_mcontext->__ss.__eip, | 
|  | context->uc_mcontext->__ss.__cs, | 
|  | context->uc_mcontext->__ss.__ds, | 
|  | context->uc_mcontext->__ss.__es, | 
|  | context->uc_mcontext->__ss.__fs, | 
|  | context->uc_mcontext->__ss.__gs)); | 
|  | write(STDERR_FILENO, buf, std::min(len, sizeof(buf) - 1)); | 
|  | #endif  // ARCH_CPU_32_BITS | 
|  | #endif  // defined(OS_MACOSX) | 
|  | _exit(1); | 
|  | } | 
|  |  | 
|  | class PrintBacktraceOutputHandler : public BacktraceOutputHandler { | 
|  | public: | 
|  | PrintBacktraceOutputHandler() {} | 
|  |  | 
|  | void HandleOutput(const char* output) override { | 
|  | // NOTE: This code MUST be async-signal safe (it's used by in-process | 
|  | // stack dumping signal handler). NO malloc or stdio is allowed here. | 
|  | PrintToStderr(output); | 
|  | } | 
|  |  | 
|  | private: | 
|  | DISALLOW_COPY_AND_ASSIGN(PrintBacktraceOutputHandler); | 
|  | }; | 
|  |  | 
|  | class StreamBacktraceOutputHandler : public BacktraceOutputHandler { | 
|  | public: | 
|  | explicit StreamBacktraceOutputHandler(std::ostream* os) : os_(os) { | 
|  | } | 
|  |  | 
|  | void HandleOutput(const char* output) override { (*os_) << output; } | 
|  |  | 
|  | private: | 
|  | std::ostream* os_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(StreamBacktraceOutputHandler); | 
|  | }; | 
|  |  | 
|  | void WarmUpBacktrace() { | 
|  | // Warm up stack trace infrastructure. It turns out that on the first | 
|  | // call glibc initializes some internal data structures using pthread_once, | 
|  | // and even backtrace() can call malloc(), leading to hangs. | 
|  | // | 
|  | // Example stack trace snippet (with tcmalloc): | 
|  | // | 
|  | // #8  0x0000000000a173b5 in tc_malloc | 
|  | //             at ./third_party/tcmalloc/chromium/src/debugallocation.cc:1161 | 
|  | // #9  0x00007ffff7de7900 in _dl_map_object_deps at dl-deps.c:517 | 
|  | // #10 0x00007ffff7ded8a9 in dl_open_worker at dl-open.c:262 | 
|  | // #11 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 | 
|  | // #12 0x00007ffff7ded31a in _dl_open (file=0x7ffff625e298 "libgcc_s.so.1") | 
|  | //             at dl-open.c:639 | 
|  | // #13 0x00007ffff6215602 in do_dlopen at dl-libc.c:89 | 
|  | // #14 0x00007ffff7de9176 in _dl_catch_error at dl-error.c:178 | 
|  | // #15 0x00007ffff62156c4 in dlerror_run at dl-libc.c:48 | 
|  | // #16 __GI___libc_dlopen_mode at dl-libc.c:165 | 
|  | // #17 0x00007ffff61ef8f5 in init | 
|  | //             at ../sysdeps/x86_64/../ia64/backtrace.c:53 | 
|  | // #18 0x00007ffff6aad400 in pthread_once | 
|  | //             at ../nptl/sysdeps/unix/sysv/linux/x86_64/pthread_once.S:104 | 
|  | // #19 0x00007ffff61efa14 in __GI___backtrace | 
|  | //             at ../sysdeps/x86_64/../ia64/backtrace.c:104 | 
|  | // #20 0x0000000000752a54 in base::debug::StackTrace::StackTrace | 
|  | //             at base/debug/stack_trace_posix.cc:175 | 
|  | // #21 0x00000000007a4ae5 in | 
|  | //             base::(anonymous namespace)::StackDumpSignalHandler | 
|  | //             at base/process_util_posix.cc:172 | 
|  | // #22 <signal handler called> | 
|  | StackTrace stack_trace; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | #if defined(USE_SYMBOLIZE) | 
|  |  | 
|  | // class SandboxSymbolizeHelper. | 
|  | // | 
|  | // The purpose of this class is to prepare and install a "file open" callback | 
|  | // needed by the stack trace symbolization code | 
|  | // (base/third_party/symbolize/symbolize.h) so that it can function properly | 
|  | // in a sandboxed process.  The caveat is that this class must be instantiated | 
