| /* |
| ** 2008 August 05 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file implements that page cache. |
| */ |
| #include "sqliteInt.h" |
| |
| /* |
| ** A complete page cache is an instance of this structure. |
| */ |
| struct PCache { |
| PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ |
| PgHdr *pSynced; /* Last synced page in dirty page list */ |
| int nRef; /* Number of referenced pages */ |
| int szCache; /* Configured cache size */ |
| int szPage; /* Size of every page in this cache */ |
| int szExtra; /* Size of extra space for each page */ |
| u8 bPurgeable; /* True if pages are on backing store */ |
| u8 eCreate; /* eCreate value for for xFetch() */ |
| int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ |
| void *pStress; /* Argument to xStress */ |
| sqlite3_pcache *pCache; /* Pluggable cache module */ |
| PgHdr *pPage1; /* Reference to page 1 */ |
| }; |
| |
| /* |
| ** Some of the assert() macros in this code are too expensive to run |
| ** even during normal debugging. Use them only rarely on long-running |
| ** tests. Enable the expensive asserts using the |
| ** -DSQLITE_ENABLE_EXPENSIVE_ASSERT=1 compile-time option. |
| */ |
| #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT |
| # define expensive_assert(X) assert(X) |
| #else |
| # define expensive_assert(X) |
| #endif |
| |
| /********************************** Linked List Management ********************/ |
| |
| /* Allowed values for second argument to pcacheManageDirtyList() */ |
| #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ |
| #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ |
| #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ |
| |
| /* |
| ** Manage pPage's participation on the dirty list. Bits of the addRemove |
| ** argument determines what operation to do. The 0x01 bit means first |
| ** remove pPage from the dirty list. The 0x02 means add pPage back to |
| ** the dirty list. Doing both moves pPage to the front of the dirty list. |
| */ |
| static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ |
| PCache *p = pPage->pCache; |
| |
| if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ |
| assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); |
| assert( pPage->pDirtyPrev || pPage==p->pDirty ); |
| |
| /* Update the PCache1.pSynced variable if necessary. */ |
| if( p->pSynced==pPage ){ |
| PgHdr *pSynced = pPage->pDirtyPrev; |
| while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){ |
| pSynced = pSynced->pDirtyPrev; |
| } |
| p->pSynced = pSynced; |
| } |
| |
| if( pPage->pDirtyNext ){ |
| pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; |
| }else{ |
| assert( pPage==p->pDirtyTail ); |
| p->pDirtyTail = pPage->pDirtyPrev; |
| } |
| if( pPage->pDirtyPrev ){ |
| pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; |
| }else{ |
| assert( pPage==p->pDirty ); |
| p->pDirty = pPage->pDirtyNext; |
| if( p->pDirty==0 && p->bPurgeable ){ |
| assert( p->eCreate==1 ); |
| p->eCreate = 2; |
| } |
| } |
| pPage->pDirtyNext = 0; |
| pPage->pDirtyPrev = 0; |
| } |
| if( addRemove & PCACHE_DIRTYLIST_ADD ){ |
| assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); |
| |
| pPage->pDirtyNext = p->pDirty; |
| if( pPage->pDirtyNext ){ |
| assert( pPage->pDirtyNext->pDirtyPrev==0 ); |
| pPage->pDirtyNext->pDirtyPrev = pPage; |
| }else{ |
| p->pDirtyTail = pPage; |
| if( p->bPurgeable ){ |
| assert( p->eCreate==2 ); |
| p->eCreate = 1; |
| } |
| } |
| p->pDirty = pPage; |
| if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ |
| p->pSynced = pPage; |
| } |
| } |
| } |
| |
| /* |
| ** Wrapper around the pluggable caches xUnpin method. If the cache is |
| ** being used for an in-memory database, this function is a no-op. |
| */ |
| static void pcacheUnpin(PgHdr *p){ |
| if( p->pCache->bPurgeable ){ |
| if( p->pgno==1 ){ |
| p->pCache->pPage1 = 0; |
| } |
| sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); |
| } |
| } |
| |
| /* |
| ** Compute the number of pages of cache requested. |
| */ |
| static int numberOfCachePages(PCache *p){ |
| if( p->szCache>=0 ){ |
| return p->szCache; |
| }else{ |
