| /* fts2 has a design flaw which can lead to database corruption (see |
| ** below). It is recommended not to use it any longer, instead use |
| ** fts3 (or higher). If you believe that your use of fts2 is safe, |
| ** add -DSQLITE_ENABLE_BROKEN_FTS2=1 to your CFLAGS. |
| */ |
| #if (!defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2)) \ |
| && !defined(SQLITE_ENABLE_BROKEN_FTS2) |
| #error fts2 has a design flaw and has been deprecated. |
| #endif |
| /* The flaw is that fts2 uses the content table's unaliased rowid as |
| ** the unique docid. fts2 embeds the rowid in the index it builds, |
| ** and expects the rowid to not change. The SQLite VACUUM operation |
| ** will renumber such rowids, thereby breaking fts2. If you are using |
| ** fts2 in a system which has disabled VACUUM, then you can continue |
| ** to use it safely. Note that PRAGMA auto_vacuum does NOT disable |
| ** VACUUM, though systems using auto_vacuum are unlikely to invoke |
| ** VACUUM. |
| ** |
| ** Unlike fts1, which is safe across VACUUM if you never delete |
| ** documents, fts2 has a second exposure to this flaw, in the segments |
| ** table. So fts2 should be considered unsafe across VACUUM in all |
| ** cases. |
| */ |
| |
| /* |
| ** 2006 Oct 10 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ****************************************************************************** |
| ** |
| ** This is an SQLite module implementing full-text search. |
| */ |
| |
| /* |
| ** The code in this file is only compiled if: |
| ** |
| ** * The FTS2 module is being built as an extension |
| ** (in which case SQLITE_CORE is not defined), or |
| ** |
| ** * The FTS2 module is being built into the core of |
| ** SQLite (in which case SQLITE_ENABLE_FTS2 is defined). |
| */ |
| |
| /* TODO(shess) Consider exporting this comment to an HTML file or the |
| ** wiki. |
| */ |
| /* The full-text index is stored in a series of b+tree (-like) |
| ** structures called segments which map terms to doclists. The |
| ** structures are like b+trees in layout, but are constructed from the |
| ** bottom up in optimal fashion and are not updatable. Since trees |
| ** are built from the bottom up, things will be described from the |
| ** bottom up. |
| ** |
| ** |
| **** Varints **** |
| ** The basic unit of encoding is a variable-length integer called a |
| ** varint. We encode variable-length integers in little-endian order |
| ** using seven bits * per byte as follows: |
| ** |
| ** KEY: |
| ** A = 0xxxxxxx 7 bits of data and one flag bit |
| ** B = 1xxxxxxx 7 bits of data and one flag bit |
| ** |
| ** 7 bits - A |
| ** 14 bits - BA |
| ** 21 bits - BBA |
| ** and so on. |
| ** |
| ** This is identical to how sqlite encodes varints (see util.c). |
| ** |
| ** |
| **** Document lists **** |
| ** A doclist (document list) holds a docid-sorted list of hits for a |
| ** given term. Doclists hold docids, and can optionally associate |
| ** token positions and offsets with docids. |
| ** |
| ** A DL_POSITIONS_OFFSETS doclist is stored like this: |
| ** |
| ** array { |
| ** varint docid; |
| ** array { (position list for column 0) |
| ** varint position; (delta from previous position plus POS_BASE) |
| ** varint startOffset; (delta from previous startOffset) |
| ** varint endOffset; (delta from startOffset) |
| ** } |
| ** array { |
| ** varint POS_COLUMN; (marks start of position list for new column) |
| ** varint column; (index of new column) |
| ** array { |
| ** varint position; (delta from previous position plus POS_BASE) |
| ** varint startOffset;(delta from previous startOffset) |
| ** varint endOffset; (delta from startOffset) |
| ** } |
| ** } |
| ** varint POS_END; (marks end of positions for this document. |
| ** } |
| ** |
| ** Here, array { X } means zero or more occurrences of X, adjacent in |
| ** memory. A "position" is an index of a token in the token stream |
| ** generated by the tokenizer, while an "offset" is a byte offset, |
| ** both based at 0. Note that POS_END and POS_COLUMN occur in the |
| ** same logical place as the position element, and act as sentinals |
| ** ending a position list array. |
| ** |
| ** A DL_POSITIONS doclist omits the startOffset and endOffset |
| ** information. A DL_DOCIDS doclist omits both the position and |
| ** offset information, becoming an array of varint-encoded docids. |
| ** |
| ** On-disk data is stored as type DL_DEFAULT, so we don't serialize |
| ** the type. Due to how deletion is implemented in the segmentation |
| ** system, on-disk doclists MUST store at least positions. |
| ** |
| ** |
| **** Segment leaf nodes **** |
| ** Segment leaf nodes store terms and doclists, ordered by term. Leaf |
| ** nodes are written using LeafWriter, and read using LeafReader (to |
| ** iterate through a single leaf node's data) and LeavesReader (to |
| ** iterate through a segment's entire leaf layer). Leaf nodes have |
| ** the format: |
| ** |
| ** varint iHeight; (height from leaf level, always 0) |
| ** varint nTerm; (length of first term) |
| ** char pTerm[nTerm]; (content of first term) |
| ** varint nDoclist; (length of term's associated doclist) |
| ** char pDoclist[nDoclist]; (content of doclist) |
| ** array { |
| ** (further terms are delta-encoded) |
| ** varint nPrefix; (length of prefix shared with previous term) |
| ** varint nSuffix; (length of unshared suffix) |
| ** char pTermSuffix[nSuffix];(unshared suffix of next term) |
| ** varint nDoclist; (length of term's associated doclist) |
| ** char pDoclist[nDoclist]; (content of doclist) |
| ** } |
| ** |
| ** Here, array { X } means zero or more occurrences of X, adjacent in |
| ** memory. |
| ** |
| ** Leaf nodes are broken into blocks which are stored contiguously in |
| ** the %_segments table in sorted order. This means that when the end |
| ** of a node is reached, the next term is in the node with the next |
| ** greater node id. |
| ** |
| ** New data is spilled to a new leaf node when the current node |
| ** exceeds LEAF_MAX bytes (default 2048). New data which itself is |
| ** larger than STANDALONE_MIN (default 1024) is placed in a standalone |
| ** node (a leaf node with a single term and doclist). The goal of |
| ** these settings is to pack together groups of small doclists while |
| ** making it efficient to directly access large doclists. The |
| ** assumption is that large doclists represent terms which are more |
| ** likely to be query targets. |
| ** |
| ** TODO(shess) It may be useful for blocking decisions to be more |
| ** dynamic. For instance, it may make more sense to have a 2.5k leaf |
| ** node rather than splitting into 2k and .5k nodes. My intuition is |
| ** that this might extend through 2x or 4x the pagesize. |
| ** |
| ** |
| **** Segment interior nodes **** |
| ** Segment interior nodes store blockids for subtree nodes and terms |
| ** to describe what data is stored by the each subtree. Interior |
| ** nodes are written using InteriorWriter, and read using |
| ** InteriorReader. InteriorWriters are created as needed when |
| ** SegmentWriter creates new leaf nodes, or when an interior node |
| ** itself grows too big and must be split. The format of interior |
| ** nodes: |
| ** |
| ** varint iHeight; (height from leaf level, always >0) |
| ** varint iBlockid; (block id of node's leftmost subtree) |
| ** optional { |
| ** varint nTerm; (length of first term) |
| ** char pTerm[nTerm]; (content of first term) |
| ** array { |
| ** (further terms are delta-encoded) |
| ** varint nPrefix; (length of shared prefix with previous term) |
| ** varint nSuffix; (length of unshared suffix) |
| ** char pTermSuffix[nSuffix]; (unshared suffix of next term) |
| ** } |
| ** } |
| ** |
| ** Here, optional { X } means an optional element, while array { X } |
| ** means zero or more occurrences of X, adjacent in memory. |
| ** |
| ** An interior node encodes n terms separating n+1 subtrees. The |
| ** subtree blocks are contiguous, so only the first subtree's blockid |
| ** is encoded. The subtree at iBlockid will contain all terms less |
| ** than the first term encoded (or all terms if no term is encoded). |
| ** Otherwise, for terms greater than or equal to pTerm[i] but less |
| ** than pTerm[i+1], the subtree for that term will be rooted at |
| ** iBlockid+i. Interior nodes only store enough term data to |
| ** distinguish adjacent children (if the rightmost term of the left |
| ** child is "something", and the leftmost term of the right child is |
| ** "wicked", only "w" is stored). |
| ** |
| ** New data is spilled to a new interior node at the same height when |
| ** the current node exceeds INTERIOR_MAX bytes (default 2048). |
| ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing |
| ** interior nodes and making the tree too skinny. The interior nodes |
| ** at a given height are naturally tracked by interior nodes at |
| ** height+1, and so on. |
| ** |
| ** |
| **** Segment directory **** |
| ** The segment directory in table %_segdir stores meta-information for |
| ** merging and deleting segments, and also the root node of the |
| ** segment's tree. |
| ** |
| ** The root node is the top node of the segment's tree after encoding |
| ** the entire segment, restricted to ROOT_MAX bytes (default 1024). |
| ** This could be either a leaf node or an interior node. If the top |
| ** node requires more than ROOT_MAX bytes, it is flushed to %_segments |
| ** and a new root interior node is generated (which should always fit |
| ** within ROOT_MAX because it only needs space for 2 varints, the |
| ** height and the blockid of the previous root). |
| ** |
| ** The meta-information in the segment directory is: |
| ** level - segment level (see below) |
| ** idx - index within level |
| ** - (level,idx uniquely identify a segment) |
| ** start_block - first leaf node |
| ** leaves_end_block - last leaf node |
| ** end_block - last block (including interior nodes) |
| ** root - contents of root node |
| ** |
| ** If the root node is a leaf node, then start_block, |
| ** leaves_end_block, and end_block are all 0. |
| ** |
| ** |
| **** Segment merging **** |
| ** To amortize update costs, segments are groups into levels and |
| ** merged in matches. Each increase in level represents exponentially |
| ** more documents. |
| ** |
| ** New documents (actually, document updates) are tokenized and |
| ** written individually (using LeafWriter) to a level 0 segment, with |
| ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all |
| ** level 0 segments are merged into a single level 1 segment. Level 1 |
| ** is populated like level 0, and eventually MERGE_COUNT level 1 |
| ** segments are merged to a single level 2 segment (representing |
| ** MERGE_COUNT^2 updates), and so on. |
| ** |
| ** A segment merge traverses all segments at a given level in |
| ** parallel, performing a straightforward sorted merge. Since segment |
| ** leaf nodes are written in to the %_segments table in order, this |
| ** merge traverses the underlying sqlite disk structures efficiently. |
| ** After the merge, all segment blocks from the merged level are |
| ** deleted. |
| ** |
| ** MERGE_COUNT controls how often we merge segments. 16 seems to be |
| ** somewhat of a sweet spot for insertion performance. 32 and 64 show |
| ** very similar performance numbers to 16 on insertion, though they're |
| ** a tiny bit slower (perhaps due to more overhead in merge-time |
| ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than |
| ** 16, 2 about 66% slower than 16. |
| ** |
| ** At query time, high MERGE_COUNT increases the number of segments |
| ** which need to be scanned and merged. For instance, with 100k docs |
| ** inserted: |
| ** |
| ** MERGE_COUNT segments |
| ** 16 25 |
| ** 8 12 |
| ** 4 10 |
| ** 2 6 |
| ** |
| ** This appears to have only a moderate impact on queries for very |
| ** frequent terms (which are somewhat dominated by segment merge |
| ** costs), and infrequent and non-existent terms still seem to be fast |
| ** even with many segments. |
| ** |
| ** TODO(shess) That said, it would be nice to have a better query-side |
| ** argument for MERGE_COUNT of 16. Also, it is possible/likely that |
| ** optimizations to things like doclist merging will swing the sweet |
| ** spot around. |
| ** |
| ** |
| ** |
| **** Handling of deletions and updates **** |
| ** Since we're using a segmented structure, with no docid-oriented |
| ** index into the term index, we clearly cannot simply update the term |
| ** index when a document is deleted or updated. For deletions, we |
| ** write an empty doclist (varint(docid) varint(POS_END)), for updates |
| ** we simply write the new doclist. Segment merges overwrite older |
| ** data for a particular docid with newer data, so deletes or updates |
| ** will eventually overtake the earlier data and knock it out. The |
| ** query logic likewise merges doclists so that newer data knocks out |
| ** older data. |
| ** |
| ** TODO(shess) Provide a VACUUM type operation to clear out all |
| ** deletions and duplications. This would basically be a forced merge |
| ** into a single segment. |
| */ |
| |
| #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) |
| |
| #if defined(SQLITE_ENABLE_FTS2) && !defined(SQLITE_CORE) |
| # define SQLITE_CORE 1 |
| #endif |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <stdio.h> |
| #include <string.h> |
| #include "fts2.h" |
| #include "fts2_hash.h" |
| #include "fts2_tokenizer.h" |
| #include "sqlite3.h" |
| #include "sqlite3ext.h" |
| SQLITE_EXTENSION_INIT1 |
| |
| |
| /* TODO(shess) MAN, this thing needs some refactoring. At minimum, it |
| ** would be nice to order the file better, perhaps something along the |
| ** lines of: |
| ** |
| ** - utility functions |
| ** - table setup functions |
| ** - table update functions |
| ** - table query functions |
| ** |
| ** Put the query functions last because they're likely to reference |
| ** typedefs or functions from the table update section. |
| */ |
| |
| #if 0 |
| # define TRACE(A) printf A; fflush(stdout) |
| #else |
| # define TRACE(A) |
| #endif |
| |
| /* It is not safe to call isspace(), tolower(), or isalnum() on |
| ** hi-bit-set characters. This is the same solution used in the |
| ** tokenizer. |
| */ |
| /* TODO(shess) The snippet-generation code should be using the |
| ** tokenizer-generated tokens rather than doing its own local |
| ** tokenization. |
| */ |
| /* TODO(shess) Is __isascii() a portable version of (c&0x80)==0? */ |
| static int safe_isspace(char c){ |
| return c==' ' || c=='\t' || c=='\n' || c=='\r' || c=='\v' || c=='\f'; |
| } |
| static int safe_tolower(char c){ |
| return (c>='A' && c<='Z') ? (c - 'A' + 'a') : c; |
| } |
| static int safe_isalnum(char c){ |
| return (c>='0' && c<='9') || (c>='A' && c<='Z') || (c>='a' && c<='z'); |
| } |
| |
| typedef enum DocListType { |
| DL_DOCIDS, /* docids only */ |
| DL_POSITIONS, /* docids + positions */ |
| DL_POSITIONS_OFFSETS /* docids + positions + offsets */ |
| } DocListType; |
| |
| /* |
| ** By default, only positions and not offsets are stored in the doclists. |
| ** To change this so that offsets are stored too, compile with |
| ** |
| ** -DDL_DEFAULT=DL_POSITIONS_OFFSETS |
| ** |
| ** If DL_DEFAULT is set to DL_DOCIDS, your table can only be inserted |
| ** into (no deletes or updates). |
| */ |
| #ifndef DL_DEFAULT |
| # define DL_DEFAULT DL_POSITIONS |
| #endif |
| |
| enum { |
| POS_END = 0, /* end of this position list */ |
| POS_COLUMN, /* followed by new column number */ |
| POS_BASE |
| }; |
| |
| /* MERGE_COUNT controls how often we merge segments (see comment at |
| ** top of file). |
| */ |
| #define MERGE_COUNT 16 |
| |
| /* utility functions */ |
| |
| /* CLEAR() and SCRAMBLE() abstract memset() on a pointer to a single |
| ** record to prevent errors of the form: |
| ** |
| ** my_function(SomeType *b){ |
| ** memset(b, '\0', sizeof(b)); // sizeof(b)!=sizeof(*b) |
| ** } |
| */ |
| /* TODO(shess) Obvious candidates for a header file. */ |
| #define CLEAR(b) memset(b, '\0', sizeof(*(b))) |
| |
| #ifndef NDEBUG |
| # define SCRAMBLE(b) memset(b, 0x55, sizeof(*(b))) |
| #else |
| # define SCRAMBLE(b) |
| #endif |
| |
| /* We may need up to VARINT_MAX bytes to store an encoded 64-bit integer. */ |
| #define VARINT_MAX 10 |
| |
| /* Write a 64-bit variable-length integer to memory starting at p[0]. |
| * The length of data written will be between 1 and VARINT_MAX bytes. |
| * The number of bytes written is returned. */ |
| static int putVarint(char *p, sqlite_int64 v){ |
| unsigned char *q = (unsigned char *) p; |
| sqlite_uint64 vu = v; |
| do{ |
| *q++ = (unsigned char) ((vu & 0x7f) | 0x80); |
| vu >>= 7; |
| }while( vu!=0 ); |
| q[-1] &= 0x7f; /* turn off high bit in final byte */ |
| assert( q - (unsigned char *)p <= VARINT_MAX ); |
| return (int) (q - (unsigned char *)p); |
| } |
| |
| /* Read a 64-bit variable-length integer from memory starting at p[0]. |
| * Return the number of bytes read, or 0 on error. |
| * The value is stored in *v. */ |
| static int getVarint(const char *p, sqlite_int64 *v){ |
| const unsigned char *q = (const unsigned char *) p; |
| sqlite_uint64 x = 0, y = 1; |
| while( (*q & 0x80) == 0x80 ){ |
| x += y * (*q++ & 0x7f); |
| y <<= 7; |
| if( q - (unsigned char *)p >= VARINT_MAX ){ /* bad data */ |
| assert( 0 ); |
| return 0; |
| } |
| } |
| x += y * (*q++); |
| *v = (sqlite_int64) x; |
| return (int) (q - (unsigned char *)p); |
| } |
| |
| static int getVarint32(const char *p, int *pi){ |
| sqlite_int64 i; |
| int ret = getVarint(p, &i); |
| *pi = (int) i; |
| assert( *pi==i ); |
| return ret; |
| } |
| |
| /*******************************************************************/ |
| /* DataBuffer is used to collect data into a buffer in piecemeal |
| ** fashion. It implements the usual distinction between amount of |
| ** data currently stored (nData) and buffer capacity (nCapacity). |
| ** |
| ** dataBufferInit - create a buffer with given initial capacity. |
| ** dataBufferReset - forget buffer's data, retaining capacity. |
| ** dataBufferDestroy - free buffer's data. |
| ** dataBufferSwap - swap contents of two buffers. |
| ** dataBufferExpand - expand capacity without adding data. |
| ** dataBufferAppend - append data. |
| ** dataBufferAppend2 - append two pieces of data at once. |
| ** dataBufferReplace - replace buffer's data. |
| */ |
| typedef struct DataBuffer { |
| char *pData; /* Pointer to malloc'ed buffer. */ |
| int nCapacity; /* Size of pData buffer. */ |
| int nData; /* End of data loaded into pData. */ |
| } DataBuffer; |
| |
| static void dataBufferInit(DataBuffer *pBuffer, int nCapacity){ |
| assert( nCapacity>=0 ); |
| pBuffer->nData = 0; |
| pBuffer->nCapacity = nCapacity; |
| pBuffer->pData = nCapacity==0 ? NULL : sqlite3_malloc(nCapacity); |
| } |
| static void dataBufferReset(DataBuffer *pBuffer){ |
| pBuffer->nData = 0; |
| } |
| static void dataBufferDestroy(DataBuffer *pBuffer){ |
| if( pBuffer->pData!=NULL ) sqlite3_free(pBuffer->pData); |
| SCRAMBLE(pBuffer); |
| } |
| static void dataBufferSwap(DataBuffer *pBuffer1, DataBuffer *pBuffer2){ |
| DataBuffer tmp = *pBuffer1; |
| *pBuffer1 = *pBuffer2; |
| *pBuffer2 = tmp; |
| } |
| static void dataBufferExpand(DataBuffer *pBuffer, int nAddCapacity){ |
| assert( nAddCapacity>0 ); |
| /* TODO(shess) Consider expanding more aggressively. Note that the |
| ** underlying malloc implementation may take care of such things for |
| ** us already. |
| */ |
| if( pBuffer->nData+nAddCapacity>pBuffer->nCapacity ){ |
| pBuffer->nCapacity = pBuffer->nData+nAddCapacity; |
| pBuffer->pData = sqlite3_realloc(pBuffer->pData, pBuffer->nCapacity); |
| } |
| } |
| static void dataBufferAppend(DataBuffer *pBuffer, |
| const char *pSource, int nSource){ |
| assert( nSource>0 && pSource!=NULL ); |
| dataBufferExpand(pBuffer, nSource); |
| memcpy(pBuffer->pData+pBuffer->nData, pSource, nSource); |
| pBuffer->nData += nSource; |
| } |
| static void dataBufferAppend2(DataBuffer *pBuffer, |
| const char *pSource1, int nSource1, |
| const char *pSource2, int nSource2){ |
| assert( nSource1>0 && pSource1!=NULL ); |
| assert( nSource2>0 && pSource2!=NULL ); |
| dataBufferExpand(pBuffer, nSource1+nSource2); |
| memcpy(pBuffer->pData+pBuffer->nData, pSource1, nSource1); |
| memcpy(pBuffer->pData+pBuffer->nData+nSource1, pSource2, nSource2); |
| pBuffer->nData += nSource1+nSource2; |
| } |
| static void dataBufferReplace(DataBuffer *pBuffer, |
| const char *pSource, int nSource){ |
| dataBufferReset(pBuffer); |
| dataBufferAppend(pBuffer, pSource, nSource); |
| } |
| |
| /* StringBuffer is a null-terminated version of DataBuffer. */ |
| typedef struct StringBuffer { |
| DataBuffer b; /* Includes null terminator. */ |
| } StringBuffer; |
| |
| static void initStringBuffer(StringBuffer *sb){ |
| dataBufferInit(&sb->b, 100); |
| dataBufferReplace(&sb->b, "", 1); |
| } |
| static int stringBufferLength(StringBuffer *sb){ |
| return sb->b.nData-1; |
| } |
| static char *stringBufferData(StringBuffer *sb){ |
| return sb->b.pData; |
| } |
| static void stringBufferDestroy(StringBuffer *sb){ |
| dataBufferDestroy(&sb->b); |
| } |
| |
| static void nappend(StringBuffer *sb, const char *zFrom, int nFrom){ |
| assert( sb->b.nData>0 ); |
| if( nFrom>0 ){ |
| sb->b.nData--; |
| dataBufferAppend2(&sb->b, zFrom, nFrom, "", 1); |
| } |
| } |
| static void append(StringBuffer *sb, const char *zFrom){ |
| nappend(sb, zFrom, strlen(zFrom)); |
| } |
| |
| /* Append a list of strings separated by commas. */ |
| static void appendList(StringBuffer *sb, int nString, char **azString){ |
| int i; |
| for(i=0; i<nString; ++i){ |
| if( i>0 ) append(sb, ", "); |
| append(sb, azString[i]); |
| } |
| } |
| |
| static int endsInWhiteSpace(StringBuffer *p){ |
| return stringBufferLength(p)>0 && |
| safe_isspace(stringBufferData(p)[stringBufferLength(p)-1]); |
| } |
| |
| /* If the StringBuffer ends in something other than white space, add a |
| ** single space character to the end. |
| */ |
| static void appendWhiteSpace(StringBuffer *p){ |
| if( stringBufferLength(p)==0 ) return; |
| if( !endsInWhiteSpace(p) ) append(p, " "); |
| } |
| |
| /* Remove white space from the end of the StringBuffer */ |
| static void trimWhiteSpace(StringBuffer *p){ |
| while( endsInWhiteSpace(p) ){ |
| p->b.pData[--p->b.nData-1] = '\0'; |
| } |
| } |
| |
| /*******************************************************************/ |
| /* DLReader is used to read document elements from a doclist. The |
| ** current docid is cached, so dlrDocid() is fast. DLReader does not |
| ** own the doclist buffer. |
| ** |
| ** dlrAtEnd - true if there's no more data to read. |
| ** dlrDocid - docid of current document. |
| ** dlrDocData - doclist data for current document (including docid). |
| ** dlrDocDataBytes - length of same. |
| ** dlrAllDataBytes - length of all remaining data. |
| ** dlrPosData - position data for current document. |
| ** dlrPosDataLen - length of pos data for current document (incl POS_END). |
| ** dlrStep - step to current document. |
| ** dlrInit - initial for doclist of given type against given data. |
| ** dlrDestroy - clean up. |
| ** |
| ** Expected usage is something like: |
| ** |
| ** DLReader reader; |
| ** dlrInit(&reader, pData, nData); |
| ** while( !dlrAtEnd(&reader) ){ |
| ** // calls to dlrDocid() and kin. |
| ** dlrStep(&reader); |
| ** } |
| ** dlrDestroy(&reader); |
| */ |
| typedef struct DLReader { |
| DocListType iType; |
| const char *pData; |
| int nData; |
| |
| sqlite_int64 iDocid; |
| int nElement; |
| } DLReader; |
| |
| static int dlrAtEnd(DLReader *pReader){ |
| assert( pReader->nData>=0 ); |
| return pReader->nData==0; |
| } |
| static sqlite_int64 dlrDocid(DLReader *pReader){ |
| assert( !dlrAtEnd(pReader) ); |
| return pReader->iDocid; |
| } |
| static const char *dlrDocData(DLReader *pReader){ |
| assert( !dlrAtEnd(pReader) ); |
| return pReader->pData; |
| } |
| static int dlrDocDataBytes(DLReader *pReader){ |
| assert( !dlrAtEnd(pReader) ); |
| return pReader->nElement; |
| } |
| static int dlrAllDataBytes(DLReader *pReader){ |
| assert( !dlrAtEnd(pReader) ); |
| return pReader->nData; |
| } |
| /* TODO(shess) Consider adding a field to track iDocid varint length |
| ** to make these two functions faster. This might matter (a tiny bit) |
| ** for queries. |
| */ |
| static const char *dlrPosData(DLReader *pReader){ |
| sqlite_int64 iDummy; |
| int n = getVarint(pReader->pData, &iDummy); |
| assert( !dlrAtEnd(pReader) ); |
| return pReader->pData+n; |
| } |
| static int dlrPosDataLen(DLReader *pReader){ |
| sqlite_int64 iDummy; |
| int n = getVarint(pReader->pData, &iDummy); |
| assert( !dlrAtEnd(pReader) ); |
| return pReader->nElement-n; |
| } |
| static void dlrStep(DLReader *pReader){ |
| assert( !dlrAtEnd(pReader) ); |
| |
| /* Skip past current doclist element. */ |
| assert( pReader->nElement<=pReader->nData ); |
| pReader->pData += pReader->nElement; |
| pReader->nData -= pReader->nElement; |
| |
| /* If there is more data, read the next doclist element. */ |
| if( pReader->nData!=0 ){ |
| sqlite_int64 iDocidDelta; |
| int iDummy, n = getVarint(pReader->pData, &iDocidDelta); |
| pReader->iDocid += iDocidDelta; |
| if( pReader->iType>=DL_POSITIONS ){ |
| assert( n<pReader->nData ); |
| while( 1 ){ |
| n += getVarint32(pReader->pData+n, &iDummy); |
| assert( n<=pReader->nData ); |
| if( iDummy==POS_END ) break; |
| if( iDummy==POS_COLUMN ){ |
| n += getVarint32(pReader->pData+n, &iDummy); |
| assert( n<pReader->nData ); |
| }else if( pReader->iType==DL_POSITIONS_OFFSETS ){ |
| n += getVarint32(pReader->pData+n, &iDummy); |
| n += getVarint32(pReader->pData+n, &iDummy); |
| assert( n<pReader->nData ); |
| } |
| } |
| } |
| pReader->nElement = n; |
| assert( pReader->nElement<=pReader->nData ); |
| } |
| } |
| static void dlrInit(DLReader *pReader, DocListType iType, |
| const char *pData, int nData){ |
| assert( pData!=NULL && nData!=0 ); |
| pReader->iType = iType; |
| pReader->pData = pData; |
| pReader->nData = nData; |
| pReader->nElement = 0; |
| pReader->iDocid = 0; |
| |
| /* Load the first element's data. There must be a first element. */ |
| dlrStep(pReader); |
| } |
| static void dlrDestroy(DLReader *pReader){ |
| SCRAMBLE(pReader); |
| } |
| |
| #ifndef NDEBUG |
| /* Verify that the doclist can be validly decoded. Also returns the |
| ** last docid found because it is convenient in other assertions for |
| ** DLWriter. |
| */ |
| static void docListValidate(DocListType iType, const char *pData, int nData, |
| sqlite_int64 *pLastDocid){ |
| sqlite_int64 iPrevDocid = 0; |
| assert( nData>0 ); |
| assert( pData!=0 ); |
| assert( pData+nData>pData ); |
| while( nData!=0 ){ |
| sqlite_int64 iDocidDelta; |
| int n = getVarint(pData, &iDocidDelta); |
| iPrevDocid += iDocidDelta; |
| if( iType>DL_DOCIDS ){ |
| int iDummy; |
| while( 1 ){ |
| n += getVarint32(pData+n, &iDummy); |
| if( iDummy==POS_END ) break; |
| if( iDummy==POS_COLUMN ){ |
| n += getVarint32(pData+n, &iDummy); |
| }else if( iType>DL_POSITIONS ){ |
| n += getVarint32(pData+n, &iDummy); |
| n += getVarint32(pData+n, &iDummy); |
| } |
| assert( n<=nData ); |
| } |
| } |
| assert( n<=nData ); |
| pData += n; |
| nData -= n; |
| } |
| if( pLastDocid ) *pLastDocid = iPrevDocid; |
| } |
| #define ASSERT_VALID_DOCLIST(i, p, n, o) docListValidate(i, p, n, o) |
| #else |
| #define ASSERT_VALID_DOCLIST(i, p, n, o) assert( 1 ) |
| #endif |
| |
| /*******************************************************************/ |
| /* DLWriter is used to write doclist data to a DataBuffer. DLWriter |
| ** always appends to the buffer and does not own it. |
| ** |
| ** dlwInit - initialize to write a given type doclistto a buffer. |
| ** dlwDestroy - clear the writer's memory. Does not free buffer. |
| ** dlwAppend - append raw doclist data to buffer. |
| ** dlwCopy - copy next doclist from reader to writer. |
| ** dlwAdd - construct doclist element and append to buffer. |
| ** Only apply dlwAdd() to DL_DOCIDS doclists (else use PLWriter). |