|  | // before the sandboxing is enabled so that it can get the chance to open all | 
|  | // the object files that are loaded in the virtual address space of the current | 
|  | // process. | 
|  | class SandboxSymbolizeHelper { | 
|  | public: | 
|  | // Returns the singleton instance. | 
|  | static SandboxSymbolizeHelper* GetInstance() { | 
|  | return Singleton<SandboxSymbolizeHelper>::get(); | 
|  | } | 
|  |  | 
|  | private: | 
|  | friend struct DefaultSingletonTraits<SandboxSymbolizeHelper>; | 
|  |  | 
|  | SandboxSymbolizeHelper() | 
|  | : is_initialized_(false) { | 
|  | Init(); | 
|  | } | 
|  |  | 
|  | ~SandboxSymbolizeHelper() { | 
|  | UnregisterCallback(); | 
|  | CloseObjectFiles(); | 
|  | } | 
|  |  | 
|  | // Returns a O_RDONLY file descriptor for |file_path| if it was opened | 
|  | // sucessfully during the initialization.  The file is repositioned at | 
|  | // offset 0. | 
|  | // IMPORTANT: This function must be async-signal-safe because it can be | 
|  | // called from a signal handler (symbolizing stack frames for a crash). | 
|  | int GetFileDescriptor(const char* file_path) { | 
|  | int fd = -1; | 
|  |  | 
|  | #if !defined(NDEBUG) | 
|  | if (file_path) { | 
|  | // The assumption here is that iterating over std::map<std::string, int> | 
|  | // using a const_iterator does not allocate dynamic memory, hense it is | 
|  | // async-signal-safe. | 
|  | std::map<std::string, int>::const_iterator it; | 
|  | for (it = modules_.begin(); it != modules_.end(); ++it) { | 
|  | if (strcmp((it->first).c_str(), file_path) == 0) { | 
|  | // POSIX.1-2004 requires an implementation to guarantee that dup() | 
|  | // is async-signal-safe. | 
|  | fd = dup(it->second); | 
|  | break; | 
|  | } | 
|  | } | 
|  | // POSIX.1-2004 requires an implementation to guarantee that lseek() | 
|  | // is async-signal-safe. | 
|  | if (fd >= 0 && lseek(fd, 0, SEEK_SET) < 0) { | 
|  | // Failed to seek. | 
|  | fd = -1; | 
|  | } | 
|  | } | 
|  | #endif  // !defined(NDEBUG) | 
|  |  | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | // Searches for the object file (from /proc/self/maps) that contains | 
|  | // the specified pc.  If found, sets |start_address| to the start address | 
|  | // of where this object file is mapped in memory, sets the module base | 
|  | // address into |base_address|, copies the object file name into | 
|  | // |out_file_name|, and attempts to open the object file.  If the object | 
|  | // file is opened successfully, returns the file descriptor.  Otherwise, | 
|  | // returns -1.  |out_file_name_size| is the size of the file name buffer | 
|  | // (including the null terminator). | 
|  | // IMPORTANT: This function must be async-signal-safe because it can be | 
|  | // called from a signal handler (symbolizing stack frames for a crash). | 
|  | static int OpenObjectFileContainingPc(uint64_t pc, uint64_t& start_address, | 
|  | uint64_t& base_address, char* file_path, | 
|  | int file_path_size) { | 
|  | // This method can only be called after the singleton is instantiated. | 
|  | // This is ensured by the following facts: | 
|  | // * This is the only static method in this class, it is private, and | 
|  | //   the class has no friends (except for the DefaultSingletonTraits). | 
|  | //   The compiler guarantees that it can only be called after the | 
|  | //   singleton is instantiated. | 
|  | // * This method is used as a callback for the stack tracing code and | 
|  | //   the callback registration is done in the constructor, so logically | 
