| // Copyright (c) 2013 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | /* | 
 |  * curve25519-donna: Curve25519 elliptic curve, public key function | 
 |  * | 
 |  * http://code.google.com/p/curve25519-donna/ | 
 |  * | 
 |  * Adam Langley <agl@imperialviolet.org> | 
 |  * | 
 |  * Derived from public domain C code by Daniel J. Bernstein <djb@cr.yp.to> | 
 |  * | 
 |  * More information about curve25519 can be found here | 
 |  *   http://cr.yp.to/ecdh.html | 
 |  * | 
 |  * djb's sample implementation of curve25519 is written in a special assembly | 
 |  * language called qhasm and uses the floating point registers. | 
 |  * | 
 |  * This is, almost, a clean room reimplementation from the curve25519 paper. It | 
 |  * uses many of the tricks described therein. Only the crecip function is taken | 
 |  * from the sample implementation. | 
 |  */ | 
 |  | 
 | #include <string.h> | 
 | #include <stdint.h> | 
 |  | 
 | typedef uint8_t u8; | 
 | typedef int32_t s32; | 
 | typedef int64_t limb; | 
 |  | 
 | /* Field element representation: | 
 |  * | 
 |  * Field elements are written as an array of signed, 64-bit limbs, least | 
 |  * significant first. The value of the field element is: | 
 |  *   x[0] + 2^26·x[1] + x^51·x[2] + 2^102·x[3] + ... | 
 |  * | 
 |  * i.e. the limbs are 26, 25, 26, 25, ... bits wide. | 
 |  */ | 
 |  | 
 | /* Sum two numbers: output += in */ | 
 | static void fsum(limb *output, const limb *in) { | 
 |   unsigned i; | 
 |   for (i = 0; i < 10; i += 2) { | 
 |     output[0+i] = (output[0+i] + in[0+i]); | 
 |     output[1+i] = (output[1+i] + in[1+i]); | 
 |   } | 
 | } | 
 |  | 
 | /* Find the difference of two numbers: output = in - output | 
 |  * (note the order of the arguments!) | 
 |  */ | 
 | static void fdifference(limb *output, const limb *in) { | 
 |   unsigned i; | 
 |   for (i = 0; i < 10; ++i) { | 
 |     output[i] = (in[i] - output[i]); | 
 |   } | 
 | } | 
 |  | 
 | /* Multiply a number my a scalar: output = in * scalar */ | 
 | static void fscalar_product(limb *output, const limb *in, const limb scalar) { | 
 |   unsigned i; | 
 |   for (i = 0; i < 10; ++i) { | 
 |     output[i] = in[i] * scalar; | 
 |   } | 
 | } | 
 |  | 
 | /* Multiply two numbers: output = in2 * in | 
 |  * | 
 |  * output must be distinct to both inputs. The inputs are reduced coefficient | 
 |  * form, the output is not. | 
 |  */ | 
 | static void fproduct(limb *output, const limb *in2, const limb *in) { | 
 |   output[0] =       ((limb) ((s32) in2[0])) * ((s32) in[0]); | 
 |   output[1] =       ((limb) ((s32) in2[0])) * ((s32) in[1]) + | 
 |                     ((limb) ((s32) in2[1])) * ((s32) in[0]); | 
 |   output[2] =  2 *  ((limb) ((s32) in2[1])) * ((s32) in[1]) + | 
 |                     ((limb) ((s32) in2[0])) * ((s32) in[2]) + | 
 |                     ((limb) ((s32) in2[2])) * ((s32) in[0]); | 
 |   output[3] =       ((limb) ((s32) in2[1])) * ((s32) in[2]) + | 
 |                     ((limb) ((s32) in2[2])) * ((s32) in[1]) + | 
 |                     ((limb) ((s32) in2[0])) * ((s32) in[3]) + | 
 |                     ((limb) ((s32) in2[3])) * ((s32) in[0]); | 
 |   output[4] =       ((limb) ((s32) in2[2])) * ((s32) in[2]) + | 
 |                2 * (((limb) ((s32) in2[1])) * ((s32) in[3]) + | 
 |                     ((limb) ((s32) in2[3])) * ((s32) in[1])) + | 
 |                     ((limb) ((s32) in2[0])) * ((s32) in[4]) + | 
 |                     ((limb) ((s32) in2[4])) * ((s32) in[0]); | 
