|  | // Copyright (c) 2011 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | // The original file was copied from sqlite, and was in the public domain. | 
|  |  | 
|  | /* | 
|  | * This code implements the MD5 message-digest algorithm. | 
|  | * The algorithm is due to Ron Rivest.  This code was | 
|  | * written by Colin Plumb in 1993, no copyright is claimed. | 
|  | * This code is in the public domain; do with it what you wish. | 
|  | * | 
|  | * Equivalent code is available from RSA Data Security, Inc. | 
|  | * This code has been tested against that, and is equivalent, | 
|  | * except that you don't need to include two pages of legalese | 
|  | * with every copy. | 
|  | * | 
|  | * To compute the message digest of a chunk of bytes, declare an | 
|  | * MD5Context structure, pass it to MD5Init, call MD5Update as | 
|  | * needed on buffers full of bytes, and then call MD5Final, which | 
|  | * will fill a supplied 16-byte array with the digest. | 
|  | */ | 
|  |  | 
|  | #include "base/md5.h" | 
|  |  | 
|  | #include "base/basictypes.h" | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | struct Context { | 
|  | uint32 buf[4]; | 
|  | uint32 bits[2]; | 
|  | unsigned char in[64]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Note: this code is harmless on little-endian machines. | 
|  | */ | 
|  | void byteReverse(unsigned char *buf, unsigned longs) { | 
|  | uint32 t; | 
|  | do { | 
|  | t = (uint32)((unsigned)buf[3]<<8 | buf[2]) << 16 | | 
|  | ((unsigned)buf[1]<<8 | buf[0]); | 
|  | *(uint32 *)buf = t; | 
|  | buf += 4; | 
|  | } while (--longs); | 
|  | } | 
|  |  | 
|  | /* The four core functions - F1 is optimized somewhat */ | 
|  |  | 
|  | /* #define F1(x, y, z) (x & y | ~x & z) */ | 
|  | #define F1(x, y, z) (z ^ (x & (y ^ z))) | 
|  | #define F2(x, y, z) F1(z, x, y) | 
|  | #define F3(x, y, z) (x ^ y ^ z) | 
|  | #define F4(x, y, z) (y ^ (x | ~z)) | 
|  |  | 
|  | /* This is the central step in the MD5 algorithm. */ | 
|  | #define MD5STEP(f, w, x, y, z, data, s) \ | 
|  | ( w += f(x, y, z) + data,  w = w<<s | w>>(32-s),  w += x ) | 
|  |  | 
|  | /* | 
|  | * The core of the MD5 algorithm, this alters an existing MD5 hash to | 
|  | * reflect the addition of 16 longwords of new data.  MD5Update blocks | 
|  | * the data and converts bytes into longwords for this routine. | 
|  | */ | 
|  | void MD5Transform(uint32 buf[4], const uint32 in[16]) { | 
|  | register uint32 a, b, c, d; | 
|  |  | 
|  | a = buf[0]; | 
|  | b = buf[1]; | 
|  | c = buf[2]; | 
|  | d = buf[3]; | 
|  |  | 
|  | MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478,  7); | 
|  | MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf,  7); | 
|  | MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8,  7); | 
|  | MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22); | 
|  | MD5STEP(F1, a, b, c, d, in[12]+0x6b901122,  7); | 
|  | MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12); | 
|  | MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17); | 
|  | MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22); | 
|  |  | 
|  | MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562,  5); | 
|  | MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340,  9); | 
|  | MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d,  5); | 
|  | MD5STEP(F2, d, a, b, c, in[10]+0x02441453,  9); | 
|  | MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6,  5); | 
|  | MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6,  9); | 
|  | MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20); | 
|  | MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905,  5); | 
|  | MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8,  9); | 
|  | MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14); | 
|  | MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20); | 
|  |  | 
|  | MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942,  4); | 
|  | MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44,  4); | 
|  | MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6,  4); | 
|  | MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23); | 
|  | MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039,  4); | 
|  | MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11); | 
|  | MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16); | 
|  | MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23); | 
|  |  | 
|  | MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244,  6); | 
|  | MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3,  6); | 
|  | MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f,  6); | 
|  | MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21); | 
|  | MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82,  6); | 
|  | MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10); | 
|  | MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15); | 
|  | MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21); | 
|  |  | 
|  | buf[0] += a; | 
|  | buf[1] += b; | 
