| // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style license that can be | 
 | // found in the LICENSE file. | 
 |  | 
 | // The tests in this file attempt to verify the following through simulation: | 
 | // a) That a server experiencing overload will actually benefit from the | 
 | //    anti-DDoS throttling logic, i.e. that its traffic spike will subside | 
 | //    and be distributed over a longer period of time; | 
 | // b) That "well-behaved" clients of a server under DDoS attack actually | 
 | //    benefit from the anti-DDoS throttling logic; and | 
 | // c) That the approximate increase in "perceived downtime" introduced by | 
 | //    anti-DDoS throttling for various different actual downtimes is what | 
 | //    we expect it to be. | 
 |  | 
 | #include <cmath> | 
 | #include <limits> | 
 | #include <vector> | 
 |  | 
 | #include "base/environment.h" | 
 | #include "base/memory/scoped_ptr.h" | 
 | #include "base/memory/scoped_vector.h" | 
 | #include "base/rand_util.h" | 
 | #include "base/time/time.h" | 
 | #include "net/base/request_priority.h" | 
 | #include "net/url_request/url_request.h" | 
 | #include "net/url_request/url_request_context.h" | 
 | #include "net/url_request/url_request_test_util.h" | 
 | #include "net/url_request/url_request_throttler_manager.h" | 
 | #include "net/url_request/url_request_throttler_test_support.h" | 
 | #include "testing/gtest/include/gtest/gtest.h" | 
 |  | 
 | using base::TimeDelta; | 
 | using base::TimeTicks; | 
 |  | 
 | namespace net { | 
 | namespace { | 
 |  | 
 | // Set this variable in your environment if you want to see verbose results | 
 | // of the simulation tests. | 
 | const char kShowSimulationVariableName[] = "SHOW_SIMULATION_RESULTS"; | 
 |  | 
 | // Prints output only if a given environment variable is set. We use this | 
 | // to not print any output for human evaluation when the test is run without | 
 | // supervision. | 
 | void VerboseOut(const char* format, ...) { | 
 |   static bool have_checked_environment = false; | 
 |   static bool should_print = false; | 
 |   if (!have_checked_environment) { | 
 |     have_checked_environment = true; | 
 |     scoped_ptr<base::Environment> env(base::Environment::Create()); | 
 |     if (env->HasVar(kShowSimulationVariableName)) | 
 |       should_print = true; | 
 |   } | 
 |  | 
 |   if (should_print) { | 
 |     va_list arglist; | 
 |     va_start(arglist, format); | 
 |     vprintf(format, arglist); | 
 |     va_end(arglist); | 
 |   } | 
 | } | 
 |  | 
 | // A simple two-phase discrete time simulation. Actors are added in the order | 
 | // they should take action at every tick of the clock. Ticks of the clock | 
 | // are two-phase: | 
 | // - Phase 1 advances every actor's time to a new absolute time. | 
 | // - Phase 2 asks each actor to perform their action. | 
 | class DiscreteTimeSimulation { | 
 |  public: | 
 |   class Actor { | 
 |    public: | 
 |     virtual ~Actor() {} | 
 |     virtual void AdvanceTime(const TimeTicks& absolute_time) = 0; | 
 |     virtual void PerformAction() = 0; | 
 |   }; | 
 |  | 
 |   DiscreteTimeSimulation() {} | 
 |  | 
 |   // Adds an |actor| to the simulation. The client of the simulation maintains | 
 |   // ownership of |actor| and must ensure its lifetime exceeds that of the | 
 |   // simulation. Actors should be added in the order you wish for them to | 
 |   // act at each tick of the simulation. | 
 |   void AddActor(Actor* actor) { | 
 |     actors_.push_back(actor); | 
 |   } | 
 |  | 
 |   // Runs the simulation for, pretending |time_between_ticks| passes from one | 
 |   // tick to the next. The start time will be the current real time. The | 
 |   // simulation will stop when the simulated duration is equal to or greater | 
 |   // than |maximum_simulated_duration|. | 
 |   void RunSimulation(const TimeDelta& maximum_simulated_duration, | 
 |                      const TimeDelta& time_between_ticks) { | 
 |     TimeTicks start_time = TimeTicks(); | 
 |     TimeTicks now = start_time; | 
