Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 1 | /* origin: FreeBSD /usr/src/lib/msun/src/e_lgamma_r.c */ |
| 2 | /* |
| 3 | * ==================================================== |
| 4 | * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 5 | * |
| 6 | * Developed at SunSoft, a Sun Microsystems, Inc. business. |
| 7 | * Permission to use, copy, modify, and distribute this |
| 8 | * software is freely granted, provided that this notice |
| 9 | * is preserved. |
| 10 | * ==================================================== |
| 11 | * |
| 12 | */ |
| 13 | /* lgamma_r(x, signgamp) |
| 14 | * Reentrant version of the logarithm of the Gamma function |
| 15 | * with user provide pointer for the sign of Gamma(x). |
| 16 | * |
| 17 | * Method: |
| 18 | * 1. Argument Reduction for 0 < x <= 8 |
| 19 | * Since gamma(1+s)=s*gamma(s), for x in [0,8], we may |
| 20 | * reduce x to a number in [1.5,2.5] by |
| 21 | * lgamma(1+s) = log(s) + lgamma(s) |
| 22 | * for example, |
| 23 | * lgamma(7.3) = log(6.3) + lgamma(6.3) |
| 24 | * = log(6.3*5.3) + lgamma(5.3) |
| 25 | * = log(6.3*5.3*4.3*3.3*2.3) + lgamma(2.3) |
| 26 | * 2. Polynomial approximation of lgamma around its |
| 27 | * minimun ymin=1.461632144968362245 to maintain monotonicity. |
| 28 | * On [ymin-0.23, ymin+0.27] (i.e., [1.23164,1.73163]), use |
| 29 | * Let z = x-ymin; |
| 30 | * lgamma(x) = -1.214862905358496078218 + z^2*poly(z) |
| 31 | * where |
| 32 | * poly(z) is a 14 degree polynomial. |
| 33 | * 2. Rational approximation in the primary interval [2,3] |
| 34 | * We use the following approximation: |
| 35 | * s = x-2.0; |
| 36 | * lgamma(x) = 0.5*s + s*P(s)/Q(s) |
| 37 | * with accuracy |
| 38 | * |P/Q - (lgamma(x)-0.5s)| < 2**-61.71 |
| 39 | * Our algorithms are based on the following observation |
| 40 | * |
| 41 | * zeta(2)-1 2 zeta(3)-1 3 |
| 42 | * lgamma(2+s) = s*(1-Euler) + --------- * s - --------- * s + ... |
| 43 | * 2 3 |
| 44 | * |
| 45 | * where Euler = 0.5771... is the Euler constant, which is very |
| 46 | * close to 0.5. |
| 47 | * |
| 48 | * 3. For x>=8, we have |
| 49 | * lgamma(x)~(x-0.5)log(x)-x+0.5*log(2pi)+1/(12x)-1/(360x**3)+.... |
| 50 | * (better formula: |
| 51 | * lgamma(x)~(x-0.5)*(log(x)-1)-.5*(log(2pi)-1) + ...) |
| 52 | * Let z = 1/x, then we approximation |
| 53 | * f(z) = lgamma(x) - (x-0.5)(log(x)-1) |
| 54 | * by |
| 55 | * 3 5 11 |
| 56 | * w = w0 + w1*z + w2*z + w3*z + ... + w6*z |
| 57 | * where |
| 58 | * |w - f(z)| < 2**-58.74 |
| 59 | * |
| 60 | * 4. For negative x, since (G is gamma function) |
| 61 | * -x*G(-x)*G(x) = pi/sin(pi*x), |