|  | buf[2] += c; | 
|  | buf[3] += d; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | namespace base { | 
|  |  | 
|  | /* | 
|  | * Start MD5 accumulation.  Set bit count to 0 and buffer to mysterious | 
|  | * initialization constants. | 
|  | */ | 
|  | void MD5Init(MD5Context* context) { | 
|  | struct Context *ctx = (struct Context *)context; | 
|  | ctx->buf[0] = 0x67452301; | 
|  | ctx->buf[1] = 0xefcdab89; | 
|  | ctx->buf[2] = 0x98badcfe; | 
|  | ctx->buf[3] = 0x10325476; | 
|  | ctx->bits[0] = 0; | 
|  | ctx->bits[1] = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update context to reflect the concatenation of another buffer full | 
|  | * of bytes. | 
|  | */ | 
|  | void MD5Update(MD5Context* context, const StringPiece& data) { | 
|  | const unsigned char* inbuf = (const unsigned char*)data.data(); | 
|  | size_t len = data.size(); | 
|  | struct Context *ctx = (struct Context *)context; | 
|  | const unsigned char* buf = (const unsigned char*)inbuf; | 
|  | uint32 t; | 
|  |  | 
|  | /* Update bitcount */ | 
|  |  | 
|  | t = ctx->bits[0]; | 
|  | if ((ctx->bits[0] = t + ((uint32)len << 3)) < t) | 
|  | ctx->bits[1]++; /* Carry from low to high */ | 
|  | ctx->bits[1] += static_cast<uint32>(len >> 29); | 
|  |  | 
|  | t = (t >> 3) & 0x3f;    /* Bytes already in shsInfo->data */ | 
|  |  | 
|  | /* Handle any leading odd-sized chunks */ | 
|  |  | 
|  | if (t) { | 
|  | unsigned char *p = (unsigned char *)ctx->in + t; | 
|  |  | 
|  | t = 64-t; | 
|  | if (len < t) { | 
|  | memcpy(p, buf, len); | 
|  | return; | 
|  | } | 
|  | memcpy(p, buf, t); | 
|  | byteReverse(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, (uint32 *)ctx->in); | 
|  | buf += t; | 
|  | len -= t; | 
|  | } | 
|  |  | 
|  | /* Process data in 64-byte chunks */ | 
|  |  | 
|  | while (len >= 64) { | 
|  | memcpy(ctx->in, buf, 64); | 
|  | byteReverse(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, (uint32 *)ctx->in); | 
|  | buf += 64; | 
|  | len -= 64; | 
|  | } | 
|  |  | 
|  | /* Handle any remaining bytes of data. */ | 
|  |  | 
|  | memcpy(ctx->in, buf, len); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Final wrapup - pad to 64-byte boundary with the bit pattern | 
|  | * 1 0* (64-bit count of bits processed, MSB-first) | 
|  | */ | 
|  | void MD5Final(MD5Digest* digest, MD5Context* context) { | 
|  | struct Context *ctx = (struct Context *)context; | 
|  | unsigned count; | 
|  | unsigned char *p; | 
|  |  | 
|  | /* Compute number of bytes mod 64 */ | 
|  | count = (ctx->bits[0] >> 3) & 0x3F; | 
|  |  | 
|  | /* Set the first char of padding to 0x80.  This is safe since there is | 
|  | always at least one byte free */ | 
|  | p = ctx->in + count; | 
|  | *p++ = 0x80; | 
|  |  | 
|  | /* Bytes of padding needed to make 64 bytes */ | 
|  | count = 64 - 1 - count; | 
|  |  | 
|  | /* Pad out to 56 mod 64 */ | 
|  | if (count < 8) { | 
|  | /* Two lots of padding:  Pad the first block to 64 bytes */ | 
|  | memset(p, 0, count); | 
|  | byteReverse(ctx->in, 16); | 
|  | MD5Transform(ctx->buf, (uint32 *)ctx->in); | 
|  |  | 
|  | /* Now fill the next block with 56 bytes */ | 
|  | memset(ctx->in, 0, 56); | 
|  | } else { | 
|  | /* Pad block to 56 bytes */ | 
|  | memset(p, 0, count-8); | 
|  | } | 
|  | byteReverse(ctx->in, 14); | 
|  |  | 
|  | /* Append length in bits and transform */ | 
|  | memcpy(&ctx->in[14 * sizeof(ctx->bits[0])], | 
|  | &ctx->bits[0], | 
|  | sizeof(ctx->bits[0])); | 
|  | memcpy(&ctx->in[15 * sizeof(ctx->bits[1])], | 
|  | &ctx->bits[1], | 
|  | sizeof(ctx->bits[1])); | 
|  |  | 
|  | MD5Transform(ctx->buf, (uint32 *)ctx->in); | 
|  | byteReverse((unsigned char *)ctx->buf, 4); | 
|  | memcpy(digest->a, ctx->buf, 16); | 
|  | memset(ctx, 0, sizeof(*ctx));    /* In case it's sensitive */ | 
|  | } | 
|  |  | 
|  | void MD5IntermediateFinal(MD5Digest* digest, const MD5Context* context) { | 
|  | /* MD5Final mutates the MD5Context*. Make a copy for generating the | 
|  | intermediate value. */ | 
|  | MD5Context context_copy; | 
|  | memcpy(&context_copy, context, sizeof(context_copy)); | 
|  | MD5Final(digest, &context_copy); | 
|  | } | 
|  |  | 
|  | std::string MD5DigestToBase16(const MD5Digest& digest) { | 
|  | static char const zEncode[] = "0123456789abcdef"; | 
|  |  | 
|  | std::string ret; | 
|  | ret.resize(32); | 
|  |  | 
|  | int j = 0; | 
|  | for (int i = 0; i < 16; i ++) { | 
|  | int a = digest.a[i]; | 
|  | ret[j++] = zEncode[(a>>4)&0xf]; | 
|  | ret[j++] = zEncode[a & 0xf]; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void MD5Sum(const void* data, size_t length, MD5Digest* digest) { | 
|  | MD5Context ctx; | 
|  | MD5Init(&ctx); | 
|  | MD5Update(&ctx, | 
|  | StringPiece(reinterpret_cast<const char*>(data), length)); | 
|  | MD5Final(digest, &ctx); | 
|  | } | 
|  |  | 
|  | std::string MD5String(const StringPiece& str) { | 
|  | MD5Digest digest; | 
|  | MD5Sum(str.data(), str.length(), &digest); | 
|  | return MD5DigestToBase16(digest); | 
|  | } | 
|  |  | 
|  | }  // namespace base |