 |     while ((now - start_time) <= maximum_simulated_duration) { | 
 |       for (std::vector<Actor*>::iterator it = actors_.begin(); | 
 |            it != actors_.end(); | 
 |            ++it) { | 
 |         (*it)->AdvanceTime(now); | 
 |       } | 
 |  | 
 |       for (std::vector<Actor*>::iterator it = actors_.begin(); | 
 |            it != actors_.end(); | 
 |            ++it) { | 
 |         (*it)->PerformAction(); | 
 |       } | 
 |  | 
 |       now += time_between_ticks; | 
 |     } | 
 |   } | 
 |  | 
 |  private: | 
 |   std::vector<Actor*> actors_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(DiscreteTimeSimulation); | 
 | }; | 
 |  | 
 | // Represents a web server in a simulation of a server under attack by | 
 | // a lot of clients. Must be added to the simulation's list of actors | 
 | // after all |Requester| objects. | 
 | class Server : public DiscreteTimeSimulation::Actor { | 
 |  public: | 
 |   Server(int max_queries_per_tick, double request_drop_ratio) | 
 |       : max_queries_per_tick_(max_queries_per_tick), | 
 |         request_drop_ratio_(request_drop_ratio), | 
 |         num_overloaded_ticks_remaining_(0), | 
 |         num_current_tick_queries_(0), | 
 |         num_overloaded_ticks_(0), | 
 |         max_experienced_queries_per_tick_(0), | 
 |         mock_request_(context_.CreateRequest( | 
 |             GURL(), DEFAULT_PRIORITY, NULL, NULL)) {} | 
 |  | 
 |   void SetDowntime(const TimeTicks& start_time, const TimeDelta& duration) { | 
 |     start_downtime_ = start_time; | 
 |     end_downtime_ = start_time + duration; | 
 |   } | 
 |  | 
 |   void AdvanceTime(const TimeTicks& absolute_time) override { | 
 |     now_ = absolute_time; | 
 |   } | 
 |  | 
 |   void PerformAction() override { | 
 |     // We are inserted at the end of the actor's list, so all Requester | 
 |     // instances have already done their bit. | 
 |     if (num_current_tick_queries_ > max_experienced_queries_per_tick_) | 
 |       max_experienced_queries_per_tick_ = num_current_tick_queries_; | 
 |  | 
 |     if (num_current_tick_queries_ > max_queries_per_tick_) { | 
 |       // We pretend the server fails for the next several ticks after it | 
 |       // gets overloaded. | 
 |       num_overloaded_ticks_remaining_ = 5; | 
 |       ++num_overloaded_ticks_; | 
 |     } else if (num_overloaded_ticks_remaining_ > 0) { | 
 |       --num_overloaded_ticks_remaining_; | 
 |     } | 
 |  | 
 |     requests_per_tick_.push_back(num_current_tick_queries_); | 
 |     num_current_tick_queries_ = 0; | 
 |   } | 
 |  | 
 |   // This is called by Requester. It returns the response code from | 
 |   // the server. | 
 |   int HandleRequest() { | 
 |     ++num_current_tick_queries_; | 
 |     if (!start_downtime_.is_null() && | 
 |         start_downtime_ < now_ && now_ < end_downtime_) { | 
 |       // For the simulation measuring the increase in perceived | 
 |       // downtime, it might be interesting to count separately the | 
 |       // queries seen by the server (assuming a front-end reverse proxy | 
 |       // is what actually serves up the 503s in this case) so that we could | 
 |       // visualize the traffic spike seen by the server when it comes up, | 
 |       // which would in many situations be ameliorated by the anti-DDoS | 
 |       // throttling. | 
 |       return 503; | 
 |     } | 
 |  | 
 |     if ((num_overloaded_ticks_remaining_ > 0 || | 
 |          num_current_tick_queries_ > max_queries_per_tick_) && | 
 |         base::RandDouble() < request_drop_ratio_) { | 
 |       return 503; | 
 |     } | 
 |  | 
 |     return 200; | 
 |   } | 
 |  | 
 |   int num_overloaded_ticks() const { | 
 |     return num_overloaded_ticks_; | 
 |   } | 
 |  | 
 |   int max_experienced_queries_per_tick() const { | 
 |     return max_experienced_queries_per_tick_; | 
 |   } | 
 |  | 
 |   const URLRequest& mock_request() const { | 
 |     return *mock_request_.get(); | 
 |   } | 
 |  | 
 |   std::string VisualizeASCII(int terminal_width) { | 
