blob: 8b65ef68246644a4ad858d65f4d07156fa54056b [file] [log] [blame]
// Copyright 2015 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <math.h>
#include <memory>
#include "mojo/public/c/system/main.h"
#include "mojo/public/cpp/application/application_delegate.h"
#include "mojo/public/cpp/application/application_impl.h"
#include "mojo/public/cpp/application/application_runner.h"
#include "mojo/public/cpp/utility/run_loop.h"
#include "mojo/services/media/audio/interfaces/audio_server.mojom.h"
#include "mojo/services/media/audio/interfaces/audio_track.mojom.h"
#include "mojo/services/media/common/cpp/circular_buffer_media_pipe_adapter.h"
#include "mojo/services/media/common/cpp/linear_transform.h"
#include "mojo/services/media/common/cpp/local_time.h"
#include "mojo/services/media/common/interfaces/rate_control.mojom.h"
namespace mojo {
namespace media {
namespace audio {
namespace examples {
static constexpr uint32_t SAMP_FREQ = 48000;
static constexpr uint32_t CHUNK_USEC = 1000;
static constexpr uint32_t BUF_LO_WATER_USEC = 50000;
static constexpr uint32_t BUF_HI_WATER_USEC = BUF_LO_WATER_USEC
+ (4 * CHUNK_USEC);
static constexpr uint32_t BUF_DEPTH_USEC = BUF_HI_WATER_USEC
+ (4 * CHUNK_USEC);
static constexpr uint32_t FRAME_BYTES = sizeof(int16_t);
static inline constexpr uint32_t USecToBytes(uint64_t usec) {
return ((usec * SAMP_FREQ) / 1000000) * FRAME_BYTES;
}
class PlayToneApp : public ApplicationDelegate {
public:
void Initialize(ApplicationImpl* app) override;
private:
bool GenerateToneCbk(MediaResult res);
void PlayTone(double freq_hz, double amplitude, double duration_sec);
void Cleanup();
AudioServerPtr audio_server_;
AudioTrackPtr audio_track_;
RateControlPtr rate_control_;
std::unique_ptr<CircularBufferMediaPipeAdapter> pipe_;
bool clock_started_ = false;
uint64_t media_time_ = 0;
double freq_hz_ = 440.0;
double amplitude_ = 1.0;
};
void PlayToneApp::Initialize(ApplicationImpl* app) {
MediaResult result = MediaResult::UNKNOWN_ERROR;
app->ConnectToService("mojo:audio_server", &audio_server_);
audio_server_->CreateTrack(GetProxy(&audio_track_));
// Query the sink's format capabilities.
AudioTrackDescriptorPtr sink_desc;
auto desc_cbk = [&sink_desc](AudioTrackDescriptorPtr desc) {
sink_desc = desc.Pass();
};
audio_track_->Describe(AudioTrack::DescribeCallback(desc_cbk));
// TODO(johngro): this pattern is awkward. We really don't want to be
// calling WaitForIncomingResponse, even if we were able supply a timeout.
// The best practice would be to defer to a handler for the message we are
// expecting to eventually come back.
//
// But... what if the message never comes back? Perhaps the service is not
// implemented properly, or perhaps the service is malicious. We could
// queue a delayed message on our run loop which indicates a timeout, but
// then what happens when when the response to Describe comes back (as
// expected). We don't really have a good way to cancel the "timeout"
// message once we have queued it. Maintaining all of the bookkeeping
// required to nerf the callback when it happens and is discovered to be
// useless is going to get very old, very fast.
//
// For now, we just do the evil thing and block during init, but I sure do
// wish there was something nicer we could do.
if (!audio_track_.WaitForIncomingResponse()) {
MOJO_LOG(ERROR)
<< "Failed to fetch sync capabilities; no response received.";
Cleanup();
return;
}
// TODO(johngro): do something useful with our capabilities description.
sink_desc.reset();
// Grab the rate control interface for our audio renderer.
auto get_rc_cbk = [&result](MediaResult res) { result = res; };
audio_track_->GetRateControl(GetProxy(&rate_control_), get_rc_cbk);
if (!audio_track_.WaitForIncomingResponse()) {
MOJO_LOG(ERROR) <<
"Failed to fetch rate control interface; no response received.";
Cleanup();
return;
}
if (result != MediaResult::OK) {
MOJO_LOG(ERROR) << "Failed to get rate control interface. (res = "
<< result << ")";
Cleanup();
return;
}
// Configure our sink for 16-bit 48KHz mono.