| return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); |
| } |
| } |
| |
| /*************************************************** General Interfaces ****** |
| ** |
| ** Initialize and shutdown the page cache subsystem. Neither of these |
| ** functions are threadsafe. |
| */ |
| int sqlite3PcacheInitialize(void){ |
| if( sqlite3GlobalConfig.pcache2.xInit==0 ){ |
| /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the |
| ** built-in default page cache is used instead of the application defined |
| ** page cache. */ |
| sqlite3PCacheSetDefault(); |
| } |
| return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); |
| } |
| void sqlite3PcacheShutdown(void){ |
| if( sqlite3GlobalConfig.pcache2.xShutdown ){ |
| /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ |
| sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); |
| } |
| } |
| |
| /* |
| ** Return the size in bytes of a PCache object. |
| */ |
| int sqlite3PcacheSize(void){ return sizeof(PCache); } |
| |
| /* |
| ** Create a new PCache object. Storage space to hold the object |
| ** has already been allocated and is passed in as the p pointer. |
| ** The caller discovers how much space needs to be allocated by |
| ** calling sqlite3PcacheSize(). |
| */ |
| int sqlite3PcacheOpen( |
| int szPage, /* Size of every page */ |
| int szExtra, /* Extra space associated with each page */ |
| int bPurgeable, /* True if pages are on backing store */ |
| int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ |
| void *pStress, /* Argument to xStress */ |
| PCache *p /* Preallocated space for the PCache */ |
| ){ |
| memset(p, 0, sizeof(PCache)); |
| p->szPage = 1; |
| p->szExtra = szExtra; |
| p->bPurgeable = bPurgeable; |
| p->eCreate = 2; |
| p->xStress = xStress; |
| p->pStress = pStress; |
| p->szCache = 100; |
| return sqlite3PcacheSetPageSize(p, szPage); |
| } |
| |
| /* |
| ** Change the page size for PCache object. The caller must ensure that there |
| ** are no outstanding page references when this function is called. |
| */ |
| int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ |
| assert( pCache->nRef==0 && pCache->pDirty==0 ); |
| if( pCache->szPage ){ |
| sqlite3_pcache *pNew; |
| pNew = sqlite3GlobalConfig.pcache2.xCreate( |
| szPage, pCache->szExtra + sizeof(PgHdr), pCache->bPurgeable |
| ); |
| if( pNew==0 ) return SQLITE_NOMEM; |
| sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); |
| if( pCache->pCache ){ |
| sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); |
| } |
| pCache->pCache = pNew; |
| pCache->pPage1 = 0; |
| pCache->szPage = szPage; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Try to obtain a page from the cache. |
| ** |
| ** This routine returns a pointer to an sqlite3_pcache_page object if |
| ** such an object is already in cache, or if a new one is created. |
| ** This routine returns a NULL pointer if the object was not in cache |
| ** and could not be created. |
| ** |
| ** The createFlags should be 0 to check for existing pages and should |
| ** be 3 (not 1, but 3) to try to create a new page. |
| ** |
| ** If the createFlag is 0, then NULL is always returned if the page |
| ** is not already in the cache. If createFlag is 1, then a new page |
| ** is created only if that can be done without spilling dirty pages |
| ** and without exceeding the cache size limit. |
| ** |
| ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly |
| ** initialize the sqlite3_pcache_page object and convert it into a |
| ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() |
| ** routines are split this way for performance reasons. When separated |
| ** they can both (usually) operate without having to push values to |
| ** the stack on entry and pop them back off on exit, which saves a |
| ** lot of pushing and popping. |
| */ |
| sqlite3_pcache_page *sqlite3PcacheFetch( |
| PCache *pCache, /* Obtain the page from this cache */ |
| Pgno pgno, /* Page number to obtain */ |
| int createFlag /* If true, create page if it does not exist already */ |
| ){ |
| int eCreate; |
| |
| assert( pCache!=0 ); |
| assert( pCache->pCache!=0 ); |
| assert( createFlag==3 || createFlag==0 ); |