|  | //   it cannot be called before the singleton is created. | 
|  | SandboxSymbolizeHelper* instance = GetInstance(); | 
|  |  | 
|  | // The assumption here is that iterating over | 
|  | // std::vector<MappedMemoryRegion> using a const_iterator does not allocate | 
|  | // dynamic memory, hence it is async-signal-safe. | 
|  | std::vector<MappedMemoryRegion>::const_iterator it; | 
|  | bool is_first = true; | 
|  | for (it = instance->regions_.begin(); it != instance->regions_.end(); | 
|  | ++it, is_first = false) { | 
|  | const MappedMemoryRegion& region = *it; | 
|  | if (region.start <= pc && pc < region.end) { | 
|  | start_address = region.start; | 
|  | // Don't subtract 'start_address' from the first entry: | 
|  | // * If a binary is compiled w/o -pie, then the first entry in | 
|  | //   process maps is likely the binary itself (all dynamic libs | 
|  | //   are mapped higher in address space). For such a binary, | 
|  | //   instruction offset in binary coincides with the actual | 
|  | //   instruction address in virtual memory (as code section | 
|  | //   is mapped to a fixed memory range). | 
|  | // * If a binary is compiled with -pie, all the modules are | 
|  | //   mapped high at address space (in particular, higher than | 
|  | //   shadow memory of the tool), so the module can't be the | 
|  | //   first entry. | 
|  | base_address = (is_first ? 0U : start_address) - region.offset; | 
|  | if (file_path && file_path_size > 0) { | 
|  | strncpy(file_path, region.path.c_str(), file_path_size); | 
|  | // Ensure null termination. | 
|  | file_path[file_path_size - 1] = '\0'; | 
|  | } | 
|  | return instance->GetFileDescriptor(region.path.c_str()); | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | // Parses /proc/self/maps in order to compile a list of all object file names | 
|  | // for the modules that are loaded in the current process. | 
|  | // Returns true on success. | 
|  | bool CacheMemoryRegions() { | 
|  | // Reads /proc/self/maps. | 
|  | std::string contents; | 
|  | if (!ReadProcMaps(&contents)) { | 
|  | LOG(ERROR) << "Failed to read /proc/self/maps"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Parses /proc/self/maps. | 
|  | if (!ParseProcMaps(contents, ®ions_)) { | 
|  | LOG(ERROR) << "Failed to parse the contents of /proc/self/maps"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | is_initialized_ = true; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Opens all object files and caches their file descriptors. | 
|  | void OpenSymbolFiles() { | 
|  | // Pre-opening and caching the file descriptors of all loaded modules is | 
|  | // not considered safe for retail builds.  Hence it is only done in debug | 
|  | // builds.  For more details, take a look at: http://crbug.com/341966 | 
|  | // Enabling this to release mode would require approval from the security | 
|  | // team. | 
|  | #if !defined(NDEBUG) | 
|  | // Open the object files for all read-only executable regions and cache | 
|  | // their file descriptors. | 
|  | std::vector<MappedMemoryRegion>::const_iterator it; | 
|  | for (it = regions_.begin(); it != regions_.end(); ++it) { | 
|  | const MappedMemoryRegion& region = *it; | 
|  | // Only interesed in read-only executable regions. | 
|  | if ((region.permissions & MappedMemoryRegion::READ) == | 
|  | MappedMemoryRegion::READ && | 
|  | (region.permissions & MappedMemoryRegion::WRITE) == 0 && | 
|  | (region.permissions & MappedMemoryRegion::EXECUTE) == | 
|  | MappedMemoryRegion::EXECUTE) { | 
|  | if (region.path.empty()) { | 