 |   output[5] =       ((limb) ((s32) in2[2])) * ((s32) in[3]) + | 
 |                     ((limb) ((s32) in2[3])) * ((s32) in[2]) + | 
 |                     ((limb) ((s32) in2[1])) * ((s32) in[4]) + | 
 |                     ((limb) ((s32) in2[4])) * ((s32) in[1]) + | 
 |                     ((limb) ((s32) in2[0])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in2[5])) * ((s32) in[0]); | 
 |   output[6] =  2 * (((limb) ((s32) in2[3])) * ((s32) in[3]) + | 
 |                     ((limb) ((s32) in2[1])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in2[5])) * ((s32) in[1])) + | 
 |                     ((limb) ((s32) in2[2])) * ((s32) in[4]) + | 
 |                     ((limb) ((s32) in2[4])) * ((s32) in[2]) + | 
 |                     ((limb) ((s32) in2[0])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in2[6])) * ((s32) in[0]); | 
 |   output[7] =       ((limb) ((s32) in2[3])) * ((s32) in[4]) + | 
 |                     ((limb) ((s32) in2[4])) * ((s32) in[3]) + | 
 |                     ((limb) ((s32) in2[2])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in2[5])) * ((s32) in[2]) + | 
 |                     ((limb) ((s32) in2[1])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in2[6])) * ((s32) in[1]) + | 
 |                     ((limb) ((s32) in2[0])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in2[7])) * ((s32) in[0]); | 
 |   output[8] =       ((limb) ((s32) in2[4])) * ((s32) in[4]) + | 
 |                2 * (((limb) ((s32) in2[3])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in2[5])) * ((s32) in[3]) + | 
 |                     ((limb) ((s32) in2[1])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in2[7])) * ((s32) in[1])) + | 
 |                     ((limb) ((s32) in2[2])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in2[6])) * ((s32) in[2]) + | 
 |                     ((limb) ((s32) in2[0])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in2[8])) * ((s32) in[0]); | 
 |   output[9] =       ((limb) ((s32) in2[4])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in2[5])) * ((s32) in[4]) + | 
 |                     ((limb) ((s32) in2[3])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in2[6])) * ((s32) in[3]) + | 
 |                     ((limb) ((s32) in2[2])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in2[7])) * ((s32) in[2]) + | 
 |                     ((limb) ((s32) in2[1])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in2[8])) * ((s32) in[1]) + | 
 |                     ((limb) ((s32) in2[0])) * ((s32) in[9]) + | 
 |                     ((limb) ((s32) in2[9])) * ((s32) in[0]); | 
 |   output[10] = 2 * (((limb) ((s32) in2[5])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in2[3])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in2[7])) * ((s32) in[3]) + | 
 |                     ((limb) ((s32) in2[1])) * ((s32) in[9]) + | 
 |                     ((limb) ((s32) in2[9])) * ((s32) in[1])) + | 
 |                     ((limb) ((s32) in2[4])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in2[6])) * ((s32) in[4]) + | 
 |                     ((limb) ((s32) in2[2])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in2[8])) * ((s32) in[2]); | 
 |   output[11] =      ((limb) ((s32) in2[5])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in2[6])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in2[4])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in2[7])) * ((s32) in[4]) + | 