| 62 | * we have |
| 63 | * G(x) = pi/(sin(pi*x)*(-x)*G(-x)) |
| 64 | * since G(-x) is positive, sign(G(x)) = sign(sin(pi*x)) for x<0 |
| 65 | * Hence, for x<0, signgam = sign(sin(pi*x)) and |
| 66 | * lgamma(x) = log(|Gamma(x)|) |
| 67 | * = log(pi/(|x*sin(pi*x)|)) - lgamma(-x); |
| 68 | * Note: one should avoid compute pi*(-x) directly in the |
| 69 | * computation of sin(pi*(-x)). |
| 70 | * |
| 71 | * 5. Special Cases |
| 72 | * lgamma(2+s) ~ s*(1-Euler) for tiny s |
| 73 | * lgamma(1) = lgamma(2) = 0 |
| 74 | * lgamma(x) ~ -log(|x|) for tiny x |
| 75 | * lgamma(0) = lgamma(neg.integer) = inf and raise divide-by-zero |
| 76 | * lgamma(inf) = inf |
| 77 | * lgamma(-inf) = inf (bug for bug compatible with C99!?) |
| 78 | * |
| 79 | */ |
| 80 | |
| 81 | #include "libm.h" |
| 82 | #include "libc.h" |
| 83 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 84 | static const double pi = |
| 85 | 3.14159265358979311600e+00, /* 0x400921FB, 0x54442D18 */ |
| 86 | a0 = 7.72156649015328655494e-02, /* 0x3FB3C467, 0xE37DB0C8 */ |
| 87 | a1 = 3.22467033424113591611e-01, /* 0x3FD4A34C, 0xC4A60FAD */ |
| 88 | a2 = 6.73523010531292681824e-02, /* 0x3FB13E00, 0x1A5562A7 */ |
| 89 | a3 = 2.05808084325167332806e-02, /* 0x3F951322, 0xAC92547B */ |
| 90 | a4 = 7.38555086081402883957e-03, /* 0x3F7E404F, 0xB68FEFE8 */ |
| 91 | a5 = 2.89051383673415629091e-03, /* 0x3F67ADD8, 0xCCB7926B */ |
| 92 | a6 = 1.19270763183362067845e-03, /* 0x3F538A94, 0x116F3F5D */ |
| 93 | a7 = 5.10069792153511336608e-04, /* 0x3F40B6C6, 0x89B99C00 */ |
| 94 | a8 = 2.20862790713908385557e-04, /* 0x3F2CF2EC, 0xED10E54D */ |
| 95 | a9 = 1.08011567247583939954e-04, /* 0x3F1C5088, 0x987DFB07 */ |
| 96 | a10 = 2.52144565451257326939e-05, /* 0x3EFA7074, 0x428CFA52 */ |
| 97 | a11 = 4.48640949618915160150e-05, /* 0x3F07858E, 0x90A45837 */ |
| 98 | tc = 1.46163214496836224576e+00, /* 0x3FF762D8, 0x6356BE3F */ |
| 99 | tf = -1.21486290535849611461e-01, /* 0xBFBF19B9, 0xBCC38A42 */ |
| 100 | /* tt = -(tail of tf) */ |
| 101 | tt = -3.63867699703950536541e-18, /* 0xBC50C7CA, 0xA48A971F */ |
| 102 | t0 = 4.83836122723810047042e-01, /* 0x3FDEF72B, 0xC8EE38A2 */ |
| 103 | t1 = -1.47587722994593911752e-01, /* 0xBFC2E427, 0x8DC6C509 */ |
| 104 | t2 = 6.46249402391333854778e-02, /* 0x3FB08B42, 0x94D5419B */ |
| 105 | t3 = -3.27885410759859649565e-02, /* 0xBFA0C9A8, 0xDF35B713 */ |
| 106 | t4 = 1.79706750811820387126e-02, /* 0x3F9266E7, 0x970AF9EC */ |
| 107 | t5 = -1.03142241298341437450e-02, /* 0xBF851F9F, 0xBA91EC6A */ |
| 108 | t6 = 6.10053870246291332635e-03, /* 0x3F78FCE0, 0xE370E344 */ |