| */ |
| typedef struct DLWriter { |
| DocListType iType; |
| DataBuffer *b; |
| sqlite_int64 iPrevDocid; |
| #ifndef NDEBUG |
| int has_iPrevDocid; |
| #endif |
| } DLWriter; |
| |
| static void dlwInit(DLWriter *pWriter, DocListType iType, DataBuffer *b){ |
| pWriter->b = b; |
| pWriter->iType = iType; |
| pWriter->iPrevDocid = 0; |
| #ifndef NDEBUG |
| pWriter->has_iPrevDocid = 0; |
| #endif |
| } |
| static void dlwDestroy(DLWriter *pWriter){ |
| SCRAMBLE(pWriter); |
| } |
| /* iFirstDocid is the first docid in the doclist in pData. It is |
| ** needed because pData may point within a larger doclist, in which |
| ** case the first item would be delta-encoded. |
| ** |
| ** iLastDocid is the final docid in the doclist in pData. It is |
| ** needed to create the new iPrevDocid for future delta-encoding. The |
| ** code could decode the passed doclist to recreate iLastDocid, but |
| ** the only current user (docListMerge) already has decoded this |
| ** information. |
| */ |
| /* TODO(shess) This has become just a helper for docListMerge. |
| ** Consider a refactor to make this cleaner. |
| */ |
| static void dlwAppend(DLWriter *pWriter, |
| const char *pData, int nData, |
| sqlite_int64 iFirstDocid, sqlite_int64 iLastDocid){ |
| sqlite_int64 iDocid = 0; |
| char c[VARINT_MAX]; |
| int nFirstOld, nFirstNew; /* Old and new varint len of first docid. */ |
| #ifndef NDEBUG |
| sqlite_int64 iLastDocidDelta; |
| #endif |
| |
| /* Recode the initial docid as delta from iPrevDocid. */ |
| nFirstOld = getVarint(pData, &iDocid); |
| assert( nFirstOld<nData || (nFirstOld==nData && pWriter->iType==DL_DOCIDS) ); |
| nFirstNew = putVarint(c, iFirstDocid-pWriter->iPrevDocid); |
| |
| /* Verify that the incoming doclist is valid AND that it ends with |
| ** the expected docid. This is essential because we'll trust this |
| ** docid in future delta-encoding. |
| */ |
| ASSERT_VALID_DOCLIST(pWriter->iType, pData, nData, &iLastDocidDelta); |
| assert( iLastDocid==iFirstDocid-iDocid+iLastDocidDelta ); |
| |
| /* Append recoded initial docid and everything else. Rest of docids |
| ** should have been delta-encoded from previous initial docid. |
| */ |
| if( nFirstOld<nData ){ |
| dataBufferAppend2(pWriter->b, c, nFirstNew, |
| pData+nFirstOld, nData-nFirstOld); |
| }else{ |
| dataBufferAppend(pWriter->b, c, nFirstNew); |
| } |
| pWriter->iPrevDocid = iLastDocid; |
| } |
| static void dlwCopy(DLWriter *pWriter, DLReader *pReader){ |
| dlwAppend(pWriter, dlrDocData(pReader), dlrDocDataBytes(pReader), |
| dlrDocid(pReader), dlrDocid(pReader)); |
| } |
| static void dlwAdd(DLWriter *pWriter, sqlite_int64 iDocid){ |
| char c[VARINT_MAX]; |
| int n = putVarint(c, iDocid-pWriter->iPrevDocid); |
| |
| /* Docids must ascend. */ |
| assert( !pWriter->has_iPrevDocid || iDocid>pWriter->iPrevDocid ); |
| assert( pWriter->iType==DL_DOCIDS ); |
| |
| dataBufferAppend(pWriter->b, c, n); |
| pWriter->iPrevDocid = iDocid; |
| #ifndef NDEBUG |
| pWriter->has_iPrevDocid = 1; |
| #endif |
| } |
| |
| /*******************************************************************/ |
| /* PLReader is used to read data from a document's position list. As |
| ** the caller steps through the list, data is cached so that varints |
| ** only need to be decoded once. |
| ** |
| ** plrInit, plrDestroy - create/destroy a reader. |
| ** plrColumn, plrPosition, plrStartOffset, plrEndOffset - accessors |
| ** plrAtEnd - at end of stream, only call plrDestroy once true. |
| ** plrStep - step to the next element. |
| */ |
| typedef struct PLReader { |
| /* These refer to the next position's data. nData will reach 0 when |
| ** reading the last position, so plrStep() signals EOF by setting |
| ** pData to NULL. |
| */ |
| const char *pData; |
| int nData; |
| |
| DocListType iType; |
| int iColumn; /* the last column read */ |
| int iPosition; /* the last position read */ |
| int iStartOffset; /* the last start offset read */ |
| int iEndOffset; /* the last end offset read */ |
| } PLReader; |
| |
| static int plrAtEnd(PLReader *pReader){ |
| return pReader->pData==NULL; |
| } |
| static int plrColumn(PLReader *pReader){ |
| assert( !plrAtEnd(pReader) ); |
| return pReader->iColumn; |
| } |
| static int plrPosition(PLReader *pReader){ |
| assert( !plrAtEnd(pReader) ); |
| return pReader->iPosition; |
| } |
| static int plrStartOffset(PLReader *pReader){ |
| assert( !plrAtEnd(pReader) ); |
| return pReader->iStartOffset; |
| } |
| static int plrEndOffset(PLReader *pReader){ |
| assert( !plrAtEnd(pReader) ); |
| return pReader->iEndOffset; |
| } |
| static void plrStep(PLReader *pReader){ |
| int i, n; |
| |
| assert( !plrAtEnd(pReader) ); |
| |
| if( pReader->nData==0 ){ |
| pReader->pData = NULL; |
| return; |
| } |
| |
| n = getVarint32(pReader->pData, &i); |
| if( i==POS_COLUMN ){ |
| n += getVarint32(pReader->pData+n, &pReader->iColumn); |
| pReader->iPosition = 0; |
| pReader->iStartOffset = 0; |
| n += getVarint32(pReader->pData+n, &i); |
| } |
| /* Should never see adjacent column changes. */ |
| assert( i!=POS_COLUMN ); |
| |
| if( i==POS_END ){ |
| pReader->nData = 0; |
| pReader->pData = NULL; |
| return; |
| } |
| |
| pReader->iPosition += i-POS_BASE; |
| if( pReader->iType==DL_POSITIONS_OFFSETS ){ |
| n += getVarint32(pReader->pData+n, &i); |
| pReader->iStartOffset += i; |
| n += getVarint32(pReader->pData+n, &i); |
| pReader->iEndOffset = pReader->iStartOffset+i; |
| } |
| assert( n<=pReader->nData ); |
| pReader->pData += n; |
| pReader->nData -= n; |
| } |
| |
| static void plrInit(PLReader *pReader, DLReader *pDLReader){ |
| pReader->pData = dlrPosData(pDLReader); |
| pReader->nData = dlrPosDataLen(pDLReader); |
| pReader->iType = pDLReader->iType; |
| pReader->iColumn = 0; |
| pReader->iPosition = 0; |
| pReader->iStartOffset = 0; |
| pReader->iEndOffset = 0; |
| plrStep(pReader); |
| } |
| static void plrDestroy(PLReader *pReader){ |
| SCRAMBLE(pReader); |
| } |
| |
| /*******************************************************************/ |
| /* PLWriter is used in constructing a document's position list. As a |
| ** convenience, if iType is DL_DOCIDS, PLWriter becomes a no-op. |
| ** PLWriter writes to the associated DLWriter's buffer. |
| ** |
| ** plwInit - init for writing a document's poslist. |
| ** plwDestroy - clear a writer. |
| ** plwAdd - append position and offset information. |
| ** plwCopy - copy next position's data from reader to writer. |
| ** plwTerminate - add any necessary doclist terminator. |
| ** |
| ** Calling plwAdd() after plwTerminate() may result in a corrupt |
| ** doclist. |
| */ |
| /* TODO(shess) Until we've written the second item, we can cache the |
| ** first item's information. Then we'd have three states: |
| ** |
| ** - initialized with docid, no positions. |
| ** - docid and one position. |
| ** - docid and multiple positions. |
| ** |
| ** Only the last state needs to actually write to dlw->b, which would |
| ** be an improvement in the DLCollector case. |
| */ |
| typedef struct PLWriter { |
| DLWriter *dlw; |
| |
| int iColumn; /* the last column written */ |
| int iPos; /* the last position written */ |
| int iOffset; /* the last start offset written */ |
| } PLWriter; |
| |
| /* TODO(shess) In the case where the parent is reading these values |
| ** from a PLReader, we could optimize to a copy if that PLReader has |
| ** the same type as pWriter. |
| */ |
| static void plwAdd(PLWriter *pWriter, int iColumn, int iPos, |
| int iStartOffset, int iEndOffset){ |
| /* Worst-case space for POS_COLUMN, iColumn, iPosDelta, |
| ** iStartOffsetDelta, and iEndOffsetDelta. |
| */ |
| char c[5*VARINT_MAX]; |
| int n = 0; |
| |
| /* Ban plwAdd() after plwTerminate(). */ |
| assert( pWriter->iPos!=-1 ); |
| |
| if( pWriter->dlw->iType==DL_DOCIDS ) return; |
| |
| if( iColumn!=pWriter->iColumn ){ |
| n += putVarint(c+n, POS_COLUMN); |
| n += putVarint(c+n, iColumn); |
| pWriter->iColumn = iColumn; |
| pWriter->iPos = 0; |
| pWriter->iOffset = 0; |
| } |
| assert( iPos>=pWriter->iPos ); |
| n += putVarint(c+n, POS_BASE+(iPos-pWriter->iPos)); |
| pWriter->iPos = iPos; |
| if( pWriter->dlw->iType==DL_POSITIONS_OFFSETS ){ |
| assert( iStartOffset>=pWriter->iOffset ); |
| n += putVarint(c+n, iStartOffset-pWriter->iOffset); |
| pWriter->iOffset = iStartOffset; |
| assert( iEndOffset>=iStartOffset ); |
| n += putVarint(c+n, iEndOffset-iStartOffset); |
| } |
| dataBufferAppend(pWriter->dlw->b, c, n); |
| } |
| static void plwCopy(PLWriter *pWriter, PLReader *pReader){ |
| plwAdd(pWriter, plrColumn(pReader), plrPosition(pReader), |
| plrStartOffset(pReader), plrEndOffset(pReader)); |
| } |
| static void plwInit(PLWriter *pWriter, DLWriter *dlw, sqlite_int64 iDocid){ |
| char c[VARINT_MAX]; |
| int n; |
| |
| pWriter->dlw = dlw; |
| |
| /* Docids must ascend. */ |
| assert( !pWriter->dlw->has_iPrevDocid || iDocid>pWriter->dlw->iPrevDocid ); |
| n = putVarint(c, iDocid-pWriter->dlw->iPrevDocid); |
| dataBufferAppend(pWriter->dlw->b, c, n); |
| pWriter->dlw->iPrevDocid = iDocid; |
| #ifndef NDEBUG |
| pWriter->dlw->has_iPrevDocid = 1; |
| #endif |
| |
| pWriter->iColumn = 0; |
| pWriter->iPos = 0; |
| pWriter->iOffset = 0; |
| } |
| /* TODO(shess) Should plwDestroy() also terminate the doclist? But |
| ** then plwDestroy() would no longer be just a destructor, it would |
| ** also be doing work, which isn't consistent with the overall idiom. |
| ** Another option would be for plwAdd() to always append any necessary |
| ** terminator, so that the output is always correct. But that would |
| ** add incremental work to the common case with the only benefit being |
| ** API elegance. Punt for now. |
| */ |
| static void plwTerminate(PLWriter *pWriter){ |
| if( pWriter->dlw->iType>DL_DOCIDS ){ |
| char c[VARINT_MAX]; |
| int n = putVarint(c, POS_END); |
| dataBufferAppend(pWriter->dlw->b, c, n); |
| } |
| #ifndef NDEBUG |
| /* Mark as terminated for assert in plwAdd(). */ |
| pWriter->iPos = -1; |
| #endif |
| } |
| static void plwDestroy(PLWriter *pWriter){ |
| SCRAMBLE(pWriter); |
| } |
| |
| /*******************************************************************/ |
| /* DLCollector wraps PLWriter and DLWriter to provide a |
| ** dynamically-allocated doclist area to use during tokenization. |
| ** |
| ** dlcNew - malloc up and initialize a collector. |
| ** dlcDelete - destroy a collector and all contained items. |
| ** dlcAddPos - append position and offset information. |
| ** dlcAddDoclist - add the collected doclist to the given buffer. |
| ** dlcNext - terminate the current document and open another. |
| */ |
| typedef struct DLCollector { |
| DataBuffer b; |
| DLWriter dlw; |
| PLWriter plw; |
| } DLCollector; |
| |
| /* TODO(shess) This could also be done by calling plwTerminate() and |
| ** dataBufferAppend(). I tried that, expecting nominal performance |
| ** differences, but it seemed to pretty reliably be worth 1% to code |
| ** it this way. I suspect it is the incremental malloc overhead (some |
| ** percentage of the plwTerminate() calls will cause a realloc), so |
| ** this might be worth revisiting if the DataBuffer implementation |
| ** changes. |
| */ |
| static void dlcAddDoclist(DLCollector *pCollector, DataBuffer *b){ |
| if( pCollector->dlw.iType>DL_DOCIDS ){ |
| char c[VARINT_MAX]; |
| int n = putVarint(c, POS_END); |
| dataBufferAppend2(b, pCollector->b.pData, pCollector->b.nData, c, n); |
| }else{ |
| dataBufferAppend(b, pCollector->b.pData, pCollector->b.nData); |
| } |
| } |
| static void dlcNext(DLCollector *pCollector, sqlite_int64 iDocid){ |
| plwTerminate(&pCollector->plw); |
| plwDestroy(&pCollector->plw); |
| plwInit(&pCollector->plw, &pCollector->dlw, iDocid); |
| } |
| static void dlcAddPos(DLCollector *pCollector, int iColumn, int iPos, |
| int iStartOffset, int iEndOffset){ |
| plwAdd(&pCollector->plw, iColumn, iPos, iStartOffset, iEndOffset); |
| } |
| |
| static DLCollector *dlcNew(sqlite_int64 iDocid, DocListType iType){ |
| DLCollector *pCollector = sqlite3_malloc(sizeof(DLCollector)); |
| dataBufferInit(&pCollector->b, 0); |
| dlwInit(&pCollector->dlw, iType, &pCollector->b); |
| plwInit(&pCollector->plw, &pCollector->dlw, iDocid); |
| return pCollector; |
| } |
| static void dlcDelete(DLCollector *pCollector){ |
| plwDestroy(&pCollector->plw); |
| dlwDestroy(&pCollector->dlw); |
| dataBufferDestroy(&pCollector->b); |
| SCRAMBLE(pCollector); |
| sqlite3_free(pCollector); |
| } |
| |
| |
| /* Copy the doclist data of iType in pData/nData into *out, trimming |
| ** unnecessary data as we go. Only columns matching iColumn are |
| ** copied, all columns copied if iColumn is -1. Elements with no |
| ** matching columns are dropped. The output is an iOutType doclist. |
| */ |
| /* NOTE(shess) This code is only valid after all doclists are merged. |
| ** If this is run before merges, then doclist items which represent |
| ** deletion will be trimmed, and will thus not effect a deletion |
| ** during the merge. |
| */ |
| static void docListTrim(DocListType iType, const char *pData, int nData, |
| int iColumn, DocListType iOutType, DataBuffer *out){ |
| DLReader dlReader; |
| DLWriter dlWriter; |
| |
| assert( iOutType<=iType ); |
| |
| dlrInit(&dlReader, iType, pData, nData); |
| dlwInit(&dlWriter, iOutType, out); |
| |
| while( !dlrAtEnd(&dlReader) ){ |
| PLReader plReader; |
| PLWriter plWriter; |
| int match = 0; |
| |
| plrInit(&plReader, &dlReader); |
| |
| while( !plrAtEnd(&plReader) ){ |
| if( iColumn==-1 || plrColumn(&plReader)==iColumn ){ |
| if( !match ){ |
| plwInit(&plWriter, &dlWriter, dlrDocid(&dlReader)); |
| match = 1; |
| } |
| plwAdd(&plWriter, plrColumn(&plReader), plrPosition(&plReader), |
| plrStartOffset(&plReader), plrEndOffset(&plReader)); |
| } |
| plrStep(&plReader); |
| } |
| if( match ){ |
| plwTerminate(&plWriter); |
| plwDestroy(&plWriter); |
| } |
| |
| plrDestroy(&plReader); |
| dlrStep(&dlReader); |
| } |
| dlwDestroy(&dlWriter); |
| dlrDestroy(&dlReader); |
| } |
| |
| /* Used by docListMerge() to keep doclists in the ascending order by |
| ** docid, then ascending order by age (so the newest comes first). |
| */ |
| typedef struct OrderedDLReader { |
| DLReader *pReader; |
| |
| /* TODO(shess) If we assume that docListMerge pReaders is ordered by |
| ** age (which we do), then we could use pReader comparisons to break |
| ** ties. |
| */ |
| int idx; |
| } OrderedDLReader; |
| |
| /* Order eof to end, then by docid asc, idx desc. */ |
| static int orderedDLReaderCmp(OrderedDLReader *r1, OrderedDLReader *r2){ |
| if( dlrAtEnd(r1->pReader) ){ |
| if( dlrAtEnd(r2->pReader) ) return 0; /* Both atEnd(). */ |
| return 1; /* Only r1 atEnd(). */ |
| } |
| if( dlrAtEnd(r2->pReader) ) return -1; /* Only r2 atEnd(). */ |
| |
| if( dlrDocid(r1->pReader)<dlrDocid(r2->pReader) ) return -1; |
| if( dlrDocid(r1->pReader)>dlrDocid(r2->pReader) ) return 1; |
| |
| /* Descending on idx. */ |
| return r2->idx-r1->idx; |
| } |
| |
| /* Bubble p[0] to appropriate place in p[1..n-1]. Assumes that |
| ** p[1..n-1] is already sorted. |
| */ |
| /* TODO(shess) Is this frequent enough to warrant a binary search? |
| ** Before implementing that, instrument the code to check. In most |
| ** current usage, I expect that p[0] will be less than p[1] a very |
| ** high proportion of the time. |
| */ |
| static void orderedDLReaderReorder(OrderedDLReader *p, int n){ |
| while( n>1 && orderedDLReaderCmp(p, p+1)>0 ){ |
| OrderedDLReader tmp = p[0]; |
| p[0] = p[1]; |
| p[1] = tmp; |
| n--; |
| p++; |
| } |
| } |
| |
| /* Given an array of doclist readers, merge their doclist elements |
| ** into out in sorted order (by docid), dropping elements from older |
| ** readers when there is a duplicate docid. pReaders is assumed to be |
| ** ordered by age, oldest first. |
| */ |
| /* TODO(shess) nReaders must be <= MERGE_COUNT. This should probably |
| ** be fixed. |
| */ |
| static void docListMerge(DataBuffer *out, |
| DLReader *pReaders, int nReaders){ |
| OrderedDLReader readers[MERGE_COUNT]; |
| DLWriter writer; |
| int i, n; |
| const char *pStart = 0; |
| int nStart = 0; |
| sqlite_int64 iFirstDocid = 0, iLastDocid = 0; |
| |
| assert( nReaders>0 ); |
| if( nReaders==1 ){ |
| dataBufferAppend(out, dlrDocData(pReaders), dlrAllDataBytes(pReaders)); |
| return; |
| } |
| |
| assert( nReaders<=MERGE_COUNT ); |
| n = 0; |
| for(i=0; i<nReaders; i++){ |
| assert( pReaders[i].iType==pReaders[0].iType ); |
| readers[i].pReader = pReaders+i; |
| readers[i].idx = i; |
| n += dlrAllDataBytes(&pReaders[i]); |
| } |
| /* Conservatively size output to sum of inputs. Output should end |
| ** up strictly smaller than input. |
| */ |
| dataBufferExpand(out, n); |
| |
| /* Get the readers into sorted order. */ |
| while( i-->0 ){ |
| orderedDLReaderReorder(readers+i, nReaders-i); |
| } |
| |
| dlwInit(&writer, pReaders[0].iType, out); |
| while( !dlrAtEnd(readers[0].pReader) ){ |
| sqlite_int64 iDocid = dlrDocid(readers[0].pReader); |
| |
| /* If this is a continuation of the current buffer to copy, extend |
| ** that buffer. memcpy() seems to be more efficient if it has a |
| ** lots of data to copy. |
| */ |
| if( dlrDocData(readers[0].pReader)==pStart+nStart ){ |
| nStart += dlrDocDataBytes(readers[0].pReader); |
| }else{ |
| if( pStart!=0 ){ |
| dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); |
| } |
| pStart = dlrDocData(readers[0].pReader); |
| nStart = dlrDocDataBytes(readers[0].pReader); |
| iFirstDocid = iDocid; |
| } |
| iLastDocid = iDocid; |
| dlrStep(readers[0].pReader); |
| |
| /* Drop all of the older elements with the same docid. */ |
| for(i=1; i<nReaders && |
| !dlrAtEnd(readers[i].pReader) && |
| dlrDocid(readers[i].pReader)==iDocid; i++){ |
| dlrStep(readers[i].pReader); |
| } |
| |
| /* Get the readers back into order. */ |
| while( i-->0 ){ |
| orderedDLReaderReorder(readers+i, nReaders-i); |
| } |
| } |
| |
| /* Copy over any remaining elements. */ |
| if( nStart>0 ) dlwAppend(&writer, pStart, nStart, iFirstDocid, iLastDocid); |
| dlwDestroy(&writer); |
| } |
| |
| /* Helper function for posListUnion(). Compares the current position |
| ** between left and right, returning as standard C idiom of <0 if |
| ** left<right, >0 if left>right, and 0 if left==right. "End" always |
| ** compares greater. |
| */ |
| static int posListCmp(PLReader *pLeft, PLReader *pRight){ |
| assert( pLeft->iType==pRight->iType ); |
| if( pLeft->iType==DL_DOCIDS ) return 0; |
| |
| if( plrAtEnd(pLeft) ) return plrAtEnd(pRight) ? 0 : 1; |
| if( plrAtEnd(pRight) ) return -1; |
| |
| if( plrColumn(pLeft)<plrColumn(pRight) ) return -1; |
| if( plrColumn(pLeft)>plrColumn(pRight) ) return 1; |
| |
| if( plrPosition(pLeft)<plrPosition(pRight) ) return -1; |
| if( plrPosition(pLeft)>plrPosition(pRight) ) return 1; |
| if( pLeft->iType==DL_POSITIONS ) return 0; |
| |
| if( plrStartOffset(pLeft)<plrStartOffset(pRight) ) return -1; |
| if( plrStartOffset(pLeft)>plrStartOffset(pRight) ) return 1; |
| |
| if( plrEndOffset(pLeft)<plrEndOffset(pRight) ) return -1; |
| if( plrEndOffset(pLeft)>plrEndOffset(pRight) ) return 1; |
| |
| return 0; |
| } |
| |
| /* Write the union of position lists in pLeft and pRight to pOut. |
| ** "Union" in this case meaning "All unique position tuples". Should |
| ** work with any doclist type, though both inputs and the output |
| ** should be the same type. |
| */ |
| static void posListUnion(DLReader *pLeft, DLReader *pRight, DLWriter *pOut){ |
| PLReader left, right; |
| PLWriter writer; |
| |
| assert( dlrDocid(pLeft)==dlrDocid(pRight) ); |
| assert( pLeft->iType==pRight->iType ); |
| assert( pLeft->iType==pOut->iType ); |
| |
| plrInit(&left, pLeft); |
| plrInit(&right, pRight); |
| plwInit(&writer, pOut, dlrDocid(pLeft)); |
| |
| while( !plrAtEnd(&left) || !plrAtEnd(&right) ){ |
| int c = posListCmp(&left, &right); |
| if( c<0 ){ |
| plwCopy(&writer, &left); |
| plrStep(&left); |
| }else if( c>0 ){ |
| plwCopy(&writer, &right); |
| plrStep(&right); |
| }else{ |
| plwCopy(&writer, &left); |
| plrStep(&left); |
| plrStep(&right); |
| } |
| } |
| |
| plwTerminate(&writer); |
| plwDestroy(&writer); |
| plrDestroy(&left); |
| plrDestroy(&right); |
| } |
| |
| /* Write the union of doclists in pLeft and pRight to pOut. For |
| ** docids in common between the inputs, the union of the position |
| ** lists is written. Inputs and outputs are always type DL_DEFAULT. |
| */ |
| static void docListUnion( |
| const char *pLeft, int nLeft, |
| const char *pRight, int nRight, |
| DataBuffer *pOut /* Write the combined doclist here */ |
| ){ |
| DLReader left, right; |
| DLWriter writer; |
| |
| if( nLeft==0 ){ |
| if( nRight!=0) dataBufferAppend(pOut, pRight, nRight); |
| return; |
| } |
| if( nRight==0 ){ |
| dataBufferAppend(pOut, pLeft, nLeft); |
| return; |
| } |
| |
| dlrInit(&left, DL_DEFAULT, pLeft, nLeft); |
| dlrInit(&right, DL_DEFAULT, pRight, nRight); |
| dlwInit(&writer, DL_DEFAULT, pOut); |
| |
| while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ |
| if( dlrAtEnd(&right) ){ |
| dlwCopy(&writer, &left); |
| dlrStep(&left); |
| }else if( dlrAtEnd(&left) ){ |
| dlwCopy(&writer, &right); |
| dlrStep(&right); |
| }else if( dlrDocid(&left)<dlrDocid(&right) ){ |
| dlwCopy(&writer, &left); |
| dlrStep(&left); |
| }else if( dlrDocid(&left)>dlrDocid(&right) ){ |
| dlwCopy(&writer, &right); |
| dlrStep(&right); |
| }else{ |
| posListUnion(&left, &right, &writer); |
| dlrStep(&left); |
| dlrStep(&right); |
| } |
| } |
| |
| dlrDestroy(&left); |
| dlrDestroy(&right); |
| dlwDestroy(&writer); |
| } |
| |
| /* pLeft and pRight are DLReaders positioned to the same docid. |
| ** |
| ** If there are no instances in pLeft or pRight where the position |
| ** of pLeft is one less than the position of pRight, then this |
| ** routine adds nothing to pOut. |
| ** |
| ** If there are one or more instances where positions from pLeft |
| ** are exactly one less than positions from pRight, then add a new |
| ** document record to pOut. If pOut wants to hold positions, then |
| ** include the positions from pRight that are one more than a |
| ** position in pLeft. In other words: pRight.iPos==pLeft.iPos+1. |
| */ |
| static void posListPhraseMerge(DLReader *pLeft, DLReader *pRight, |
| DLWriter *pOut){ |
| PLReader left, right; |
| PLWriter writer; |
| int match = 0; |
| |
| assert( dlrDocid(pLeft)==dlrDocid(pRight) ); |
| assert( pOut->iType!=DL_POSITIONS_OFFSETS ); |
| |
| plrInit(&left, pLeft); |
| plrInit(&right, pRight); |
| |
| while( !plrAtEnd(&left) && !plrAtEnd(&right) ){ |
| if( plrColumn(&left)<plrColumn(&right) ){ |
| plrStep(&left); |
| }else if( plrColumn(&left)>plrColumn(&right) ){ |
| plrStep(&right); |
| }else if( plrPosition(&left)+1<plrPosition(&right) ){ |
| plrStep(&left); |
| }else if( plrPosition(&left)+1>plrPosition(&right) ){ |
| plrStep(&right); |
| }else{ |
| if( !match ){ |
| plwInit(&writer, pOut, dlrDocid(pLeft)); |
| match = 1; |
| } |
| plwAdd(&writer, plrColumn(&right), plrPosition(&right), 0, 0); |
| plrStep(&left); |
| plrStep(&right); |
| } |
| } |
| |
| if( match ){ |
| plwTerminate(&writer); |
| plwDestroy(&writer); |
| } |
| |
| plrDestroy(&left); |
| plrDestroy(&right); |
| } |
| |
| /* We have two doclists with positions: pLeft and pRight. |
| ** Write the phrase intersection of these two doclists into pOut. |
| ** |
| ** A phrase intersection means that two documents only match |
| ** if pLeft.iPos+1==pRight.iPos. |
| ** |
| ** iType controls the type of data written to pOut. If iType is |
| ** DL_POSITIONS, the positions are those from pRight. |
| */ |
| static void docListPhraseMerge( |
| const char *pLeft, int nLeft, |
| const char *pRight, int nRight, |
| DocListType iType, |
| DataBuffer *pOut /* Write the combined doclist here */ |
| ){ |
| DLReader left, right; |
| DLWriter writer; |
| |
| if( nLeft==0 || nRight==0 ) return; |
| |
| assert( iType!=DL_POSITIONS_OFFSETS ); |
| |
| dlrInit(&left, DL_POSITIONS, pLeft, nLeft); |
| dlrInit(&right, DL_POSITIONS, pRight, nRight); |
| dlwInit(&writer, iType, pOut); |
| |
| while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ |
| if( dlrDocid(&left)<dlrDocid(&right) ){ |
| dlrStep(&left); |
| }else if( dlrDocid(&right)<dlrDocid(&left) ){ |
| dlrStep(&right); |
| }else{ |
| posListPhraseMerge(&left, &right, &writer); |
| dlrStep(&left); |
| dlrStep(&right); |
| } |
| } |
| |
| dlrDestroy(&left); |
| dlrDestroy(&right); |
| dlwDestroy(&writer); |
| } |
| |
| /* We have two DL_DOCIDS doclists: pLeft and pRight. |
| ** Write the intersection of these two doclists into pOut as a |
| ** DL_DOCIDS doclist. |
| */ |
| static void docListAndMerge( |
| const char *pLeft, int nLeft, |
| const char *pRight, int nRight, |
| DataBuffer *pOut /* Write the combined doclist here */ |
| ){ |
| DLReader left, right; |
| DLWriter writer; |
| |
| if( nLeft==0 || nRight==0 ) return; |
| |
| dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |
| dlrInit(&right, DL_DOCIDS, pRight, nRight); |
| dlwInit(&writer, DL_DOCIDS, pOut); |
| |
| while( !dlrAtEnd(&left) && !dlrAtEnd(&right) ){ |
| if( dlrDocid(&left)<dlrDocid(&right) ){ |
| dlrStep(&left); |
| }else if( dlrDocid(&right)<dlrDocid(&left) ){ |
| dlrStep(&right); |
| }else{ |
| dlwAdd(&writer, dlrDocid(&left)); |
| dlrStep(&left); |
| dlrStep(&right); |
| } |
| } |
| |
| dlrDestroy(&left); |
| dlrDestroy(&right); |
| dlwDestroy(&writer); |
| } |
| |
| /* We have two DL_DOCIDS doclists: pLeft and pRight. |
| ** Write the union of these two doclists into pOut as a |
| ** DL_DOCIDS doclist. |
| */ |
| static void docListOrMerge( |
| const char *pLeft, int nLeft, |
| const char *pRight, int nRight, |
| DataBuffer *pOut /* Write the combined doclist here */ |
| ){ |
| DLReader left, right; |
| DLWriter writer; |
| |
| if( nLeft==0 ){ |
| if( nRight!=0 ) dataBufferAppend(pOut, pRight, nRight); |
| return; |
| } |
| if( nRight==0 ){ |
| dataBufferAppend(pOut, pLeft, nLeft); |
| return; |
| } |
| |
| dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |
| dlrInit(&right, DL_DOCIDS, pRight, nRight); |
| dlwInit(&writer, DL_DOCIDS, pOut); |
| |
| while( !dlrAtEnd(&left) || !dlrAtEnd(&right) ){ |
| if( dlrAtEnd(&right) ){ |
| dlwAdd(&writer, dlrDocid(&left)); |
| dlrStep(&left); |
| }else if( dlrAtEnd(&left) ){ |
| dlwAdd(&writer, dlrDocid(&right)); |
| dlrStep(&right); |
| }else if( dlrDocid(&left)<dlrDocid(&right) ){ |
| dlwAdd(&writer, dlrDocid(&left)); |
| dlrStep(&left); |
| }else if( dlrDocid(&right)<dlrDocid(&left) ){ |
| dlwAdd(&writer, dlrDocid(&right)); |
| dlrStep(&right); |
| }else{ |
| dlwAdd(&writer, dlrDocid(&left)); |
| dlrStep(&left); |
| dlrStep(&right); |
| } |
| } |
| |
| dlrDestroy(&left); |
| dlrDestroy(&right); |
| dlwDestroy(&writer); |
| } |
| |
| /* We have two DL_DOCIDS doclists: pLeft and pRight. |
| ** Write into pOut as DL_DOCIDS doclist containing all documents that |
| ** occur in pLeft but not in pRight. |
| */ |
| static void docListExceptMerge( |
| const char *pLeft, int nLeft, |
| const char *pRight, int nRight, |
| DataBuffer *pOut /* Write the combined doclist here */ |
| ){ |
| DLReader left, right; |
| DLWriter writer; |
| |
| if( nLeft==0 ) return; |
| if( nRight==0 ){ |
| dataBufferAppend(pOut, pLeft, nLeft); |
| return; |
| } |
| |
| dlrInit(&left, DL_DOCIDS, pLeft, nLeft); |
| dlrInit(&right, DL_DOCIDS, pRight, nRight); |
| dlwInit(&writer, DL_DOCIDS, pOut); |
| |
| while( !dlrAtEnd(&left) ){ |
| while( !dlrAtEnd(&right) && dlrDocid(&right)<dlrDocid(&left) ){ |
| dlrStep(&right); |
| } |
| if( dlrAtEnd(&right) || dlrDocid(&left)<dlrDocid(&right) ){ |
| dlwAdd(&writer, dlrDocid(&left)); |
| } |
| dlrStep(&left); |
| } |
| |
| dlrDestroy(&left); |
| dlrDestroy(&right); |
| dlwDestroy(&writer); |
| } |
| |
| static char *string_dup_n(const char *s, int n){ |
| char *str = sqlite3_malloc(n + 1); |
| memcpy(str, s, n); |
| str[n] = '\0'; |
| return str; |
| } |
| |
| /* Duplicate a string; the caller must free() the returned string. |
| * (We don't use strdup() since it is not part of the standard C library and |
| * may not be available everywhere.) */ |
| static char *string_dup(const char *s){ |