 |                     ((limb) ((s32) in2[3])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in2[8])) * ((s32) in[3]) + | 
 |                     ((limb) ((s32) in2[2])) * ((s32) in[9]) + | 
 |                     ((limb) ((s32) in2[9])) * ((s32) in[2]); | 
 |   output[12] =      ((limb) ((s32) in2[6])) * ((s32) in[6]) + | 
 |                2 * (((limb) ((s32) in2[5])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in2[7])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in2[3])) * ((s32) in[9]) + | 
 |                     ((limb) ((s32) in2[9])) * ((s32) in[3])) + | 
 |                     ((limb) ((s32) in2[4])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in2[8])) * ((s32) in[4]); | 
 |   output[13] =      ((limb) ((s32) in2[6])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in2[7])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in2[5])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in2[8])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in2[4])) * ((s32) in[9]) + | 
 |                     ((limb) ((s32) in2[9])) * ((s32) in[4]); | 
 |   output[14] = 2 * (((limb) ((s32) in2[7])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in2[5])) * ((s32) in[9]) + | 
 |                     ((limb) ((s32) in2[9])) * ((s32) in[5])) + | 
 |                     ((limb) ((s32) in2[6])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in2[8])) * ((s32) in[6]); | 
 |   output[15] =      ((limb) ((s32) in2[7])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in2[8])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in2[6])) * ((s32) in[9]) + | 
 |                     ((limb) ((s32) in2[9])) * ((s32) in[6]); | 
 |   output[16] =      ((limb) ((s32) in2[8])) * ((s32) in[8]) + | 
 |                2 * (((limb) ((s32) in2[7])) * ((s32) in[9]) + | 
 |                     ((limb) ((s32) in2[9])) * ((s32) in[7])); | 
 |   output[17] =      ((limb) ((s32) in2[8])) * ((s32) in[9]) + | 
 |                     ((limb) ((s32) in2[9])) * ((s32) in[8]); | 
 |   output[18] = 2 *  ((limb) ((s32) in2[9])) * ((s32) in[9]); | 
 | } | 
 |  | 
 | /* Reduce a long form to a short form by taking the input mod 2^255 - 19. */ | 
 | static void freduce_degree(limb *output) { | 
 |   /* Each of these shifts and adds ends up multiplying the value by 19. */ | 
 |   output[8] += output[18] << 4; | 
 |   output[8] += output[18] << 1; | 
 |   output[8] += output[18]; | 
 |   output[7] += output[17] << 4; | 
 |   output[7] += output[17] << 1; | 
 |   output[7] += output[17]; | 
 |   output[6] += output[16] << 4; | 
 |   output[6] += output[16] << 1; | 
 |   output[6] += output[16]; | 
 |   output[5] += output[15] << 4; | 
 |   output[5] += output[15] << 1; | 
 |   output[5] += output[15]; | 
 |   output[4] += output[14] << 4; | 
 |   output[4] += output[14] << 1; | 
 |   output[4] += output[14]; | 
 |   output[3] += output[13] << 4; | 
 |   output[3] += output[13] << 1; | 
 |   output[3] += output[13]; | 
 |   output[2] += output[12] << 4; | 
 |   output[2] += output[12] << 1; | 
 |   output[2] += output[12]; | 
 |   output[1] += output[11] << 4; | 
 |   output[1] += output[11] << 1; | 
 |   output[1] += output[11]; | 
 |   output[0] += output[10] << 4; | 
 |   output[0] += output[10] << 1; | 
 |   output[0] += output[10]; | 
 | } | 
 |  | 
 | /* Reduce all coefficients of the short form input so that |x| < 2^26. | 
 |  * | 
 |  * On entry: |output[i]| < 2^62 | 
 |  */ | 
 | static void freduce_coefficients(limb *output) { | 
 |   unsigned i; | 