 |     // Account for | characters we place at left of graph. | 
 |     terminal_width -= 1; | 
 |  | 
 |     VerboseOut("Overloaded for %d of %d ticks.\n", | 
 |                num_overloaded_ticks_, requests_per_tick_.size()); | 
 |     VerboseOut("Got maximum of %d requests in a tick.\n\n", | 
 |                max_experienced_queries_per_tick_); | 
 |  | 
 |     VerboseOut("Traffic graph:\n\n"); | 
 |  | 
 |     // Printing the graph like this is a bit overkill, but was very useful | 
 |     // while developing the various simulations to see if they were testing | 
 |     // the corner cases we want to simulate. | 
 |  | 
 |     // Find the smallest number of whole ticks we need to group into a | 
 |     // column that will let all ticks fit into the column width we have. | 
 |     int num_ticks = requests_per_tick_.size(); | 
 |     double ticks_per_column_exact = | 
 |         static_cast<double>(num_ticks) / static_cast<double>(terminal_width); | 
 |     int ticks_per_column = std::ceil(ticks_per_column_exact); | 
 |     DCHECK_GE(ticks_per_column * terminal_width, num_ticks); | 
 |  | 
 |     // Sum up the column values. | 
 |     int num_columns = num_ticks / ticks_per_column; | 
 |     if (num_ticks % ticks_per_column) | 
 |       ++num_columns; | 
 |     DCHECK_LE(num_columns, terminal_width); | 
 |     scoped_ptr<int[]> columns(new int[num_columns]); | 
 |     for (int tx = 0; tx < num_ticks; ++tx) { | 
 |       int cx = tx / ticks_per_column; | 
 |       if (tx % ticks_per_column == 0) | 
 |         columns[cx] = 0; | 
 |       columns[cx] += requests_per_tick_[tx]; | 
 |     } | 
 |  | 
 |     // Find the lowest integer divisor that will let the column values | 
 |     // be represented in a graph of maximum height 50. | 
 |     int max_value = 0; | 
 |     for (int cx = 0; cx < num_columns; ++cx) | 
 |       max_value = std::max(max_value, columns[cx]); | 
 |     const int kNumRows = 50; | 
 |     double row_divisor_exact = max_value / static_cast<double>(kNumRows); | 
 |     int row_divisor = std::ceil(row_divisor_exact); | 
 |     DCHECK_GE(row_divisor * kNumRows, max_value); | 
 |  | 
 |     // To show the overload line, we calculate the appropriate value. | 
 |     int overload_value = max_queries_per_tick_ * ticks_per_column; | 
 |  | 
 |     // When num_ticks is not a whole multiple of ticks_per_column, the last | 
 |     // column includes fewer ticks than the others. In this case, don't | 
 |     // print it so that we don't show an inconsistent value. | 
 |     int num_printed_columns = num_columns; | 
 |     if (num_ticks % ticks_per_column) | 
 |       --num_printed_columns; | 
 |  | 
 |     // This is a top-to-bottom traversal of rows, left-to-right per row. | 
 |     std::string output; | 
 |     for (int rx = 0; rx < kNumRows; ++rx) { | 
 |       int range_min = (kNumRows - rx) * row_divisor; | 
 |       int range_max = range_min + row_divisor; | 
 |       if (range_min == 0) | 
 |         range_min = -1;  // Make 0 values fit in the bottom range. | 
 |       output.append("|"); | 
 |       for (int cx = 0; cx < num_printed_columns; ++cx) { | 
 |         char block = ' '; | 
 |         // Show the overload line. | 
 |         if (range_min < overload_value && overload_value <= range_max) | 
 |           block = '-'; | 
 |  | 
 |         // Preferentially, show the graph line. | 
 |         if (range_min < columns[cx] && columns[cx] <= range_max) | 
 |           block = '#'; | 
 |  | 
 |         output.append(1, block); | 
 |       } | 
 |       output.append("\n"); | 
 |     } | 
 |     output.append("|"); | 
 |     output.append(num_printed_columns, '='); | 
 |  | 
 |     return output; | 
 |   } | 
 |  | 
 |   const URLRequestContext& context() const { return context_; } | 
 |  | 
 |  private: | 
 |   TimeTicks now_; | 
 |   TimeTicks start_downtime_;  // Can be 0 to say "no downtime". | 
 |   TimeTicks end_downtime_; | 
 |   const int max_queries_per_tick_; | 