| return string_dup_n(s, strlen(s)); |
| } |
| |
| /* Format a string, replacing each occurrence of the % character with |
| * zDb.zName. This may be more convenient than sqlite_mprintf() |
| * when one string is used repeatedly in a format string. |
| * The caller must free() the returned string. */ |
| static char *string_format(const char *zFormat, |
| const char *zDb, const char *zName){ |
| const char *p; |
| size_t len = 0; |
| size_t nDb = strlen(zDb); |
| size_t nName = strlen(zName); |
| size_t nFullTableName = nDb+1+nName; |
| char *result; |
| char *r; |
| |
| /* first compute length needed */ |
| for(p = zFormat ; *p ; ++p){ |
| len += (*p=='%' ? nFullTableName : 1); |
| } |
| len += 1; /* for null terminator */ |
| |
| r = result = sqlite3_malloc(len); |
| for(p = zFormat; *p; ++p){ |
| if( *p=='%' ){ |
| memcpy(r, zDb, nDb); |
| r += nDb; |
| *r++ = '.'; |
| memcpy(r, zName, nName); |
| r += nName; |
| } else { |
| *r++ = *p; |
| } |
| } |
| *r++ = '\0'; |
| assert( r == result + len ); |
| return result; |
| } |
| |
| static int sql_exec(sqlite3 *db, const char *zDb, const char *zName, |
| const char *zFormat){ |
| char *zCommand = string_format(zFormat, zDb, zName); |
| int rc; |
| TRACE(("FTS2 sql: %s\n", zCommand)); |
| rc = sqlite3_exec(db, zCommand, NULL, 0, NULL); |
| sqlite3_free(zCommand); |
| return rc; |
| } |
| |
| static int sql_prepare(sqlite3 *db, const char *zDb, const char *zName, |
| sqlite3_stmt **ppStmt, const char *zFormat){ |
| char *zCommand = string_format(zFormat, zDb, zName); |
| int rc; |
| TRACE(("FTS2 prepare: %s\n", zCommand)); |
| rc = sqlite3_prepare_v2(db, zCommand, -1, ppStmt, NULL); |
| sqlite3_free(zCommand); |
| return rc; |
| } |
| |
| /* end utility functions */ |
| |
| /* Forward reference */ |
| typedef struct fulltext_vtab fulltext_vtab; |
| |
| /* A single term in a query is represented by an instances of |
| ** the following structure. |
| */ |
| typedef struct QueryTerm { |
| short int nPhrase; /* How many following terms are part of the same phrase */ |
| short int iPhrase; /* This is the i-th term of a phrase. */ |
| short int iColumn; /* Column of the index that must match this term */ |
| signed char isOr; /* this term is preceded by "OR" */ |
| signed char isNot; /* this term is preceded by "-" */ |
| signed char isPrefix; /* this term is followed by "*" */ |
| char *pTerm; /* text of the term. '\000' terminated. malloced */ |
| int nTerm; /* Number of bytes in pTerm[] */ |
| } QueryTerm; |
| |
| |
| /* A query string is parsed into a Query structure. |
| * |
| * We could, in theory, allow query strings to be complicated |
| * nested expressions with precedence determined by parentheses. |
| * But none of the major search engines do this. (Perhaps the |
| * feeling is that an parenthesized expression is two complex of |
| * an idea for the average user to grasp.) Taking our lead from |
| * the major search engines, we will allow queries to be a list |
| * of terms (with an implied AND operator) or phrases in double-quotes, |
| * with a single optional "-" before each non-phrase term to designate |
| * negation and an optional OR connector. |
| * |
| * OR binds more tightly than the implied AND, which is what the |
| * major search engines seem to do. So, for example: |
| * |
| * [one two OR three] ==> one AND (two OR three) |
| * [one OR two three] ==> (one OR two) AND three |
| * |
| * A "-" before a term matches all entries that lack that term. |
| * The "-" must occur immediately before the term with in intervening |
| * space. This is how the search engines do it. |
| * |
| * A NOT term cannot be the right-hand operand of an OR. If this |
| * occurs in the query string, the NOT is ignored: |
| * |
| * [one OR -two] ==> one OR two |
| * |
| */ |
| typedef struct Query { |
| fulltext_vtab *pFts; /* The full text index */ |
| int nTerms; /* Number of terms in the query */ |
| QueryTerm *pTerms; /* Array of terms. Space obtained from malloc() */ |
| int nextIsOr; /* Set the isOr flag on the next inserted term */ |
| int nextColumn; /* Next word parsed must be in this column */ |
| int dfltColumn; /* The default column */ |
| } Query; |
| |
| |
| /* |
| ** An instance of the following structure keeps track of generated |
| ** matching-word offset information and snippets. |
| */ |
| typedef struct Snippet { |
| int nMatch; /* Total number of matches */ |
| int nAlloc; /* Space allocated for aMatch[] */ |
| struct snippetMatch { /* One entry for each matching term */ |
| char snStatus; /* Status flag for use while constructing snippets */ |
| short int iCol; /* The column that contains the match */ |
| short int iTerm; /* The index in Query.pTerms[] of the matching term */ |
| short int nByte; /* Number of bytes in the term */ |
| int iStart; /* The offset to the first character of the term */ |
| } *aMatch; /* Points to space obtained from malloc */ |
| char *zOffset; /* Text rendering of aMatch[] */ |
| int nOffset; /* strlen(zOffset) */ |
| char *zSnippet; /* Snippet text */ |
| int nSnippet; /* strlen(zSnippet) */ |
| } Snippet; |
| |
| |
| typedef enum QueryType { |
| QUERY_GENERIC, /* table scan */ |
| QUERY_ROWID, /* lookup by rowid */ |
| QUERY_FULLTEXT /* QUERY_FULLTEXT + [i] is a full-text search for column i*/ |
| } QueryType; |
| |
| typedef enum fulltext_statement { |
| CONTENT_INSERT_STMT, |
| CONTENT_SELECT_STMT, |
| CONTENT_UPDATE_STMT, |
| CONTENT_DELETE_STMT, |
| CONTENT_EXISTS_STMT, |
| |
| BLOCK_INSERT_STMT, |
| BLOCK_SELECT_STMT, |
| BLOCK_DELETE_STMT, |
| BLOCK_DELETE_ALL_STMT, |
| |
| SEGDIR_MAX_INDEX_STMT, |
| SEGDIR_SET_STMT, |
| SEGDIR_SELECT_LEVEL_STMT, |
| SEGDIR_SPAN_STMT, |
| SEGDIR_DELETE_STMT, |
| SEGDIR_SELECT_SEGMENT_STMT, |
| SEGDIR_SELECT_ALL_STMT, |
| SEGDIR_DELETE_ALL_STMT, |
| SEGDIR_COUNT_STMT, |
| |
| MAX_STMT /* Always at end! */ |
| } fulltext_statement; |
| |
| /* These must exactly match the enum above. */ |
| /* TODO(shess): Is there some risk that a statement will be used in two |
| ** cursors at once, e.g. if a query joins a virtual table to itself? |
| ** If so perhaps we should move some of these to the cursor object. |
| */ |
| static const char *const fulltext_zStatement[MAX_STMT] = { |
| /* CONTENT_INSERT */ NULL, /* generated in contentInsertStatement() */ |
| /* CONTENT_SELECT */ "select * from %_content where rowid = ?", |
| /* CONTENT_UPDATE */ NULL, /* generated in contentUpdateStatement() */ |
| /* CONTENT_DELETE */ "delete from %_content where rowid = ?", |
| /* CONTENT_EXISTS */ "select rowid from %_content limit 1", |
| |
| /* BLOCK_INSERT */ "insert into %_segments values (?)", |
| /* BLOCK_SELECT */ "select block from %_segments where rowid = ?", |
| /* BLOCK_DELETE */ "delete from %_segments where rowid between ? and ?", |
| /* BLOCK_DELETE_ALL */ "delete from %_segments", |
| |
| /* SEGDIR_MAX_INDEX */ "select max(idx) from %_segdir where level = ?", |
| /* SEGDIR_SET */ "insert into %_segdir values (?, ?, ?, ?, ?, ?)", |
| /* SEGDIR_SELECT_LEVEL */ |
| "select start_block, leaves_end_block, root from %_segdir " |
| " where level = ? order by idx", |
| /* SEGDIR_SPAN */ |
| "select min(start_block), max(end_block) from %_segdir " |
| " where level = ? and start_block <> 0", |
| /* SEGDIR_DELETE */ "delete from %_segdir where level = ?", |
| |
| /* NOTE(shess): The first three results of the following two |
| ** statements must match. |
| */ |
| /* SEGDIR_SELECT_SEGMENT */ |
| "select start_block, leaves_end_block, root from %_segdir " |
| " where level = ? and idx = ?", |
| /* SEGDIR_SELECT_ALL */ |
| "select start_block, leaves_end_block, root from %_segdir " |
| " order by level desc, idx asc", |
| /* SEGDIR_DELETE_ALL */ "delete from %_segdir", |
| /* SEGDIR_COUNT */ "select count(*), ifnull(max(level),0) from %_segdir", |
| }; |
| |
| /* |
| ** A connection to a fulltext index is an instance of the following |
| ** structure. The xCreate and xConnect methods create an instance |
| ** of this structure and xDestroy and xDisconnect free that instance. |
| ** All other methods receive a pointer to the structure as one of their |
| ** arguments. |
| */ |
| struct fulltext_vtab { |
| sqlite3_vtab base; /* Base class used by SQLite core */ |
| sqlite3 *db; /* The database connection */ |
| const char *zDb; /* logical database name */ |
| const char *zName; /* virtual table name */ |
| int nColumn; /* number of columns in virtual table */ |
| char **azColumn; /* column names. malloced */ |
| char **azContentColumn; /* column names in content table; malloced */ |
| sqlite3_tokenizer *pTokenizer; /* tokenizer for inserts and queries */ |
| |
| /* Precompiled statements which we keep as long as the table is |
| ** open. |
| */ |
| sqlite3_stmt *pFulltextStatements[MAX_STMT]; |
| |
| /* Precompiled statements used for segment merges. We run a |
| ** separate select across the leaf level of each tree being merged. |
| */ |
| sqlite3_stmt *pLeafSelectStmts[MERGE_COUNT]; |
| /* The statement used to prepare pLeafSelectStmts. */ |
| #define LEAF_SELECT \ |
| "select block from %_segments where rowid between ? and ? order by rowid" |
| |
| /* These buffer pending index updates during transactions. |
| ** nPendingData estimates the memory size of the pending data. It |
| ** doesn't include the hash-bucket overhead, nor any malloc |
| ** overhead. When nPendingData exceeds kPendingThreshold, the |
| ** buffer is flushed even before the transaction closes. |
| ** pendingTerms stores the data, and is only valid when nPendingData |
| ** is >=0 (nPendingData<0 means pendingTerms has not been |
| ** initialized). iPrevDocid is the last docid written, used to make |
| ** certain we're inserting in sorted order. |
| */ |
| int nPendingData; |
| #define kPendingThreshold (1*1024*1024) |
| sqlite_int64 iPrevDocid; |
| fts2Hash pendingTerms; |
| }; |
| |
| /* |
| ** When the core wants to do a query, it create a cursor using a |
| ** call to xOpen. This structure is an instance of a cursor. It |
| ** is destroyed by xClose. |
| */ |
| typedef struct fulltext_cursor { |
| sqlite3_vtab_cursor base; /* Base class used by SQLite core */ |
| QueryType iCursorType; /* Copy of sqlite3_index_info.idxNum */ |
| sqlite3_stmt *pStmt; /* Prepared statement in use by the cursor */ |
| int eof; /* True if at End Of Results */ |
| Query q; /* Parsed query string */ |
| Snippet snippet; /* Cached snippet for the current row */ |
| int iColumn; /* Column being searched */ |
| DataBuffer result; /* Doclist results from fulltextQuery */ |
| DLReader reader; /* Result reader if result not empty */ |
| } fulltext_cursor; |
| |
| static struct fulltext_vtab *cursor_vtab(fulltext_cursor *c){ |
| return (fulltext_vtab *) c->base.pVtab; |
| } |
| |
| static const sqlite3_module fts2Module; /* forward declaration */ |
| |
| /* Return a dynamically generated statement of the form |
| * insert into %_content (rowid, ...) values (?, ...) |
| */ |
| static const char *contentInsertStatement(fulltext_vtab *v){ |
| StringBuffer sb; |
| int i; |
| |
| initStringBuffer(&sb); |
| append(&sb, "insert into %_content (rowid, "); |
| appendList(&sb, v->nColumn, v->azContentColumn); |
| append(&sb, ") values (?"); |
| for(i=0; i<v->nColumn; ++i) |
| append(&sb, ", ?"); |
| append(&sb, ")"); |
| return stringBufferData(&sb); |
| } |
| |
| /* Return a dynamically generated statement of the form |
| * update %_content set [col_0] = ?, [col_1] = ?, ... |
| * where rowid = ? |
| */ |
| static const char *contentUpdateStatement(fulltext_vtab *v){ |
| StringBuffer sb; |
| int i; |
| |
| initStringBuffer(&sb); |
| append(&sb, "update %_content set "); |
| for(i=0; i<v->nColumn; ++i) { |
| if( i>0 ){ |
| append(&sb, ", "); |
| } |
| append(&sb, v->azContentColumn[i]); |
| append(&sb, " = ?"); |
| } |
| append(&sb, " where rowid = ?"); |
| return stringBufferData(&sb); |
| } |
| |
| /* Puts a freshly-prepared statement determined by iStmt in *ppStmt. |
| ** If the indicated statement has never been prepared, it is prepared |
| ** and cached, otherwise the cached version is reset. |
| */ |
| static int sql_get_statement(fulltext_vtab *v, fulltext_statement iStmt, |
| sqlite3_stmt **ppStmt){ |
| assert( iStmt<MAX_STMT ); |
| if( v->pFulltextStatements[iStmt]==NULL ){ |
| const char *zStmt; |
| int rc; |
| switch( iStmt ){ |
| case CONTENT_INSERT_STMT: |
| zStmt = contentInsertStatement(v); break; |
| case CONTENT_UPDATE_STMT: |
| zStmt = contentUpdateStatement(v); break; |
| default: |
| zStmt = fulltext_zStatement[iStmt]; |
| } |
| rc = sql_prepare(v->db, v->zDb, v->zName, &v->pFulltextStatements[iStmt], |
| zStmt); |
| if( zStmt != fulltext_zStatement[iStmt]) sqlite3_free((void *) zStmt); |
| if( rc!=SQLITE_OK ) return rc; |
| } else { |
| int rc = sqlite3_reset(v->pFulltextStatements[iStmt]); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| |
| *ppStmt = v->pFulltextStatements[iStmt]; |
| return SQLITE_OK; |
| } |
| |
| /* Like sqlite3_step(), but convert SQLITE_DONE to SQLITE_OK and |
| ** SQLITE_ROW to SQLITE_ERROR. Useful for statements like UPDATE, |
| ** where we expect no results. |
| */ |
| static int sql_single_step(sqlite3_stmt *s){ |
| int rc = sqlite3_step(s); |
| return (rc==SQLITE_DONE) ? SQLITE_OK : rc; |
| } |
| |
| /* Like sql_get_statement(), but for special replicated LEAF_SELECT |
| ** statements. idx -1 is a special case for an uncached version of |
| ** the statement (used in the optimize implementation). |
| */ |
| /* TODO(shess) Write version for generic statements and then share |
| ** that between the cached-statement functions. |
| */ |
| static int sql_get_leaf_statement(fulltext_vtab *v, int idx, |
| sqlite3_stmt **ppStmt){ |
| assert( idx>=-1 && idx<MERGE_COUNT ); |
| if( idx==-1 ){ |
| return sql_prepare(v->db, v->zDb, v->zName, ppStmt, LEAF_SELECT); |
| }else if( v->pLeafSelectStmts[idx]==NULL ){ |
| int rc = sql_prepare(v->db, v->zDb, v->zName, &v->pLeafSelectStmts[idx], |
| LEAF_SELECT); |
| if( rc!=SQLITE_OK ) return rc; |
| }else{ |
| int rc = sqlite3_reset(v->pLeafSelectStmts[idx]); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| |
| *ppStmt = v->pLeafSelectStmts[idx]; |
| return SQLITE_OK; |
| } |
| |
| /* insert into %_content (rowid, ...) values ([rowid], [pValues]) */ |
| static int content_insert(fulltext_vtab *v, sqlite3_value *rowid, |
| sqlite3_value **pValues){ |
| sqlite3_stmt *s; |
| int i; |
| int rc = sql_get_statement(v, CONTENT_INSERT_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_value(s, 1, rowid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| for(i=0; i<v->nColumn; ++i){ |
| rc = sqlite3_bind_value(s, 2+i, pValues[i]); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| |
| return sql_single_step(s); |
| } |
| |
| /* update %_content set col0 = pValues[0], col1 = pValues[1], ... |
| * where rowid = [iRowid] */ |
| static int content_update(fulltext_vtab *v, sqlite3_value **pValues, |
| sqlite_int64 iRowid){ |
| sqlite3_stmt *s; |
| int i; |
| int rc = sql_get_statement(v, CONTENT_UPDATE_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| for(i=0; i<v->nColumn; ++i){ |
| rc = sqlite3_bind_value(s, 1+i, pValues[i]); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| |
| rc = sqlite3_bind_int64(s, 1+v->nColumn, iRowid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return sql_single_step(s); |
| } |
| |
| static void freeStringArray(int nString, const char **pString){ |
| int i; |
| |
| for (i=0 ; i < nString ; ++i) { |
| if( pString[i]!=NULL ) sqlite3_free((void *) pString[i]); |
| } |
| sqlite3_free((void *) pString); |
| } |
| |
| /* select * from %_content where rowid = [iRow] |
| * The caller must delete the returned array and all strings in it. |
| * null fields will be NULL in the returned array. |
| * |
| * TODO: Perhaps we should return pointer/length strings here for consistency |
| * with other code which uses pointer/length. */ |
| static int content_select(fulltext_vtab *v, sqlite_int64 iRow, |
| const char ***pValues){ |
| sqlite3_stmt *s; |
| const char **values; |
| int i; |
| int rc; |
| |
| *pValues = NULL; |
| |
| rc = sql_get_statement(v, CONTENT_SELECT_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 1, iRow); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_step(s); |
| if( rc!=SQLITE_ROW ) return rc; |
| |
| values = (const char **) sqlite3_malloc(v->nColumn * sizeof(const char *)); |
| for(i=0; i<v->nColumn; ++i){ |
| if( sqlite3_column_type(s, i)==SQLITE_NULL ){ |
| values[i] = NULL; |
| }else{ |
| values[i] = string_dup((char*)sqlite3_column_text(s, i)); |
| } |
| } |
| |
| /* We expect only one row. We must execute another sqlite3_step() |
| * to complete the iteration; otherwise the table will remain locked. */ |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_DONE ){ |
| *pValues = values; |
| return SQLITE_OK; |
| } |
| |
| freeStringArray(v->nColumn, values); |
| return rc; |
| } |
| |
| /* delete from %_content where rowid = [iRow ] */ |
| static int content_delete(fulltext_vtab *v, sqlite_int64 iRow){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, CONTENT_DELETE_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 1, iRow); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return sql_single_step(s); |
| } |
| |
| /* Returns SQLITE_ROW if any rows exist in %_content, SQLITE_DONE if |
| ** no rows exist, and any error in case of failure. |
| */ |
| static int content_exists(fulltext_vtab *v){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, CONTENT_EXISTS_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_step(s); |
| if( rc!=SQLITE_ROW ) return rc; |
| |
| /* We expect only one row. We must execute another sqlite3_step() |
| * to complete the iteration; otherwise the table will remain locked. */ |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_DONE ) return SQLITE_ROW; |
| if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| return rc; |
| } |
| |
| /* insert into %_segments values ([pData]) |
| ** returns assigned rowid in *piBlockid |
| */ |
| static int block_insert(fulltext_vtab *v, const char *pData, int nData, |
| sqlite_int64 *piBlockid){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, BLOCK_INSERT_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_blob(s, 1, pData, nData, SQLITE_STATIC); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| if( rc!=SQLITE_DONE ) return rc; |
| |
| *piBlockid = sqlite3_last_insert_rowid(v->db); |
| return SQLITE_OK; |
| } |
| |
| /* delete from %_segments |
| ** where rowid between [iStartBlockid] and [iEndBlockid] |
| ** |
| ** Deletes the range of blocks, inclusive, used to delete the blocks |
| ** which form a segment. |
| */ |
| static int block_delete(fulltext_vtab *v, |
| sqlite_int64 iStartBlockid, sqlite_int64 iEndBlockid){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, BLOCK_DELETE_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 1, iStartBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 2, iEndBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return sql_single_step(s); |
| } |
| |
| /* Returns SQLITE_ROW with *pidx set to the maximum segment idx found |
| ** at iLevel. Returns SQLITE_DONE if there are no segments at |
| ** iLevel. Otherwise returns an error. |
| */ |
| static int segdir_max_index(fulltext_vtab *v, int iLevel, int *pidx){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, SEGDIR_MAX_INDEX_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int(s, 1, iLevel); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_step(s); |
| /* Should always get at least one row due to how max() works. */ |
| if( rc==SQLITE_DONE ) return SQLITE_DONE; |
| if( rc!=SQLITE_ROW ) return rc; |
| |
| /* NULL means that there were no inputs to max(). */ |
| if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| return rc; |
| } |
| |
| *pidx = sqlite3_column_int(s, 0); |
| |
| /* We expect only one row. We must execute another sqlite3_step() |
| * to complete the iteration; otherwise the table will remain locked. */ |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| if( rc!=SQLITE_DONE ) return rc; |
| return SQLITE_ROW; |
| } |
| |
| /* insert into %_segdir values ( |
| ** [iLevel], [idx], |
| ** [iStartBlockid], [iLeavesEndBlockid], [iEndBlockid], |
| ** [pRootData] |
| ** ) |
| */ |
| static int segdir_set(fulltext_vtab *v, int iLevel, int idx, |
| sqlite_int64 iStartBlockid, |
| sqlite_int64 iLeavesEndBlockid, |
| sqlite_int64 iEndBlockid, |
| const char *pRootData, int nRootData){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, SEGDIR_SET_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int(s, 1, iLevel); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int(s, 2, idx); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 3, iStartBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 4, iLeavesEndBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 5, iEndBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_blob(s, 6, pRootData, nRootData, SQLITE_STATIC); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return sql_single_step(s); |
| } |
| |
| /* Queries %_segdir for the block span of the segments in level |
| ** iLevel. Returns SQLITE_DONE if there are no blocks for iLevel, |
| ** SQLITE_ROW if there are blocks, else an error. |
| */ |
| static int segdir_span(fulltext_vtab *v, int iLevel, |
| sqlite_int64 *piStartBlockid, |
| sqlite_int64 *piEndBlockid){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, SEGDIR_SPAN_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int(s, 1, iLevel); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_DONE ) return SQLITE_DONE; /* Should never happen */ |
| if( rc!=SQLITE_ROW ) return rc; |
| |
| /* This happens if all segments at this level are entirely inline. */ |
| if( SQLITE_NULL==sqlite3_column_type(s, 0) ){ |
| /* We expect only one row. We must execute another sqlite3_step() |
| * to complete the iteration; otherwise the table will remain locked. */ |
| int rc2 = sqlite3_step(s); |
| if( rc2==SQLITE_ROW ) return SQLITE_ERROR; |
| return rc2; |
| } |
| |
| *piStartBlockid = sqlite3_column_int64(s, 0); |
| *piEndBlockid = sqlite3_column_int64(s, 1); |
| |
| /* We expect only one row. We must execute another sqlite3_step() |
| * to complete the iteration; otherwise the table will remain locked. */ |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| if( rc!=SQLITE_DONE ) return rc; |
| return SQLITE_ROW; |
| } |
| |
| /* Delete the segment blocks and segment directory records for all |
| ** segments at iLevel. |
| */ |
| static int segdir_delete(fulltext_vtab *v, int iLevel){ |
| sqlite3_stmt *s; |
| sqlite_int64 iStartBlockid, iEndBlockid; |
| int rc = segdir_span(v, iLevel, &iStartBlockid, &iEndBlockid); |
| if( rc!=SQLITE_ROW && rc!=SQLITE_DONE ) return rc; |
| |
| if( rc==SQLITE_ROW ){ |
| rc = block_delete(v, iStartBlockid, iEndBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| |
| /* Delete the segment directory itself. */ |
| rc = sql_get_statement(v, SEGDIR_DELETE_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 1, iLevel); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return sql_single_step(s); |
| } |
| |
| /* Delete entire fts index, SQLITE_OK on success, relevant error on |
| ** failure. |
| */ |
| static int segdir_delete_all(fulltext_vtab *v){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, SEGDIR_DELETE_ALL_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sql_single_step(s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sql_get_statement(v, BLOCK_DELETE_ALL_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return sql_single_step(s); |
| } |
| |
| /* Returns SQLITE_OK with *pnSegments set to the number of entries in |
| ** %_segdir and *piMaxLevel set to the highest level which has a |
| ** segment. Otherwise returns the SQLite error which caused failure. |
| */ |
| static int segdir_count(fulltext_vtab *v, int *pnSegments, int *piMaxLevel){ |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, SEGDIR_COUNT_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_step(s); |
| /* TODO(shess): This case should not be possible? Should stronger |
| ** measures be taken if it happens? |
| */ |
| if( rc==SQLITE_DONE ){ |
| *pnSegments = 0; |
| *piMaxLevel = 0; |
| return SQLITE_OK; |
| } |
| if( rc!=SQLITE_ROW ) return rc; |
| |
| *pnSegments = sqlite3_column_int(s, 0); |
| *piMaxLevel = sqlite3_column_int(s, 1); |
| |
| /* We expect only one row. We must execute another sqlite3_step() |
| * to complete the iteration; otherwise the table will remain locked. */ |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_DONE ) return SQLITE_OK; |
| if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| return rc; |
| } |
| |
| /* TODO(shess) clearPendingTerms() is far down the file because |
| ** writeZeroSegment() is far down the file because LeafWriter is far |
| ** down the file. Consider refactoring the code to move the non-vtab |
| ** code above the vtab code so that we don't need this forward |
| ** reference. |
| */ |
| static int clearPendingTerms(fulltext_vtab *v); |
| |
| /* |
| ** Free the memory used to contain a fulltext_vtab structure. |
| */ |
| static void fulltext_vtab_destroy(fulltext_vtab *v){ |
| int iStmt, i; |
| |
| TRACE(("FTS2 Destroy %p\n", v)); |
| for( iStmt=0; iStmt<MAX_STMT; iStmt++ ){ |
| if( v->pFulltextStatements[iStmt]!=NULL ){ |
| sqlite3_finalize(v->pFulltextStatements[iStmt]); |
| v->pFulltextStatements[iStmt] = NULL; |
| } |
| } |
| |
| for( i=0; i<MERGE_COUNT; i++ ){ |
| if( v->pLeafSelectStmts[i]!=NULL ){ |
| sqlite3_finalize(v->pLeafSelectStmts[i]); |
| v->pLeafSelectStmts[i] = NULL; |
| } |
| } |
| |
| if( v->pTokenizer!=NULL ){ |
| v->pTokenizer->pModule->xDestroy(v->pTokenizer); |
| v->pTokenizer = NULL; |
| } |
| |
| clearPendingTerms(v); |
| |
| sqlite3_free(v->azColumn); |
| for(i = 0; i < v->nColumn; ++i) { |
| sqlite3_free(v->azContentColumn[i]); |
| } |
| sqlite3_free(v->azContentColumn); |
| sqlite3_free(v); |
| } |
| |
| /* |
| ** Token types for parsing the arguments to xConnect or xCreate. |
| */ |
| #define TOKEN_EOF 0 /* End of file */ |
| #define TOKEN_SPACE 1 /* Any kind of whitespace */ |
| #define TOKEN_ID 2 /* An identifier */ |
| #define TOKEN_STRING 3 /* A string literal */ |
| #define TOKEN_PUNCT 4 /* A single punctuation character */ |
| |
| /* |
| ** If X is a character that can be used in an identifier then |
| ** IdChar(X) will be true. Otherwise it is false. |
| ** |
| ** For ASCII, any character with the high-order bit set is |
| ** allowed in an identifier. For 7-bit characters, |
| ** sqlite3IsIdChar[X] must be 1. |
| ** |
| ** Ticket #1066. the SQL standard does not allow '$' in the |
| ** middle of identfiers. But many SQL implementations do. |
| ** SQLite will allow '$' in identifiers for compatibility. |
| ** But the feature is undocumented. |
| */ |
| static const char isIdChar[] = { |
| /* x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 xA xB xC xD xE xF */ |
| 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 2x */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, /* 3x */ |
| 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 4x */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, /* 5x */ |
| 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, /* 6x */ |
| 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, /* 7x */ |
| }; |
| #define IdChar(C) (((c=C)&0x80)!=0 || (c>0x1f && isIdChar[c-0x20])) |
| |
| |
| /* |
| ** Return the length of the token that begins at z[0]. |
| ** Store the token type in *tokenType before returning. |
| */ |
| static int getToken(const char *z, int *tokenType){ |
| int i, c; |
| switch( *z ){ |
| case 0: { |
| *tokenType = TOKEN_EOF; |
| return 0; |
| } |
| case ' ': case '\t': case '\n': case '\f': case '\r': { |
| for(i=1; safe_isspace(z[i]); i++){} |
| *tokenType = TOKEN_SPACE; |
| return i; |
| } |
| case '`': |
| case '\'': |
| case '"': { |
| int delim = z[0]; |
| for(i=1; (c=z[i])!=0; i++){ |
| if( c==delim ){ |
| if( z[i+1]==delim ){ |
| i++; |
| }else{ |
| break; |
| } |
| } |
| } |