 |   do { | 
 |     output[10] = 0; | 
 |  | 
 |     for (i = 0; i < 10; i += 2) { | 
 |       limb over = output[i] / 0x4000000l; | 
 |       output[i+1] += over; | 
 |       output[i] -= over * 0x4000000l; | 
 |  | 
 |       over = output[i+1] / 0x2000000; | 
 |       output[i+2] += over; | 
 |       output[i+1] -= over * 0x2000000; | 
 |     } | 
 |     output[0] += 19 * output[10]; | 
 |   } while (output[10]); | 
 | } | 
 |  | 
 | /* A helpful wrapper around fproduct: output = in * in2. | 
 |  * | 
 |  * output must be distinct to both inputs. The output is reduced degree and | 
 |  * reduced coefficient. | 
 |  */ | 
 | static void | 
 | fmul(limb *output, const limb *in, const limb *in2) { | 
 |   limb t[19]; | 
 |   fproduct(t, in, in2); | 
 |   freduce_degree(t); | 
 |   freduce_coefficients(t); | 
 |   memcpy(output, t, sizeof(limb) * 10); | 
 | } | 
 |  | 
 | static void fsquare_inner(limb *output, const limb *in) { | 
 |   output[0] =       ((limb) ((s32) in[0])) * ((s32) in[0]); | 
 |   output[1] =  2 *  ((limb) ((s32) in[0])) * ((s32) in[1]); | 
 |   output[2] =  2 * (((limb) ((s32) in[1])) * ((s32) in[1]) + | 
 |                     ((limb) ((s32) in[0])) * ((s32) in[2])); | 
 |   output[3] =  2 * (((limb) ((s32) in[1])) * ((s32) in[2]) + | 
 |                     ((limb) ((s32) in[0])) * ((s32) in[3])); | 
 |   output[4] =       ((limb) ((s32) in[2])) * ((s32) in[2]) + | 
 |                4 *  ((limb) ((s32) in[1])) * ((s32) in[3]) + | 
 |                2 *  ((limb) ((s32) in[0])) * ((s32) in[4]); | 
 |   output[5] =  2 * (((limb) ((s32) in[2])) * ((s32) in[3]) + | 
 |                     ((limb) ((s32) in[1])) * ((s32) in[4]) + | 
 |                     ((limb) ((s32) in[0])) * ((s32) in[5])); | 
 |   output[6] =  2 * (((limb) ((s32) in[3])) * ((s32) in[3]) + | 
 |                     ((limb) ((s32) in[2])) * ((s32) in[4]) + | 
 |                     ((limb) ((s32) in[0])) * ((s32) in[6]) + | 
 |                2 *  ((limb) ((s32) in[1])) * ((s32) in[5])); | 
 |   output[7] =  2 * (((limb) ((s32) in[3])) * ((s32) in[4]) + | 
 |                     ((limb) ((s32) in[2])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in[1])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in[0])) * ((s32) in[7])); | 
 |   output[8] =       ((limb) ((s32) in[4])) * ((s32) in[4]) + | 
 |                2 * (((limb) ((s32) in[2])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in[0])) * ((s32) in[8]) + | 
 |                2 * (((limb) ((s32) in[1])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in[3])) * ((s32) in[5]))); | 
 |   output[9] =  2 * (((limb) ((s32) in[4])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in[3])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in[2])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in[1])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in[0])) * ((s32) in[9])); | 
 |   output[10] = 2 * (((limb) ((s32) in[5])) * ((s32) in[5]) + | 
 |                     ((limb) ((s32) in[4])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in[2])) * ((s32) in[8]) + | 
 |                2 * (((limb) ((s32) in[3])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in[1])) * ((s32) in[9]))); | 
 |   output[11] = 2 * (((limb) ((s32) in[5])) * ((s32) in[6]) + | 
 |                     ((limb) ((s32) in[4])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in[3])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in[2])) * ((s32) in[9])); | 