 |   const double request_drop_ratio_;  // Ratio of requests to 503 when failing. | 
 |   int num_overloaded_ticks_remaining_; | 
 |   int num_current_tick_queries_; | 
 |   int num_overloaded_ticks_; | 
 |   int max_experienced_queries_per_tick_; | 
 |   std::vector<int> requests_per_tick_; | 
 |  | 
 |   TestURLRequestContext context_; | 
 |   scoped_ptr<URLRequest> mock_request_; | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(Server); | 
 | }; | 
 |  | 
 | // Mock throttler entry used by Requester class. | 
 | class MockURLRequestThrottlerEntry : public URLRequestThrottlerEntry { | 
 |  public: | 
 |   explicit MockURLRequestThrottlerEntry(URLRequestThrottlerManager* manager) | 
 |       : URLRequestThrottlerEntry(manager, std::string()), | 
 |         mock_backoff_entry_(&backoff_policy_) {} | 
 |  | 
 |   const BackoffEntry* GetBackoffEntry() const override { | 
 |     return &mock_backoff_entry_; | 
 |   } | 
 |  | 
 |   BackoffEntry* GetBackoffEntry() override { return &mock_backoff_entry_; } | 
 |  | 
 |   TimeTicks ImplGetTimeNow() const override { return fake_now_; } | 
 |  | 
 |   void SetFakeNow(const TimeTicks& fake_time) { | 
 |     fake_now_ = fake_time; | 
 |     mock_backoff_entry_.set_fake_now(fake_time); | 
 |   } | 
 |  | 
 |   TimeTicks fake_now() const { | 
 |     return fake_now_; | 
 |   } | 
 |  | 
 |  protected: | 
 |   ~MockURLRequestThrottlerEntry() override {} | 
 |  | 
 |  private: | 
 |   TimeTicks fake_now_; | 
 |   MockBackoffEntry mock_backoff_entry_; | 
 | }; | 
 |  | 
 | // Registry of results for a class of |Requester| objects (e.g. attackers vs. | 
 | // regular clients). | 
 | class RequesterResults { | 
 |  public: | 
 |   RequesterResults() | 
 |       : num_attempts_(0), num_successful_(0), num_failed_(0), num_blocked_(0) { | 
 |   } | 
 |  | 
 |   void AddSuccess() { | 
 |     ++num_attempts_; | 
 |     ++num_successful_; | 
 |   } | 
 |  | 
 |   void AddFailure() { | 
 |     ++num_attempts_; | 
 |     ++num_failed_; | 
 |   } | 
 |  | 
 |   void AddBlocked() { | 
 |     ++num_attempts_; | 
 |     ++num_blocked_; | 
 |   } | 
 |  | 
 |   int num_attempts() const { return num_attempts_; } | 
 |   int num_successful() const { return num_successful_; } | 
 |   int num_failed() const { return num_failed_; } | 
 |   int num_blocked() const { return num_blocked_; } | 
 |  | 
 |   double GetBlockedRatio() { | 
 |     DCHECK(num_attempts_); | 
 |     return static_cast<double>(num_blocked_) / | 
 |         static_cast<double>(num_attempts_); | 
 |   } | 
 |  | 
 |   double GetSuccessRatio() { | 
 |     DCHECK(num_attempts_); | 
 |     return static_cast<double>(num_successful_) / | 
 |         static_cast<double>(num_attempts_); | 
 |   } | 
 |  | 
 |   void PrintResults(const char* class_description) { | 
 |     if (num_attempts_ == 0) { | 
 |       VerboseOut("No data for %s\n", class_description); | 
 |       return; | 
 |     } | 
 |  | 
 |     VerboseOut("Requester results for %s\n", class_description); | 
 |     VerboseOut("  %d attempts\n", num_attempts_); | 
 |     VerboseOut("  %d successes\n", num_successful_); | 
 |     VerboseOut("  %d 5xx responses\n", num_failed_); | 
 |     VerboseOut("  %d requests blocked\n", num_blocked_); | 
 |     VerboseOut("  %.2f success ratio\n", GetSuccessRatio()); | 
 |     VerboseOut("  %.2f blocked ratio\n", GetBlockedRatio()); | 
 |     VerboseOut("\n"); | 
 |   } | 
 |  | 
 |  private: | 
 |   int num_attempts_; | 
 |   int num_successful_; | 
 |   int num_failed_; | 
 |   int num_blocked_; | 
 | }; | 
 |  | 
 | // Represents an Requester in a simulated DDoS situation, that periodically | 
 | // requests a specific resource. | 
 | class Requester : public DiscreteTimeSimulation::Actor { | 
 |  public: | 
 |   Requester(MockURLRequestThrottlerEntry* throttler_entry, | 
 |             const TimeDelta& time_between_requests, | 
 |             Server* server, | 
 |             RequesterResults* results) | 
 |       : throttler_entry_(throttler_entry), | 
 |         time_between_requests_(time_between_requests), | 