| *tokenType = TOKEN_STRING; |
| return i + (c!=0); |
| } |
| case '[': { |
| for(i=1, c=z[0]; c!=']' && (c=z[i])!=0; i++){} |
| *tokenType = TOKEN_ID; |
| return i; |
| } |
| default: { |
| if( !IdChar(*z) ){ |
| break; |
| } |
| for(i=1; IdChar(z[i]); i++){} |
| *tokenType = TOKEN_ID; |
| return i; |
| } |
| } |
| *tokenType = TOKEN_PUNCT; |
| return 1; |
| } |
| |
| /* |
| ** A token extracted from a string is an instance of the following |
| ** structure. |
| */ |
| typedef struct Token { |
| const char *z; /* Pointer to token text. Not '\000' terminated */ |
| short int n; /* Length of the token text in bytes. */ |
| } Token; |
| |
| /* |
| ** Given a input string (which is really one of the argv[] parameters |
| ** passed into xConnect or xCreate) split the string up into tokens. |
| ** Return an array of pointers to '\000' terminated strings, one string |
| ** for each non-whitespace token. |
| ** |
| ** The returned array is terminated by a single NULL pointer. |
| ** |
| ** Space to hold the returned array is obtained from a single |
| ** malloc and should be freed by passing the return value to free(). |
| ** The individual strings within the token list are all a part of |
| ** the single memory allocation and will all be freed at once. |
| */ |
| static char **tokenizeString(const char *z, int *pnToken){ |
| int nToken = 0; |
| Token *aToken = sqlite3_malloc( strlen(z) * sizeof(aToken[0]) ); |
| int n = 1; |
| int e, i; |
| int totalSize = 0; |
| char **azToken; |
| char *zCopy; |
| while( n>0 ){ |
| n = getToken(z, &e); |
| if( e!=TOKEN_SPACE ){ |
| aToken[nToken].z = z; |
| aToken[nToken].n = n; |
| nToken++; |
| totalSize += n+1; |
| } |
| z += n; |
| } |
| azToken = (char**)sqlite3_malloc( nToken*sizeof(char*) + totalSize ); |
| zCopy = (char*)&azToken[nToken]; |
| nToken--; |
| for(i=0; i<nToken; i++){ |
| azToken[i] = zCopy; |
| n = aToken[i].n; |
| memcpy(zCopy, aToken[i].z, n); |
| zCopy[n] = 0; |
| zCopy += n+1; |
| } |
| azToken[nToken] = 0; |
| sqlite3_free(aToken); |
| *pnToken = nToken; |
| return azToken; |
| } |
| |
| /* |
| ** Convert an SQL-style quoted string into a normal string by removing |
| ** the quote characters. The conversion is done in-place. If the |
| ** input does not begin with a quote character, then this routine |
| ** is a no-op. |
| ** |
| ** Examples: |
| ** |
| ** "abc" becomes abc |
| ** 'xyz' becomes xyz |
| ** [pqr] becomes pqr |
| ** `mno` becomes mno |
| */ |
| static void dequoteString(char *z){ |
| int quote; |
| int i, j; |
| if( z==0 ) return; |
| quote = z[0]; |
| switch( quote ){ |
| case '\'': break; |
| case '"': break; |
| case '`': break; /* For MySQL compatibility */ |
| case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
| default: return; |
| } |
| for(i=1, j=0; z[i]; i++){ |
| if( z[i]==quote ){ |
| if( z[i+1]==quote ){ |
| z[j++] = quote; |
| i++; |
| }else{ |
| z[j++] = 0; |
| break; |
| } |
| }else{ |
| z[j++] = z[i]; |
| } |
| } |
| } |
| |
| /* |
| ** The input azIn is a NULL-terminated list of tokens. Remove the first |
| ** token and all punctuation tokens. Remove the quotes from |
| ** around string literal tokens. |
| ** |
| ** Example: |
| ** |
| ** input: tokenize chinese ( 'simplifed' , 'mixed' ) |
| ** output: chinese simplifed mixed |
| ** |
| ** Another example: |
| ** |
| ** input: delimiters ( '[' , ']' , '...' ) |
| ** output: [ ] ... |
| */ |
| static void tokenListToIdList(char **azIn){ |
| int i, j; |
| if( azIn ){ |
| for(i=0, j=-1; azIn[i]; i++){ |
| if( safe_isalnum(azIn[i][0]) || azIn[i][1] ){ |
| dequoteString(azIn[i]); |
| if( j>=0 ){ |
| azIn[j] = azIn[i]; |
| } |
| j++; |
| } |
| } |
| azIn[j] = 0; |
| } |
| } |
| |
| |
| /* |
| ** Find the first alphanumeric token in the string zIn. Null-terminate |
| ** this token. Remove any quotation marks. And return a pointer to |
| ** the result. |
| */ |
| static char *firstToken(char *zIn, char **pzTail){ |
| int n, ttype; |
| while(1){ |
| n = getToken(zIn, &ttype); |
| if( ttype==TOKEN_SPACE ){ |
| zIn += n; |
| }else if( ttype==TOKEN_EOF ){ |
| *pzTail = zIn; |
| return 0; |
| }else{ |
| zIn[n] = 0; |
| *pzTail = &zIn[1]; |
| dequoteString(zIn); |
| return zIn; |
| } |
| } |
| /*NOTREACHED*/ |
| } |
| |
| /* Return true if... |
| ** |
| ** * s begins with the string t, ignoring case |
| ** * s is longer than t |
| ** * The first character of s beyond t is not a alphanumeric |
| ** |
| ** Ignore leading space in *s. |
| ** |
| ** To put it another way, return true if the first token of |
| ** s[] is t[]. |
| */ |
| static int startsWith(const char *s, const char *t){ |
| while( safe_isspace(*s) ){ s++; } |
| while( *t ){ |
| if( safe_tolower(*s++)!=safe_tolower(*t++) ) return 0; |
| } |
| return *s!='_' && !safe_isalnum(*s); |
| } |
| |
| /* |
| ** An instance of this structure defines the "spec" of a |
| ** full text index. This structure is populated by parseSpec |
| ** and use by fulltextConnect and fulltextCreate. |
| */ |
| typedef struct TableSpec { |
| const char *zDb; /* Logical database name */ |
| const char *zName; /* Name of the full-text index */ |
| int nColumn; /* Number of columns to be indexed */ |
| char **azColumn; /* Original names of columns to be indexed */ |
| char **azContentColumn; /* Column names for %_content */ |
| char **azTokenizer; /* Name of tokenizer and its arguments */ |
| } TableSpec; |
| |
| /* |
| ** Reclaim all of the memory used by a TableSpec |
| */ |
| static void clearTableSpec(TableSpec *p) { |
| sqlite3_free(p->azColumn); |
| sqlite3_free(p->azContentColumn); |
| sqlite3_free(p->azTokenizer); |
| } |
| |
| /* Parse a CREATE VIRTUAL TABLE statement, which looks like this: |
| * |
| * CREATE VIRTUAL TABLE email |
| * USING fts2(subject, body, tokenize mytokenizer(myarg)) |
| * |
| * We return parsed information in a TableSpec structure. |
| * |
| */ |
| static int parseSpec(TableSpec *pSpec, int argc, const char *const*argv, |
| char**pzErr){ |
| int i, n; |
| char *z, *zDummy; |
| char **azArg; |
| const char *zTokenizer = 0; /* argv[] entry describing the tokenizer */ |
| |
| assert( argc>=3 ); |
| /* Current interface: |
| ** argv[0] - module name |
| ** argv[1] - database name |
| ** argv[2] - table name |
| ** argv[3..] - columns, optionally followed by tokenizer specification |
| ** and snippet delimiters specification. |
| */ |
| |
| /* Make a copy of the complete argv[][] array in a single allocation. |
| ** The argv[][] array is read-only and transient. We can write to the |
| ** copy in order to modify things and the copy is persistent. |
| */ |
| CLEAR(pSpec); |
| for(i=n=0; i<argc; i++){ |
| n += strlen(argv[i]) + 1; |
| } |
| azArg = sqlite3_malloc( sizeof(char*)*argc + n ); |
| if( azArg==0 ){ |
| return SQLITE_NOMEM; |
| } |
| z = (char*)&azArg[argc]; |
| for(i=0; i<argc; i++){ |
| azArg[i] = z; |
| strcpy(z, argv[i]); |
| z += strlen(z)+1; |
| } |
| |
| /* Identify the column names and the tokenizer and delimiter arguments |
| ** in the argv[][] array. |
| */ |
| pSpec->zDb = azArg[1]; |
| pSpec->zName = azArg[2]; |
| pSpec->nColumn = 0; |
| pSpec->azColumn = azArg; |
| zTokenizer = "tokenize simple"; |
| for(i=3; i<argc; ++i){ |
| if( startsWith(azArg[i],"tokenize") ){ |
| zTokenizer = azArg[i]; |
| }else{ |
| z = azArg[pSpec->nColumn] = firstToken(azArg[i], &zDummy); |
| pSpec->nColumn++; |
| } |
| } |
| if( pSpec->nColumn==0 ){ |
| azArg[0] = "content"; |
| pSpec->nColumn = 1; |
| } |
| |
| /* |
| ** Construct the list of content column names. |
| ** |
| ** Each content column name will be of the form cNNAAAA |
| ** where NN is the column number and AAAA is the sanitized |
| ** column name. "sanitized" means that special characters are |
| ** converted to "_". The cNN prefix guarantees that all column |
| ** names are unique. |
| ** |
| ** The AAAA suffix is not strictly necessary. It is included |
| ** for the convenience of people who might examine the generated |
| ** %_content table and wonder what the columns are used for. |
| */ |
| pSpec->azContentColumn = sqlite3_malloc( pSpec->nColumn * sizeof(char *) ); |
| if( pSpec->azContentColumn==0 ){ |
| clearTableSpec(pSpec); |
| return SQLITE_NOMEM; |
| } |
| for(i=0; i<pSpec->nColumn; i++){ |
| char *p; |
| pSpec->azContentColumn[i] = sqlite3_mprintf("c%d%s", i, azArg[i]); |
| for (p = pSpec->azContentColumn[i]; *p ; ++p) { |
| if( !safe_isalnum(*p) ) *p = '_'; |
| } |
| } |
| |
| /* |
| ** Parse the tokenizer specification string. |
| */ |
| pSpec->azTokenizer = tokenizeString(zTokenizer, &n); |
| tokenListToIdList(pSpec->azTokenizer); |
| |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Generate a CREATE TABLE statement that describes the schema of |
| ** the virtual table. Return a pointer to this schema string. |
| ** |
| ** Space is obtained from sqlite3_mprintf() and should be freed |
| ** using sqlite3_free(). |
| */ |
| static char *fulltextSchema( |
| int nColumn, /* Number of columns */ |
| const char *const* azColumn, /* List of columns */ |
| const char *zTableName /* Name of the table */ |
| ){ |
| int i; |
| char *zSchema, *zNext; |
| const char *zSep = "("; |
| zSchema = sqlite3_mprintf("CREATE TABLE x"); |
| for(i=0; i<nColumn; i++){ |
| zNext = sqlite3_mprintf("%s%s%Q", zSchema, zSep, azColumn[i]); |
| sqlite3_free(zSchema); |
| zSchema = zNext; |
| zSep = ","; |
| } |
| zNext = sqlite3_mprintf("%s,%Q)", zSchema, zTableName); |
| sqlite3_free(zSchema); |
| return zNext; |
| } |
| |
| /* |
| ** Build a new sqlite3_vtab structure that will describe the |
| ** fulltext index defined by spec. |
| */ |
| static int constructVtab( |
| sqlite3 *db, /* The SQLite database connection */ |
| fts2Hash *pHash, /* Hash table containing tokenizers */ |
| TableSpec *spec, /* Parsed spec information from parseSpec() */ |
| sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ |
| char **pzErr /* Write any error message here */ |
| ){ |
| int rc; |
| int n; |
| fulltext_vtab *v = 0; |
| const sqlite3_tokenizer_module *m = NULL; |
| char *schema; |
| |
| char const *zTok; /* Name of tokenizer to use for this fts table */ |
| int nTok; /* Length of zTok, including nul terminator */ |
| |
| v = (fulltext_vtab *) sqlite3_malloc(sizeof(fulltext_vtab)); |
| if( v==0 ) return SQLITE_NOMEM; |
| CLEAR(v); |
| /* sqlite will initialize v->base */ |
| v->db = db; |
| v->zDb = spec->zDb; /* Freed when azColumn is freed */ |
| v->zName = spec->zName; /* Freed when azColumn is freed */ |
| v->nColumn = spec->nColumn; |
| v->azContentColumn = spec->azContentColumn; |
| spec->azContentColumn = 0; |
| v->azColumn = spec->azColumn; |
| spec->azColumn = 0; |
| |
| if( spec->azTokenizer==0 ){ |
| return SQLITE_NOMEM; |
| } |
| |
| zTok = spec->azTokenizer[0]; |
| if( !zTok ){ |
| zTok = "simple"; |
| } |
| nTok = strlen(zTok)+1; |
| |
| m = (sqlite3_tokenizer_module *)sqlite3Fts2HashFind(pHash, zTok, nTok); |
| if( !m ){ |
| *pzErr = sqlite3_mprintf("unknown tokenizer: %s", spec->azTokenizer[0]); |
| rc = SQLITE_ERROR; |
| goto err; |
| } |
| |
| for(n=0; spec->azTokenizer[n]; n++){} |
| if( n ){ |
| rc = m->xCreate(n-1, (const char*const*)&spec->azTokenizer[1], |
| &v->pTokenizer); |
| }else{ |
| rc = m->xCreate(0, 0, &v->pTokenizer); |
| } |
| if( rc!=SQLITE_OK ) goto err; |
| v->pTokenizer->pModule = m; |
| |
| /* TODO: verify the existence of backing tables foo_content, foo_term */ |
| |
| schema = fulltextSchema(v->nColumn, (const char*const*)v->azColumn, |
| spec->zName); |
| rc = sqlite3_declare_vtab(db, schema); |
| sqlite3_free(schema); |
| if( rc!=SQLITE_OK ) goto err; |
| |
| memset(v->pFulltextStatements, 0, sizeof(v->pFulltextStatements)); |
| |
| /* Indicate that the buffer is not live. */ |
| v->nPendingData = -1; |
| |
| *ppVTab = &v->base; |
| TRACE(("FTS2 Connect %p\n", v)); |
| |
| return rc; |
| |
| err: |
| fulltext_vtab_destroy(v); |
| return rc; |
| } |
| |
| static int fulltextConnect( |
| sqlite3 *db, |
| void *pAux, |
| int argc, const char *const*argv, |
| sqlite3_vtab **ppVTab, |
| char **pzErr |
| ){ |
| TableSpec spec; |
| int rc = parseSpec(&spec, argc, argv, pzErr); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); |
| clearTableSpec(&spec); |
| return rc; |
| } |
| |
| /* The %_content table holds the text of each document, with |
| ** the rowid used as the docid. |
| */ |
| /* TODO(shess) This comment needs elaboration to match the updated |
| ** code. Work it into the top-of-file comment at that time. |
| */ |
| static int fulltextCreate(sqlite3 *db, void *pAux, |
| int argc, const char * const *argv, |
| sqlite3_vtab **ppVTab, char **pzErr){ |
| int rc; |
| TableSpec spec; |
| StringBuffer schema; |
| TRACE(("FTS2 Create\n")); |
| |
| rc = parseSpec(&spec, argc, argv, pzErr); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| initStringBuffer(&schema); |
| append(&schema, "CREATE TABLE %_content("); |
| appendList(&schema, spec.nColumn, spec.azContentColumn); |
| append(&schema, ")"); |
| rc = sql_exec(db, spec.zDb, spec.zName, stringBufferData(&schema)); |
| stringBufferDestroy(&schema); |
| if( rc!=SQLITE_OK ) goto out; |
| |
| rc = sql_exec(db, spec.zDb, spec.zName, |
| "create table %_segments(block blob);"); |
| if( rc!=SQLITE_OK ) goto out; |
| |
| rc = sql_exec(db, spec.zDb, spec.zName, |
| "create table %_segdir(" |
| " level integer," |
| " idx integer," |
| " start_block integer," |
| " leaves_end_block integer," |
| " end_block integer," |
| " root blob," |
| " primary key(level, idx)" |
| ");"); |
| if( rc!=SQLITE_OK ) goto out; |
| |
| rc = constructVtab(db, (fts2Hash *)pAux, &spec, ppVTab, pzErr); |
| |
| out: |
| clearTableSpec(&spec); |
| return rc; |
| } |
| |
| /* Decide how to handle an SQL query. */ |
| static int fulltextBestIndex(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ |
| int i; |
| TRACE(("FTS2 BestIndex\n")); |
| |
| for(i=0; i<pInfo->nConstraint; ++i){ |
| const struct sqlite3_index_constraint *pConstraint; |
| pConstraint = &pInfo->aConstraint[i]; |
| if( pConstraint->usable ) { |
| if( pConstraint->iColumn==-1 && |
| pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
| pInfo->idxNum = QUERY_ROWID; /* lookup by rowid */ |
| TRACE(("FTS2 QUERY_ROWID\n")); |
| } else if( pConstraint->iColumn>=0 && |
| pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |
| /* full-text search */ |
| pInfo->idxNum = QUERY_FULLTEXT + pConstraint->iColumn; |
| TRACE(("FTS2 QUERY_FULLTEXT %d\n", pConstraint->iColumn)); |
| } else continue; |
| |
| pInfo->aConstraintUsage[i].argvIndex = 1; |
| pInfo->aConstraintUsage[i].omit = 1; |
| |
| /* An arbitrary value for now. |
| * TODO: Perhaps rowid matches should be considered cheaper than |
| * full-text searches. */ |
| pInfo->estimatedCost = 1.0; |
| |
| return SQLITE_OK; |
| } |
| } |
| pInfo->idxNum = QUERY_GENERIC; |
| return SQLITE_OK; |
| } |
| |
| static int fulltextDisconnect(sqlite3_vtab *pVTab){ |
| TRACE(("FTS2 Disconnect %p\n", pVTab)); |
| fulltext_vtab_destroy((fulltext_vtab *)pVTab); |
| return SQLITE_OK; |
| } |
| |
| static int fulltextDestroy(sqlite3_vtab *pVTab){ |
| fulltext_vtab *v = (fulltext_vtab *)pVTab; |
| int rc; |
| |
| TRACE(("FTS2 Destroy %p\n", pVTab)); |
| rc = sql_exec(v->db, v->zDb, v->zName, |
| "drop table if exists %_content;" |
| "drop table if exists %_segments;" |
| "drop table if exists %_segdir;" |
| ); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| fulltext_vtab_destroy((fulltext_vtab *)pVTab); |
| return SQLITE_OK; |
| } |
| |
| static int fulltextOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| fulltext_cursor *c; |
| |
| c = (fulltext_cursor *) sqlite3_malloc(sizeof(fulltext_cursor)); |
| if( c ){ |
| memset(c, 0, sizeof(fulltext_cursor)); |
| /* sqlite will initialize c->base */ |
| *ppCursor = &c->base; |
| TRACE(("FTS2 Open %p: %p\n", pVTab, c)); |
| return SQLITE_OK; |
| }else{ |
| return SQLITE_NOMEM; |
| } |
| } |
| |
| |
| /* Free all of the dynamically allocated memory held by *q |
| */ |
| static void queryClear(Query *q){ |
| int i; |
| for(i = 0; i < q->nTerms; ++i){ |
| sqlite3_free(q->pTerms[i].pTerm); |
| } |
| sqlite3_free(q->pTerms); |
| CLEAR(q); |
| } |
| |
| /* Free all of the dynamically allocated memory held by the |
| ** Snippet |
| */ |
| static void snippetClear(Snippet *p){ |
| sqlite3_free(p->aMatch); |
| sqlite3_free(p->zOffset); |
| sqlite3_free(p->zSnippet); |
| CLEAR(p); |
| } |
| /* |
| ** Append a single entry to the p->aMatch[] log. |
| */ |
| static void snippetAppendMatch( |
| Snippet *p, /* Append the entry to this snippet */ |
| int iCol, int iTerm, /* The column and query term */ |
| int iStart, int nByte /* Offset and size of the match */ |
| ){ |
| int i; |
| struct snippetMatch *pMatch; |
| if( p->nMatch+1>=p->nAlloc ){ |
| p->nAlloc = p->nAlloc*2 + 10; |
| p->aMatch = sqlite3_realloc(p->aMatch, p->nAlloc*sizeof(p->aMatch[0]) ); |
| if( p->aMatch==0 ){ |
| p->nMatch = 0; |
| p->nAlloc = 0; |
| return; |
| } |
| } |
| i = p->nMatch++; |
| pMatch = &p->aMatch[i]; |
| pMatch->iCol = iCol; |
| pMatch->iTerm = iTerm; |
| pMatch->iStart = iStart; |
| pMatch->nByte = nByte; |
| } |
| |
| /* |
| ** Sizing information for the circular buffer used in snippetOffsetsOfColumn() |
| */ |
| #define FTS2_ROTOR_SZ (32) |
| #define FTS2_ROTOR_MASK (FTS2_ROTOR_SZ-1) |
| |
| /* |
| ** Add entries to pSnippet->aMatch[] for every match that occurs against |
| ** document zDoc[0..nDoc-1] which is stored in column iColumn. |
| */ |
| static void snippetOffsetsOfColumn( |
| Query *pQuery, |
| Snippet *pSnippet, |
| int iColumn, |
| const char *zDoc, |
| int nDoc |
| ){ |
| const sqlite3_tokenizer_module *pTModule; /* The tokenizer module */ |
| sqlite3_tokenizer *pTokenizer; /* The specific tokenizer */ |
| sqlite3_tokenizer_cursor *pTCursor; /* Tokenizer cursor */ |
| fulltext_vtab *pVtab; /* The full text index */ |
| int nColumn; /* Number of columns in the index */ |
| const QueryTerm *aTerm; /* Query string terms */ |
| int nTerm; /* Number of query string terms */ |
| int i, j; /* Loop counters */ |
| int rc; /* Return code */ |
| unsigned int match, prevMatch; /* Phrase search bitmasks */ |
| const char *zToken; /* Next token from the tokenizer */ |
| int nToken; /* Size of zToken */ |
| int iBegin, iEnd, iPos; /* Offsets of beginning and end */ |
| |
| /* The following variables keep a circular buffer of the last |
| ** few tokens */ |
| unsigned int iRotor = 0; /* Index of current token */ |
| int iRotorBegin[FTS2_ROTOR_SZ]; /* Beginning offset of token */ |
| int iRotorLen[FTS2_ROTOR_SZ]; /* Length of token */ |
| |
| pVtab = pQuery->pFts; |
| nColumn = pVtab->nColumn; |
| pTokenizer = pVtab->pTokenizer; |
| pTModule = pTokenizer->pModule; |
| rc = pTModule->xOpen(pTokenizer, zDoc, nDoc, &pTCursor); |
| if( rc ) return; |
| pTCursor->pTokenizer = pTokenizer; |
| aTerm = pQuery->pTerms; |
| nTerm = pQuery->nTerms; |
| if( nTerm>=FTS2_ROTOR_SZ ){ |
| nTerm = FTS2_ROTOR_SZ - 1; |
| } |
| prevMatch = 0; |
| while(1){ |
| rc = pTModule->xNext(pTCursor, &zToken, &nToken, &iBegin, &iEnd, &iPos); |
| if( rc ) break; |
| iRotorBegin[iRotor&FTS2_ROTOR_MASK] = iBegin; |
| iRotorLen[iRotor&FTS2_ROTOR_MASK] = iEnd-iBegin; |
| match = 0; |
| for(i=0; i<nTerm; i++){ |
| int iCol; |
| iCol = aTerm[i].iColumn; |
| if( iCol>=0 && iCol<nColumn && iCol!=iColumn ) continue; |
| if( aTerm[i].nTerm>nToken ) continue; |
| if( !aTerm[i].isPrefix && aTerm[i].nTerm<nToken ) continue; |
| assert( aTerm[i].nTerm<=nToken ); |
| if( memcmp(aTerm[i].pTerm, zToken, aTerm[i].nTerm) ) continue; |
| if( aTerm[i].iPhrase>1 && (prevMatch & (1<<i))==0 ) continue; |
| match |= 1<<i; |
| if( i==nTerm-1 || aTerm[i+1].iPhrase==1 ){ |
| for(j=aTerm[i].iPhrase-1; j>=0; j--){ |
| int k = (iRotor-j) & FTS2_ROTOR_MASK; |
| snippetAppendMatch(pSnippet, iColumn, i-j, |
| iRotorBegin[k], iRotorLen[k]); |
| } |
| } |
| } |
| prevMatch = match<<1; |
| iRotor++; |
| } |
| pTModule->xClose(pTCursor); |
| } |
| |
| |
| /* |
| ** Compute all offsets for the current row of the query. |
| ** If the offsets have already been computed, this routine is a no-op. |
| */ |
| static void snippetAllOffsets(fulltext_cursor *p){ |
| int nColumn; |
| int iColumn, i; |
| int iFirst, iLast; |
| fulltext_vtab *pFts; |
| |
| if( p->snippet.nMatch ) return; |
| if( p->q.nTerms==0 ) return; |
| pFts = p->q.pFts; |
| nColumn = pFts->nColumn; |
| iColumn = (p->iCursorType - QUERY_FULLTEXT); |
| if( iColumn<0 || iColumn>=nColumn ){ |
| iFirst = 0; |
| iLast = nColumn-1; |
| }else{ |
| iFirst = iColumn; |
| iLast = iColumn; |
| } |
| for(i=iFirst; i<=iLast; i++){ |
| const char *zDoc; |
| int nDoc; |
| zDoc = (const char*)sqlite3_column_text(p->pStmt, i+1); |
| nDoc = sqlite3_column_bytes(p->pStmt, i+1); |
| snippetOffsetsOfColumn(&p->q, &p->snippet, i, zDoc, nDoc); |
| } |
| } |
| |
| /* |
| ** Convert the information in the aMatch[] array of the snippet |
| ** into the string zOffset[0..nOffset-1]. |
| */ |
| static void snippetOffsetText(Snippet *p){ |
| int i; |
| int cnt = 0; |
| StringBuffer sb; |
| char zBuf[200]; |
| if( p->zOffset ) return; |
| initStringBuffer(&sb); |
| for(i=0; i<p->nMatch; i++){ |
| struct snippetMatch *pMatch = &p->aMatch[i]; |
| zBuf[0] = ' '; |
| sqlite3_snprintf(sizeof(zBuf)-1, &zBuf[cnt>0], "%d %d %d %d", |
| pMatch->iCol, pMatch->iTerm, pMatch->iStart, pMatch->nByte); |
| append(&sb, zBuf); |
| cnt++; |
| } |
| p->zOffset = stringBufferData(&sb); |
| p->nOffset = stringBufferLength(&sb); |
| } |
| |
| /* |
| ** zDoc[0..nDoc-1] is phrase of text. aMatch[0..nMatch-1] are a set |
| ** of matching words some of which might be in zDoc. zDoc is column |
| ** number iCol. |
| ** |
| ** iBreak is suggested spot in zDoc where we could begin or end an |
| ** excerpt. Return a value similar to iBreak but possibly adjusted |
| ** to be a little left or right so that the break point is better. |
| */ |
| static int wordBoundary( |
| int iBreak, /* The suggested break point */ |
| const char *zDoc, /* Document text */ |
| int nDoc, /* Number of bytes in zDoc[] */ |
| struct snippetMatch *aMatch, /* Matching words */ |
| int nMatch, /* Number of entries in aMatch[] */ |
| int iCol /* The column number for zDoc[] */ |
| ){ |
| int i; |
| if( iBreak<=10 ){ |
| return 0; |
| } |
| if( iBreak>=nDoc-10 ){ |
| return nDoc; |
| } |
| for(i=0; i<nMatch && aMatch[i].iCol<iCol; i++){} |
| while( i<nMatch && aMatch[i].iStart+aMatch[i].nByte<iBreak ){ i++; } |
| if( i<nMatch ){ |
| if( aMatch[i].iStart<iBreak+10 ){ |
| return aMatch[i].iStart; |
| } |
| if( i>0 && aMatch[i-1].iStart+aMatch[i-1].nByte>=iBreak ){ |
| return aMatch[i-1].iStart; |
| } |
| } |
| for(i=1; i<=10; i++){ |
| if( safe_isspace(zDoc[iBreak-i]) ){ |
| return iBreak - i + 1; |
| } |
| if( safe_isspace(zDoc[iBreak+i]) ){ |
| return iBreak + i + 1; |
| } |
| } |
| return iBreak; |
| } |
| |
| |
| |
| /* |
| ** Allowed values for Snippet.aMatch[].snStatus |
| */ |
| #define SNIPPET_IGNORE 0 /* It is ok to omit this match from the snippet */ |
| #define SNIPPET_DESIRED 1 /* We want to include this match in the snippet */ |
| |
| /* |
| ** Generate the text of a snippet. |
| */ |
| static void snippetText( |
| fulltext_cursor *pCursor, /* The cursor we need the snippet for */ |
| const char *zStartMark, /* Markup to appear before each match */ |
| const char *zEndMark, /* Markup to appear after each match */ |
| const char *zEllipsis /* Ellipsis mark */ |
| ){ |
| int i, j; |
| struct snippetMatch *aMatch; |
| int nMatch; |
| int nDesired; |
| StringBuffer sb; |
| int tailCol; |
| int tailOffset; |
| int iCol; |
| int nDoc; |
| const char *zDoc; |
| int iStart, iEnd; |
| int tailEllipsis = 0; |
| int iMatch; |
| |
| |
| sqlite3_free(pCursor->snippet.zSnippet); |
| pCursor->snippet.zSnippet = 0; |
| aMatch = pCursor->snippet.aMatch; |
| nMatch = pCursor->snippet.nMatch; |
| initStringBuffer(&sb); |
| |
| for(i=0; i<nMatch; i++){ |
| aMatch[i].snStatus = SNIPPET_IGNORE; |
| } |
| nDesired = 0; |
| for(i=0; i<pCursor->q.nTerms; i++){ |
| for(j=0; j<nMatch; j++){ |
| if( aMatch[j].iTerm==i ){ |
| aMatch[j].snStatus = SNIPPET_DESIRED; |
| nDesired++; |
| break; |
| } |
| } |
| } |
| |
| iMatch = 0; |
| tailCol = -1; |
| tailOffset = 0; |
| for(i=0; i<nMatch && nDesired>0; i++){ |
| if( aMatch[i].snStatus!=SNIPPET_DESIRED ) continue; |
| nDesired--; |
| iCol = aMatch[i].iCol; |
| zDoc = (const char*)sqlite3_column_text(pCursor->pStmt, iCol+1); |
| nDoc = sqlite3_column_bytes(pCursor->pStmt, iCol+1); |
| iStart = aMatch[i].iStart - 40; |
| iStart = wordBoundary(iStart, zDoc, nDoc, aMatch, nMatch, iCol); |
| if( iStart<=10 ){ |
| iStart = 0; |
| } |
| if( iCol==tailCol && iStart<=tailOffset+20 ){ |
| iStart = tailOffset; |
| } |
| if( (iCol!=tailCol && tailCol>=0) || iStart!=tailOffset ){ |
| trimWhiteSpace(&sb); |
| appendWhiteSpace(&sb); |
| append(&sb, zEllipsis); |
| appendWhiteSpace(&sb); |
| } |
| iEnd = aMatch[i].iStart + aMatch[i].nByte + 40; |
| iEnd = wordBoundary(iEnd, zDoc, nDoc, aMatch, nMatch, iCol); |
| if( iEnd>=nDoc-10 ){ |
| iEnd = nDoc; |
| tailEllipsis = 0; |
| }else{ |
| tailEllipsis = 1; |
| } |
| while( iMatch<nMatch && aMatch[iMatch].iCol<iCol ){ iMatch++; } |
| while( iStart<iEnd ){ |
| while( iMatch<nMatch && aMatch[iMatch].iStart<iStart |
| && aMatch[iMatch].iCol<=iCol ){ |
| iMatch++; |
| } |
| if( iMatch<nMatch && aMatch[iMatch].iStart<iEnd |
| && aMatch[iMatch].iCol==iCol ){ |
| nappend(&sb, &zDoc[iStart], aMatch[iMatch].iStart - iStart); |
| iStart = aMatch[iMatch].iStart; |
| append(&sb, zStartMark); |
| nappend(&sb, &zDoc[iStart], aMatch[iMatch].nByte); |
| append(&sb, zEndMark); |
| iStart += aMatch[iMatch].nByte; |
| for(j=iMatch+1; j<nMatch; j++){ |
| if( aMatch[j].iTerm==aMatch[iMatch].iTerm |
| && aMatch[j].snStatus==SNIPPET_DESIRED ){ |
| nDesired--; |
| aMatch[j].snStatus = SNIPPET_IGNORE; |
| } |
| } |
| }else{ |
| nappend(&sb, &zDoc[iStart], iEnd - iStart); |
| iStart = iEnd; |
| } |
| } |
| tailCol = iCol; |
| tailOffset = iEnd; |
| } |
| trimWhiteSpace(&sb); |
| if( tailEllipsis ){ |
| appendWhiteSpace(&sb); |
| append(&sb, zEllipsis); |
| } |
| pCursor->snippet.zSnippet = stringBufferData(&sb); |
| pCursor->snippet.nSnippet = stringBufferLength(&sb); |
| } |
| |
| |
| /* |
| ** Close the cursor. For additional information see the documentation |
| ** on the xClose method of the virtual table interface. |
| */ |
| static int fulltextClose(sqlite3_vtab_cursor *pCursor){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| TRACE(("FTS2 Close %p\n", c)); |
| sqlite3_finalize(c->pStmt); |
| queryClear(&c->q); |
| snippetClear(&c->snippet); |
| if( c->result.nData!=0 ) dlrDestroy(&c->reader); |
| dataBufferDestroy(&c->result); |
| sqlite3_free(c); |
| return SQLITE_OK; |
| } |
| |
| static int fulltextNext(sqlite3_vtab_cursor *pCursor){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| int rc; |
| |
| TRACE(("FTS2 Next %p\n", pCursor)); |
| snippetClear(&c->snippet); |
| if( c->iCursorType < QUERY_FULLTEXT ){ |
| /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |
| rc = sqlite3_step(c->pStmt); |
| switch( rc ){ |
| case SQLITE_ROW: |
| c->eof = 0; |
| return SQLITE_OK; |
| case SQLITE_DONE: |
| c->eof = 1; |
| return SQLITE_OK; |
| default: |
| c->eof = 1; |
| return rc; |
| } |
| } else { /* full-text query */ |
| rc = sqlite3_reset(c->pStmt); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| if( c->result.nData==0 || dlrAtEnd(&c->reader) ){ |
| c->eof = 1; |
| return SQLITE_OK; |
| } |
| rc = sqlite3_bind_int64(c->pStmt, 1, dlrDocid(&c->reader)); |
| dlrStep(&c->reader); |
| if( rc!=SQLITE_OK ) return rc; |
| /* TODO(shess) Handle SQLITE_SCHEMA AND SQLITE_BUSY. */ |
| rc = sqlite3_step(c->pStmt); |
| if( rc==SQLITE_ROW ){ /* the case we expect */ |
| c->eof = 0; |
| return SQLITE_OK; |
| } |
| /* an error occurred; abort */ |
| return rc==SQLITE_DONE ? SQLITE_ERROR : rc; |
| } |
| } |
| |
| |
| /* TODO(shess) If we pushed LeafReader to the top of the file, or to |
| ** another file, term_select() could be pushed above |
| ** docListOfTerm(). |
| */ |
| static int termSelect(fulltext_vtab *v, int iColumn, |
| const char *pTerm, int nTerm, int isPrefix, |