| assert( pgno>0 ); |
| |
| /* eCreate defines what to do if the page does not exist. |
| ** 0 Do not allocate a new page. (createFlag==0) |
| ** 1 Allocate a new page if doing so is inexpensive. |
| ** (createFlag==1 AND bPurgeable AND pDirty) |
| ** 2 Allocate a new page even it doing so is difficult. |
| ** (createFlag==1 AND !(bPurgeable AND pDirty) |
| */ |
| eCreate = createFlag & pCache->eCreate; |
| assert( eCreate==0 || eCreate==1 || eCreate==2 ); |
| assert( createFlag==0 || pCache->eCreate==eCreate ); |
| assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); |
| return sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); |
| } |
| |
| /* |
| ** If the sqlite3PcacheFetch() routine is unable to allocate a new |
| ** page because new clean pages are available for reuse and the cache |
| ** size limit has been reached, then this routine can be invoked to |
| ** try harder to allocate a page. This routine might invoke the stress |
| ** callback to spill dirty pages to the journal. It will then try to |
| ** allocate the new page and will only fail to allocate a new page on |
| ** an OOM error. |
| ** |
| ** This routine should be invoked only after sqlite3PcacheFetch() fails. |
| */ |
| int sqlite3PcacheFetchStress( |
| PCache *pCache, /* Obtain the page from this cache */ |
| Pgno pgno, /* Page number to obtain */ |
| sqlite3_pcache_page **ppPage /* Write result here */ |
| ){ |
| PgHdr *pPg; |
| if( pCache->eCreate==2 ) return 0; |
| |
| |
| /* Find a dirty page to write-out and recycle. First try to find a |
| ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC |
| ** cleared), but if that is not possible settle for any other |
| ** unreferenced dirty page. |
| */ |
| for(pPg=pCache->pSynced; |
| pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); |
| pPg=pPg->pDirtyPrev |
| ); |
| pCache->pSynced = pPg; |
| if( !pPg ){ |
| for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); |
| } |
| if( pPg ){ |
| int rc; |
| #ifdef SQLITE_LOG_CACHE_SPILL |
| sqlite3_log(SQLITE_FULL, |
| "spill page %d making room for %d - cache used: %d/%d", |
| pPg->pgno, pgno, |
| sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), |
| numberOfCachePages(pCache)); |
| #endif |
| rc = pCache->xStress(pCache->pStress, pPg); |
| if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ |
| return rc; |
| } |
| } |
| *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); |
| return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK; |
| } |
| |
| /* |
| ** This is a helper routine for sqlite3PcacheFetchFinish() |
| ** |
| ** In the uncommon case where the page being fetched has not been |
| ** initialized, this routine is invoked to do the initialization. |
| ** This routine is broken out into a separate function since it |
| ** requires extra stack manipulation that can be avoided in the common |
| ** case. |
| */ |
| static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( |
| PCache *pCache, /* Obtain the page from this cache */ |
| Pgno pgno, /* Page number obtained */ |
| sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ |
| ){ |
| PgHdr *pPgHdr; |
| assert( pPage!=0 ); |
| pPgHdr = (PgHdr*)pPage->pExtra; |
| assert( pPgHdr->pPage==0 ); |
| memset(pPgHdr, 0, sizeof(PgHdr)); |
| pPgHdr->pPage = pPage; |
| pPgHdr->pData = pPage->pBuf; |
| pPgHdr->pExtra = (void *)&pPgHdr[1]; |
| memset(pPgHdr->pExtra, 0, pCache->szExtra); |
| pPgHdr->pCache = pCache; |
| pPgHdr->pgno = pgno; |
| return sqlite3PcacheFetchFinish(pCache,pgno,pPage); |
| } |
| |
| /* |
| ** This routine converts the sqlite3_pcache_page object returned by |
| ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine |
| ** must be called after sqlite3PcacheFetch() in order to get a usable |
| ** result. |
| */ |
| PgHdr *sqlite3PcacheFetchFinish( |
| PCache *pCache, /* Obtain the page from this cache */ |
| Pgno pgno, /* Page number obtained */ |
| sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ |
| ){ |
| PgHdr *pPgHdr; |
| |
| if( pPage==0 ) return 0; |
| pPgHdr = (PgHdr *)pPage->pExtra; |
| |
| if( !pPgHdr->pPage ){ |
| return pcacheFetchFinishWithInit(pCache, pgno, pPage); |