 |   output[12] =      ((limb) ((s32) in[6])) * ((s32) in[6]) + | 
 |                2 * (((limb) ((s32) in[4])) * ((s32) in[8]) + | 
 |                2 * (((limb) ((s32) in[5])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in[3])) * ((s32) in[9]))); | 
 |   output[13] = 2 * (((limb) ((s32) in[6])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in[5])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in[4])) * ((s32) in[9])); | 
 |   output[14] = 2 * (((limb) ((s32) in[7])) * ((s32) in[7]) + | 
 |                     ((limb) ((s32) in[6])) * ((s32) in[8]) + | 
 |                2 *  ((limb) ((s32) in[5])) * ((s32) in[9])); | 
 |   output[15] = 2 * (((limb) ((s32) in[7])) * ((s32) in[8]) + | 
 |                     ((limb) ((s32) in[6])) * ((s32) in[9])); | 
 |   output[16] =      ((limb) ((s32) in[8])) * ((s32) in[8]) + | 
 |                4 *  ((limb) ((s32) in[7])) * ((s32) in[9]); | 
 |   output[17] = 2 *  ((limb) ((s32) in[8])) * ((s32) in[9]); | 
 |   output[18] = 2 *  ((limb) ((s32) in[9])) * ((s32) in[9]); | 
 | } | 
 |  | 
 | static void | 
 | fsquare(limb *output, const limb *in) { | 
 |   limb t[19]; | 
 |   fsquare_inner(t, in); | 
 |   freduce_degree(t); | 
 |   freduce_coefficients(t); | 
 |   memcpy(output, t, sizeof(limb) * 10); | 
 | } | 
 |  | 
 | /* Take a little-endian, 32-byte number and expand it into polynomial form */ | 
 | static void | 
 | fexpand(limb *output, const u8 *input) { | 
 | #define F(n,start,shift,mask) \ | 
 |   output[n] = ((((limb) input[start + 0]) | \ | 
 |                 ((limb) input[start + 1]) << 8 | \ | 
 |                 ((limb) input[start + 2]) << 16 | \ | 
 |                 ((limb) input[start + 3]) << 24) >> shift) & mask; | 
 |   F(0, 0, 0, 0x3ffffff); | 
 |   F(1, 3, 2, 0x1ffffff); | 
 |   F(2, 6, 3, 0x3ffffff); | 
 |   F(3, 9, 5, 0x1ffffff); | 
 |   F(4, 12, 6, 0x3ffffff); | 
 |   F(5, 16, 0, 0x1ffffff); | 
 |   F(6, 19, 1, 0x3ffffff); | 
 |   F(7, 22, 3, 0x1ffffff); | 
 |   F(8, 25, 4, 0x3ffffff); | 
 |   F(9, 28, 6, 0x1ffffff); | 
 | #undef F | 
 | } | 
 |  | 
 | /* Take a fully reduced polynomial form number and contract it into a | 
 |  * little-endian, 32-byte array | 
 |  */ | 
 | static void | 
 | fcontract(u8 *output, limb *input) { | 
 |   int i; | 
 |  | 
 |   do { | 
 |     for (i = 0; i < 9; ++i) { | 
 |       if ((i & 1) == 1) { | 
 |         while (input[i] < 0) { | 
 |           input[i] += 0x2000000; | 
 |           input[i + 1]--; | 
 |         } | 
 |       } else { | 
 |         while (input[i] < 0) { | 
 |           input[i] += 0x4000000; | 
 |           input[i + 1]--; | 
 |         } | 
 |       } | 
 |     } | 
 |     while (input[9] < 0) { | 
 |       input[9] += 0x2000000; | 
 |       input[0] -= 19; | 
 |     } | 
 |   } while (input[0] < 0); | 
 |  | 
 |   input[1] <<= 2; | 
 |   input[2] <<= 3; | 
 |   input[3] <<= 5; | 
 |   input[4] <<= 6; | 
 |   input[6] <<= 1; | 
 |   input[7] <<= 3; | 
 |   input[8] <<= 4; | 
 |   input[9] <<= 6; | 
 | #define F(i, s) \ | 
 |   output[s+0] |=  input[i] & 0xff; \ | 
 |   output[s+1]  = (input[i] >> 8) & 0xff; \ | 
 |   output[s+2]  = (input[i] >> 16) & 0xff; \ | 
 |   output[s+3]  = (input[i] >> 24) & 0xff; | 
 |   output[0] = 0; | 
 |   output[16] = 0; | 
 |   F(0,0); | 
 |   F(1,3); | 
 |   F(2,6); | 
 |   F(3,9); | 
 |   F(4,12); | 
 |   F(5,16); | 
 |   F(6,19); | 
 |   F(7,22); | 
 |   F(8,25); | 
 |   F(9,28); | 
 | #undef F | 
 | } | 
 |  | 
 | /* Input: Q, Q', Q-Q' | 