| DocListType iType, DataBuffer *out); |
| |
| /* Return a DocList corresponding to the query term *pTerm. If *pTerm |
| ** is the first term of a phrase query, go ahead and evaluate the phrase |
| ** query and return the doclist for the entire phrase query. |
| ** |
| ** The resulting DL_DOCIDS doclist is stored in pResult, which is |
| ** overwritten. |
| */ |
| static int docListOfTerm( |
| fulltext_vtab *v, /* The full text index */ |
| int iColumn, /* column to restrict to. No restriction if >=nColumn */ |
| QueryTerm *pQTerm, /* Term we are looking for, or 1st term of a phrase */ |
| DataBuffer *pResult /* Write the result here */ |
| ){ |
| DataBuffer left, right, new; |
| int i, rc; |
| |
| /* No phrase search if no position info. */ |
| assert( pQTerm->nPhrase==0 || DL_DEFAULT!=DL_DOCIDS ); |
| |
| /* This code should never be called with buffered updates. */ |
| assert( v->nPendingData<0 ); |
| |
| dataBufferInit(&left, 0); |
| rc = termSelect(v, iColumn, pQTerm->pTerm, pQTerm->nTerm, pQTerm->isPrefix, |
| 0<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &left); |
| if( rc ) return rc; |
| for(i=1; i<=pQTerm->nPhrase && left.nData>0; i++){ |
| dataBufferInit(&right, 0); |
| rc = termSelect(v, iColumn, pQTerm[i].pTerm, pQTerm[i].nTerm, |
| pQTerm[i].isPrefix, DL_POSITIONS, &right); |
| if( rc ){ |
| dataBufferDestroy(&left); |
| return rc; |
| } |
| dataBufferInit(&new, 0); |
| docListPhraseMerge(left.pData, left.nData, right.pData, right.nData, |
| i<pQTerm->nPhrase ? DL_POSITIONS : DL_DOCIDS, &new); |
| dataBufferDestroy(&left); |
| dataBufferDestroy(&right); |
| left = new; |
| } |
| *pResult = left; |
| return SQLITE_OK; |
| } |
| |
| /* Add a new term pTerm[0..nTerm-1] to the query *q. |
| */ |
| static void queryAdd(Query *q, const char *pTerm, int nTerm){ |
| QueryTerm *t; |
| ++q->nTerms; |
| q->pTerms = sqlite3_realloc(q->pTerms, q->nTerms * sizeof(q->pTerms[0])); |
| if( q->pTerms==0 ){ |
| q->nTerms = 0; |
| return; |
| } |
| t = &q->pTerms[q->nTerms - 1]; |
| CLEAR(t); |
| t->pTerm = sqlite3_malloc(nTerm+1); |
| memcpy(t->pTerm, pTerm, nTerm); |
| t->pTerm[nTerm] = 0; |
| t->nTerm = nTerm; |
| t->isOr = q->nextIsOr; |
| t->isPrefix = 0; |
| q->nextIsOr = 0; |
| t->iColumn = q->nextColumn; |
| q->nextColumn = q->dfltColumn; |
| } |
| |
| /* |
| ** Check to see if the string zToken[0...nToken-1] matches any |
| ** column name in the virtual table. If it does, |
| ** return the zero-indexed column number. If not, return -1. |
| */ |
| static int checkColumnSpecifier( |
| fulltext_vtab *pVtab, /* The virtual table */ |
| const char *zToken, /* Text of the token */ |
| int nToken /* Number of characters in the token */ |
| ){ |
| int i; |
| for(i=0; i<pVtab->nColumn; i++){ |
| if( memcmp(pVtab->azColumn[i], zToken, nToken)==0 |
| && pVtab->azColumn[i][nToken]==0 ){ |
| return i; |
| } |
| } |
| return -1; |
| } |
| |
| /* |
| ** Parse the text at pSegment[0..nSegment-1]. Add additional terms |
| ** to the query being assemblied in pQuery. |
| ** |
| ** inPhrase is true if pSegment[0..nSegement-1] is contained within |
| ** double-quotes. If inPhrase is true, then the first term |
| ** is marked with the number of terms in the phrase less one and |
| ** OR and "-" syntax is ignored. If inPhrase is false, then every |
| ** term found is marked with nPhrase=0 and OR and "-" syntax is significant. |
| */ |
| static int tokenizeSegment( |
| sqlite3_tokenizer *pTokenizer, /* The tokenizer to use */ |
| const char *pSegment, int nSegment, /* Query expression being parsed */ |
| int inPhrase, /* True if within "..." */ |
| Query *pQuery /* Append results here */ |
| ){ |
| const sqlite3_tokenizer_module *pModule = pTokenizer->pModule; |
| sqlite3_tokenizer_cursor *pCursor; |
| int firstIndex = pQuery->nTerms; |
| int iCol; |
| int nTerm = 1; |
| |
| int rc = pModule->xOpen(pTokenizer, pSegment, nSegment, &pCursor); |
| if( rc!=SQLITE_OK ) return rc; |
| pCursor->pTokenizer = pTokenizer; |
| |
| while( 1 ){ |
| const char *pToken; |
| int nToken, iBegin, iEnd, iPos; |
| |
| rc = pModule->xNext(pCursor, |
| &pToken, &nToken, |
| &iBegin, &iEnd, &iPos); |
| if( rc!=SQLITE_OK ) break; |
| if( !inPhrase && |
| pSegment[iEnd]==':' && |
| (iCol = checkColumnSpecifier(pQuery->pFts, pToken, nToken))>=0 ){ |
| pQuery->nextColumn = iCol; |
| continue; |
| } |
| if( !inPhrase && pQuery->nTerms>0 && nToken==2 |
| && pSegment[iBegin]=='O' && pSegment[iBegin+1]=='R' ){ |
| pQuery->nextIsOr = 1; |
| continue; |
| } |
| queryAdd(pQuery, pToken, nToken); |
| if( !inPhrase && iBegin>0 && pSegment[iBegin-1]=='-' ){ |
| pQuery->pTerms[pQuery->nTerms-1].isNot = 1; |
| } |
| if( iEnd<nSegment && pSegment[iEnd]=='*' ){ |
| pQuery->pTerms[pQuery->nTerms-1].isPrefix = 1; |
| } |
| pQuery->pTerms[pQuery->nTerms-1].iPhrase = nTerm; |
| if( inPhrase ){ |
| nTerm++; |
| } |
| } |
| |
| if( inPhrase && pQuery->nTerms>firstIndex ){ |
| pQuery->pTerms[firstIndex].nPhrase = pQuery->nTerms - firstIndex - 1; |
| } |
| |
| return pModule->xClose(pCursor); |
| } |
| |
| /* Parse a query string, yielding a Query object pQuery. |
| ** |
| ** The calling function will need to queryClear() to clean up |
| ** the dynamically allocated memory held by pQuery. |
| */ |
| static int parseQuery( |
| fulltext_vtab *v, /* The fulltext index */ |
| const char *zInput, /* Input text of the query string */ |
| int nInput, /* Size of the input text */ |
| int dfltColumn, /* Default column of the index to match against */ |
| Query *pQuery /* Write the parse results here. */ |
| ){ |
| int iInput, inPhrase = 0; |
| |
| if( zInput==0 ) nInput = 0; |
| if( nInput<0 ) nInput = strlen(zInput); |
| pQuery->nTerms = 0; |
| pQuery->pTerms = NULL; |
| pQuery->nextIsOr = 0; |
| pQuery->nextColumn = dfltColumn; |
| pQuery->dfltColumn = dfltColumn; |
| pQuery->pFts = v; |
| |
| for(iInput=0; iInput<nInput; ++iInput){ |
| int i; |
| for(i=iInput; i<nInput && zInput[i]!='"'; ++i){} |
| if( i>iInput ){ |
| tokenizeSegment(v->pTokenizer, zInput+iInput, i-iInput, inPhrase, |
| pQuery); |
| } |
| iInput = i; |
| if( i<nInput ){ |
| assert( zInput[i]=='"' ); |
| inPhrase = !inPhrase; |
| } |
| } |
| |
| if( inPhrase ){ |
| /* unmatched quote */ |
| queryClear(pQuery); |
| return SQLITE_ERROR; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* TODO(shess) Refactor the code to remove this forward decl. */ |
| static int flushPendingTerms(fulltext_vtab *v); |
| |
| /* Perform a full-text query using the search expression in |
| ** zInput[0..nInput-1]. Return a list of matching documents |
| ** in pResult. |
| ** |
| ** Queries must match column iColumn. Or if iColumn>=nColumn |
| ** they are allowed to match against any column. |
| */ |
| static int fulltextQuery( |
| fulltext_vtab *v, /* The full text index */ |
| int iColumn, /* Match against this column by default */ |
| const char *zInput, /* The query string */ |
| int nInput, /* Number of bytes in zInput[] */ |
| DataBuffer *pResult, /* Write the result doclist here */ |
| Query *pQuery /* Put parsed query string here */ |
| ){ |
| int i, iNext, rc; |
| DataBuffer left, right, or, new; |
| int nNot = 0; |
| QueryTerm *aTerm; |
| |
| /* TODO(shess) Instead of flushing pendingTerms, we could query for |
| ** the relevant term and merge the doclist into what we receive from |
| ** the database. Wait and see if this is a common issue, first. |
| ** |
| ** A good reason not to flush is to not generate update-related |
| ** error codes from here. |
| */ |
| |
| /* Flush any buffered updates before executing the query. */ |
| rc = flushPendingTerms(v); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* TODO(shess) I think that the queryClear() calls below are not |
| ** necessary, because fulltextClose() already clears the query. |
| */ |
| rc = parseQuery(v, zInput, nInput, iColumn, pQuery); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* Empty or NULL queries return no results. */ |
| if( pQuery->nTerms==0 ){ |
| dataBufferInit(pResult, 0); |
| return SQLITE_OK; |
| } |
| |
| /* Merge AND terms. */ |
| /* TODO(shess) I think we can early-exit if( i>nNot && left.nData==0 ). */ |
| aTerm = pQuery->pTerms; |
| for(i = 0; i<pQuery->nTerms; i=iNext){ |
| if( aTerm[i].isNot ){ |
| /* Handle all NOT terms in a separate pass */ |
| nNot++; |
| iNext = i + aTerm[i].nPhrase+1; |
| continue; |
| } |
| iNext = i + aTerm[i].nPhrase + 1; |
| rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); |
| if( rc ){ |
| if( i!=nNot ) dataBufferDestroy(&left); |
| queryClear(pQuery); |
| return rc; |
| } |
| while( iNext<pQuery->nTerms && aTerm[iNext].isOr ){ |
| rc = docListOfTerm(v, aTerm[iNext].iColumn, &aTerm[iNext], &or); |
| iNext += aTerm[iNext].nPhrase + 1; |
| if( rc ){ |
| if( i!=nNot ) dataBufferDestroy(&left); |
| dataBufferDestroy(&right); |
| queryClear(pQuery); |
| return rc; |
| } |
| dataBufferInit(&new, 0); |
| docListOrMerge(right.pData, right.nData, or.pData, or.nData, &new); |
| dataBufferDestroy(&right); |
| dataBufferDestroy(&or); |
| right = new; |
| } |
| if( i==nNot ){ /* first term processed. */ |
| left = right; |
| }else{ |
| dataBufferInit(&new, 0); |
| docListAndMerge(left.pData, left.nData, right.pData, right.nData, &new); |
| dataBufferDestroy(&right); |
| dataBufferDestroy(&left); |
| left = new; |
| } |
| } |
| |
| if( nNot==pQuery->nTerms ){ |
| /* We do not yet know how to handle a query of only NOT terms */ |
| return SQLITE_ERROR; |
| } |
| |
| /* Do the EXCEPT terms */ |
| for(i=0; i<pQuery->nTerms; i += aTerm[i].nPhrase + 1){ |
| if( !aTerm[i].isNot ) continue; |
| rc = docListOfTerm(v, aTerm[i].iColumn, &aTerm[i], &right); |
| if( rc ){ |
| queryClear(pQuery); |
| dataBufferDestroy(&left); |
| return rc; |
| } |
| dataBufferInit(&new, 0); |
| docListExceptMerge(left.pData, left.nData, right.pData, right.nData, &new); |
| dataBufferDestroy(&right); |
| dataBufferDestroy(&left); |
| left = new; |
| } |
| |
| *pResult = left; |
| return rc; |
| } |
| |
| /* |
| ** This is the xFilter interface for the virtual table. See |
| ** the virtual table xFilter method documentation for additional |
| ** information. |
| ** |
| ** If idxNum==QUERY_GENERIC then do a full table scan against |
| ** the %_content table. |
| ** |
| ** If idxNum==QUERY_ROWID then do a rowid lookup for a single entry |
| ** in the %_content table. |
| ** |
| ** If idxNum>=QUERY_FULLTEXT then use the full text index. The |
| ** column on the left-hand side of the MATCH operator is column |
| ** number idxNum-QUERY_FULLTEXT, 0 indexed. argv[0] is the right-hand |
| ** side of the MATCH operator. |
| */ |
| /* TODO(shess) Upgrade the cursor initialization and destruction to |
| ** account for fulltextFilter() being called multiple times on the |
| ** same cursor. The current solution is very fragile. Apply fix to |
| ** fts2 as appropriate. |
| */ |
| static int fulltextFilter( |
| sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ |
| int idxNum, const char *idxStr, /* Which indexing scheme to use */ |
| int argc, sqlite3_value **argv /* Arguments for the indexing scheme */ |
| ){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| fulltext_vtab *v = cursor_vtab(c); |
| int rc; |
| |
| TRACE(("FTS2 Filter %p\n",pCursor)); |
| |
| /* If the cursor has a statement that was not prepared according to |
| ** idxNum, clear it. I believe all calls to fulltextFilter with a |
| ** given cursor will have the same idxNum , but in this case it's |
| ** easy to be safe. |
| */ |
| if( c->pStmt && c->iCursorType!=idxNum ){ |
| sqlite3_finalize(c->pStmt); |
| c->pStmt = NULL; |
| } |
| |
| /* Get a fresh statement appropriate to idxNum. */ |
| /* TODO(shess): Add a prepared-statement cache in the vt structure. |
| ** The cache must handle multiple open cursors. Easier to cache the |
| ** statement variants at the vt to reduce malloc/realloc/free here. |
| ** Or we could have a StringBuffer variant which allowed stack |
| ** construction for small values. |
| */ |
| if( !c->pStmt ){ |
| char *zSql = sqlite3_mprintf("select rowid, * from %%_content %s", |
| idxNum==QUERY_GENERIC ? "" : "where rowid=?"); |
| rc = sql_prepare(v->db, v->zDb, v->zName, &c->pStmt, zSql); |
| sqlite3_free(zSql); |
| if( rc!=SQLITE_OK ) return rc; |
| c->iCursorType = idxNum; |
| }else{ |
| sqlite3_reset(c->pStmt); |
| assert( c->iCursorType==idxNum ); |
| } |
| |
| switch( idxNum ){ |
| case QUERY_GENERIC: |
| break; |
| |
| case QUERY_ROWID: |
| rc = sqlite3_bind_int64(c->pStmt, 1, sqlite3_value_int64(argv[0])); |
| if( rc!=SQLITE_OK ) return rc; |
| break; |
| |
| default: /* full-text search */ |
| { |
| const char *zQuery = (const char *)sqlite3_value_text(argv[0]); |
| assert( idxNum<=QUERY_FULLTEXT+v->nColumn); |
| assert( argc==1 ); |
| queryClear(&c->q); |
| if( c->result.nData!=0 ){ |
| /* This case happens if the same cursor is used repeatedly. */ |
| dlrDestroy(&c->reader); |
| dataBufferReset(&c->result); |
| }else{ |
| dataBufferInit(&c->result, 0); |
| } |
| rc = fulltextQuery(v, idxNum-QUERY_FULLTEXT, zQuery, -1, &c->result, &c->q); |
| if( rc!=SQLITE_OK ) return rc; |
| if( c->result.nData!=0 ){ |
| dlrInit(&c->reader, DL_DOCIDS, c->result.pData, c->result.nData); |
| } |
| break; |
| } |
| } |
| |
| return fulltextNext(pCursor); |
| } |
| |
| /* This is the xEof method of the virtual table. The SQLite core |
| ** calls this routine to find out if it has reached the end of |
| ** a query's results set. |
| */ |
| static int fulltextEof(sqlite3_vtab_cursor *pCursor){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| return c->eof; |
| } |
| |
| /* This is the xColumn method of the virtual table. The SQLite |
| ** core calls this method during a query when it needs the value |
| ** of a column from the virtual table. This method needs to use |
| ** one of the sqlite3_result_*() routines to store the requested |
| ** value back in the pContext. |
| */ |
| static int fulltextColumn(sqlite3_vtab_cursor *pCursor, |
| sqlite3_context *pContext, int idxCol){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| fulltext_vtab *v = cursor_vtab(c); |
| |
| if( idxCol<v->nColumn ){ |
| sqlite3_value *pVal = sqlite3_column_value(c->pStmt, idxCol+1); |
| sqlite3_result_value(pContext, pVal); |
| }else if( idxCol==v->nColumn ){ |
| /* The extra column whose name is the same as the table. |
| ** Return a blob which is a pointer to the cursor |
| */ |
| sqlite3_result_blob(pContext, &c, sizeof(c), SQLITE_TRANSIENT); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* This is the xRowid method. The SQLite core calls this routine to |
| ** retrive the rowid for the current row of the result set. The |
| ** rowid should be written to *pRowid. |
| */ |
| static int fulltextRowid(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ |
| fulltext_cursor *c = (fulltext_cursor *) pCursor; |
| |
| *pRowid = sqlite3_column_int64(c->pStmt, 0); |
| return SQLITE_OK; |
| } |
| |
| /* Add all terms in [zText] to pendingTerms table. If [iColumn] > 0, |
| ** we also store positions and offsets in the hash table using that |
| ** column number. |
| */ |
| static int buildTerms(fulltext_vtab *v, sqlite_int64 iDocid, |
| const char *zText, int iColumn){ |
| sqlite3_tokenizer *pTokenizer = v->pTokenizer; |
| sqlite3_tokenizer_cursor *pCursor; |
| const char *pToken; |
| int nTokenBytes; |
| int iStartOffset, iEndOffset, iPosition; |
| int rc; |
| |
| rc = pTokenizer->pModule->xOpen(pTokenizer, zText, -1, &pCursor); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| pCursor->pTokenizer = pTokenizer; |
| while( SQLITE_OK==(rc=pTokenizer->pModule->xNext(pCursor, |
| &pToken, &nTokenBytes, |
| &iStartOffset, &iEndOffset, |
| &iPosition)) ){ |
| DLCollector *p; |
| int nData; /* Size of doclist before our update. */ |
| |
| /* Positions can't be negative; we use -1 as a terminator |
| * internally. Token can't be NULL or empty. */ |
| if( iPosition<0 || pToken == NULL || nTokenBytes == 0 ){ |
| rc = SQLITE_ERROR; |
| break; |
| } |
| |
| p = fts2HashFind(&v->pendingTerms, pToken, nTokenBytes); |
| if( p==NULL ){ |
| nData = 0; |
| p = dlcNew(iDocid, DL_DEFAULT); |
| fts2HashInsert(&v->pendingTerms, pToken, nTokenBytes, p); |
| |
| /* Overhead for our hash table entry, the key, and the value. */ |
| v->nPendingData += sizeof(struct fts2HashElem)+sizeof(*p)+nTokenBytes; |
| }else{ |
| nData = p->b.nData; |
| if( p->dlw.iPrevDocid!=iDocid ) dlcNext(p, iDocid); |
| } |
| if( iColumn>=0 ){ |
| dlcAddPos(p, iColumn, iPosition, iStartOffset, iEndOffset); |
| } |
| |
| /* Accumulate data added by dlcNew or dlcNext, and dlcAddPos. */ |
| v->nPendingData += p->b.nData-nData; |
| } |
| |
| /* TODO(shess) Check return? Should this be able to cause errors at |
| ** this point? Actually, same question about sqlite3_finalize(), |
| ** though one could argue that failure there means that the data is |
| ** not durable. *ponder* |
| */ |
| pTokenizer->pModule->xClose(pCursor); |
| if( SQLITE_DONE == rc ) return SQLITE_OK; |
| return rc; |
| } |
| |
| /* Add doclists for all terms in [pValues] to pendingTerms table. */ |
| static int insertTerms(fulltext_vtab *v, sqlite_int64 iRowid, |
| sqlite3_value **pValues){ |
| int i; |
| for(i = 0; i < v->nColumn ; ++i){ |
| char *zText = (char*)sqlite3_value_text(pValues[i]); |
| int rc = buildTerms(v, iRowid, zText, i); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* Add empty doclists for all terms in the given row's content to |
| ** pendingTerms. |
| */ |
| static int deleteTerms(fulltext_vtab *v, sqlite_int64 iRowid){ |
| const char **pValues; |
| int i, rc; |
| |
| /* TODO(shess) Should we allow such tables at all? */ |
| if( DL_DEFAULT==DL_DOCIDS ) return SQLITE_ERROR; |
| |
| rc = content_select(v, iRowid, &pValues); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| for(i = 0 ; i < v->nColumn; ++i) { |
| rc = buildTerms(v, iRowid, pValues[i], -1); |
| if( rc!=SQLITE_OK ) break; |
| } |
| |
| freeStringArray(v->nColumn, pValues); |
| return SQLITE_OK; |
| } |
| |
| /* TODO(shess) Refactor the code to remove this forward decl. */ |
| static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid); |
| |
| /* Insert a row into the %_content table; set *piRowid to be the ID of the |
| ** new row. Add doclists for terms to pendingTerms. |
| */ |
| static int index_insert(fulltext_vtab *v, sqlite3_value *pRequestRowid, |
| sqlite3_value **pValues, sqlite_int64 *piRowid){ |
| int rc; |
| |
| rc = content_insert(v, pRequestRowid, pValues); /* execute an SQL INSERT */ |
| if( rc!=SQLITE_OK ) return rc; |
| |
| *piRowid = sqlite3_last_insert_rowid(v->db); |
| rc = initPendingTerms(v, *piRowid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return insertTerms(v, *piRowid, pValues); |
| } |
| |
| /* Delete a row from the %_content table; add empty doclists for terms |
| ** to pendingTerms. |
| */ |
| static int index_delete(fulltext_vtab *v, sqlite_int64 iRow){ |
| int rc = initPendingTerms(v, iRow); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = deleteTerms(v, iRow); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| return content_delete(v, iRow); /* execute an SQL DELETE */ |
| } |
| |
| /* Update a row in the %_content table; add delete doclists to |
| ** pendingTerms for old terms not in the new data, add insert doclists |
| ** to pendingTerms for terms in the new data. |
| */ |
| static int index_update(fulltext_vtab *v, sqlite_int64 iRow, |
| sqlite3_value **pValues){ |
| int rc = initPendingTerms(v, iRow); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* Generate an empty doclist for each term that previously appeared in this |
| * row. */ |
| rc = deleteTerms(v, iRow); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = content_update(v, pValues, iRow); /* execute an SQL UPDATE */ |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* Now add positions for terms which appear in the updated row. */ |
| return insertTerms(v, iRow, pValues); |
| } |
| |
| /*******************************************************************/ |
| /* InteriorWriter is used to collect terms and block references into |
| ** interior nodes in %_segments. See commentary at top of file for |
| ** format. |
| */ |
| |
| /* How large interior nodes can grow. */ |
| #define INTERIOR_MAX 2048 |
| |
| /* Minimum number of terms per interior node (except the root). This |
| ** prevents large terms from making the tree too skinny - must be >0 |
| ** so that the tree always makes progress. Note that the min tree |
| ** fanout will be INTERIOR_MIN_TERMS+1. |
| */ |
| #define INTERIOR_MIN_TERMS 7 |
| #if INTERIOR_MIN_TERMS<1 |
| # error INTERIOR_MIN_TERMS must be greater than 0. |
| #endif |
| |
| /* ROOT_MAX controls how much data is stored inline in the segment |
| ** directory. |
| */ |
| /* TODO(shess) Push ROOT_MAX down to whoever is writing things. It's |
| ** only here so that interiorWriterRootInfo() and leafWriterRootInfo() |
| ** can both see it, but if the caller passed it in, we wouldn't even |
| ** need a define. |
| */ |
| #define ROOT_MAX 1024 |
| #if ROOT_MAX<VARINT_MAX*2 |
| # error ROOT_MAX must have enough space for a header. |
| #endif |
| |
| /* InteriorBlock stores a linked-list of interior blocks while a lower |
| ** layer is being constructed. |
| */ |
| typedef struct InteriorBlock { |
| DataBuffer term; /* Leftmost term in block's subtree. */ |
| DataBuffer data; /* Accumulated data for the block. */ |
| struct InteriorBlock *next; |
| } InteriorBlock; |
| |
| static InteriorBlock *interiorBlockNew(int iHeight, sqlite_int64 iChildBlock, |
| const char *pTerm, int nTerm){ |
| InteriorBlock *block = sqlite3_malloc(sizeof(InteriorBlock)); |
| char c[VARINT_MAX+VARINT_MAX]; |
| int n; |
| |
| if( block ){ |
| memset(block, 0, sizeof(*block)); |
| dataBufferInit(&block->term, 0); |
| dataBufferReplace(&block->term, pTerm, nTerm); |
| |
| n = putVarint(c, iHeight); |
| n += putVarint(c+n, iChildBlock); |
| dataBufferInit(&block->data, INTERIOR_MAX); |
| dataBufferReplace(&block->data, c, n); |
| } |
| return block; |
| } |
| |
| #ifndef NDEBUG |
| /* Verify that the data is readable as an interior node. */ |
| static void interiorBlockValidate(InteriorBlock *pBlock){ |
| const char *pData = pBlock->data.pData; |
| int nData = pBlock->data.nData; |
| int n, iDummy; |
| sqlite_int64 iBlockid; |
| |
| assert( nData>0 ); |
| assert( pData!=0 ); |
| assert( pData+nData>pData ); |
| |
| /* Must lead with height of node as a varint(n), n>0 */ |
| n = getVarint32(pData, &iDummy); |
| assert( n>0 ); |
| assert( iDummy>0 ); |
| assert( n<nData ); |
| pData += n; |
| nData -= n; |
| |
| /* Must contain iBlockid. */ |
| n = getVarint(pData, &iBlockid); |
| assert( n>0 ); |
| assert( n<=nData ); |
| pData += n; |
| nData -= n; |
| |
| /* Zero or more terms of positive length */ |
| if( nData!=0 ){ |
| /* First term is not delta-encoded. */ |
| n = getVarint32(pData, &iDummy); |
| assert( n>0 ); |
| assert( iDummy>0 ); |
| assert( n+iDummy>0); |
| assert( n+iDummy<=nData ); |
| pData += n+iDummy; |
| nData -= n+iDummy; |
| |
| /* Following terms delta-encoded. */ |
| while( nData!=0 ){ |
| /* Length of shared prefix. */ |
| n = getVarint32(pData, &iDummy); |
| assert( n>0 ); |
| assert( iDummy>=0 ); |
| assert( n<nData ); |
| pData += n; |
| nData -= n; |
| |
| /* Length and data of distinct suffix. */ |
| n = getVarint32(pData, &iDummy); |
| assert( n>0 ); |
| assert( iDummy>0 ); |
| assert( n+iDummy>0); |
| assert( n+iDummy<=nData ); |
| pData += n+iDummy; |
| nData -= n+iDummy; |
| } |
| } |
| } |
| #define ASSERT_VALID_INTERIOR_BLOCK(x) interiorBlockValidate(x) |
| #else |
| #define ASSERT_VALID_INTERIOR_BLOCK(x) assert( 1 ) |
| #endif |
| |
| typedef struct InteriorWriter { |
| int iHeight; /* from 0 at leaves. */ |
| InteriorBlock *first, *last; |
| struct InteriorWriter *parentWriter; |
| |
| DataBuffer term; /* Last term written to block "last". */ |
| sqlite_int64 iOpeningChildBlock; /* First child block in block "last". */ |
| #ifndef NDEBUG |
| sqlite_int64 iLastChildBlock; /* for consistency checks. */ |
| #endif |
| } InteriorWriter; |
| |
| /* Initialize an interior node where pTerm[nTerm] marks the leftmost |
| ** term in the tree. iChildBlock is the leftmost child block at the |
| ** next level down the tree. |
| */ |
| static void interiorWriterInit(int iHeight, const char *pTerm, int nTerm, |
| sqlite_int64 iChildBlock, |
| InteriorWriter *pWriter){ |
| InteriorBlock *block; |
| assert( iHeight>0 ); |
| CLEAR(pWriter); |
| |
| pWriter->iHeight = iHeight; |
| pWriter->iOpeningChildBlock = iChildBlock; |
| #ifndef NDEBUG |
| pWriter->iLastChildBlock = iChildBlock; |
| #endif |
| block = interiorBlockNew(iHeight, iChildBlock, pTerm, nTerm); |
| pWriter->last = pWriter->first = block; |
| ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |
| dataBufferInit(&pWriter->term, 0); |
| } |
| |
| /* Append the child node rooted at iChildBlock to the interior node, |
| ** with pTerm[nTerm] as the leftmost term in iChildBlock's subtree. |
| */ |
| static void interiorWriterAppend(InteriorWriter *pWriter, |
| const char *pTerm, int nTerm, |
| sqlite_int64 iChildBlock){ |
| char c[VARINT_MAX+VARINT_MAX]; |
| int n, nPrefix = 0; |
| |
| ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |
| |
| /* The first term written into an interior node is actually |
| ** associated with the second child added (the first child was added |
| ** in interiorWriterInit, or in the if clause at the bottom of this |
| ** function). That term gets encoded straight up, with nPrefix left |
| ** at 0. |
| */ |
| if( pWriter->term.nData==0 ){ |
| n = putVarint(c, nTerm); |
| }else{ |
| while( nPrefix<pWriter->term.nData && |
| pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ |
| nPrefix++; |
| } |
| |
| n = putVarint(c, nPrefix); |
| n += putVarint(c+n, nTerm-nPrefix); |
| } |
| |
| #ifndef NDEBUG |
| pWriter->iLastChildBlock++; |
| #endif |
| assert( pWriter->iLastChildBlock==iChildBlock ); |
| |
| /* Overflow to a new block if the new term makes the current block |
| ** too big, and the current block already has enough terms. |
| */ |
| if( pWriter->last->data.nData+n+nTerm-nPrefix>INTERIOR_MAX && |
| iChildBlock-pWriter->iOpeningChildBlock>INTERIOR_MIN_TERMS ){ |
| pWriter->last->next = interiorBlockNew(pWriter->iHeight, iChildBlock, |
| pTerm, nTerm); |
| pWriter->last = pWriter->last->next; |
| pWriter->iOpeningChildBlock = iChildBlock; |
| dataBufferReset(&pWriter->term); |
| }else{ |
| dataBufferAppend2(&pWriter->last->data, c, n, |
| pTerm+nPrefix, nTerm-nPrefix); |
| dataBufferReplace(&pWriter->term, pTerm, nTerm); |
| } |
| ASSERT_VALID_INTERIOR_BLOCK(pWriter->last); |
| } |
| |
| /* Free the space used by pWriter, including the linked-list of |
| ** InteriorBlocks, and parentWriter, if present. |
| */ |
| static int interiorWriterDestroy(InteriorWriter *pWriter){ |
| InteriorBlock *block = pWriter->first; |
| |
| while( block!=NULL ){ |
| InteriorBlock *b = block; |
| block = block->next; |
| dataBufferDestroy(&b->term); |
| dataBufferDestroy(&b->data); |
| sqlite3_free(b); |
| } |
| if( pWriter->parentWriter!=NULL ){ |
| interiorWriterDestroy(pWriter->parentWriter); |
| sqlite3_free(pWriter->parentWriter); |
| } |
| dataBufferDestroy(&pWriter->term); |
| SCRAMBLE(pWriter); |
| return SQLITE_OK; |
| } |
| |
| /* If pWriter can fit entirely in ROOT_MAX, return it as the root info |
| ** directly, leaving *piEndBlockid unchanged. Otherwise, flush |
| ** pWriter to %_segments, building a new layer of interior nodes, and |
| ** recursively ask for their root into. |
| */ |
| static int interiorWriterRootInfo(fulltext_vtab *v, InteriorWriter *pWriter, |
| char **ppRootInfo, int *pnRootInfo, |
| sqlite_int64 *piEndBlockid){ |
| InteriorBlock *block = pWriter->first; |
| sqlite_int64 iBlockid = 0; |
| int rc; |
| |
| /* If we can fit the segment inline */ |
| if( block==pWriter->last && block->data.nData<ROOT_MAX ){ |
| *ppRootInfo = block->data.pData; |
| *pnRootInfo = block->data.nData; |
| return SQLITE_OK; |
| } |
| |
| /* Flush the first block to %_segments, and create a new level of |