AudioTrackConfigurationPtr cfg = AudioTrackConfiguration::New();
cfg->max_frames = USecToBytes(BUF_DEPTH_USEC) / FRAME_BYTES;
LpcmMediaTypeDetailsPtr pcm_cfg = LpcmMediaTypeDetails::New();
pcm_cfg->sample_format = LpcmSampleFormat::SIGNED_16;
pcm_cfg->samples_per_frame = 1;
pcm_cfg->frames_per_second = SAMP_FREQ;
cfg->media_type = MediaType::New();
cfg->media_type->scheme = MediaTypeScheme::LPCM;
cfg->media_type->details = MediaTypeDetails::New();
cfg->media_type->details->set_lpcm(pcm_cfg.Pass());
MediaPipePtr pipe;
{
auto cbk = [&result](MediaResult res) {
result = res;
};
audio_track_->Configure(cfg.Pass(), GetProxy(&pipe), cbk);
}
if (!audio_track_.WaitForIncomingResponse()) {
MOJO_LOG(ERROR) << "Failed to configure sink; no response received.";
Cleanup();
return;
}
if (result != MediaResult::OK) {
MOJO_LOG(ERROR) << "Failed to configure sink. (res = "
<< result << ")";
Cleanup();
return;
}
// Now that we are configured and have our media pipe, pass its interface to
// our circular buffer helper, set up our high/low water marks, register our
// callback, and start to buffer our audio.
pipe_.reset(new CircularBufferMediaPipeAdapter(pipe.Pass()));
pipe_->SetSignalCallback(
[this](MediaResult res) -> bool {
return GenerateToneCbk(res);
});
pipe_->SetWatermarks(USecToBytes(BUF_HI_WATER_USEC),
USecToBytes(BUF_LO_WATER_USEC));
}
bool PlayToneApp::GenerateToneCbk(MediaResult res) {
using MappedPacket = CircularBufferMediaPipeAdapter::MappedPacket;
MappedPacket mapped_pkt;
MOJO_DCHECK(freq_hz_ > 0.0);
MOJO_DCHECK(amplitude_ >= 0.0);
MOJO_DCHECK(amplitude_ <= 1.0);
if (res != MediaResult::OK) {
MOJO_LOG(ERROR) << "Fatal error in cbuf (" << res << ").";
Cleanup();
return false;
}
while (!pipe_->AboveHiWater()) {
res = pipe_->CreateMediaPacket(USecToBytes(CHUNK_USEC),
false,
&mapped_pkt);
if (res != MediaResult::OK) {
MOJO_LOG(ERROR) << "Unexpected error when creating media packet ("
<< res << ").";
Cleanup();
return false;
}
mapped_pkt.packet()->pts = media_time_;
for (uint32_t i = 0; i < MappedPacket::kMaxRegions; ++i) {
int16_t* data = reinterpret_cast<int16_t*>(mapped_pkt.data(i));
uint64_t len;
if (!data) continue;
len = mapped_pkt.length(i);
MOJO_DCHECK(len && !(len % FRAME_BYTES));
len /= FRAME_BYTES;
for (uint64_t i = 0; i < len; ++i, ++media_time_) {
double tmp = ((M_PI * 2.0) / SAMP_FREQ) * freq_hz_ * media_time_;
data[i] = std::numeric_limits<int16_t>::max() * amplitude_ * sin(tmp);
}
}
res = pipe_->SendMediaPacket(&mapped_pkt);
if (res != MediaResult::OK) {
MOJO_LOG(ERROR) << "Unexpected error when sending media packet ("
<< res << ").";
pipe_->CancelMediaPacket(&mapped_pkt);
Cleanup();
return false;
}
}
if (!clock_started_) {
// In theory, this could be done at compile time using std::ratio, but
// std::ratio is prohibited.
LinearTransform::Ratio audio_rate(SAMP_FREQ, 1);
LinearTransform::Ratio local_time_rate(LocalDuration::period::num,
LocalDuration::period::den);
LinearTransform::Ratio rate;
bool success = LinearTransform::Ratio::Compose(local_time_rate,
audio_rate,
&rate);
MOJO_DCHECK(success); // assert that there was no loss of precision.
MOJO_LOG(INFO) << "Setting rate " << rate;
rate_control_->SetRate(rate.numerator, rate.denominator);
clock_started_ = true;
}
return true;
}
void PlayToneApp::Cleanup() {
audio_track_.reset();
audio_server_.reset();
RunLoop::current()->Quit();
}
} // namespace examples
} // namespace audio
} // namespace media
} // namespace mojo
MojoResult MojoMain(MojoHandle app_request) {
mojo::ApplicationRunner runner(new mojo::media::audio::examples::PlayToneApp);
return runner.Run(app_request);
}