 |  * Output: 2Q, Q+Q' | 
 |  * | 
 |  *   x2 z3: long form | 
 |  *   x3 z3: long form | 
 |  *   x z: short form, destroyed | 
 |  *   xprime zprime: short form, destroyed | 
 |  *   qmqp: short form, preserved | 
 |  */ | 
 | static void fmonty(limb *x2, limb *z2,  /* output 2Q */ | 
 |                    limb *x3, limb *z3,  /* output Q + Q' */ | 
 |                    limb *x, limb *z,    /* input Q */ | 
 |                    limb *xprime, limb *zprime,  /* input Q' */ | 
 |                    const limb *qmqp /* input Q - Q' */) { | 
 |   limb origx[10], origxprime[10], zzz[19], xx[19], zz[19], xxprime[19], | 
 |         zzprime[19], zzzprime[19], xxxprime[19]; | 
 |  | 
 |   memcpy(origx, x, 10 * sizeof(limb)); | 
 |   fsum(x, z); | 
 |   fdifference(z, origx);  // does x - z | 
 |  | 
 |   memcpy(origxprime, xprime, sizeof(limb) * 10); | 
 |   fsum(xprime, zprime); | 
 |   fdifference(zprime, origxprime); | 
 |   fproduct(xxprime, xprime, z); | 
 |   fproduct(zzprime, x, zprime); | 
 |   freduce_degree(xxprime); | 
 |   freduce_coefficients(xxprime); | 
 |   freduce_degree(zzprime); | 
 |   freduce_coefficients(zzprime); | 
 |   memcpy(origxprime, xxprime, sizeof(limb) * 10); | 
 |   fsum(xxprime, zzprime); | 
 |   fdifference(zzprime, origxprime); | 
 |   fsquare(xxxprime, xxprime); | 
 |   fsquare(zzzprime, zzprime); | 
 |   fproduct(zzprime, zzzprime, qmqp); | 
 |   freduce_degree(zzprime); | 
 |   freduce_coefficients(zzprime); | 
 |   memcpy(x3, xxxprime, sizeof(limb) * 10); | 
 |   memcpy(z3, zzprime, sizeof(limb) * 10); | 
 |  | 
 |   fsquare(xx, x); | 
 |   fsquare(zz, z); | 
 |   fproduct(x2, xx, zz); | 
 |   freduce_degree(x2); | 
 |   freduce_coefficients(x2); | 
 |   fdifference(zz, xx);  // does zz = xx - zz | 
 |   memset(zzz + 10, 0, sizeof(limb) * 9); | 
 |   fscalar_product(zzz, zz, 121665); | 
 |   freduce_degree(zzz); | 
 |   freduce_coefficients(zzz); | 
 |   fsum(zzz, xx); | 
 |   fproduct(z2, zz, zzz); | 
 |   freduce_degree(z2); | 
 |   freduce_coefficients(z2); | 
 | } | 
 |  | 
 | /* Calculates nQ where Q is the x-coordinate of a point on the curve | 
 |  * | 
 |  *   resultx/resultz: the x coordinate of the resulting curve point (short form) | 
 |  *   n: a little endian, 32-byte number | 
 |  *   q: a point of the curve (short form) | 
 |  */ | 
 | static void | 
 | cmult(limb *resultx, limb *resultz, const u8 *n, const limb *q) { | 
 |   limb a[19] = {0}, b[19] = {1}, c[19] = {1}, d[19] = {0}; | 
 |   limb *nqpqx = a, *nqpqz = b, *nqx = c, *nqz = d, *t; | 
 |   limb e[19] = {0}, f[19] = {1}, g[19] = {0}, h[19] = {1}; | 
 |   limb *nqpqx2 = e, *nqpqz2 = f, *nqx2 = g, *nqz2 = h; | 
 |  | 
 |   unsigned i, j; | 
 |  | 
 |   memcpy(nqpqx, q, sizeof(limb) * 10); | 
 |  | 
 |   for (i = 0; i < 32; ++i) { | 
 |     u8 byte = n[31 - i]; | 
 |     for (j = 0; j < 8; ++j) { | 
 |       if (byte & 0x80) { | 
 |         fmonty(nqpqx2, nqpqz2, | 
 |                nqx2, nqz2, | 
 |                nqpqx, nqpqz, | 
 |                nqx, nqz, | 
 |                q); | 
 |       } else { | 
 |         fmonty(nqx2, nqz2, | 
 |                nqpqx2, nqpqz2, | 
 |                nqx, nqz, | 
 |                nqpqx, nqpqz, | 
 |                q); | 
 |       } | 
 |  | 
 |       t = nqx; | 
 |       nqx = nqx2; | 
 |       nqx2 = t; | 
 |       t = nqz; | 
 |       nqz = nqz2; | 
 |       nqz2 = t; | 
 |       t = nqpqx; | 
 |       nqpqx = nqpqx2; | 
 |       nqpqx2 = t; | 
 |       t = nqpqz; | 