 |         last_attempt_was_failure_(false), | 
 |         server_(server), | 
 |         results_(results) { | 
 |     DCHECK(server_); | 
 |   } | 
 |  | 
 |   void AdvanceTime(const TimeTicks& absolute_time) override { | 
 |     if (time_of_last_success_.is_null()) | 
 |       time_of_last_success_ = absolute_time; | 
 |  | 
 |     throttler_entry_->SetFakeNow(absolute_time); | 
 |   } | 
 |  | 
 |   void PerformAction() override { | 
 |     TimeDelta effective_delay = time_between_requests_; | 
 |     TimeDelta current_jitter = TimeDelta::FromMilliseconds( | 
 |         request_jitter_.InMilliseconds() * base::RandDouble()); | 
 |     if (base::RandInt(0, 1)) { | 
 |       effective_delay -= current_jitter; | 
 |     } else { | 
 |       effective_delay += current_jitter; | 
 |     } | 
 |  | 
 |     if (throttler_entry_->fake_now() - time_of_last_attempt_ > | 
 |         effective_delay) { | 
 |       if (!throttler_entry_->ShouldRejectRequest( | 
 |               server_->mock_request(), | 
 |               server_->context().network_delegate())) { | 
 |         int status_code = server_->HandleRequest(); | 
 |         MockURLRequestThrottlerHeaderAdapter response_headers(status_code); | 
 |         throttler_entry_->UpdateWithResponse(std::string(), &response_headers); | 
 |  | 
 |         if (status_code == 200) { | 
 |           if (results_) | 
 |             results_->AddSuccess(); | 
 |  | 
 |           if (last_attempt_was_failure_) { | 
 |             last_downtime_duration_ = | 
 |                 throttler_entry_->fake_now() - time_of_last_success_; | 
 |           } | 
 |  | 
 |           time_of_last_success_ = throttler_entry_->fake_now(); | 
 |           last_attempt_was_failure_ = false; | 
 |         } else { | 
 |           if (results_) | 
 |             results_->AddFailure(); | 
 |           last_attempt_was_failure_ = true; | 
 |         } | 
 |       } else { | 
 |         if (results_) | 
 |           results_->AddBlocked(); | 
 |         last_attempt_was_failure_ = true; | 
 |       } | 
 |  | 
 |       time_of_last_attempt_ = throttler_entry_->fake_now(); | 
 |     } | 
 |   } | 
 |  | 
 |   // Adds a delay until the first request, equal to a uniformly distributed | 
 |   // value between now and now + max_delay. | 
 |   void SetStartupJitter(const TimeDelta& max_delay) { | 
 |     int delay_ms = base::RandInt(0, max_delay.InMilliseconds()); | 
 |     time_of_last_attempt_ = TimeTicks() + | 
 |         TimeDelta::FromMilliseconds(delay_ms) - time_between_requests_; | 
 |   } | 
 |  | 
 |   void SetRequestJitter(const TimeDelta& request_jitter) { | 
 |     request_jitter_ = request_jitter; | 
 |   } | 
 |  | 
 |   TimeDelta last_downtime_duration() const { return last_downtime_duration_; } | 
 |  | 
 |  private: | 
 |   scoped_refptr<MockURLRequestThrottlerEntry> throttler_entry_; | 
 |   const TimeDelta time_between_requests_; | 
 |   TimeDelta request_jitter_; | 
 |   TimeTicks time_of_last_attempt_; | 
 |   TimeTicks time_of_last_success_; | 
 |   bool last_attempt_was_failure_; | 
 |   TimeDelta last_downtime_duration_; | 
 |   Server* const server_; | 
 |   RequesterResults* const results_;  // May be NULL. | 
 |  | 
 |   DISALLOW_COPY_AND_ASSIGN(Requester); | 
 | }; | 
 |  | 
 | void SimulateAttack(Server* server, | 
 |                     RequesterResults* attacker_results, | 
 |                     RequesterResults* client_results, | 
 |                     bool enable_throttling) { | 
 |   const size_t kNumAttackers = 50; | 
 |   const size_t kNumClients = 50; | 
 |   DiscreteTimeSimulation simulation; | 
 |   URLRequestThrottlerManager manager; | 
 |   ScopedVector<Requester> requesters; | 
 |   for (size_t i = 0; i < kNumAttackers; ++i) { | 
 |     // Use a tiny time_between_requests so the attackers will ping the | 
 |     // server at every tick of the simulation. | 
 |     scoped_refptr<MockURLRequestThrottlerEntry> throttler_entry( | 
 |         new MockURLRequestThrottlerEntry(&manager)); | 