| } |
| if( 0==pPgHdr->nRef ){ |
| pCache->nRef++; |
| } |
| pPgHdr->nRef++; |
| if( pgno==1 ){ |
| pCache->pPage1 = pPgHdr; |
| } |
| return pPgHdr; |
| } |
| |
| /* |
| ** Decrement the reference count on a page. If the page is clean and the |
| ** reference count drops to 0, then it is made eligible for recycling. |
| */ |
| void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ |
| assert( p->nRef>0 ); |
| p->nRef--; |
| if( p->nRef==0 ){ |
| p->pCache->nRef--; |
| if( (p->flags&PGHDR_DIRTY)==0 ){ |
| pcacheUnpin(p); |
| }else if( p->pDirtyPrev!=0 ){ |
| /* Move the page to the head of the dirty list. */ |
| pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); |
| } |
| } |
| } |
| |
| /* |
| ** Increase the reference count of a supplied page by 1. |
| */ |
| void sqlite3PcacheRef(PgHdr *p){ |
| assert(p->nRef>0); |
| p->nRef++; |
| } |
| |
| /* |
| ** Drop a page from the cache. There must be exactly one reference to the |
| ** page. This function deletes that reference, so after it returns the |
| ** page pointed to by p is invalid. |
| */ |
| void sqlite3PcacheDrop(PgHdr *p){ |
| assert( p->nRef==1 ); |
| if( p->flags&PGHDR_DIRTY ){ |
| pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); |
| } |
| p->pCache->nRef--; |
| if( p->pgno==1 ){ |
| p->pCache->pPage1 = 0; |
| } |
| sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); |
| } |
| |
| /* |
| ** Make sure the page is marked as dirty. If it isn't dirty already, |
| ** make it so. |
| */ |
| void sqlite3PcacheMakeDirty(PgHdr *p){ |
| p->flags &= ~PGHDR_DONT_WRITE; |
| assert( p->nRef>0 ); |
| if( 0==(p->flags & PGHDR_DIRTY) ){ |
| p->flags |= PGHDR_DIRTY; |
| pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); |
| } |
| } |
| |
| /* |
| ** Make sure the page is marked as clean. If it isn't clean already, |
| ** make it so. |
| */ |
| void sqlite3PcacheMakeClean(PgHdr *p){ |
| if( (p->flags & PGHDR_DIRTY) ){ |
| pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); |
| p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC); |
| if( p->nRef==0 ){ |
| pcacheUnpin(p); |
| } |
| } |
| } |
| |
| /* |
| ** Make every page in the cache clean. |
| */ |
| void sqlite3PcacheCleanAll(PCache *pCache){ |
| PgHdr *p; |
| while( (p = pCache->pDirty)!=0 ){ |
| sqlite3PcacheMakeClean(p); |
| } |
| } |
| |
| /* |
| ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. |
| */ |
| void sqlite3PcacheClearSyncFlags(PCache *pCache){ |
| PgHdr *p; |
| for(p=pCache->pDirty; p; p=p->pDirtyNext){ |
| p->flags &= ~PGHDR_NEED_SYNC; |
| } |
| pCache->pSynced = pCache->pDirtyTail; |
| } |
| |
| /* |
| ** Change the page number of page p to newPgno. |
| */ |
| void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ |
| PCache *pCache = p->pCache; |
| assert( p->nRef>0 ); |
| assert( newPgno>0 ); |
| sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); |
| p->pgno = newPgno; |
| if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ |
| pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); |
| } |
| } |
| |
| /* |
| ** Drop every cache entry whose page number is greater than "pgno". The |
| ** caller must ensure that there are no outstanding references to any pages |
| ** other than page 1 with a page number greater than pgno. |
| ** |
| ** If there is a reference to page 1 and the pgno parameter passed to this |
| ** function is 0, then the data area associated with page 1 is zeroed, but |
| ** the page object is not dropped. |
| */ |
| void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ |
| if( pCache->pCache ){ |
| PgHdr *p; |
| PgHdr *pNext; |
| for(p=pCache->pDirty; p; p=pNext){ |
| pNext = p->pDirtyNext; |
| /* This routine never gets call with a positive pgno except right |
| ** after sqlite3PcacheCleanAll(). So if there are dirty pages, |
| ** it must be that pgno==0. |
| */ |
| assert( p->pgno>0 ); |
| if( ALWAYS(p->pgno>pgno) ){ |
| assert( p->flags&PGHDR_DIRTY ); |
| sqlite3PcacheMakeClean(p); |
| } |
| } |
| if( pgno==0 && pCache->pPage1 ){ |
| memset(pCache->pPage1->pData, 0, pCache->szPage); |
| pgno = 1; |
| } |
| sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); |
| } |