|  | // Skip regions with empty file names. | 
|  | continue; | 
|  | } | 
|  | if (region.path[0] == '[') { | 
|  | // Skip pseudo-paths, like [stack], [vdso], [heap], etc ... | 
|  | continue; | 
|  | } | 
|  | // Avoid duplicates. | 
|  | if (modules_.find(region.path) == modules_.end()) { | 
|  | int fd = open(region.path.c_str(), O_RDONLY | O_CLOEXEC); | 
|  | if (fd >= 0) { | 
|  | modules_.insert(std::make_pair(region.path, fd)); | 
|  | } else { | 
|  | LOG(WARNING) << "Failed to open file: " << region.path | 
|  | << "\n  Error: " << strerror(errno); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif  // !defined(NDEBUG) | 
|  | } | 
|  |  | 
|  | // Initializes and installs the symbolization callback. | 
|  | void Init() { | 
|  | if (CacheMemoryRegions()) { | 
|  | OpenSymbolFiles(); | 
|  | google::InstallSymbolizeOpenObjectFileCallback( | 
|  | &OpenObjectFileContainingPc); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Unregister symbolization callback. | 
|  | void UnregisterCallback() { | 
|  | if (is_initialized_) { | 
|  | google::InstallSymbolizeOpenObjectFileCallback(NULL); | 
|  | is_initialized_ = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Closes all file descriptors owned by this instance. | 
|  | void CloseObjectFiles() { | 
|  | #if !defined(NDEBUG) | 
|  | std::map<std::string, int>::iterator it; | 
|  | for (it = modules_.begin(); it != modules_.end(); ++it) { | 
|  | int ret = IGNORE_EINTR(close(it->second)); | 
|  | DCHECK(!ret); | 
|  | it->second = -1; | 
|  | } | 
|  | modules_.clear(); | 
|  | #endif  // !defined(NDEBUG) | 
|  | } | 
|  |  | 
|  | // Set to true upon successful initialization. | 
|  | bool is_initialized_; | 
|  |  | 
|  | #if !defined(NDEBUG) | 
|  | // Mapping from file name to file descriptor.  Includes file descriptors | 
|  | // for all successfully opened object files and the file descriptor for | 
|  | // /proc/self/maps.  This code is not safe for release builds so | 
|  | // this is only done for DEBUG builds. | 
|  | std::map<std::string, int> modules_; | 
|  | #endif  // !defined(NDEBUG) | 
|  |  | 
|  | // Cache for the process memory regions.  Produced by parsing the contents | 
|  | // of /proc/self/maps cache. | 
|  | std::vector<MappedMemoryRegion> regions_; | 
|  |  | 
|  | DISALLOW_COPY_AND_ASSIGN(SandboxSymbolizeHelper); | 
|  | }; | 
|  | #endif  // USE_SYMBOLIZE | 
|  |  | 
|  | bool EnableInProcessStackDumpingForSandbox() { | 
|  | #if defined(USE_SYMBOLIZE) | 
|  | SandboxSymbolizeHelper::GetInstance(); | 
|  | #endif  // USE_SYMBOLIZE | 
|  |  | 
|  | return EnableInProcessStackDumping(); | 
|  | } | 
|  |  | 
|  | bool EnableInProcessStackDumping() { | 
|  | // When running in an application, our code typically expects SIGPIPE | 
|  | // to be ignored.  Therefore, when testing that same code, it should run | 
|  | // with SIGPIPE ignored as well. | 
|  | struct sigaction sigpipe_action; | 
|  | memset(&sigpipe_action, 0, sizeof(sigpipe_action)); | 
|  | sigpipe_action.sa_handler = SIG_IGN; | 
|  | sigemptyset(&sigpipe_action.sa_mask); | 
|  | bool success = (sigaction(SIGPIPE, &sigpipe_action, NULL) == 0); | 
|  |  | 
|  | // Avoid hangs during backtrace initialization, see above. | 
|  | WarmUpBacktrace(); | 
|  |  | 
|  | struct sigaction action; | 
|  | memset(&action, 0, sizeof(action)); | 
|  | action.sa_flags = SA_RESETHAND | SA_SIGINFO; | 
|  | action.sa_sigaction = &StackDumpSignalHandler; | 
|  | sigemptyset(&action.sa_mask); | 
|  |  | 
|  | success &= (sigaction(SIGILL, &action, NULL) == 0); | 
|  | success &= (sigaction(SIGABRT, &action, NULL) == 0); | 