 |     if (!enable_throttling) | 
 |       throttler_entry->DisableBackoffThrottling(); | 
 |  | 
 |       Requester* attacker = new Requester(throttler_entry.get(), | 
 |                                         TimeDelta::FromMilliseconds(1), | 
 |                                         server, | 
 |                                         attacker_results); | 
 |     attacker->SetStartupJitter(TimeDelta::FromSeconds(120)); | 
 |     requesters.push_back(attacker); | 
 |     simulation.AddActor(attacker); | 
 |   } | 
 |   for (size_t i = 0; i < kNumClients; ++i) { | 
 |     // Normal clients only make requests every 2 minutes, plus/minus 1 minute. | 
 |     scoped_refptr<MockURLRequestThrottlerEntry> throttler_entry( | 
 |         new MockURLRequestThrottlerEntry(&manager)); | 
 |     if (!enable_throttling) | 
 |       throttler_entry->DisableBackoffThrottling(); | 
 |  | 
 |     Requester* client = new Requester(throttler_entry.get(), | 
 |                                       TimeDelta::FromMinutes(2), | 
 |                                       server, | 
 |                                       client_results); | 
 |     client->SetStartupJitter(TimeDelta::FromSeconds(120)); | 
 |     client->SetRequestJitter(TimeDelta::FromMinutes(1)); | 
 |     requesters.push_back(client); | 
 |     simulation.AddActor(client); | 
 |   } | 
 |   simulation.AddActor(server); | 
 |  | 
 |   simulation.RunSimulation(TimeDelta::FromMinutes(6), | 
 |                            TimeDelta::FromSeconds(1)); | 
 | } | 
 |  | 
 | TEST(URLRequestThrottlerSimulation, HelpsInAttack) { | 
 |   Server unprotected_server(30, 1.0); | 
 |   RequesterResults unprotected_attacker_results; | 
 |   RequesterResults unprotected_client_results; | 
 |   Server protected_server(30, 1.0); | 
 |   RequesterResults protected_attacker_results; | 
 |   RequesterResults protected_client_results; | 
 |   SimulateAttack(&unprotected_server, | 
 |                  &unprotected_attacker_results, | 
 |                  &unprotected_client_results, | 
 |                  false); | 
 |   SimulateAttack(&protected_server, | 
 |                  &protected_attacker_results, | 
 |                  &protected_client_results, | 
 |                  true); | 
 |  | 
 |   // These assert that the DDoS protection actually benefits the | 
 |   // server. Manual inspection of the traffic graphs will show this | 
 |   // even more clearly. | 
 |   EXPECT_GT(unprotected_server.num_overloaded_ticks(), | 
 |             protected_server.num_overloaded_ticks()); | 
 |   EXPECT_GT(unprotected_server.max_experienced_queries_per_tick(), | 
 |             protected_server.max_experienced_queries_per_tick()); | 
 |  | 
 |   // These assert that the DDoS protection actually benefits non-malicious | 
 |   // (and non-degenerate/accidentally DDoSing) users. | 
 |   EXPECT_LT(protected_client_results.GetBlockedRatio(), | 
 |             protected_attacker_results.GetBlockedRatio()); | 
 |   EXPECT_GT(protected_client_results.GetSuccessRatio(), | 
 |             unprotected_client_results.GetSuccessRatio()); | 
 |  | 
 |   // The rest is just for optional manual evaluation of the results; | 
 |   // in particular the traffic pattern is interesting. | 
 |  | 
 |   VerboseOut("\nUnprotected server's results:\n\n"); | 
 |   VerboseOut(unprotected_server.VisualizeASCII(132).c_str()); | 
 |   VerboseOut("\n\n"); | 
 |   VerboseOut("Protected server's results:\n\n"); | 
 |   VerboseOut(protected_server.VisualizeASCII(132).c_str()); | 
 |   VerboseOut("\n\n"); | 
 |  | 
 |   unprotected_attacker_results.PrintResults( | 
 |       "attackers attacking unprotected server."); | 
 |   unprotected_client_results.PrintResults( | 
 |       "normal clients making requests to unprotected server."); | 
 |   protected_attacker_results.PrintResults( | 
 |       "attackers attacking protected server."); | 
 |   protected_client_results.PrintResults( | 
 |       "normal clients making requests to protected server."); | 
 | } | 
 |  | 