| } |
| |
| /* |
| ** Close a cache. |
| */ |
| void sqlite3PcacheClose(PCache *pCache){ |
| assert( pCache->pCache!=0 ); |
| sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); |
| } |
| |
| /* |
| ** Discard the contents of the cache. |
| */ |
| void sqlite3PcacheClear(PCache *pCache){ |
| sqlite3PcacheTruncate(pCache, 0); |
| } |
| |
| /* |
| ** Merge two lists of pages connected by pDirty and in pgno order. |
| ** Do not both fixing the pDirtyPrev pointers. |
| */ |
| static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ |
| PgHdr result, *pTail; |
| pTail = &result; |
| while( pA && pB ){ |
| if( pA->pgno<pB->pgno ){ |
| pTail->pDirty = pA; |
| pTail = pA; |
| pA = pA->pDirty; |
| }else{ |
| pTail->pDirty = pB; |
| pTail = pB; |
| pB = pB->pDirty; |
| } |
| } |
| if( pA ){ |
| pTail->pDirty = pA; |
| }else if( pB ){ |
| pTail->pDirty = pB; |
| }else{ |
| pTail->pDirty = 0; |
| } |
| return result.pDirty; |
| } |
| |
| /* |
| ** Sort the list of pages in accending order by pgno. Pages are |
| ** connected by pDirty pointers. The pDirtyPrev pointers are |
| ** corrupted by this sort. |
| ** |
| ** Since there cannot be more than 2^31 distinct pages in a database, |
| ** there cannot be more than 31 buckets required by the merge sorter. |
| ** One extra bucket is added to catch overflow in case something |
| ** ever changes to make the previous sentence incorrect. |
| */ |
| #define N_SORT_BUCKET 32 |
| static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ |
| PgHdr *a[N_SORT_BUCKET], *p; |
| int i; |
| memset(a, 0, sizeof(a)); |
| while( pIn ){ |
| p = pIn; |
| pIn = p->pDirty; |
| p->pDirty = 0; |
| for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ |
| if( a[i]==0 ){ |
| a[i] = p; |
| break; |
| }else{ |
| p = pcacheMergeDirtyList(a[i], p); |
| a[i] = 0; |
| } |
| } |
| if( NEVER(i==N_SORT_BUCKET-1) ){ |
| /* To get here, there need to be 2^(N_SORT_BUCKET) elements in |
| ** the input list. But that is impossible. |
| */ |
| a[i] = pcacheMergeDirtyList(a[i], p); |
| } |
| } |
| p = a[0]; |
| for(i=1; i<N_SORT_BUCKET; i++){ |
| p = pcacheMergeDirtyList(p, a[i]); |
| } |
| return p; |
| } |
| |
| /* |
| ** Return a list of all dirty pages in the cache, sorted by page number. |
| */ |
| PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ |
| PgHdr *p; |
| for(p=pCache->pDirty; p; p=p->pDirtyNext){ |
| p->pDirty = p->pDirtyNext; |
| } |
| return pcacheSortDirtyList(pCache->pDirty); |
| } |
| |
| /* |
| ** Return the total number of referenced pages held by the cache. |
| */ |
| int sqlite3PcacheRefCount(PCache *pCache){ |
| return pCache->nRef; |
| } |
| |
| /* |
| ** Return the number of references to the page supplied as an argument. |
| */ |
| int sqlite3PcachePageRefcount(PgHdr *p){ |
| return p->nRef; |
| } |
| |
| /* |
| ** Return the total number of pages in the cache. |
| */ |
| int sqlite3PcachePagecount(PCache *pCache){ |
| assert( pCache->pCache!=0 ); |
| return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); |
| } |
| |
| #ifdef SQLITE_TEST |
| /* |
| ** Get the suggested cache-size value. |
| */ |
| int sqlite3PcacheGetCachesize(PCache *pCache){ |
| return numberOfCachePages(pCache); |
| } |
| #endif |
| |
| /* |
| ** Set the suggested cache-size value. |
| */ |
| void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ |
| assert( pCache->pCache!=0 ); |
| pCache->szCache = mxPage; |
| sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, |
| numberOfCachePages(pCache)); |
| } |
| |
| /* |
| ** Free up as much memory as possible from the page cache. |
| */ |
| void sqlite3PcacheShrink(PCache *pCache){ |
| assert( pCache->pCache!=0 ); |
| sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); |
| } |
| |
| #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) |
| /* |
| ** For all dirty pages currently in the cache, invoke the specified |
| ** callback. This is only used if the SQLITE_CHECK_PAGES macro is |
| ** defined. |
| */ |
| void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ |
| PgHdr *pDirty; |
| for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ |
| xIter(pDirty); |
| } |
| } |
| #endif |