 |       nqpqz = nqpqz2; | 
 |       nqpqz2 = t; | 
 |  | 
 |       byte <<= 1; | 
 |     } | 
 |   } | 
 |  | 
 |   memcpy(resultx, nqx, sizeof(limb) * 10); | 
 |   memcpy(resultz, nqz, sizeof(limb) * 10); | 
 | } | 
 |  | 
 | // ----------------------------------------------------------------------------- | 
 | // Shamelessly copied from djb's code | 
 | // ----------------------------------------------------------------------------- | 
 | static void | 
 | crecip(limb *out, const limb *z) { | 
 |   limb z2[10]; | 
 |   limb z9[10]; | 
 |   limb z11[10]; | 
 |   limb z2_5_0[10]; | 
 |   limb z2_10_0[10]; | 
 |   limb z2_20_0[10]; | 
 |   limb z2_50_0[10]; | 
 |   limb z2_100_0[10]; | 
 |   limb t0[10]; | 
 |   limb t1[10]; | 
 |   int i; | 
 |  | 
 |   /* 2 */ fsquare(z2,z); | 
 |   /* 4 */ fsquare(t1,z2); | 
 |   /* 8 */ fsquare(t0,t1); | 
 |   /* 9 */ fmul(z9,t0,z); | 
 |   /* 11 */ fmul(z11,z9,z2); | 
 |   /* 22 */ fsquare(t0,z11); | 
 |   /* 2^5 - 2^0 = 31 */ fmul(z2_5_0,t0,z9); | 
 |  | 
 |   /* 2^6 - 2^1 */ fsquare(t0,z2_5_0); | 
 |   /* 2^7 - 2^2 */ fsquare(t1,t0); | 
 |   /* 2^8 - 2^3 */ fsquare(t0,t1); | 
 |   /* 2^9 - 2^4 */ fsquare(t1,t0); | 
 |   /* 2^10 - 2^5 */ fsquare(t0,t1); | 
 |   /* 2^10 - 2^0 */ fmul(z2_10_0,t0,z2_5_0); | 
 |  | 
 |   /* 2^11 - 2^1 */ fsquare(t0,z2_10_0); | 
 |   /* 2^12 - 2^2 */ fsquare(t1,t0); | 
 |   /* 2^20 - 2^10 */ | 
 |   for (i = 2;i < 10;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | 
 |   /* 2^20 - 2^0 */ fmul(z2_20_0,t1,z2_10_0); | 
 |  | 
 |   /* 2^21 - 2^1 */ fsquare(t0,z2_20_0); | 
 |   /* 2^22 - 2^2 */ fsquare(t1,t0); | 
 |   /* 2^40 - 2^20 */ | 
 |   for (i = 2;i < 20;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | 
 |   /* 2^40 - 2^0 */ fmul(t0,t1,z2_20_0); | 
 |  | 
 |   /* 2^41 - 2^1 */ fsquare(t1,t0); | 
 |   /* 2^42 - 2^2 */ fsquare(t0,t1); | 
 |   /* 2^50 - 2^10 */ | 
 |   for (i = 2;i < 10;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } | 
 |   /* 2^50 - 2^0 */ fmul(z2_50_0,t0,z2_10_0); | 
 |  | 
 |   /* 2^51 - 2^1 */ fsquare(t0,z2_50_0); | 
 |   /* 2^52 - 2^2 */ fsquare(t1,t0); | 
 |   /* 2^100 - 2^50 */ | 
 |   for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | 
 |   /* 2^100 - 2^0 */ fmul(z2_100_0,t1,z2_50_0); | 
 |  | 
 |   /* 2^101 - 2^1 */ fsquare(t1,z2_100_0); | 
 |   /* 2^102 - 2^2 */ fsquare(t0,t1); | 
 |   /* 2^200 - 2^100 */ | 
 |   for (i = 2;i < 100;i += 2) { fsquare(t1,t0); fsquare(t0,t1); } | 
 |   /* 2^200 - 2^0 */ fmul(t1,t0,z2_100_0); | 
 |  | 
 |   /* 2^201 - 2^1 */ fsquare(t0,t1); | 
 |   /* 2^202 - 2^2 */ fsquare(t1,t0); | 
 |   /* 2^250 - 2^50 */ | 
 |   for (i = 2;i < 50;i += 2) { fsquare(t0,t1); fsquare(t1,t0); } | 
 |   /* 2^250 - 2^0 */ fmul(t0,t1,z2_50_0); | 
 |  | 
 |   /* 2^251 - 2^1 */ fsquare(t1,t0); | 
 |   /* 2^252 - 2^2 */ fsquare(t0,t1); | 
 |   /* 2^253 - 2^3 */ fsquare(t1,t0); | 
 |   /* 2^254 - 2^4 */ fsquare(t0,t1); | 
 |   /* 2^255 - 2^5 */ fsquare(t1,t0); | 
 |   /* 2^255 - 21 */ fmul(out,t1,z11); | 
 | } | 
 |  | 
 | int | 
 | curve25519_donna(u8 *mypublic, const u8 *secret, const u8 *basepoint) { | 
 |   limb bp[10], x[10], z[10], zmone[10]; | 
 |   uint8_t e[32]; | 
 |   int i; | 
 |  | 
 |   for (i = 0; i < 32; ++i) e[i] = secret[i]; | 
 |   e[0] &= 248; | 
 |   e[31] &= 127; | 
 |   e[31] |= 64; | 
 |  | 
 |   fexpand(bp, basepoint); | 
 |   cmult(x, z, e, bp); | 
 |   crecip(zmone, z); | 
 |   fmul(z, x, zmone); | 
 |   fcontract(mypublic, z); | 
 |   return 0; | 
 | } |