 | // Returns the downtime perceived by the client, as a ratio of the | 
 | // actual downtime. | 
 | double SimulateDowntime(const TimeDelta& duration, | 
 |                         const TimeDelta& average_client_interval, | 
 |                         bool enable_throttling) { | 
 |   TimeDelta time_between_ticks = duration / 200; | 
 |   TimeTicks start_downtime = TimeTicks() + (duration / 2); | 
 |  | 
 |   // A server that never rejects requests, but will go down for maintenance. | 
 |   Server server(std::numeric_limits<int>::max(), 1.0); | 
 |   server.SetDowntime(start_downtime, duration); | 
 |  | 
 |   URLRequestThrottlerManager manager; | 
 |   scoped_refptr<MockURLRequestThrottlerEntry> throttler_entry( | 
 |       new MockURLRequestThrottlerEntry(&manager)); | 
 |   if (!enable_throttling) | 
 |     throttler_entry->DisableBackoffThrottling(); | 
 |  | 
 |   Requester requester( | 
 |       throttler_entry.get(), average_client_interval, &server, NULL); | 
 |   requester.SetStartupJitter(duration / 3); | 
 |   requester.SetRequestJitter(average_client_interval); | 
 |  | 
 |   DiscreteTimeSimulation simulation; | 
 |   simulation.AddActor(&requester); | 
 |   simulation.AddActor(&server); | 
 |  | 
 |   simulation.RunSimulation(duration * 2, time_between_ticks); | 
 |  | 
 |   return static_cast<double>( | 
 |       requester.last_downtime_duration().InMilliseconds()) / | 
 |       static_cast<double>(duration.InMilliseconds()); | 
 | } | 
 |  | 
 | TEST(URLRequestThrottlerSimulation, PerceivedDowntimeRatio) { | 
 |   struct Stats { | 
 |     // Expected interval that we expect the ratio of downtime when anti-DDoS | 
 |     // is enabled and downtime when anti-DDoS is not enabled to fall within. | 
 |     // | 
 |     // The expected interval depends on two things:  The exponential back-off | 
 |     // policy encoded in URLRequestThrottlerEntry, and the test or set of | 
 |     // tests that the Stats object is tracking (e.g. a test where the client | 
 |     // retries very rapidly on a very long downtime will tend to increase the | 
 |     // number). | 
 |     // | 
 |     // To determine an appropriate new interval when parameters have changed, | 
 |     // run the test a few times (you may have to Ctrl-C out of it after a few | 
 |     // seconds) and choose an interval that the test converges quickly and | 
 |     // reliably to.  Then set the new interval, and run the test e.g. 20 times | 
 |     // in succession to make sure it never takes an obscenely long time to | 
 |     // converge to this interval. | 
 |     double expected_min_increase; | 
 |     double expected_max_increase; | 
 |  | 
 |     size_t num_runs; | 
 |     double total_ratio_unprotected; | 
 |     double total_ratio_protected; | 
 |  | 
 |     bool DidConverge(double* increase_ratio_out) { | 
 |       double unprotected_ratio = total_ratio_unprotected / num_runs; | 
 |       double protected_ratio = total_ratio_protected / num_runs; | 
 |       double increase_ratio = protected_ratio / unprotected_ratio; | 
 |       if (increase_ratio_out) | 
 |         *increase_ratio_out = increase_ratio; | 
 |       return expected_min_increase <= increase_ratio && | 
 |           increase_ratio <= expected_max_increase; | 
 |     } | 
 |  | 
 |     void ReportTrialResult(double increase_ratio) { | 
 |       VerboseOut( | 
 |           "  Perceived downtime with throttling is %.4f times without.\n", | 
 |           increase_ratio); | 
 |       VerboseOut("  Test result after %d trials.\n", num_runs); | 
 |     } | 
 |   }; | 
 |  | 
 |   Stats global_stats = { 1.08, 1.15 }; | 
 |  | 
 |   struct Trial { | 
 |     TimeDelta duration; | 
 |     TimeDelta average_client_interval; | 
 |     Stats stats; | 
 |  | 
 |     void PrintTrialDescription() { | 
 |       double duration_minutes = | 
 |           static_cast<double>(duration.InSeconds()) / 60.0; | 
 |       double interval_minutes = | 
 |           static_cast<double>(average_client_interval.InSeconds()) / 60.0; | 
