Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 1 | /* origin: OpenBSD /usr/src/lib/libm/src/ld80/e_expl.c */ |
| 2 | /* |
| 3 | * Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net> |
| 4 | * |
| 5 | * Permission to use, copy, modify, and distribute this software for any |
| 6 | * purpose with or without fee is hereby granted, provided that the above |
| 7 | * copyright notice and this permission notice appear in all copies. |
| 8 | * |
| 9 | * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES |
| 10 | * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF |
| 11 | * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR |
| 12 | * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES |
| 13 | * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN |
| 14 | * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF |
| 15 | * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. |
| 16 | */ |
| 17 | /* |
| 18 | * Exponential function, long double precision |
| 19 | * |
| 20 | * |
| 21 | * SYNOPSIS: |
| 22 | * |
| 23 | * long double x, y, expl(); |
| 24 | * |
| 25 | * y = expl( x ); |
| 26 | * |
| 27 | * |
| 28 | * DESCRIPTION: |
| 29 | * |
| 30 | * Returns e (2.71828...) raised to the x power. |
| 31 | * |
| 32 | * Range reduction is accomplished by separating the argument |
| 33 | * into an integer k and fraction f such that |
| 34 | * |
| 35 | * x k f |
| 36 | * e = 2 e. |
| 37 | * |
| 38 | * A Pade' form of degree 5/6 is used to approximate exp(f) - 1 |
| 39 | * in the basic range [-0.5 ln 2, 0.5 ln 2]. |
| 40 | * |
| 41 | * |
| 42 | * ACCURACY: |
| 43 | * |
| 44 | * Relative error: |
| 45 | * arithmetic domain # trials peak rms |
| 46 | * IEEE +-10000 50000 1.12e-19 2.81e-20 |
| 47 | * |
| 48 | * |
| 49 | * Error amplification in the exponential function can be |
| 50 | * a serious matter. The error propagation involves |
| 51 | * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ), |
| 52 | * which shows that a 1 lsb error in representing X produces |
| 53 | * a relative error of X times 1 lsb in the function. |
| 54 | * While the routine gives an accurate result for arguments |
| 55 | * that are exactly represented by a long double precision |
| 56 | * computer number, the result contains amplified roundoff |
| 57 | * error for large arguments not exactly represented. |
| 58 | * |
| 59 | * |
| 60 | * ERROR MESSAGES: |
| 61 | * |
| 62 | * message condition value returned |
| 63 | * exp underflow x < MINLOG 0.0 |
| 64 | * exp overflow x > MAXLOG MAXNUM |
| 65 | * |
| 66 | */ |
| 67 | |
| 68 | #include "libm.h" |
| 69 | |
| 70 | #if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024 |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 71 | long double expl(long double x) { |
| 72 | return exp(x); |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 73 | } |
| 74 | #elif LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 |
| 75 | |
| 76 | static const long double P[3] = { |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 77 | 1.2617719307481059087798E-4L, 3.0299440770744196129956E-2L, |
| 78 | 9.9999999999999999991025E-1L, |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 79 | }; |
| 80 | static const long double Q[4] = { |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 81 | 3.0019850513866445504159E-6L, 2.5244834034968410419224E-3L, |
| 82 | 2.2726554820815502876593E-1L, 2.0000000000000000000897E0L, |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 83 | }; |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 84 | static const long double LN2HI = 6.9314575195312500000000E-1L, |
| 85 | LN2LO = 1.4286068203094172321215E-6L, |
| 86 | LOG2E = 1.4426950408889634073599E0L; |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 87 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 88 | long double expl(long double x) { |
| 89 | long double px, xx; |
| 90 | int k; |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 91 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 92 | if (isnan(x)) |
| 93 | return x; |
| 94 | if (x > 11356.5234062941439488L) /* x > ln(2^16384 - 0.5) */ |
| 95 | return x * 0x1p16383L; |
| 96 | if (x < -11399.4985314888605581L) /* x < ln(2^-16446) */ |
| 97 | return -0x1p-16445L / x; |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 98 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 99 | /* Express e**x = e**f 2**k |
| 100 | * = e**(f + k ln(2)) |
| 101 | */ |
| 102 | px = floorl(LOG2E * x + 0.5); |
| 103 | k = px; |
| 104 | x -= px * LN2HI; |
| 105 | x -= px * LN2LO; |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 106 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 107 | /* rational approximation of the fractional part: |
| 108 | * e**x = 1 + 2x P(x**2)/(Q(x**2) - x P(x**2)) |
| 109 | */ |
| 110 | xx = x * x; |
| 111 | px = x * __polevll(xx, P, 2); |
| 112 | x = px / (__polevll(xx, Q, 3) - px); |
| 113 | x = 1.0 + 2.0 * x; |
| 114 | return scalbnl(x, k); |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 115 | } |
| 116 | #elif LDBL_MANT_DIG == 113 && LDBL_MAX_EXP == 16384 |
| 117 | // TODO: broken implementation to make things compile |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 118 | long double expl(long double x) { |
| 119 | return exp(x); |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 120 | } |
| 121 | #endif |