| ** interior node. |
| */ |
| ASSERT_VALID_INTERIOR_BLOCK(block); |
| rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| *piEndBlockid = iBlockid; |
| |
| pWriter->parentWriter = sqlite3_malloc(sizeof(*pWriter->parentWriter)); |
| interiorWriterInit(pWriter->iHeight+1, |
| block->term.pData, block->term.nData, |
| iBlockid, pWriter->parentWriter); |
| |
| /* Flush additional blocks and append to the higher interior |
| ** node. |
| */ |
| for(block=block->next; block!=NULL; block=block->next){ |
| ASSERT_VALID_INTERIOR_BLOCK(block); |
| rc = block_insert(v, block->data.pData, block->data.nData, &iBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| *piEndBlockid = iBlockid; |
| |
| interiorWriterAppend(pWriter->parentWriter, |
| block->term.pData, block->term.nData, iBlockid); |
| } |
| |
| /* Parent node gets the chance to be the root. */ |
| return interiorWriterRootInfo(v, pWriter->parentWriter, |
| ppRootInfo, pnRootInfo, piEndBlockid); |
| } |
| |
| /****************************************************************/ |
| /* InteriorReader is used to read off the data from an interior node |
| ** (see comment at top of file for the format). |
| */ |
| typedef struct InteriorReader { |
| const char *pData; |
| int nData; |
| |
| DataBuffer term; /* previous term, for decoding term delta. */ |
| |
| sqlite_int64 iBlockid; |
| } InteriorReader; |
| |
| static void interiorReaderDestroy(InteriorReader *pReader){ |
| dataBufferDestroy(&pReader->term); |
| SCRAMBLE(pReader); |
| } |
| |
| /* TODO(shess) The assertions are great, but what if we're in NDEBUG |
| ** and the blob is empty or otherwise contains suspect data? |
| */ |
| static void interiorReaderInit(const char *pData, int nData, |
| InteriorReader *pReader){ |
| int n, nTerm; |
| |
| /* Require at least the leading flag byte */ |
| assert( nData>0 ); |
| assert( pData[0]!='\0' ); |
| |
| CLEAR(pReader); |
| |
| /* Decode the base blockid, and set the cursor to the first term. */ |
| n = getVarint(pData+1, &pReader->iBlockid); |
| assert( 1+n<=nData ); |
| pReader->pData = pData+1+n; |
| pReader->nData = nData-(1+n); |
| |
| /* A single-child interior node (such as when a leaf node was too |
| ** large for the segment directory) won't have any terms. |
| ** Otherwise, decode the first term. |
| */ |
| if( pReader->nData==0 ){ |
| dataBufferInit(&pReader->term, 0); |
| }else{ |
| n = getVarint32(pReader->pData, &nTerm); |
| dataBufferInit(&pReader->term, nTerm); |
| dataBufferReplace(&pReader->term, pReader->pData+n, nTerm); |
| assert( n+nTerm<=pReader->nData ); |
| pReader->pData += n+nTerm; |
| pReader->nData -= n+nTerm; |
| } |
| } |
| |
| static int interiorReaderAtEnd(InteriorReader *pReader){ |
| return pReader->term.nData==0; |
| } |
| |
| static sqlite_int64 interiorReaderCurrentBlockid(InteriorReader *pReader){ |
| return pReader->iBlockid; |
| } |
| |
| static int interiorReaderTermBytes(InteriorReader *pReader){ |
| assert( !interiorReaderAtEnd(pReader) ); |
| return pReader->term.nData; |
| } |
| static const char *interiorReaderTerm(InteriorReader *pReader){ |
| assert( !interiorReaderAtEnd(pReader) ); |
| return pReader->term.pData; |
| } |
| |
| /* Step forward to the next term in the node. */ |
| static void interiorReaderStep(InteriorReader *pReader){ |
| assert( !interiorReaderAtEnd(pReader) ); |
| |
| /* If the last term has been read, signal eof, else construct the |
| ** next term. |
| */ |
| if( pReader->nData==0 ){ |
| dataBufferReset(&pReader->term); |
| }else{ |
| int n, nPrefix, nSuffix; |
| |
| n = getVarint32(pReader->pData, &nPrefix); |
| n += getVarint32(pReader->pData+n, &nSuffix); |
| |
| /* Truncate the current term and append suffix data. */ |
| pReader->term.nData = nPrefix; |
| dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); |
| |
| assert( n+nSuffix<=pReader->nData ); |
| pReader->pData += n+nSuffix; |
| pReader->nData -= n+nSuffix; |
| } |
| pReader->iBlockid++; |
| } |
| |
| /* Compare the current term to pTerm[nTerm], returning strcmp-style |
| ** results. If isPrefix, equality means equal through nTerm bytes. |
| */ |
| static int interiorReaderTermCmp(InteriorReader *pReader, |
| const char *pTerm, int nTerm, int isPrefix){ |
| const char *pReaderTerm = interiorReaderTerm(pReader); |
| int nReaderTerm = interiorReaderTermBytes(pReader); |
| int c, n = nReaderTerm<nTerm ? nReaderTerm : nTerm; |
| |
| if( n==0 ){ |
| if( nReaderTerm>0 ) return -1; |
| if( nTerm>0 ) return 1; |
| return 0; |
| } |
| |
| c = memcmp(pReaderTerm, pTerm, n); |
| if( c!=0 ) return c; |
| if( isPrefix && n==nTerm ) return 0; |
| return nReaderTerm - nTerm; |
| } |
| |
| /****************************************************************/ |
| /* LeafWriter is used to collect terms and associated doclist data |
| ** into leaf blocks in %_segments (see top of file for format info). |
| ** Expected usage is: |
| ** |
| ** LeafWriter writer; |
| ** leafWriterInit(0, 0, &writer); |
| ** while( sorted_terms_left_to_process ){ |
| ** // data is doclist data for that term. |
| ** rc = leafWriterStep(v, &writer, pTerm, nTerm, pData, nData); |
| ** if( rc!=SQLITE_OK ) goto err; |
| ** } |
| ** rc = leafWriterFinalize(v, &writer); |
| **err: |
| ** leafWriterDestroy(&writer); |
| ** return rc; |
| ** |
| ** leafWriterStep() may write a collected leaf out to %_segments. |
| ** leafWriterFinalize() finishes writing any buffered data and stores |
| ** a root node in %_segdir. leafWriterDestroy() frees all buffers and |
| ** InteriorWriters allocated as part of writing this segment. |
| ** |
| ** TODO(shess) Document leafWriterStepMerge(). |
| */ |
| |
| /* Put terms with data this big in their own block. */ |
| #define STANDALONE_MIN 1024 |
| |
| /* Keep leaf blocks below this size. */ |
| #define LEAF_MAX 2048 |
| |
| typedef struct LeafWriter { |
| int iLevel; |
| int idx; |
| sqlite_int64 iStartBlockid; /* needed to create the root info */ |
| sqlite_int64 iEndBlockid; /* when we're done writing. */ |
| |
| DataBuffer term; /* previous encoded term */ |
| DataBuffer data; /* encoding buffer */ |
| |
| /* bytes of first term in the current node which distinguishes that |
| ** term from the last term of the previous node. |
| */ |
| int nTermDistinct; |
| |
| InteriorWriter parentWriter; /* if we overflow */ |
| int has_parent; |
| } LeafWriter; |
| |
| static void leafWriterInit(int iLevel, int idx, LeafWriter *pWriter){ |
| CLEAR(pWriter); |
| pWriter->iLevel = iLevel; |
| pWriter->idx = idx; |
| |
| dataBufferInit(&pWriter->term, 32); |
| |
| /* Start out with a reasonably sized block, though it can grow. */ |
| dataBufferInit(&pWriter->data, LEAF_MAX); |
| } |
| |
| #ifndef NDEBUG |
| /* Verify that the data is readable as a leaf node. */ |
| static void leafNodeValidate(const char *pData, int nData){ |
| int n, iDummy; |
| |
| if( nData==0 ) return; |
| assert( nData>0 ); |
| assert( pData!=0 ); |
| assert( pData+nData>pData ); |
| |
| /* Must lead with a varint(0) */ |
| n = getVarint32(pData, &iDummy); |
| assert( iDummy==0 ); |
| assert( n>0 ); |
| assert( n<nData ); |
| pData += n; |
| nData -= n; |
| |
| /* Leading term length and data must fit in buffer. */ |
| n = getVarint32(pData, &iDummy); |
| assert( n>0 ); |
| assert( iDummy>0 ); |
| assert( n+iDummy>0 ); |
| assert( n+iDummy<nData ); |
| pData += n+iDummy; |
| nData -= n+iDummy; |
| |
| /* Leading term's doclist length and data must fit. */ |
| n = getVarint32(pData, &iDummy); |
| assert( n>0 ); |
| assert( iDummy>0 ); |
| assert( n+iDummy>0 ); |
| assert( n+iDummy<=nData ); |
| ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); |
| pData += n+iDummy; |
| nData -= n+iDummy; |
| |
| /* Verify that trailing terms and doclists also are readable. */ |
| while( nData!=0 ){ |
| n = getVarint32(pData, &iDummy); |
| assert( n>0 ); |
| assert( iDummy>=0 ); |
| assert( n<nData ); |
| pData += n; |
| nData -= n; |
| n = getVarint32(pData, &iDummy); |
| assert( n>0 ); |
| assert( iDummy>0 ); |
| assert( n+iDummy>0 ); |
| assert( n+iDummy<nData ); |
| pData += n+iDummy; |
| nData -= n+iDummy; |
| |
| n = getVarint32(pData, &iDummy); |
| assert( n>0 ); |
| assert( iDummy>0 ); |
| assert( n+iDummy>0 ); |
| assert( n+iDummy<=nData ); |
| ASSERT_VALID_DOCLIST(DL_DEFAULT, pData+n, iDummy, NULL); |
| pData += n+iDummy; |
| nData -= n+iDummy; |
| } |
| } |
| #define ASSERT_VALID_LEAF_NODE(p, n) leafNodeValidate(p, n) |
| #else |
| #define ASSERT_VALID_LEAF_NODE(p, n) assert( 1 ) |
| #endif |
| |
| /* Flush the current leaf node to %_segments, and adding the resulting |
| ** blockid and the starting term to the interior node which will |
| ** contain it. |
| */ |
| static int leafWriterInternalFlush(fulltext_vtab *v, LeafWriter *pWriter, |
| int iData, int nData){ |
| sqlite_int64 iBlockid = 0; |
| const char *pStartingTerm; |
| int nStartingTerm, rc, n; |
| |
| /* Must have the leading varint(0) flag, plus at least some |
| ** valid-looking data. |
| */ |
| assert( nData>2 ); |
| assert( iData>=0 ); |
| assert( iData+nData<=pWriter->data.nData ); |
| ASSERT_VALID_LEAF_NODE(pWriter->data.pData+iData, nData); |
| |
| rc = block_insert(v, pWriter->data.pData+iData, nData, &iBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| assert( iBlockid!=0 ); |
| |
| /* Reconstruct the first term in the leaf for purposes of building |
| ** the interior node. |
| */ |
| n = getVarint32(pWriter->data.pData+iData+1, &nStartingTerm); |
| pStartingTerm = pWriter->data.pData+iData+1+n; |
| assert( pWriter->data.nData>iData+1+n+nStartingTerm ); |
| assert( pWriter->nTermDistinct>0 ); |
| assert( pWriter->nTermDistinct<=nStartingTerm ); |
| nStartingTerm = pWriter->nTermDistinct; |
| |
| if( pWriter->has_parent ){ |
| interiorWriterAppend(&pWriter->parentWriter, |
| pStartingTerm, nStartingTerm, iBlockid); |
| }else{ |
| interiorWriterInit(1, pStartingTerm, nStartingTerm, iBlockid, |
| &pWriter->parentWriter); |
| pWriter->has_parent = 1; |
| } |
| |
| /* Track the span of this segment's leaf nodes. */ |
| if( pWriter->iEndBlockid==0 ){ |
| pWriter->iEndBlockid = pWriter->iStartBlockid = iBlockid; |
| }else{ |
| pWriter->iEndBlockid++; |
| assert( iBlockid==pWriter->iEndBlockid ); |
| } |
| |
| return SQLITE_OK; |
| } |
| static int leafWriterFlush(fulltext_vtab *v, LeafWriter *pWriter){ |
| int rc = leafWriterInternalFlush(v, pWriter, 0, pWriter->data.nData); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* Re-initialize the output buffer. */ |
| dataBufferReset(&pWriter->data); |
| |
| return SQLITE_OK; |
| } |
| |
| /* Fetch the root info for the segment. If the entire leaf fits |
| ** within ROOT_MAX, then it will be returned directly, otherwise it |
| ** will be flushed and the root info will be returned from the |
| ** interior node. *piEndBlockid is set to the blockid of the last |
| ** interior or leaf node written to disk (0 if none are written at |
| ** all). |
| */ |
| static int leafWriterRootInfo(fulltext_vtab *v, LeafWriter *pWriter, |
| char **ppRootInfo, int *pnRootInfo, |
| sqlite_int64 *piEndBlockid){ |
| /* we can fit the segment entirely inline */ |
| if( !pWriter->has_parent && pWriter->data.nData<ROOT_MAX ){ |
| *ppRootInfo = pWriter->data.pData; |
| *pnRootInfo = pWriter->data.nData; |
| *piEndBlockid = 0; |
| return SQLITE_OK; |
| } |
| |
| /* Flush remaining leaf data. */ |
| if( pWriter->data.nData>0 ){ |
| int rc = leafWriterFlush(v, pWriter); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| |
| /* We must have flushed a leaf at some point. */ |
| assert( pWriter->has_parent ); |
| |
| /* Tenatively set the end leaf blockid as the end blockid. If the |
| ** interior node can be returned inline, this will be the final |
| ** blockid, otherwise it will be overwritten by |
| ** interiorWriterRootInfo(). |
| */ |
| *piEndBlockid = pWriter->iEndBlockid; |
| |
| return interiorWriterRootInfo(v, &pWriter->parentWriter, |
| ppRootInfo, pnRootInfo, piEndBlockid); |
| } |
| |
| /* Collect the rootInfo data and store it into the segment directory. |
| ** This has the effect of flushing the segment's leaf data to |
| ** %_segments, and also flushing any interior nodes to %_segments. |
| */ |
| static int leafWriterFinalize(fulltext_vtab *v, LeafWriter *pWriter){ |
| sqlite_int64 iEndBlockid; |
| char *pRootInfo; |
| int rc, nRootInfo; |
| |
| rc = leafWriterRootInfo(v, pWriter, &pRootInfo, &nRootInfo, &iEndBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* Don't bother storing an entirely empty segment. */ |
| if( iEndBlockid==0 && nRootInfo==0 ) return SQLITE_OK; |
| |
| return segdir_set(v, pWriter->iLevel, pWriter->idx, |
| pWriter->iStartBlockid, pWriter->iEndBlockid, |
| iEndBlockid, pRootInfo, nRootInfo); |
| } |
| |
| static void leafWriterDestroy(LeafWriter *pWriter){ |
| if( pWriter->has_parent ) interiorWriterDestroy(&pWriter->parentWriter); |
| dataBufferDestroy(&pWriter->term); |
| dataBufferDestroy(&pWriter->data); |
| } |
| |
| /* Encode a term into the leafWriter, delta-encoding as appropriate. |
| ** Returns the length of the new term which distinguishes it from the |
| ** previous term, which can be used to set nTermDistinct when a node |
| ** boundary is crossed. |
| */ |
| static int leafWriterEncodeTerm(LeafWriter *pWriter, |
| const char *pTerm, int nTerm){ |
| char c[VARINT_MAX+VARINT_MAX]; |
| int n, nPrefix = 0; |
| |
| assert( nTerm>0 ); |
| while( nPrefix<pWriter->term.nData && |
| pTerm[nPrefix]==pWriter->term.pData[nPrefix] ){ |
| nPrefix++; |
| /* Failing this implies that the terms weren't in order. */ |
| assert( nPrefix<nTerm ); |
| } |
| |
| if( pWriter->data.nData==0 ){ |
| /* Encode the node header and leading term as: |
| ** varint(0) |
| ** varint(nTerm) |
| ** char pTerm[nTerm] |
| */ |
| n = putVarint(c, '\0'); |
| n += putVarint(c+n, nTerm); |
| dataBufferAppend2(&pWriter->data, c, n, pTerm, nTerm); |
| }else{ |
| /* Delta-encode the term as: |
| ** varint(nPrefix) |
| ** varint(nSuffix) |
| ** char pTermSuffix[nSuffix] |
| */ |
| n = putVarint(c, nPrefix); |
| n += putVarint(c+n, nTerm-nPrefix); |
| dataBufferAppend2(&pWriter->data, c, n, pTerm+nPrefix, nTerm-nPrefix); |
| } |
| dataBufferReplace(&pWriter->term, pTerm, nTerm); |
| |
| return nPrefix+1; |
| } |
| |
| /* Used to avoid a memmove when a large amount of doclist data is in |
| ** the buffer. This constructs a node and term header before |
| ** iDoclistData and flushes the resulting complete node using |
| ** leafWriterInternalFlush(). |
| */ |
| static int leafWriterInlineFlush(fulltext_vtab *v, LeafWriter *pWriter, |
| const char *pTerm, int nTerm, |
| int iDoclistData){ |
| char c[VARINT_MAX+VARINT_MAX]; |
| int iData, n = putVarint(c, 0); |
| n += putVarint(c+n, nTerm); |
| |
| /* There should always be room for the header. Even if pTerm shared |
| ** a substantial prefix with the previous term, the entire prefix |
| ** could be constructed from earlier data in the doclist, so there |
| ** should be room. |
| */ |
| assert( iDoclistData>=n+nTerm ); |
| |
| iData = iDoclistData-(n+nTerm); |
| memcpy(pWriter->data.pData+iData, c, n); |
| memcpy(pWriter->data.pData+iData+n, pTerm, nTerm); |
| |
| return leafWriterInternalFlush(v, pWriter, iData, pWriter->data.nData-iData); |
| } |
| |
| /* Push pTerm[nTerm] along with the doclist data to the leaf layer of |
| ** %_segments. |
| */ |
| static int leafWriterStepMerge(fulltext_vtab *v, LeafWriter *pWriter, |
| const char *pTerm, int nTerm, |
| DLReader *pReaders, int nReaders){ |
| char c[VARINT_MAX+VARINT_MAX]; |
| int iTermData = pWriter->data.nData, iDoclistData; |
| int i, nData, n, nActualData, nActual, rc, nTermDistinct; |
| |
| ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); |
| nTermDistinct = leafWriterEncodeTerm(pWriter, pTerm, nTerm); |
| |
| /* Remember nTermDistinct if opening a new node. */ |
| if( iTermData==0 ) pWriter->nTermDistinct = nTermDistinct; |
| |
| iDoclistData = pWriter->data.nData; |
| |
| /* Estimate the length of the merged doclist so we can leave space |
| ** to encode it. |
| */ |
| for(i=0, nData=0; i<nReaders; i++){ |
| nData += dlrAllDataBytes(&pReaders[i]); |
| } |
| n = putVarint(c, nData); |
| dataBufferAppend(&pWriter->data, c, n); |
| |
| docListMerge(&pWriter->data, pReaders, nReaders); |
| ASSERT_VALID_DOCLIST(DL_DEFAULT, |
| pWriter->data.pData+iDoclistData+n, |
| pWriter->data.nData-iDoclistData-n, NULL); |
| |
| /* The actual amount of doclist data at this point could be smaller |
| ** than the length we encoded. Additionally, the space required to |
| ** encode this length could be smaller. For small doclists, this is |
| ** not a big deal, we can just use memmove() to adjust things. |
| */ |
| nActualData = pWriter->data.nData-(iDoclistData+n); |
| nActual = putVarint(c, nActualData); |
| assert( nActualData<=nData ); |
| assert( nActual<=n ); |
| |
| /* If the new doclist is big enough for force a standalone leaf |
| ** node, we can immediately flush it inline without doing the |
| ** memmove(). |
| */ |
| /* TODO(shess) This test matches leafWriterStep(), which does this |
| ** test before it knows the cost to varint-encode the term and |
| ** doclist lengths. At some point, change to |
| ** pWriter->data.nData-iTermData>STANDALONE_MIN. |
| */ |
| if( nTerm+nActualData>STANDALONE_MIN ){ |
| /* Push leaf node from before this term. */ |
| if( iTermData>0 ){ |
| rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| pWriter->nTermDistinct = nTermDistinct; |
| } |
| |
| /* Fix the encoded doclist length. */ |
| iDoclistData += n - nActual; |
| memcpy(pWriter->data.pData+iDoclistData, c, nActual); |
| |
| /* Push the standalone leaf node. */ |
| rc = leafWriterInlineFlush(v, pWriter, pTerm, nTerm, iDoclistData); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* Leave the node empty. */ |
| dataBufferReset(&pWriter->data); |
| |
| return rc; |
| } |
| |
| /* At this point, we know that the doclist was small, so do the |
| ** memmove if indicated. |
| */ |
| if( nActual<n ){ |
| memmove(pWriter->data.pData+iDoclistData+nActual, |
| pWriter->data.pData+iDoclistData+n, |
| pWriter->data.nData-(iDoclistData+n)); |
| pWriter->data.nData -= n-nActual; |
| } |
| |
| /* Replace written length with actual length. */ |
| memcpy(pWriter->data.pData+iDoclistData, c, nActual); |
| |
| /* If the node is too large, break things up. */ |
| /* TODO(shess) This test matches leafWriterStep(), which does this |
| ** test before it knows the cost to varint-encode the term and |
| ** doclist lengths. At some point, change to |
| ** pWriter->data.nData>LEAF_MAX. |
| */ |
| if( iTermData+nTerm+nActualData>LEAF_MAX ){ |
| /* Flush out the leading data as a node */ |
| rc = leafWriterInternalFlush(v, pWriter, 0, iTermData); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| pWriter->nTermDistinct = nTermDistinct; |
| |
| /* Rebuild header using the current term */ |
| n = putVarint(pWriter->data.pData, 0); |
| n += putVarint(pWriter->data.pData+n, nTerm); |
| memcpy(pWriter->data.pData+n, pTerm, nTerm); |
| n += nTerm; |
| |
| /* There should always be room, because the previous encoding |
| ** included all data necessary to construct the term. |
| */ |
| assert( n<iDoclistData ); |
| /* So long as STANDALONE_MIN is half or less of LEAF_MAX, the |
| ** following memcpy() is safe (as opposed to needing a memmove). |
| */ |
| assert( 2*STANDALONE_MIN<=LEAF_MAX ); |
| assert( n+pWriter->data.nData-iDoclistData<iDoclistData ); |
| memcpy(pWriter->data.pData+n, |
| pWriter->data.pData+iDoclistData, |
| pWriter->data.nData-iDoclistData); |
| pWriter->data.nData -= iDoclistData-n; |
| } |
| ASSERT_VALID_LEAF_NODE(pWriter->data.pData, pWriter->data.nData); |
| |
| return SQLITE_OK; |
| } |
| |
| /* Push pTerm[nTerm] along with the doclist data to the leaf layer of |
| ** %_segments. |
| */ |
| /* TODO(shess) Revise writeZeroSegment() so that doclists are |
| ** constructed directly in pWriter->data. |
| */ |
| static int leafWriterStep(fulltext_vtab *v, LeafWriter *pWriter, |
| const char *pTerm, int nTerm, |
| const char *pData, int nData){ |
| int rc; |
| DLReader reader; |
| |
| dlrInit(&reader, DL_DEFAULT, pData, nData); |
| rc = leafWriterStepMerge(v, pWriter, pTerm, nTerm, &reader, 1); |
| dlrDestroy(&reader); |
| |
| return rc; |
| } |
| |
| |
| /****************************************************************/ |
| /* LeafReader is used to iterate over an individual leaf node. */ |
| typedef struct LeafReader { |
| DataBuffer term; /* copy of current term. */ |
| |
| const char *pData; /* data for current term. */ |
| int nData; |
| } LeafReader; |
| |
| static void leafReaderDestroy(LeafReader *pReader){ |
| dataBufferDestroy(&pReader->term); |
| SCRAMBLE(pReader); |
| } |
| |
| static int leafReaderAtEnd(LeafReader *pReader){ |
| return pReader->nData<=0; |
| } |
| |
| /* Access the current term. */ |
| static int leafReaderTermBytes(LeafReader *pReader){ |
| return pReader->term.nData; |
| } |
| static const char *leafReaderTerm(LeafReader *pReader){ |
| assert( pReader->term.nData>0 ); |
| return pReader->term.pData; |
| } |
| |
| /* Access the doclist data for the current term. */ |
| static int leafReaderDataBytes(LeafReader *pReader){ |
| int nData; |
| assert( pReader->term.nData>0 ); |
| getVarint32(pReader->pData, &nData); |
| return nData; |
| } |
| static const char *leafReaderData(LeafReader *pReader){ |
| int n, nData; |
| assert( pReader->term.nData>0 ); |
| n = getVarint32(pReader->pData, &nData); |
| return pReader->pData+n; |
| } |
| |
| static void leafReaderInit(const char *pData, int nData, |
| LeafReader *pReader){ |
| int nTerm, n; |
| |
| assert( nData>0 ); |
| assert( pData[0]=='\0' ); |
| |
| CLEAR(pReader); |
| |
| /* Read the first term, skipping the header byte. */ |
| n = getVarint32(pData+1, &nTerm); |
| dataBufferInit(&pReader->term, nTerm); |
| dataBufferReplace(&pReader->term, pData+1+n, nTerm); |
| |
| /* Position after the first term. */ |
| assert( 1+n+nTerm<nData ); |
| pReader->pData = pData+1+n+nTerm; |
| pReader->nData = nData-1-n-nTerm; |
| } |
| |
| /* Step the reader forward to the next term. */ |
| static void leafReaderStep(LeafReader *pReader){ |
| int n, nData, nPrefix, nSuffix; |
| assert( !leafReaderAtEnd(pReader) ); |
| |
| /* Skip previous entry's data block. */ |
| n = getVarint32(pReader->pData, &nData); |
| assert( n+nData<=pReader->nData ); |
| pReader->pData += n+nData; |
| pReader->nData -= n+nData; |
| |
| if( !leafReaderAtEnd(pReader) ){ |
| /* Construct the new term using a prefix from the old term plus a |
| ** suffix from the leaf data. |
| */ |
| n = getVarint32(pReader->pData, &nPrefix); |
| n += getVarint32(pReader->pData+n, &nSuffix); |
| assert( n+nSuffix<pReader->nData ); |
| pReader->term.nData = nPrefix; |
| dataBufferAppend(&pReader->term, pReader->pData+n, nSuffix); |
| |
| pReader->pData += n+nSuffix; |
| pReader->nData -= n+nSuffix; |
| } |
| } |
| |
| /* strcmp-style comparison of pReader's current term against pTerm. |
| ** If isPrefix, equality means equal through nTerm bytes. |
| */ |
| static int leafReaderTermCmp(LeafReader *pReader, |
| const char *pTerm, int nTerm, int isPrefix){ |
| int c, n = pReader->term.nData<nTerm ? pReader->term.nData : nTerm; |
| if( n==0 ){ |
| if( pReader->term.nData>0 ) return -1; |
| if(nTerm>0 ) return 1; |
| return 0; |
| } |
| |
| c = memcmp(pReader->term.pData, pTerm, n); |
| if( c!=0 ) return c; |
| if( isPrefix && n==nTerm ) return 0; |
| return pReader->term.nData - nTerm; |
| } |
| |
| |
| /****************************************************************/ |
| /* LeavesReader wraps LeafReader to allow iterating over the entire |
| ** leaf layer of the tree. |
| */ |
| typedef struct LeavesReader { |
| int idx; /* Index within the segment. */ |
| |
| sqlite3_stmt *pStmt; /* Statement we're streaming leaves from. */ |
| int eof; /* we've seen SQLITE_DONE from pStmt. */ |
| |
| LeafReader leafReader; /* reader for the current leaf. */ |
| DataBuffer rootData; /* root data for inline. */ |
| } LeavesReader; |
| |
| /* Access the current term. */ |
| static int leavesReaderTermBytes(LeavesReader *pReader){ |
| assert( !pReader->eof ); |
| return leafReaderTermBytes(&pReader->leafReader); |
| } |
| static const char *leavesReaderTerm(LeavesReader *pReader){ |
| assert( !pReader->eof ); |
| return leafReaderTerm(&pReader->leafReader); |
| } |
| |
| /* Access the doclist data for the current term. */ |
| static int leavesReaderDataBytes(LeavesReader *pReader){ |
| assert( !pReader->eof ); |
| return leafReaderDataBytes(&pReader->leafReader); |
| } |
| static const char *leavesReaderData(LeavesReader *pReader){ |
| assert( !pReader->eof ); |
| return leafReaderData(&pReader->leafReader); |
| } |
| |
| static int leavesReaderAtEnd(LeavesReader *pReader){ |
| return pReader->eof; |
| } |
| |
| /* loadSegmentLeaves() may not read all the way to SQLITE_DONE, thus |
| ** leaving the statement handle open, which locks the table. |
| */ |
| /* TODO(shess) This "solution" is not satisfactory. Really, there |
| ** should be check-in function for all statement handles which |
| ** arranges to call sqlite3_reset(). This most likely will require |
| ** modification to control flow all over the place, though, so for now |
| ** just punt. |
| ** |
| ** Note the the current system assumes that segment merges will run to |
| ** completion, which is why this particular probably hasn't arisen in |
| ** this case. Probably a brittle assumption. |
| */ |
| static int leavesReaderReset(LeavesReader *pReader){ |
| return sqlite3_reset(pReader->pStmt); |
| } |
| |
| static void leavesReaderDestroy(LeavesReader *pReader){ |
| /* If idx is -1, that means we're using a non-cached statement |
| ** handle in the optimize() case, so we need to release it. |
| */ |
| if( pReader->pStmt!=NULL && pReader->idx==-1 ){ |
| sqlite3_finalize(pReader->pStmt); |
| } |
| leafReaderDestroy(&pReader->leafReader); |
| dataBufferDestroy(&pReader->rootData); |
| SCRAMBLE(pReader); |
| } |
| |
| /* Initialize pReader with the given root data (if iStartBlockid==0 |
| ** the leaf data was entirely contained in the root), or from the |
| ** stream of blocks between iStartBlockid and iEndBlockid, inclusive. |
| */ |
| static int leavesReaderInit(fulltext_vtab *v, |
| int idx, |
| sqlite_int64 iStartBlockid, |
| sqlite_int64 iEndBlockid, |
| const char *pRootData, int nRootData, |
| LeavesReader *pReader){ |
| CLEAR(pReader); |
| pReader->idx = idx; |
| |
| dataBufferInit(&pReader->rootData, 0); |
| if( iStartBlockid==0 ){ |
| /* Entire leaf level fit in root data. */ |
| dataBufferReplace(&pReader->rootData, pRootData, nRootData); |
| leafReaderInit(pReader->rootData.pData, pReader->rootData.nData, |
| &pReader->leafReader); |
| }else{ |
| sqlite3_stmt *s; |
| int rc = sql_get_leaf_statement(v, idx, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 1, iStartBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 2, iEndBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_DONE ){ |
| pReader->eof = 1; |
| return SQLITE_OK; |
| } |
| if( rc!=SQLITE_ROW ) return rc; |
| |
| pReader->pStmt = s; |
| leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), |
| sqlite3_column_bytes(pReader->pStmt, 0), |
| &pReader->leafReader); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* Step the current leaf forward to the next term. If we reach the |
| ** end of the current leaf, step forward to the next leaf block. |
| */ |
| static int leavesReaderStep(fulltext_vtab *v, LeavesReader *pReader){ |
| assert( !leavesReaderAtEnd(pReader) ); |
| leafReaderStep(&pReader->leafReader); |
| |
| if( leafReaderAtEnd(&pReader->leafReader) ){ |
| int rc; |
| if( pReader->rootData.pData ){ |
| pReader->eof = 1; |
| return SQLITE_OK; |
| } |
| rc = sqlite3_step(pReader->pStmt); |
| if( rc!=SQLITE_ROW ){ |
| pReader->eof = 1; |
| return rc==SQLITE_DONE ? SQLITE_OK : rc; |
| } |
| leafReaderDestroy(&pReader->leafReader); |
| leafReaderInit(sqlite3_column_blob(pReader->pStmt, 0), |
| sqlite3_column_bytes(pReader->pStmt, 0), |