 |       VerboseOut("Trial with %.2f min downtime, avg. interval %.2f min.\n", | 
 |                  duration_minutes, interval_minutes); | 
 |     } | 
 |   }; | 
 |  | 
 |   // We don't set or check expected ratio intervals on individual | 
 |   // experiments as this might make the test too fragile, but we | 
 |   // print them out at the end for manual evaluation (we want to be | 
 |   // able to make claims about the expected ratios depending on the | 
 |   // type of behavior of the client and the downtime, e.g. the difference | 
 |   // in behavior between a client making requests every few minutes vs. | 
 |   // one that makes a request every 15 seconds). | 
 |   Trial trials[] = { | 
 |     { TimeDelta::FromSeconds(10), TimeDelta::FromSeconds(3) }, | 
 |     { TimeDelta::FromSeconds(30), TimeDelta::FromSeconds(7) }, | 
 |     { TimeDelta::FromMinutes(5), TimeDelta::FromSeconds(30) }, | 
 |     { TimeDelta::FromMinutes(10), TimeDelta::FromSeconds(20) }, | 
 |     { TimeDelta::FromMinutes(20), TimeDelta::FromSeconds(15) }, | 
 |     { TimeDelta::FromMinutes(20), TimeDelta::FromSeconds(50) }, | 
 |     { TimeDelta::FromMinutes(30), TimeDelta::FromMinutes(2) }, | 
 |     { TimeDelta::FromMinutes(30), TimeDelta::FromMinutes(5) }, | 
 |     { TimeDelta::FromMinutes(40), TimeDelta::FromMinutes(7) }, | 
 |     { TimeDelta::FromMinutes(40), TimeDelta::FromMinutes(2) }, | 
 |     { TimeDelta::FromMinutes(40), TimeDelta::FromSeconds(15) }, | 
 |     { TimeDelta::FromMinutes(60), TimeDelta::FromMinutes(7) }, | 
 |     { TimeDelta::FromMinutes(60), TimeDelta::FromMinutes(2) }, | 
 |     { TimeDelta::FromMinutes(60), TimeDelta::FromSeconds(15) }, | 
 |     { TimeDelta::FromMinutes(80), TimeDelta::FromMinutes(20) }, | 
 |     { TimeDelta::FromMinutes(80), TimeDelta::FromMinutes(3) }, | 
 |     { TimeDelta::FromMinutes(80), TimeDelta::FromSeconds(15) }, | 
 |  | 
 |     // Most brutal? | 
 |     { TimeDelta::FromMinutes(45), TimeDelta::FromMilliseconds(500) }, | 
 |   }; | 
 |  | 
 |   // If things don't converge by the time we've done 100K trials, then | 
 |   // clearly one or more of the expected intervals are wrong. | 
 |   while (global_stats.num_runs < 100000) { | 
 |     for (size_t i = 0; i < arraysize(trials); ++i) { | 
 |       ++global_stats.num_runs; | 
 |       ++trials[i].stats.num_runs; | 
 |       double ratio_unprotected = SimulateDowntime( | 
 |           trials[i].duration, trials[i].average_client_interval, false); | 
 |       double ratio_protected = SimulateDowntime( | 
 |           trials[i].duration, trials[i].average_client_interval, true); | 
 |       global_stats.total_ratio_unprotected += ratio_unprotected; | 
 |       global_stats.total_ratio_protected += ratio_protected; | 
 |       trials[i].stats.total_ratio_unprotected += ratio_unprotected; | 
 |       trials[i].stats.total_ratio_protected += ratio_protected; | 
 |     } | 
 |  | 
 |     double increase_ratio; | 
 |     if (global_stats.DidConverge(&increase_ratio)) | 
 |       break; | 
 |  | 
 |     if (global_stats.num_runs > 200) { | 
 |       VerboseOut("Test has not yet converged on expected interval.\n"); | 
 |       global_stats.ReportTrialResult(increase_ratio); | 
 |     } | 
 |   } | 
 |  | 
 |   double average_increase_ratio; | 
 |   EXPECT_TRUE(global_stats.DidConverge(&average_increase_ratio)); | 
 |  | 
 |   // Print individual trial results for optional manual evaluation. | 
 |   double max_increase_ratio = 0.0; | 
 |   for (size_t i = 0; i < arraysize(trials); ++i) { | 
 |     double increase_ratio; | 
 |     trials[i].stats.DidConverge(&increase_ratio); | 
 |     max_increase_ratio = std::max(max_increase_ratio, increase_ratio); | 
 |     trials[i].PrintTrialDescription(); | 
 |     trials[i].stats.ReportTrialResult(increase_ratio); | 
 |   } | 
 |  | 
 |   VerboseOut("Average increase ratio was %.4f\n", average_increase_ratio); | 
 |   VerboseOut("Maximum increase ratio was %.4f\n", max_increase_ratio); | 
 | } | 
 |  | 
 | }  // namespace | 
 | }  // namespace net |