|  | success &= (sigaction(SIGFPE, &action, NULL) == 0); | 
|  | success &= (sigaction(SIGBUS, &action, NULL) == 0); | 
|  | success &= (sigaction(SIGSEGV, &action, NULL) == 0); | 
|  | // On Linux, SIGSYS is reserved by the kernel for seccomp-bpf sandboxing. | 
|  | #if !defined(OS_LINUX) | 
|  | success &= (sigaction(SIGSYS, &action, NULL) == 0); | 
|  | #endif  // !defined(OS_LINUX) | 
|  |  | 
|  | return success; | 
|  | } | 
|  |  | 
|  | StackTrace::StackTrace() { | 
|  | // NOTE: This code MUST be async-signal safe (it's used by in-process | 
|  | // stack dumping signal handler). NO malloc or stdio is allowed here. | 
|  |  | 
|  | #if !defined(__UCLIBC__) | 
|  | // Though the backtrace API man page does not list any possible negative | 
|  | // return values, we take no chance. | 
|  | count_ = base::saturated_cast<size_t>(backtrace(trace_, arraysize(trace_))); | 
|  | #else | 
|  | count_ = 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void StackTrace::Print() const { | 
|  | // NOTE: This code MUST be async-signal safe (it's used by in-process | 
|  | // stack dumping signal handler). NO malloc or stdio is allowed here. | 
|  |  | 
|  | #if !defined(__UCLIBC__) | 
|  | PrintBacktraceOutputHandler handler; | 
|  | ProcessBacktrace(trace_, count_, &handler); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #if !defined(__UCLIBC__) | 
|  | void StackTrace::OutputToStream(std::ostream* os) const { | 
|  | StreamBacktraceOutputHandler handler(os); | 
|  | ProcessBacktrace(trace_, count_, &handler); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | namespace internal { | 
|  |  | 
|  | // NOTE: code from sandbox/linux/seccomp-bpf/demo.cc. | 
|  | char *itoa_r(intptr_t i, char *buf, size_t sz, int base, size_t padding) { | 
|  | // Make sure we can write at least one NUL byte. | 
|  | size_t n = 1; | 
|  | if (n > sz) | 
|  | return NULL; | 
|  |  | 
|  | if (base < 2 || base > 16) { | 
|  | buf[0] = '\000'; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | char *start = buf; | 
|  |  | 
|  | uintptr_t j = i; | 
|  |  | 
|  | // Handle negative numbers (only for base 10). | 
|  | if (i < 0 && base == 10) { | 
|  | j = -i; | 
|  |  | 
|  | // Make sure we can write the '-' character. | 
|  | if (++n > sz) { | 
|  | buf[0] = '\000'; | 
|  | return NULL; | 
|  | } | 
|  | *start++ = '-'; | 
|  | } | 
|  |  | 
|  | // Loop until we have converted the entire number. Output at least one | 
|  | // character (i.e. '0'). | 
|  | char *ptr = start; | 
|  | do { | 
|  | // Make sure there is still enough space left in our output buffer. | 
|  | if (++n > sz) { | 
|  | buf[0] = '\000'; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | // Output the next digit. | 
|  | *ptr++ = "0123456789abcdef"[j % base]; | 
|  | j /= base; | 
|  |  | 
|  | if (padding > 0) | 
|  | padding--; | 
|  | } while (j > 0 || padding > 0); | 
|  |  | 
|  | // Terminate the output with a NUL character. | 
|  | *ptr = '\000'; | 
|  |  | 
|  | // Conversion to ASCII actually resulted in the digits being in reverse | 
|  | // order. We can't easily generate them in forward order, as we can't tell | 
|  | // the number of characters needed until we are done converting. | 
|  | // So, now, we reverse the string (except for the possible "-" sign). | 
|  | while (--ptr > start) { | 
|  | char ch = *ptr; | 
|  | *ptr = *start; | 
|  | *start++ = ch; | 
|  | } | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | }  // namespace internal | 
|  |  | 
|  | }  // namespace debug | 
|  | }  // namespace base |