| &pReader->leafReader); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* Order LeavesReaders by their term, ignoring idx. Readers at eof |
| ** always sort to the end. |
| */ |
| static int leavesReaderTermCmp(LeavesReader *lr1, LeavesReader *lr2){ |
| if( leavesReaderAtEnd(lr1) ){ |
| if( leavesReaderAtEnd(lr2) ) return 0; |
| return 1; |
| } |
| if( leavesReaderAtEnd(lr2) ) return -1; |
| |
| return leafReaderTermCmp(&lr1->leafReader, |
| leavesReaderTerm(lr2), leavesReaderTermBytes(lr2), |
| 0); |
| } |
| |
| /* Similar to leavesReaderTermCmp(), with additional ordering by idx |
| ** so that older segments sort before newer segments. |
| */ |
| static int leavesReaderCmp(LeavesReader *lr1, LeavesReader *lr2){ |
| int c = leavesReaderTermCmp(lr1, lr2); |
| if( c!=0 ) return c; |
| return lr1->idx-lr2->idx; |
| } |
| |
| /* Assume that pLr[1]..pLr[nLr] are sorted. Bubble pLr[0] into its |
| ** sorted position. |
| */ |
| static void leavesReaderReorder(LeavesReader *pLr, int nLr){ |
| while( nLr>1 && leavesReaderCmp(pLr, pLr+1)>0 ){ |
| LeavesReader tmp = pLr[0]; |
| pLr[0] = pLr[1]; |
| pLr[1] = tmp; |
| nLr--; |
| pLr++; |
| } |
| } |
| |
| /* Initializes pReaders with the segments from level iLevel, returning |
| ** the number of segments in *piReaders. Leaves pReaders in sorted |
| ** order. |
| */ |
| static int leavesReadersInit(fulltext_vtab *v, int iLevel, |
| LeavesReader *pReaders, int *piReaders){ |
| sqlite3_stmt *s; |
| int i, rc = sql_get_statement(v, SEGDIR_SELECT_LEVEL_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int(s, 1, iLevel); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| i = 0; |
| while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
| sqlite_int64 iStart = sqlite3_column_int64(s, 0); |
| sqlite_int64 iEnd = sqlite3_column_int64(s, 1); |
| const char *pRootData = sqlite3_column_blob(s, 2); |
| int nRootData = sqlite3_column_bytes(s, 2); |
| |
| assert( i<MERGE_COUNT ); |
| rc = leavesReaderInit(v, i, iStart, iEnd, pRootData, nRootData, |
| &pReaders[i]); |
| if( rc!=SQLITE_OK ) break; |
| |
| i++; |
| } |
| if( rc!=SQLITE_DONE ){ |
| while( i-->0 ){ |
| leavesReaderDestroy(&pReaders[i]); |
| } |
| return rc; |
| } |
| |
| *piReaders = i; |
| |
| /* Leave our results sorted by term, then age. */ |
| while( i-- ){ |
| leavesReaderReorder(pReaders+i, *piReaders-i); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* Merge doclists from pReaders[nReaders] into a single doclist, which |
| ** is written to pWriter. Assumes pReaders is ordered oldest to |
| ** newest. |
| */ |
| /* TODO(shess) Consider putting this inline in segmentMerge(). */ |
| static int leavesReadersMerge(fulltext_vtab *v, |
| LeavesReader *pReaders, int nReaders, |
| LeafWriter *pWriter){ |
| DLReader dlReaders[MERGE_COUNT]; |
| const char *pTerm = leavesReaderTerm(pReaders); |
| int i, nTerm = leavesReaderTermBytes(pReaders); |
| |
| assert( nReaders<=MERGE_COUNT ); |
| |
| for(i=0; i<nReaders; i++){ |
| dlrInit(&dlReaders[i], DL_DEFAULT, |
| leavesReaderData(pReaders+i), |
| leavesReaderDataBytes(pReaders+i)); |
| } |
| |
| return leafWriterStepMerge(v, pWriter, pTerm, nTerm, dlReaders, nReaders); |
| } |
| |
| /* Forward ref due to mutual recursion with segdirNextIndex(). */ |
| static int segmentMerge(fulltext_vtab *v, int iLevel); |
| |
| /* Put the next available index at iLevel into *pidx. If iLevel |
| ** already has MERGE_COUNT segments, they are merged to a higher |
| ** level to make room. |
| */ |
| static int segdirNextIndex(fulltext_vtab *v, int iLevel, int *pidx){ |
| int rc = segdir_max_index(v, iLevel, pidx); |
| if( rc==SQLITE_DONE ){ /* No segments at iLevel. */ |
| *pidx = 0; |
| }else if( rc==SQLITE_ROW ){ |
| if( *pidx==(MERGE_COUNT-1) ){ |
| rc = segmentMerge(v, iLevel); |
| if( rc!=SQLITE_OK ) return rc; |
| *pidx = 0; |
| }else{ |
| (*pidx)++; |
| } |
| }else{ |
| return rc; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* Merge MERGE_COUNT segments at iLevel into a new segment at |
| ** iLevel+1. If iLevel+1 is already full of segments, those will be |
| ** merged to make room. |
| */ |
| static int segmentMerge(fulltext_vtab *v, int iLevel){ |
| LeafWriter writer; |
| LeavesReader lrs[MERGE_COUNT]; |
| int i, rc, idx = 0; |
| |
| /* Determine the next available segment index at the next level, |
| ** merging as necessary. |
| */ |
| rc = segdirNextIndex(v, iLevel+1, &idx); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* TODO(shess) This assumes that we'll always see exactly |
| ** MERGE_COUNT segments to merge at a given level. That will be |
| ** broken if we allow the developer to request preemptive or |
| ** deferred merging. |
| */ |
| memset(&lrs, '\0', sizeof(lrs)); |
| rc = leavesReadersInit(v, iLevel, lrs, &i); |
| if( rc!=SQLITE_OK ) return rc; |
| assert( i==MERGE_COUNT ); |
| |
| leafWriterInit(iLevel+1, idx, &writer); |
| |
| /* Since leavesReaderReorder() pushes readers at eof to the end, |
| ** when the first reader is empty, all will be empty. |
| */ |
| while( !leavesReaderAtEnd(lrs) ){ |
| /* Figure out how many readers share their next term. */ |
| for(i=1; i<MERGE_COUNT && !leavesReaderAtEnd(lrs+i); i++){ |
| if( 0!=leavesReaderTermCmp(lrs, lrs+i) ) break; |
| } |
| |
| rc = leavesReadersMerge(v, lrs, i, &writer); |
| if( rc!=SQLITE_OK ) goto err; |
| |
| /* Step forward those that were merged. */ |
| while( i-->0 ){ |
| rc = leavesReaderStep(v, lrs+i); |
| if( rc!=SQLITE_OK ) goto err; |
| |
| /* Reorder by term, then by age. */ |
| leavesReaderReorder(lrs+i, MERGE_COUNT-i); |
| } |
| } |
| |
| for(i=0; i<MERGE_COUNT; i++){ |
| leavesReaderDestroy(&lrs[i]); |
| } |
| |
| rc = leafWriterFinalize(v, &writer); |
| leafWriterDestroy(&writer); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* Delete the merged segment data. */ |
| return segdir_delete(v, iLevel); |
| |
| err: |
| for(i=0; i<MERGE_COUNT; i++){ |
| leavesReaderDestroy(&lrs[i]); |
| } |
| leafWriterDestroy(&writer); |
| return rc; |
| } |
| |
| /* Accumulate the union of *acc and *pData into *acc. */ |
| static void docListAccumulateUnion(DataBuffer *acc, |
| const char *pData, int nData) { |
| DataBuffer tmp = *acc; |
| dataBufferInit(acc, tmp.nData+nData); |
| docListUnion(tmp.pData, tmp.nData, pData, nData, acc); |
| dataBufferDestroy(&tmp); |
| } |
| |
| /* TODO(shess) It might be interesting to explore different merge |
| ** strategies, here. For instance, since this is a sorted merge, we |
| ** could easily merge many doclists in parallel. With some |
| ** comprehension of the storage format, we could merge all of the |
| ** doclists within a leaf node directly from the leaf node's storage. |
| ** It may be worthwhile to merge smaller doclists before larger |
| ** doclists, since they can be traversed more quickly - but the |
| ** results may have less overlap, making them more expensive in a |
| ** different way. |
| */ |
| |
| /* Scan pReader for pTerm/nTerm, and merge the term's doclist over |
| ** *out (any doclists with duplicate docids overwrite those in *out). |
| ** Internal function for loadSegmentLeaf(). |
| */ |
| static int loadSegmentLeavesInt(fulltext_vtab *v, LeavesReader *pReader, |
| const char *pTerm, int nTerm, int isPrefix, |
| DataBuffer *out){ |
| /* doclist data is accumulated into pBuffers similar to how one does |
| ** increment in binary arithmetic. If index 0 is empty, the data is |
| ** stored there. If there is data there, it is merged and the |
| ** results carried into position 1, with further merge-and-carry |
| ** until an empty position is found. |
| */ |
| DataBuffer *pBuffers = NULL; |
| int nBuffers = 0, nMaxBuffers = 0, rc; |
| |
| assert( nTerm>0 ); |
| |
| for(rc=SQLITE_OK; rc==SQLITE_OK && !leavesReaderAtEnd(pReader); |
| rc=leavesReaderStep(v, pReader)){ |
| /* TODO(shess) Really want leavesReaderTermCmp(), but that name is |
| ** already taken to compare the terms of two LeavesReaders. Think |
| ** on a better name. [Meanwhile, break encapsulation rather than |
| ** use a confusing name.] |
| */ |
| int c = leafReaderTermCmp(&pReader->leafReader, pTerm, nTerm, isPrefix); |
| if( c>0 ) break; /* Past any possible matches. */ |
| if( c==0 ){ |
| const char *pData = leavesReaderData(pReader); |
| int iBuffer, nData = leavesReaderDataBytes(pReader); |
| |
| /* Find the first empty buffer. */ |
| for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ |
| if( 0==pBuffers[iBuffer].nData ) break; |
| } |
| |
| /* Out of buffers, add an empty one. */ |
| if( iBuffer==nBuffers ){ |
| if( nBuffers==nMaxBuffers ){ |
| DataBuffer *p; |
| nMaxBuffers += 20; |
| |
| /* Manual realloc so we can handle NULL appropriately. */ |
| p = sqlite3_malloc(nMaxBuffers*sizeof(*pBuffers)); |
| if( p==NULL ){ |
| rc = SQLITE_NOMEM; |
| break; |
| } |
| |
| if( nBuffers>0 ){ |
| assert(pBuffers!=NULL); |
| memcpy(p, pBuffers, nBuffers*sizeof(*pBuffers)); |
| sqlite3_free(pBuffers); |
| } |
| pBuffers = p; |
| } |
| dataBufferInit(&(pBuffers[nBuffers]), 0); |
| nBuffers++; |
| } |
| |
| /* At this point, must have an empty at iBuffer. */ |
| assert(iBuffer<nBuffers && pBuffers[iBuffer].nData==0); |
| |
| /* If empty was first buffer, no need for merge logic. */ |
| if( iBuffer==0 ){ |
| dataBufferReplace(&(pBuffers[0]), pData, nData); |
| }else{ |
| /* pAcc is the empty buffer the merged data will end up in. */ |
| DataBuffer *pAcc = &(pBuffers[iBuffer]); |
| DataBuffer *p = &(pBuffers[0]); |
| |
| /* Handle position 0 specially to avoid need to prime pAcc |
| ** with pData/nData. |
| */ |
| dataBufferSwap(p, pAcc); |
| docListAccumulateUnion(pAcc, pData, nData); |
| |
| /* Accumulate remaining doclists into pAcc. */ |
| for(++p; p<pAcc; ++p){ |
| docListAccumulateUnion(pAcc, p->pData, p->nData); |
| |
| /* dataBufferReset() could allow a large doclist to blow up |
| ** our memory requirements. |
| */ |
| if( p->nCapacity<1024 ){ |
| dataBufferReset(p); |
| }else{ |
| dataBufferDestroy(p); |
| dataBufferInit(p, 0); |
| } |
| } |
| } |
| } |
| } |
| |
| /* Union all the doclists together into *out. */ |
| /* TODO(shess) What if *out is big? Sigh. */ |
| if( rc==SQLITE_OK && nBuffers>0 ){ |
| int iBuffer; |
| for(iBuffer=0; iBuffer<nBuffers; ++iBuffer){ |
| if( pBuffers[iBuffer].nData>0 ){ |
| if( out->nData==0 ){ |
| dataBufferSwap(out, &(pBuffers[iBuffer])); |
| }else{ |
| docListAccumulateUnion(out, pBuffers[iBuffer].pData, |
| pBuffers[iBuffer].nData); |
| } |
| } |
| } |
| } |
| |
| while( nBuffers-- ){ |
| dataBufferDestroy(&(pBuffers[nBuffers])); |
| } |
| if( pBuffers!=NULL ) sqlite3_free(pBuffers); |
| |
| return rc; |
| } |
| |
| /* Call loadSegmentLeavesInt() with pData/nData as input. */ |
| static int loadSegmentLeaf(fulltext_vtab *v, const char *pData, int nData, |
| const char *pTerm, int nTerm, int isPrefix, |
| DataBuffer *out){ |
| LeavesReader reader; |
| int rc; |
| |
| assert( nData>1 ); |
| assert( *pData=='\0' ); |
| rc = leavesReaderInit(v, 0, 0, 0, pData, nData, &reader); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); |
| leavesReaderReset(&reader); |
| leavesReaderDestroy(&reader); |
| return rc; |
| } |
| |
| /* Call loadSegmentLeavesInt() with the leaf nodes from iStartLeaf to |
| ** iEndLeaf (inclusive) as input, and merge the resulting doclist into |
| ** out. |
| */ |
| static int loadSegmentLeaves(fulltext_vtab *v, |
| sqlite_int64 iStartLeaf, sqlite_int64 iEndLeaf, |
| const char *pTerm, int nTerm, int isPrefix, |
| DataBuffer *out){ |
| int rc; |
| LeavesReader reader; |
| |
| assert( iStartLeaf<=iEndLeaf ); |
| rc = leavesReaderInit(v, 0, iStartLeaf, iEndLeaf, NULL, 0, &reader); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = loadSegmentLeavesInt(v, &reader, pTerm, nTerm, isPrefix, out); |
| leavesReaderReset(&reader); |
| leavesReaderDestroy(&reader); |
| return rc; |
| } |
| |
| /* Taking pData/nData as an interior node, find the sequence of child |
| ** nodes which could include pTerm/nTerm/isPrefix. Note that the |
| ** interior node terms logically come between the blocks, so there is |
| ** one more blockid than there are terms (that block contains terms >= |
| ** the last interior-node term). |
| */ |
| /* TODO(shess) The calling code may already know that the end child is |
| ** not worth calculating, because the end may be in a later sibling |
| ** node. Consider whether breaking symmetry is worthwhile. I suspect |
| ** it is not worthwhile. |
| */ |
| static void getChildrenContaining(const char *pData, int nData, |
| const char *pTerm, int nTerm, int isPrefix, |
| sqlite_int64 *piStartChild, |
| sqlite_int64 *piEndChild){ |
| InteriorReader reader; |
| |
| assert( nData>1 ); |
| assert( *pData!='\0' ); |
| interiorReaderInit(pData, nData, &reader); |
| |
| /* Scan for the first child which could contain pTerm/nTerm. */ |
| while( !interiorReaderAtEnd(&reader) ){ |
| if( interiorReaderTermCmp(&reader, pTerm, nTerm, 0)>0 ) break; |
| interiorReaderStep(&reader); |
| } |
| *piStartChild = interiorReaderCurrentBlockid(&reader); |
| |
| /* Keep scanning to find a term greater than our term, using prefix |
| ** comparison if indicated. If isPrefix is false, this will be the |
| ** same blockid as the starting block. |
| */ |
| while( !interiorReaderAtEnd(&reader) ){ |
| if( interiorReaderTermCmp(&reader, pTerm, nTerm, isPrefix)>0 ) break; |
| interiorReaderStep(&reader); |
| } |
| *piEndChild = interiorReaderCurrentBlockid(&reader); |
| |
| interiorReaderDestroy(&reader); |
| |
| /* Children must ascend, and if !prefix, both must be the same. */ |
| assert( *piEndChild>=*piStartChild ); |
| assert( isPrefix || *piStartChild==*piEndChild ); |
| } |
| |
| /* Read block at iBlockid and pass it with other params to |
| ** getChildrenContaining(). |
| */ |
| static int loadAndGetChildrenContaining( |
| fulltext_vtab *v, |
| sqlite_int64 iBlockid, |
| const char *pTerm, int nTerm, int isPrefix, |
| sqlite_int64 *piStartChild, sqlite_int64 *piEndChild |
| ){ |
| sqlite3_stmt *s = NULL; |
| int rc; |
| |
| assert( iBlockid!=0 ); |
| assert( pTerm!=NULL ); |
| assert( nTerm!=0 ); /* TODO(shess) Why not allow this? */ |
| assert( piStartChild!=NULL ); |
| assert( piEndChild!=NULL ); |
| |
| rc = sql_get_statement(v, BLOCK_SELECT_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_bind_int64(s, 1, iBlockid); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_DONE ) return SQLITE_ERROR; |
| if( rc!=SQLITE_ROW ) return rc; |
| |
| getChildrenContaining(sqlite3_column_blob(s, 0), sqlite3_column_bytes(s, 0), |
| pTerm, nTerm, isPrefix, piStartChild, piEndChild); |
| |
| /* We expect only one row. We must execute another sqlite3_step() |
| * to complete the iteration; otherwise the table will remain |
| * locked. */ |
| rc = sqlite3_step(s); |
| if( rc==SQLITE_ROW ) return SQLITE_ERROR; |
| if( rc!=SQLITE_DONE ) return rc; |
| |
| return SQLITE_OK; |
| } |
| |
| /* Traverse the tree represented by pData[nData] looking for |
| ** pTerm[nTerm], placing its doclist into *out. This is internal to |
| ** loadSegment() to make error-handling cleaner. |
| */ |
| static int loadSegmentInt(fulltext_vtab *v, const char *pData, int nData, |
| sqlite_int64 iLeavesEnd, |
| const char *pTerm, int nTerm, int isPrefix, |
| DataBuffer *out){ |
| /* Special case where root is a leaf. */ |
| if( *pData=='\0' ){ |
| return loadSegmentLeaf(v, pData, nData, pTerm, nTerm, isPrefix, out); |
| }else{ |
| int rc; |
| sqlite_int64 iStartChild, iEndChild; |
| |
| /* Process pData as an interior node, then loop down the tree |
| ** until we find the set of leaf nodes to scan for the term. |
| */ |
| getChildrenContaining(pData, nData, pTerm, nTerm, isPrefix, |
| &iStartChild, &iEndChild); |
| while( iStartChild>iLeavesEnd ){ |
| sqlite_int64 iNextStart, iNextEnd; |
| rc = loadAndGetChildrenContaining(v, iStartChild, pTerm, nTerm, isPrefix, |
| &iNextStart, &iNextEnd); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* If we've branched, follow the end branch, too. */ |
| if( iStartChild!=iEndChild ){ |
| sqlite_int64 iDummy; |
| rc = loadAndGetChildrenContaining(v, iEndChild, pTerm, nTerm, isPrefix, |
| &iDummy, &iNextEnd); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| |
| assert( iNextStart<=iNextEnd ); |
| iStartChild = iNextStart; |
| iEndChild = iNextEnd; |
| } |
| assert( iStartChild<=iLeavesEnd ); |
| assert( iEndChild<=iLeavesEnd ); |
| |
| /* Scan through the leaf segments for doclists. */ |
| return loadSegmentLeaves(v, iStartChild, iEndChild, |
| pTerm, nTerm, isPrefix, out); |
| } |
| } |
| |
| /* Call loadSegmentInt() to collect the doclist for pTerm/nTerm, then |
| ** merge its doclist over *out (any duplicate doclists read from the |
| ** segment rooted at pData will overwrite those in *out). |
| */ |
| /* TODO(shess) Consider changing this to determine the depth of the |
| ** leaves using either the first characters of interior nodes (when |
| ** ==1, we're one level above the leaves), or the first character of |
| ** the root (which will describe the height of the tree directly). |
| ** Either feels somewhat tricky to me. |
| */ |
| /* TODO(shess) The current merge is likely to be slow for large |
| ** doclists (though it should process from newest/smallest to |
| ** oldest/largest, so it may not be that bad). It might be useful to |
| ** modify things to allow for N-way merging. This could either be |
| ** within a segment, with pairwise merges across segments, or across |
| ** all segments at once. |
| */ |
| static int loadSegment(fulltext_vtab *v, const char *pData, int nData, |
| sqlite_int64 iLeavesEnd, |
| const char *pTerm, int nTerm, int isPrefix, |
| DataBuffer *out){ |
| DataBuffer result; |
| int rc; |
| |
| assert( nData>1 ); |
| |
| /* This code should never be called with buffered updates. */ |
| assert( v->nPendingData<0 ); |
| |
| dataBufferInit(&result, 0); |
| rc = loadSegmentInt(v, pData, nData, iLeavesEnd, |
| pTerm, nTerm, isPrefix, &result); |
| if( rc==SQLITE_OK && result.nData>0 ){ |
| if( out->nData==0 ){ |
| DataBuffer tmp = *out; |
| *out = result; |
| result = tmp; |
| }else{ |
| DataBuffer merged; |
| DLReader readers[2]; |
| |
| dlrInit(&readers[0], DL_DEFAULT, out->pData, out->nData); |
| dlrInit(&readers[1], DL_DEFAULT, result.pData, result.nData); |
| dataBufferInit(&merged, out->nData+result.nData); |
| docListMerge(&merged, readers, 2); |
| dataBufferDestroy(out); |
| *out = merged; |
| dlrDestroy(&readers[0]); |
| dlrDestroy(&readers[1]); |
| } |
| } |
| dataBufferDestroy(&result); |
| return rc; |
| } |
| |
| /* Scan the database and merge together the posting lists for the term |
| ** into *out. |
| */ |
| static int termSelect(fulltext_vtab *v, int iColumn, |
| const char *pTerm, int nTerm, int isPrefix, |
| DocListType iType, DataBuffer *out){ |
| DataBuffer doclist; |
| sqlite3_stmt *s; |
| int rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| /* This code should never be called with buffered updates. */ |
| assert( v->nPendingData<0 ); |
| |
| dataBufferInit(&doclist, 0); |
| |
| /* Traverse the segments from oldest to newest so that newer doclist |
| ** elements for given docids overwrite older elements. |
| */ |
| while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
| const char *pData = sqlite3_column_blob(s, 2); |
| const int nData = sqlite3_column_bytes(s, 2); |
| const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); |
| rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, isPrefix, |
| &doclist); |
| if( rc!=SQLITE_OK ) goto err; |
| } |
| if( rc==SQLITE_DONE ){ |
| if( doclist.nData!=0 ){ |
| /* TODO(shess) The old term_select_all() code applied the column |
| ** restrict as we merged segments, leading to smaller buffers. |
| ** This is probably worthwhile to bring back, once the new storage |
| ** system is checked in. |
| */ |
| if( iColumn==v->nColumn) iColumn = -1; |
| docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, |
| iColumn, iType, out); |
| } |
| rc = SQLITE_OK; |
| } |
| |
| err: |
| dataBufferDestroy(&doclist); |
| return rc; |
| } |
| |
| /****************************************************************/ |
| /* Used to hold hashtable data for sorting. */ |
| typedef struct TermData { |
| const char *pTerm; |
| int nTerm; |
| DLCollector *pCollector; |
| } TermData; |
| |
| /* Orders TermData elements in strcmp fashion ( <0 for less-than, 0 |
| ** for equal, >0 for greater-than). |
| */ |
| static int termDataCmp(const void *av, const void *bv){ |
| const TermData *a = (const TermData *)av; |
| const TermData *b = (const TermData *)bv; |
| int n = a->nTerm<b->nTerm ? a->nTerm : b->nTerm; |
| int c = memcmp(a->pTerm, b->pTerm, n); |
| if( c!=0 ) return c; |
| return a->nTerm-b->nTerm; |
| } |
| |
| /* Order pTerms data by term, then write a new level 0 segment using |
| ** LeafWriter. |
| */ |
| static int writeZeroSegment(fulltext_vtab *v, fts2Hash *pTerms){ |
| fts2HashElem *e; |
| int idx, rc, i, n; |
| TermData *pData; |
| LeafWriter writer; |
| DataBuffer dl; |
| |
| /* Determine the next index at level 0, merging as necessary. */ |
| rc = segdirNextIndex(v, 0, &idx); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| n = fts2HashCount(pTerms); |
| pData = sqlite3_malloc(n*sizeof(TermData)); |
| |
| for(i = 0, e = fts2HashFirst(pTerms); e; i++, e = fts2HashNext(e)){ |
| assert( i<n ); |
| pData[i].pTerm = fts2HashKey(e); |
| pData[i].nTerm = fts2HashKeysize(e); |
| pData[i].pCollector = fts2HashData(e); |
| } |
| assert( i==n ); |
| |
| /* TODO(shess) Should we allow user-defined collation sequences, |
| ** here? I think we only need that once we support prefix searches. |
| */ |
| if( n>1 ) qsort(pData, n, sizeof(*pData), termDataCmp); |
| |
| /* TODO(shess) Refactor so that we can write directly to the segment |
| ** DataBuffer, as happens for segment merges. |
| */ |
| leafWriterInit(0, idx, &writer); |
| dataBufferInit(&dl, 0); |
| for(i=0; i<n; i++){ |
| dataBufferReset(&dl); |
| dlcAddDoclist(pData[i].pCollector, &dl); |
| rc = leafWriterStep(v, &writer, |
| pData[i].pTerm, pData[i].nTerm, dl.pData, dl.nData); |
| if( rc!=SQLITE_OK ) goto err; |
| } |
| rc = leafWriterFinalize(v, &writer); |
| |
| err: |
| dataBufferDestroy(&dl); |
| sqlite3_free(pData); |
| leafWriterDestroy(&writer); |
| return rc; |
| } |
| |
| /* If pendingTerms has data, free it. */ |
| static int clearPendingTerms(fulltext_vtab *v){ |
| if( v->nPendingData>=0 ){ |
| fts2HashElem *e; |
| for(e=fts2HashFirst(&v->pendingTerms); e; e=fts2HashNext(e)){ |
| dlcDelete(fts2HashData(e)); |
| } |
| fts2HashClear(&v->pendingTerms); |
| v->nPendingData = -1; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* If pendingTerms has data, flush it to a level-zero segment, and |
| ** free it. |
| */ |
| static int flushPendingTerms(fulltext_vtab *v){ |
| if( v->nPendingData>=0 ){ |
| int rc = writeZeroSegment(v, &v->pendingTerms); |
| if( rc==SQLITE_OK ) clearPendingTerms(v); |
| return rc; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* If pendingTerms is "too big", or docid is out of order, flush it. |
| ** Regardless, be certain that pendingTerms is initialized for use. |
| */ |
| static int initPendingTerms(fulltext_vtab *v, sqlite_int64 iDocid){ |
| /* TODO(shess) Explore whether partially flushing the buffer on |
| ** forced-flush would provide better performance. I suspect that if |
| ** we ordered the doclists by size and flushed the largest until the |
| ** buffer was half empty, that would let the less frequent terms |
| ** generate longer doclists. |
| */ |
| if( iDocid<=v->iPrevDocid || v->nPendingData>kPendingThreshold ){ |
| int rc = flushPendingTerms(v); |
| if( rc!=SQLITE_OK ) return rc; |
| } |
| if( v->nPendingData<0 ){ |
| fts2HashInit(&v->pendingTerms, FTS2_HASH_STRING, 1); |
| v->nPendingData = 0; |
| } |
| v->iPrevDocid = iDocid; |
| return SQLITE_OK; |
| } |
| |
| /* This function implements the xUpdate callback; it is the top-level entry |
| * point for inserting, deleting or updating a row in a full-text table. */ |
| static int fulltextUpdate(sqlite3_vtab *pVtab, int nArg, sqlite3_value **ppArg, |
| sqlite_int64 *pRowid){ |
| fulltext_vtab *v = (fulltext_vtab *) pVtab; |
| int rc; |
| |
| TRACE(("FTS2 Update %p\n", pVtab)); |
| |
| if( nArg<2 ){ |
| rc = index_delete(v, sqlite3_value_int64(ppArg[0])); |
| if( rc==SQLITE_OK ){ |
| /* If we just deleted the last row in the table, clear out the |
| ** index data. |
| */ |
| rc = content_exists(v); |
| if( rc==SQLITE_ROW ){ |
| rc = SQLITE_OK; |
| }else if( rc==SQLITE_DONE ){ |
| /* Clear the pending terms so we don't flush a useless level-0 |
| ** segment when the transaction closes. |
| */ |
| rc = clearPendingTerms(v); |
| if( rc==SQLITE_OK ){ |
| rc = segdir_delete_all(v); |
| } |
| } |
| } |
| } else if( sqlite3_value_type(ppArg[0]) != SQLITE_NULL ){ |
| /* An update: |
| * ppArg[0] = old rowid |
| * ppArg[1] = new rowid |
| * ppArg[2..2+v->nColumn-1] = values |
| * ppArg[2+v->nColumn] = value for magic column (we ignore this) |
| */ |
| sqlite_int64 rowid = sqlite3_value_int64(ppArg[0]); |
| if( sqlite3_value_type(ppArg[1]) != SQLITE_INTEGER || |
| sqlite3_value_int64(ppArg[1]) != rowid ){ |
| rc = SQLITE_ERROR; /* we don't allow changing the rowid */ |
| } else { |
| assert( nArg==2+v->nColumn+1); |
| rc = index_update(v, rowid, &ppArg[2]); |
| } |
| } else { |
| /* An insert: |
| * ppArg[1] = requested rowid |
| * ppArg[2..2+v->nColumn-1] = values |
| * ppArg[2+v->nColumn] = value for magic column (we ignore this) |
| */ |
| assert( nArg==2+v->nColumn+1); |
| rc = index_insert(v, ppArg[1], &ppArg[2], pRowid); |
| } |
| |
| return rc; |
| } |
| |
| static int fulltextSync(sqlite3_vtab *pVtab){ |
| TRACE(("FTS2 xSync()\n")); |
| return flushPendingTerms((fulltext_vtab *)pVtab); |
| } |
| |
| static int fulltextBegin(sqlite3_vtab *pVtab){ |
| fulltext_vtab *v = (fulltext_vtab *) pVtab; |
| TRACE(("FTS2 xBegin()\n")); |
| |
| /* Any buffered updates should have been cleared by the previous |
| ** transaction. |
| */ |
| assert( v->nPendingData<0 ); |
| return clearPendingTerms(v); |
| } |
| |
| static int fulltextCommit(sqlite3_vtab *pVtab){ |
| fulltext_vtab *v = (fulltext_vtab *) pVtab; |
| TRACE(("FTS2 xCommit()\n")); |
| |
| /* Buffered updates should have been cleared by fulltextSync(). */ |
| assert( v->nPendingData<0 ); |
| return clearPendingTerms(v); |
| } |
| |
| static int fulltextRollback(sqlite3_vtab *pVtab){ |
| TRACE(("FTS2 xRollback()\n")); |
| return clearPendingTerms((fulltext_vtab *)pVtab); |
| } |
| |
| /* |
| ** Implementation of the snippet() function for FTS2 |
| */ |
| static void snippetFunc( |
| sqlite3_context *pContext, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| fulltext_cursor *pCursor; |
| if( argc<1 ) return; |
| if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| sqlite3_result_error(pContext, "illegal first argument to html_snippet",-1); |
| }else{ |
| const char *zStart = "<b>"; |
| const char *zEnd = "</b>"; |
| const char *zEllipsis = "<b>...</b>"; |
| memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| if( argc>=2 ){ |
| zStart = (const char*)sqlite3_value_text(argv[1]); |
| if( argc>=3 ){ |
| zEnd = (const char*)sqlite3_value_text(argv[2]); |
| if( argc>=4 ){ |
| zEllipsis = (const char*)sqlite3_value_text(argv[3]); |
| } |
| } |
| } |
| snippetAllOffsets(pCursor); |
| snippetText(pCursor, zStart, zEnd, zEllipsis); |
| sqlite3_result_text(pContext, pCursor->snippet.zSnippet, |
| pCursor->snippet.nSnippet, SQLITE_STATIC); |
| } |
| } |
| |
| /* |
| ** Implementation of the offsets() function for FTS2 |
| */ |
| static void snippetOffsetsFunc( |
| sqlite3_context *pContext, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| fulltext_cursor *pCursor; |
| if( argc<1 ) return; |
| if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| sqlite3_result_error(pContext, "illegal first argument to offsets",-1); |
| }else{ |
| memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| snippetAllOffsets(pCursor); |
| snippetOffsetText(&pCursor->snippet); |
| sqlite3_result_text(pContext, |
| pCursor->snippet.zOffset, pCursor->snippet.nOffset, |
| SQLITE_STATIC); |
| } |
| } |
| |
| /* OptLeavesReader is nearly identical to LeavesReader, except that |
| ** where LeavesReader is geared towards the merging of complete |
| ** segment levels (with exactly MERGE_COUNT segments), OptLeavesReader |
| ** is geared towards implementation of the optimize() function, and |
| ** can merge all segments simultaneously. This version may be |
| ** somewhat less efficient than LeavesReader because it merges into an |
| ** accumulator rather than doing an N-way merge, but since segment |
| ** size grows exponentially (so segment count logrithmically) this is |
| ** probably not an immediate problem. |
| */ |
| /* TODO(shess): Prove that assertion, or extend the merge code to |
| ** merge tree fashion (like the prefix-searching code does). |
| */ |
| /* TODO(shess): OptLeavesReader and LeavesReader could probably be |
| ** merged with little or no loss of performance for LeavesReader. The |
| ** merged code would need to handle >MERGE_COUNT segments, and would |
| ** also need to be able to optionally optimize away deletes. |
| */ |
| typedef struct OptLeavesReader { |
| /* Segment number, to order readers by age. */ |
| int segment; |
| LeavesReader reader; |
| } OptLeavesReader; |
| |
| static int optLeavesReaderAtEnd(OptLeavesReader *pReader){ |
| return leavesReaderAtEnd(&pReader->reader); |
| } |
| static int optLeavesReaderTermBytes(OptLeavesReader *pReader){ |
| return leavesReaderTermBytes(&pReader->reader); |
| } |
| static const char *optLeavesReaderData(OptLeavesReader *pReader){ |
| return leavesReaderData(&pReader->reader); |
| } |
| static int optLeavesReaderDataBytes(OptLeavesReader *pReader){ |
| return leavesReaderDataBytes(&pReader->reader); |
| } |
| static const char *optLeavesReaderTerm(OptLeavesReader *pReader){ |
| return leavesReaderTerm(&pReader->reader); |
| } |
| static int optLeavesReaderStep(fulltext_vtab *v, OptLeavesReader *pReader){ |
| return leavesReaderStep(v, &pReader->reader); |
| } |
| static int optLeavesReaderTermCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ |
| return leavesReaderTermCmp(&lr1->reader, &lr2->reader); |
| } |
| /* Order by term ascending, segment ascending (oldest to newest), with |
| ** exhausted readers to the end. |
| */ |
| static int optLeavesReaderCmp(OptLeavesReader *lr1, OptLeavesReader *lr2){ |
| int c = optLeavesReaderTermCmp(lr1, lr2); |
| if( c!=0 ) return c; |
| return lr1->segment-lr2->segment; |
| } |
| /* Bubble pLr[0] to appropriate place in pLr[1..nLr-1]. Assumes that |
| ** pLr[1..nLr-1] is already sorted. |
| */ |
| static void optLeavesReaderReorder(OptLeavesReader *pLr, int nLr){ |
| while( nLr>1 && optLeavesReaderCmp(pLr, pLr+1)>0 ){ |
| OptLeavesReader tmp = pLr[0]; |
| pLr[0] = pLr[1]; |
| pLr[1] = tmp; |
| nLr--; |
| pLr++; |
| } |
| } |
| |
| /* optimize() helper function. Put the readers in order and iterate |
| ** through them, merging doclists for matching terms into pWriter. |
| ** Returns SQLITE_OK on success, or the SQLite error code which |
| ** prevented success. |
| */ |
| static int optimizeInternal(fulltext_vtab *v, |
| OptLeavesReader *readers, int nReaders, |
| LeafWriter *pWriter){ |
| int i, rc = SQLITE_OK; |
| DataBuffer doclist, merged, tmp; |
| |
| /* Order the readers. */ |
| i = nReaders; |
| while( i-- > 0 ){ |
| optLeavesReaderReorder(&readers[i], nReaders-i); |
| } |
| |
| dataBufferInit(&doclist, LEAF_MAX); |
| dataBufferInit(&merged, LEAF_MAX); |
| |
| /* Exhausted readers bubble to the end, so when the first reader is |
| ** at eof, all are at eof. |
| */ |
| while( !optLeavesReaderAtEnd(&readers[0]) ){ |
| |
| /* Figure out how many readers share the next term. */ |
| for(i=1; i<nReaders && !optLeavesReaderAtEnd(&readers[i]); i++){ |
| if( 0!=optLeavesReaderTermCmp(&readers[0], &readers[i]) ) break; |
| } |
| |
| /* Special-case for no merge. */ |
| if( i==1 ){ |
| /* Trim deletions from the doclist. */ |
| dataBufferReset(&merged); |
| docListTrim(DL_DEFAULT, |
| optLeavesReaderData(&readers[0]), |
| optLeavesReaderDataBytes(&readers[0]), |
| -1, DL_DEFAULT, &merged); |
| }else{ |
| DLReader dlReaders[MERGE_COUNT]; |
| int iReader, nReaders; |
| |
| /* Prime the pipeline with the first reader's doclist. After |
| ** one pass index 0 will reference the accumulated doclist. |
| */ |
| dlrInit(&dlReaders[0], DL_DEFAULT, |
| optLeavesReaderData(&readers[0]), |
| optLeavesReaderDataBytes(&readers[0])); |
| iReader = 1; |
| |
| assert( iReader<i ); /* Must execute the loop at least once. */ |
| while( iReader<i ){ |
| /* Merge 16 inputs per pass. */ |
| for( nReaders=1; iReader<i && nReaders<MERGE_COUNT; |
| iReader++, nReaders++ ){ |
| dlrInit(&dlReaders[nReaders], DL_DEFAULT, |
| optLeavesReaderData(&readers[iReader]), |
| optLeavesReaderDataBytes(&readers[iReader])); |
| } |
| |
| /* Merge doclists and swap result into accumulator. */ |
| dataBufferReset(&merged); |
| docListMerge(&merged, dlReaders, nReaders); |
| tmp = merged; |
| merged = doclist; |
| doclist = tmp; |
| |
| while( nReaders-- > 0 ){ |
| dlrDestroy(&dlReaders[nReaders]); |
| } |
| |
| /* Accumulated doclist to reader 0 for next pass. */ |
| dlrInit(&dlReaders[0], DL_DEFAULT, doclist.pData, doclist.nData); |
| } |
| |
| /* Destroy reader that was left in the pipeline. */ |
| dlrDestroy(&dlReaders[0]); |
| |
| /* Trim deletions from the doclist. */ |
| dataBufferReset(&merged); |
| docListTrim(DL_DEFAULT, doclist.pData, doclist.nData, |
| -1, DL_DEFAULT, &merged); |
| } |
| |
| /* Only pass doclists with hits (skip if all hits deleted). */ |
| if( merged.nData>0 ){ |
| rc = leafWriterStep(v, pWriter, |
| optLeavesReaderTerm(&readers[0]), |
| optLeavesReaderTermBytes(&readers[0]), |
| merged.pData, merged.nData); |
| if( rc!=SQLITE_OK ) goto err; |
| } |
| |
| /* Step merged readers to next term and reorder. */ |
| while( i-- > 0 ){ |
| rc = optLeavesReaderStep(v, &readers[i]); |
| if( rc!=SQLITE_OK ) goto err; |
| |
| optLeavesReaderReorder(&readers[i], nReaders-i); |
| } |
| } |
| |
| err: |
| dataBufferDestroy(&doclist); |
| dataBufferDestroy(&merged); |
| return rc; |
| } |
| |
| /* Implement optimize() function for FTS3. optimize(t) merges all |
| ** segments in the fts index into a single segment. 't' is the magic |
| ** table-named column. |
| */ |
| static void optimizeFunc(sqlite3_context *pContext, |
| int argc, sqlite3_value **argv){ |
| fulltext_cursor *pCursor; |
| if( argc>1 ){ |
| sqlite3_result_error(pContext, "excess arguments to optimize()",-1); |
| }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| sqlite3_result_error(pContext, "illegal first argument to optimize",-1); |
| }else{ |
| fulltext_vtab *v; |
| int i, rc, iMaxLevel; |
| OptLeavesReader *readers; |
| int nReaders; |
| LeafWriter writer; |
| sqlite3_stmt *s; |
| |
| memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| v = cursor_vtab(pCursor); |
| |
| /* Flush any buffered updates before optimizing. */ |
| rc = flushPendingTerms(v); |
| if( rc!=SQLITE_OK ) goto err; |
| |
| rc = segdir_count(v, &nReaders, &iMaxLevel); |
| if( rc!=SQLITE_OK ) goto err; |
| if( nReaders==0 || nReaders==1 ){ |
| sqlite3_result_text(pContext, "Index already optimal", -1, |
| SQLITE_STATIC); |
| return; |
| } |
| |
| rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |
| if( rc!=SQLITE_OK ) goto err; |
| |
| readers = sqlite3_malloc(nReaders*sizeof(readers[0])); |
| if( readers==NULL ) goto err; |
| |
| /* Note that there will already be a segment at this position |
| ** until we call segdir_delete() on iMaxLevel. |
| */ |
| leafWriterInit(iMaxLevel, 0, &writer); |
| |
| i = 0; |
| while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
| sqlite_int64 iStart = sqlite3_column_int64(s, 0); |
| sqlite_int64 iEnd = sqlite3_column_int64(s, 1); |
| const char *pRootData = sqlite3_column_blob(s, 2); |
| int nRootData = sqlite3_column_bytes(s, 2); |
| |
| assert( i<nReaders ); |
| rc = leavesReaderInit(v, -1, iStart, iEnd, pRootData, nRootData, |
| &readers[i].reader); |
| if( rc!=SQLITE_OK ) break; |
| |
| readers[i].segment = i; |
| i++; |
| } |
| |
| /* If we managed to successfully read them all, optimize them. */ |
| if( rc==SQLITE_DONE ){ |
| assert( i==nReaders ); |
| rc = optimizeInternal(v, readers, nReaders, &writer); |
| } |
| |
| while( i-- > 0 ){ |
| leavesReaderDestroy(&readers[i].reader); |
| } |
| sqlite3_free(readers); |
| |
| /* If we've successfully gotten to here, delete the old segments |
| ** and flush the interior structure of the new segment. |
| */ |
| if( rc==SQLITE_OK ){ |
| for( i=0; i<=iMaxLevel; i++ ){ |
| rc = segdir_delete(v, i); |
| if( rc!=SQLITE_OK ) break; |
| } |
| |
| if( rc==SQLITE_OK ) rc = leafWriterFinalize(v, &writer); |
| } |
| |
| leafWriterDestroy(&writer); |
| |
| if( rc!=SQLITE_OK ) goto err; |
| |
| sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); |
| return; |
| |
| /* TODO(shess): Error-handling needs to be improved along the |
| ** lines of the dump_ functions. |
| */ |
| err: |
| { |
| char buf[512]; |
| sqlite3_snprintf(sizeof(buf), buf, "Error in optimize: %s", |
| sqlite3_errmsg(sqlite3_context_db_handle(pContext))); |
| sqlite3_result_error(pContext, buf, -1); |
| } |
| } |
| } |
| |
| #ifdef SQLITE_TEST |
| /* Generate an error of the form "<prefix>: <msg>". If msg is NULL, |
| ** pull the error from the context's db handle. |
| */ |
| static void generateError(sqlite3_context *pContext, |
| const char *prefix, const char *msg){ |
| char buf[512]; |
| if( msg==NULL ) msg = sqlite3_errmsg(sqlite3_context_db_handle(pContext)); |
| sqlite3_snprintf(sizeof(buf), buf, "%s: %s", prefix, msg); |
| sqlite3_result_error(pContext, buf, -1); |
| } |
| |
| /* Helper function to collect the set of terms in the segment into |
| ** pTerms. The segment is defined by the leaf nodes between |
| ** iStartBlockid and iEndBlockid, inclusive, or by the contents of |
| ** pRootData if iStartBlockid is 0 (in which case the entire segment |
| ** fit in a leaf). |
| */ |
| static int collectSegmentTerms(fulltext_vtab *v, sqlite3_stmt *s, |
| fts2Hash *pTerms){ |
| const sqlite_int64 iStartBlockid = sqlite3_column_int64(s, 0); |
| const sqlite_int64 iEndBlockid = sqlite3_column_int64(s, 1); |
| const char *pRootData = sqlite3_column_blob(s, 2); |
| const int nRootData = sqlite3_column_bytes(s, 2); |
| LeavesReader reader; |
| int rc = leavesReaderInit(v, 0, iStartBlockid, iEndBlockid, |
| pRootData, nRootData, &reader); |
| if( rc!=SQLITE_OK ) return rc; |
| |
| while( rc==SQLITE_OK && !leavesReaderAtEnd(&reader) ){ |
| const char *pTerm = leavesReaderTerm(&reader); |
| const int nTerm = leavesReaderTermBytes(&reader); |
| void *oldValue = sqlite3Fts2HashFind(pTerms, pTerm, nTerm); |
| void *newValue = (void *)((char *)oldValue+1); |
| |
| /* From the comment before sqlite3Fts2HashInsert in fts2_hash.c, |
| ** the data value passed is returned in case of malloc failure. |
| */ |
| if( newValue==sqlite3Fts2HashInsert(pTerms, pTerm, nTerm, newValue) ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| rc = leavesReaderStep(v, &reader); |
| } |
| } |
| |
| leavesReaderDestroy(&reader); |
| return rc; |
| } |
| |
| /* Helper function to build the result string for dump_terms(). */ |
| static int generateTermsResult(sqlite3_context *pContext, fts2Hash *pTerms){ |
| int iTerm, nTerms, nResultBytes, iByte; |
| char *result; |
| TermData *pData; |
| fts2HashElem *e; |
| |
| /* Iterate pTerms to generate an array of terms in pData for |
| ** sorting. |
| */ |
| nTerms = fts2HashCount(pTerms); |
| assert( nTerms>0 ); |
| pData = sqlite3_malloc(nTerms*sizeof(TermData)); |
| if( pData==NULL ) return SQLITE_NOMEM; |
| |
| nResultBytes = 0; |
| for(iTerm = 0, e = fts2HashFirst(pTerms); e; iTerm++, e = fts2HashNext(e)){ |
| nResultBytes += fts2HashKeysize(e)+1; /* Term plus trailing space */ |
| assert( iTerm<nTerms ); |
| pData[iTerm].pTerm = fts2HashKey(e); |
| pData[iTerm].nTerm = fts2HashKeysize(e); |
| pData[iTerm].pCollector = fts2HashData(e); /* unused */ |
| } |
| assert( iTerm==nTerms ); |
| |
| assert( nResultBytes>0 ); /* nTerms>0, nResultsBytes must be, too. */ |
| result = sqlite3_malloc(nResultBytes); |
| if( result==NULL ){ |
| sqlite3_free(pData); |
| return SQLITE_NOMEM; |
| } |
| |
| if( nTerms>1 ) qsort(pData, nTerms, sizeof(*pData), termDataCmp); |
| |
| /* Read the terms in order to build the result. */ |
| iByte = 0; |
| for(iTerm=0; iTerm<nTerms; ++iTerm){ |
| memcpy(result+iByte, pData[iTerm].pTerm, pData[iTerm].nTerm); |
| iByte += pData[iTerm].nTerm; |
| result[iByte++] = ' '; |
| } |
| assert( iByte==nResultBytes ); |
| assert( result[nResultBytes-1]==' ' ); |
| result[nResultBytes-1] = '\0'; |
| |
| /* Passes away ownership of result. */ |
| sqlite3_result_text(pContext, result, nResultBytes-1, sqlite3_free); |
| sqlite3_free(pData); |
| return SQLITE_OK; |
| } |
| |
| /* Implements dump_terms() for use in inspecting the fts2 index from |
| ** tests. TEXT result containing the ordered list of terms joined by |
| ** spaces. dump_terms(t, level, idx) dumps the terms for the segment |
| ** specified by level, idx (in %_segdir), while dump_terms(t) dumps |
| ** all terms in the index. In both cases t is the fts table's magic |
| ** table-named column. |
| */ |
| static void dumpTermsFunc( |
| sqlite3_context *pContext, |
| int argc, sqlite3_value **argv |
| ){ |
| fulltext_cursor *pCursor; |
| if( argc!=3 && argc!=1 ){ |
| generateError(pContext, "dump_terms", "incorrect arguments"); |
| }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| generateError(pContext, "dump_terms", "illegal first argument"); |
| }else{ |
| fulltext_vtab *v; |
| fts2Hash terms; |
| sqlite3_stmt *s = NULL; |
| int rc; |
| |
| memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| v = cursor_vtab(pCursor); |
| |
| /* If passed only the cursor column, get all segments. Otherwise |
| ** get the segment described by the following two arguments. |
| */ |
| if( argc==1 ){ |
| rc = sql_get_statement(v, SEGDIR_SELECT_ALL_STMT, &s); |
| }else{ |
| rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[1])); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[2])); |
| } |
| } |
| } |
| |
| if( rc!=SQLITE_OK ){ |
| generateError(pContext, "dump_terms", NULL); |
| return; |
| } |
| |
| /* Collect the terms for each segment. */ |
| sqlite3Fts2HashInit(&terms, FTS2_HASH_STRING, 1); |
| while( (rc = sqlite3_step(s))==SQLITE_ROW ){ |
| rc = collectSegmentTerms(v, s, &terms); |
| if( rc!=SQLITE_OK ) break; |
| } |
| |
| if( rc!=SQLITE_DONE ){ |
| sqlite3_reset(s); |
| generateError(pContext, "dump_terms", NULL); |
| }else{ |
| const int nTerms = fts2HashCount(&terms); |
| if( nTerms>0 ){ |
| rc = generateTermsResult(pContext, &terms); |
| if( rc==SQLITE_NOMEM ){ |
| generateError(pContext, "dump_terms", "out of memory"); |
| }else{ |
| assert( rc==SQLITE_OK ); |
| } |
| }else if( argc==3 ){ |
| /* The specific segment asked for could not be found. */ |
| generateError(pContext, "dump_terms", "segment not found"); |
| }else{ |
| /* No segments found. */ |
| /* TODO(shess): It should be impossible to reach this. This |
| ** case can only happen for an empty table, in which case |
| ** SQLite has no rows to call this function on. |
| */ |
| sqlite3_result_null(pContext); |
| } |
| } |
| sqlite3Fts2HashClear(&terms); |
| } |
| } |
| |
| /* Expand the DL_DEFAULT doclist in pData into a text result in |
| ** pContext. |
| */ |
| static void createDoclistResult(sqlite3_context *pContext, |
| const char *pData, int nData){ |
| DataBuffer dump; |
| DLReader dlReader; |
| |
| assert( pData!=NULL && nData>0 ); |
| |
| dataBufferInit(&dump, 0); |
| dlrInit(&dlReader, DL_DEFAULT, pData, nData); |
| for( ; !dlrAtEnd(&dlReader); dlrStep(&dlReader) ){ |
| char buf[256]; |
| PLReader plReader; |
| |
| plrInit(&plReader, &dlReader); |
| if( DL_DEFAULT==DL_DOCIDS || plrAtEnd(&plReader) ){ |
| sqlite3_snprintf(sizeof(buf), buf, "[%lld] ", dlrDocid(&dlReader)); |
| dataBufferAppend(&dump, buf, strlen(buf)); |
| }else{ |
| int iColumn = plrColumn(&plReader); |
| |
| sqlite3_snprintf(sizeof(buf), buf, "[%lld %d[", |
| dlrDocid(&dlReader), iColumn); |
| dataBufferAppend(&dump, buf, strlen(buf)); |
| |
| for( ; !plrAtEnd(&plReader); plrStep(&plReader) ){ |
| if( plrColumn(&plReader)!=iColumn ){ |
| iColumn = plrColumn(&plReader); |
| sqlite3_snprintf(sizeof(buf), buf, "] %d[", iColumn); |
| assert( dump.nData>0 ); |
| dump.nData--; /* Overwrite trailing space. */ |
| assert( dump.pData[dump.nData]==' '); |
| dataBufferAppend(&dump, buf, strlen(buf)); |
| } |
| if( DL_DEFAULT==DL_POSITIONS_OFFSETS ){ |
| sqlite3_snprintf(sizeof(buf), buf, "%d,%d,%d ", |
| plrPosition(&plReader), |
| plrStartOffset(&plReader), plrEndOffset(&plReader)); |
| }else if( DL_DEFAULT==DL_POSITIONS ){ |
| sqlite3_snprintf(sizeof(buf), buf, "%d ", plrPosition(&plReader)); |
| }else{ |
| assert( NULL=="Unhandled DL_DEFAULT value"); |
| } |
| dataBufferAppend(&dump, buf, strlen(buf)); |
| } |
| plrDestroy(&plReader); |
| |
| assert( dump.nData>0 ); |
| dump.nData--; /* Overwrite trailing space. */ |
| assert( dump.pData[dump.nData]==' '); |
| dataBufferAppend(&dump, "]] ", 3); |
| } |
| } |
| dlrDestroy(&dlReader); |
| |
| assert( dump.nData>0 ); |
| dump.nData--; /* Overwrite trailing space. */ |
| assert( dump.pData[dump.nData]==' '); |
| dump.pData[dump.nData] = '\0'; |
| assert( dump.nData>0 ); |
| |
| /* Passes ownership of dump's buffer to pContext. */ |
| sqlite3_result_text(pContext, dump.pData, dump.nData, sqlite3_free); |
| dump.pData = NULL; |
| dump.nData = dump.nCapacity = 0; |
| } |
| |
| /* Implements dump_doclist() for use in inspecting the fts2 index from |
| ** tests. TEXT result containing a string representation of the |
| ** doclist for the indicated term. dump_doclist(t, term, level, idx) |
| ** dumps the doclist for term from the segment specified by level, idx |
| ** (in %_segdir), while dump_doclist(t, term) dumps the logical |
| ** doclist for the term across all segments. The per-segment doclist |
| ** can contain deletions, while the full-index doclist will not |
| ** (deletions are omitted). |
| ** |
| ** Result formats differ with the setting of DL_DEFAULTS. Examples: |
| ** |
| ** DL_DOCIDS: [1] [3] [7] |
| ** DL_POSITIONS: [1 0[0 4] 1[17]] [3 1[5]] |
| ** DL_POSITIONS_OFFSETS: [1 0[0,0,3 4,23,26] 1[17,102,105]] [3 1[5,20,23]] |
| ** |
| ** In each case the number after the outer '[' is the docid. In the |
| ** latter two cases, the number before the inner '[' is the column |
| ** associated with the values within. For DL_POSITIONS the numbers |
| ** within are the positions, for DL_POSITIONS_OFFSETS they are the |
| ** position, the start offset, and the end offset. |
| */ |
| static void dumpDoclistFunc( |
| sqlite3_context *pContext, |
| int argc, sqlite3_value **argv |
| ){ |
| fulltext_cursor *pCursor; |
| if( argc!=2 && argc!=4 ){ |
| generateError(pContext, "dump_doclist", "incorrect arguments"); |
| }else if( sqlite3_value_type(argv[0])!=SQLITE_BLOB || |
| sqlite3_value_bytes(argv[0])!=sizeof(pCursor) ){ |
| generateError(pContext, "dump_doclist", "illegal first argument"); |
| }else if( sqlite3_value_text(argv[1])==NULL || |
| sqlite3_value_text(argv[1])[0]=='\0' ){ |
| generateError(pContext, "dump_doclist", "empty second argument"); |
| }else{ |
| const char *pTerm = (const char *)sqlite3_value_text(argv[1]); |
| const int nTerm = strlen(pTerm); |
| fulltext_vtab *v; |
| int rc; |
| DataBuffer doclist; |
| |
| memcpy(&pCursor, sqlite3_value_blob(argv[0]), sizeof(pCursor)); |
| v = cursor_vtab(pCursor); |
| |
| dataBufferInit(&doclist, 0); |
| |
| /* termSelect() yields the same logical doclist that queries are |
| ** run against. |
| */ |
| if( argc==2 ){ |
| rc = termSelect(v, v->nColumn, pTerm, nTerm, 0, DL_DEFAULT, &doclist); |
| }else{ |
| sqlite3_stmt *s = NULL; |
| |
| /* Get our specific segment's information. */ |
| rc = sql_get_statement(v, SEGDIR_SELECT_SEGMENT_STMT, &s); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_bind_int(s, 1, sqlite3_value_int(argv[2])); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_bind_int(s, 2, sqlite3_value_int(argv[3])); |
| } |
| } |
| |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_step(s); |
| |
| if( rc==SQLITE_DONE ){ |
| dataBufferDestroy(&doclist); |
| generateError(pContext, "dump_doclist", "segment not found"); |
| return; |
| } |
| |
| /* Found a segment, load it into doclist. */ |
| if( rc==SQLITE_ROW ){ |
| const sqlite_int64 iLeavesEnd = sqlite3_column_int64(s, 1); |
| const char *pData = sqlite3_column_blob(s, 2); |
| const int nData = sqlite3_column_bytes(s, 2); |
| |
| /* loadSegment() is used by termSelect() to load each |
| ** segment's data. |
| */ |
| rc = loadSegment(v, pData, nData, iLeavesEnd, pTerm, nTerm, 0, |
| &doclist); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_step(s); |
| |
| /* Should not have more than one matching segment. */ |
| if( rc!=SQLITE_DONE ){ |
| sqlite3_reset(s); |
| dataBufferDestroy(&doclist); |
| generateError(pContext, "dump_doclist", "invalid segdir"); |
| return; |
| } |
| rc = SQLITE_OK; |
| } |
| } |
| } |
| |
| sqlite3_reset(s); |
| } |
| |
| if( rc==SQLITE_OK ){ |
| if( doclist.nData>0 ){ |
| createDoclistResult(pContext, doclist.pData, doclist.nData); |
| }else{ |
| /* TODO(shess): This can happen if the term is not present, or |
| ** if all instances of the term have been deleted and this is |
| ** an all-index dump. It may be interesting to distinguish |
| ** these cases. |
| */ |
| sqlite3_result_text(pContext, "", 0, SQLITE_STATIC); |
| } |
| }else if( rc==SQLITE_NOMEM ){ |
| /* Handle out-of-memory cases specially because if they are |
| ** generated in fts2 code they may not be reflected in the db |
| ** handle. |
| */ |
| /* TODO(shess): Handle this more comprehensively. |
| ** sqlite3ErrStr() has what I need, but is internal. |
| */ |
| generateError(pContext, "dump_doclist", "out of memory"); |
| }else{ |
| generateError(pContext, "dump_doclist", NULL); |
| } |
| |
| dataBufferDestroy(&doclist); |
| } |
| } |
| #endif |
| |
| /* |
| ** This routine implements the xFindFunction method for the FTS2 |
| ** virtual table. |
| */ |
| static int fulltextFindFunction( |
| sqlite3_vtab *pVtab, |
| int nArg, |
| const char *zName, |
| void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), |
| void **ppArg |
| ){ |
| if( strcmp(zName,"snippet")==0 ){ |
| *pxFunc = snippetFunc; |
| return 1; |
| }else if( strcmp(zName,"offsets")==0 ){ |
| *pxFunc = snippetOffsetsFunc; |
| return 1; |
| }else if( strcmp(zName,"optimize")==0 ){ |
| *pxFunc = optimizeFunc; |
| return 1; |
| #ifdef SQLITE_TEST |
| /* NOTE(shess): These functions are present only for testing |
| ** purposes. No particular effort is made to optimize their |
| ** execution or how they build their results. |
| */ |
| }else if( strcmp(zName,"dump_terms")==0 ){ |
| /* fprintf(stderr, "Found dump_terms\n"); */ |
| *pxFunc = dumpTermsFunc; |
| return 1; |
| }else if( strcmp(zName,"dump_doclist")==0 ){ |
| /* fprintf(stderr, "Found dump_doclist\n"); */ |
| *pxFunc = dumpDoclistFunc; |
| return 1; |
| #endif |
| } |
| return 0; |
| } |
| |
| /* |
| ** Rename an fts2 table. |
| */ |
| static int fulltextRename( |
| sqlite3_vtab *pVtab, |
| const char *zName |
| ){ |
| fulltext_vtab *p = (fulltext_vtab *)pVtab; |
| int rc = SQLITE_NOMEM; |
| char *zSql = sqlite3_mprintf( |
| "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';" |
| "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';" |
| "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';" |
| , p->zDb, p->zName, zName |
| , p->zDb, p->zName, zName |
| , p->zDb, p->zName, zName |
| ); |
| if( zSql ){ |
| rc = sqlite3_exec(p->db, zSql, 0, 0, 0); |
| sqlite3_free(zSql); |
| } |
| return rc; |
| } |
| |
| static const sqlite3_module fts2Module = { |
| /* iVersion */ 0, |
| /* xCreate */ fulltextCreate, |
| /* xConnect */ fulltextConnect, |
| /* xBestIndex */ fulltextBestIndex, |
| /* xDisconnect */ fulltextDisconnect, |
| /* xDestroy */ fulltextDestroy, |
| /* xOpen */ fulltextOpen, |
| /* xClose */ fulltextClose, |
| /* xFilter */ fulltextFilter, |
| /* xNext */ fulltextNext, |
| /* xEof */ fulltextEof, |
| /* xColumn */ fulltextColumn, |
| /* xRowid */ fulltextRowid, |
| /* xUpdate */ fulltextUpdate, |
| /* xBegin */ fulltextBegin, |
| /* xSync */ fulltextSync, |
| /* xCommit */ fulltextCommit, |
| /* xRollback */ fulltextRollback, |
| /* xFindFunction */ fulltextFindFunction, |
| /* xRename */ fulltextRename, |
| }; |
| |
| static void hashDestroy(void *p){ |
| fts2Hash *pHash = (fts2Hash *)p; |
| sqlite3Fts2HashClear(pHash); |
| sqlite3_free(pHash); |
| } |
| |
| /* |
| ** The fts2 built-in tokenizers - "simple" and "porter" - are implemented |
| ** in files fts2_tokenizer1.c and fts2_porter.c respectively. The following |
| ** two forward declarations are for functions declared in these files |
| ** used to retrieve the respective implementations. |
| ** |
| ** Calling sqlite3Fts2SimpleTokenizerModule() sets the value pointed |
| ** to by the argument to point a the "simple" tokenizer implementation. |
| ** Function ...PorterTokenizerModule() sets *pModule to point to the |
| ** porter tokenizer/stemmer implementation. |
| */ |
| void sqlite3Fts2SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
| void sqlite3Fts2PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
| void sqlite3Fts2IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
| |
| int sqlite3Fts2InitHashTable(sqlite3 *, fts2Hash *, const char *); |
| |
| /* |
| ** Initialise the fts2 extension. If this extension is built as part |
| ** of the sqlite library, then this function is called directly by |
| ** SQLite. If fts2 is built as a dynamically loadable extension, this |
| ** function is called by the sqlite3_extension_init() entry point. |
| */ |
| int sqlite3Fts2Init(sqlite3 *db){ |
| int rc = SQLITE_OK; |
| fts2Hash *pHash = 0; |
| const sqlite3_tokenizer_module *pSimple = 0; |
| const sqlite3_tokenizer_module *pPorter = 0; |
| const sqlite3_tokenizer_module *pIcu = 0; |
| |
| sqlite3Fts2SimpleTokenizerModule(&pSimple); |
| sqlite3Fts2PorterTokenizerModule(&pPorter); |
| #ifdef SQLITE_ENABLE_ICU |
| sqlite3Fts2IcuTokenizerModule(&pIcu); |
| #endif |
| |
| /* Allocate and initialise the hash-table used to store tokenizers. */ |
| pHash = sqlite3_malloc(sizeof(fts2Hash)); |
| if( !pHash ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| sqlite3Fts2HashInit(pHash, FTS2_HASH_STRING, 1); |
| } |
| |
| /* Load the built-in tokenizers into the hash table */ |
| if( rc==SQLITE_OK ){ |
| if( sqlite3Fts2HashInsert(pHash, "simple", 7, (void *)pSimple) |
| || sqlite3Fts2HashInsert(pHash, "porter", 7, (void *)pPorter) |
| || (pIcu && sqlite3Fts2HashInsert(pHash, "icu", 4, (void *)pIcu)) |
| ){ |
| rc = SQLITE_NOMEM; |
| } |
| } |
| |
| /* Create the virtual table wrapper around the hash-table and overload |
| ** the two scalar functions. If this is successful, register the |
| ** module with sqlite. |
| */ |
| if( SQLITE_OK==rc |
| && SQLITE_OK==(rc = sqlite3Fts2InitHashTable(db, pHash, "fts2_tokenizer")) |
| && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) |
| && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", -1)) |
| && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", -1)) |
| #ifdef SQLITE_TEST |
| && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_terms", -1)) |
| && SQLITE_OK==(rc = sqlite3_overload_function(db, "dump_doclist", -1)) |
| #endif |
| ){ |
| return sqlite3_create_module_v2( |
| db, "fts2", &fts2Module, (void *)pHash, hashDestroy |
| ); |
| } |
| |
| /* An error has occurred. Delete the hash table and return the error code. */ |
| assert( rc!=SQLITE_OK ); |
| if( pHash ){ |
| sqlite3Fts2HashClear(pHash); |
| sqlite3_free(pHash); |
| } |
| return rc; |
| } |
| |
| #if !SQLITE_CORE |
| int sqlite3_extension_init( |
| sqlite3 *db, |
| char **pzErrMsg, |
| const sqlite3_api_routines *pApi |
| ){ |
| SQLITE_EXTENSION_INIT2(pApi) |
| return sqlite3Fts2Init(db); |
| } |
| #endif |
| |
| #endif /* !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS2) */ |