| 109 | t7 = -3.68452016781138256760e-03, /* 0xBF6E2EFF, 0xB3E914D7 */ |
| 110 | t8 = 2.25964780900612472250e-03, /* 0x3F6282D3, 0x2E15C915 */ |
| 111 | t9 = -1.40346469989232843813e-03, /* 0xBF56FE8E, 0xBF2D1AF1 */ |
| 112 | t10 = 8.81081882437654011382e-04, /* 0x3F4CDF0C, 0xEF61A8E9 */ |
| 113 | t11 = -5.38595305356740546715e-04, /* 0xBF41A610, 0x9C73E0EC */ |
| 114 | t12 = 3.15632070903625950361e-04, /* 0x3F34AF6D, 0x6C0EBBF7 */ |
| 115 | t13 = -3.12754168375120860518e-04, /* 0xBF347F24, 0xECC38C38 */ |
| 116 | t14 = 3.35529192635519073543e-04, /* 0x3F35FD3E, 0xE8C2D3F4 */ |
| 117 | u0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
| 118 | u1 = 6.32827064025093366517e-01, /* 0x3FE4401E, 0x8B005DFF */ |
| 119 | u2 = 1.45492250137234768737e+00, /* 0x3FF7475C, 0xD119BD6F */ |
| 120 | u3 = 9.77717527963372745603e-01, /* 0x3FEF4976, 0x44EA8450 */ |
| 121 | u4 = 2.28963728064692451092e-01, /* 0x3FCD4EAE, 0xF6010924 */ |
| 122 | u5 = 1.33810918536787660377e-02, /* 0x3F8B678B, 0xBF2BAB09 */ |
| 123 | v1 = 2.45597793713041134822e+00, /* 0x4003A5D7, 0xC2BD619C */ |
| 124 | v2 = 2.12848976379893395361e+00, /* 0x40010725, 0xA42B18F5 */ |
| 125 | v3 = 7.69285150456672783825e-01, /* 0x3FE89DFB, 0xE45050AF */ |
| 126 | v4 = 1.04222645593369134254e-01, /* 0x3FBAAE55, 0xD6537C88 */ |
| 127 | v5 = 3.21709242282423911810e-03, /* 0x3F6A5ABB, 0x57D0CF61 */ |
| 128 | s0 = -7.72156649015328655494e-02, /* 0xBFB3C467, 0xE37DB0C8 */ |
| 129 | s1 = 2.14982415960608852501e-01, /* 0x3FCB848B, 0x36E20878 */ |
| 130 | s2 = 3.25778796408930981787e-01, /* 0x3FD4D98F, 0x4F139F59 */ |
| 131 | s3 = 1.46350472652464452805e-01, /* 0x3FC2BB9C, 0xBEE5F2F7 */ |
| 132 | s4 = 2.66422703033638609560e-02, /* 0x3F9B481C, 0x7E939961 */ |
| 133 | s5 = 1.84028451407337715652e-03, /* 0x3F5E26B6, 0x7368F239 */ |
| 134 | s6 = 3.19475326584100867617e-05, /* 0x3F00BFEC, 0xDD17E945 */ |
| 135 | r1 = 1.39200533467621045958e+00, /* 0x3FF645A7, 0x62C4AB74 */ |
| 136 | r2 = 7.21935547567138069525e-01, /* 0x3FE71A18, 0x93D3DCDC */ |
| 137 | r3 = 1.71933865632803078993e-01, /* 0x3FC601ED, 0xCCFBDF27 */ |
| 138 | r4 = 1.86459191715652901344e-02, /* 0x3F9317EA, 0x742ED475 */ |
| 139 | r5 = 7.77942496381893596434e-04, /* 0x3F497DDA, 0xCA41A95B */ |
| 140 | r6 = 7.32668430744625636189e-06, /* 0x3EDEBAF7, 0xA5B38140 */ |
| 141 | w0 = 4.18938533204672725052e-01, /* 0x3FDACFE3, 0x90C97D69 */ |
| 142 | w1 = 8.33333333333329678849e-02, /* 0x3FB55555, 0x5555553B */ |
| 143 | w2 = -2.77777777728775536470e-03, /* 0xBF66C16C, 0x16B02E5C */ |
| 144 | w3 = 7.93650558643019558500e-04, /* 0x3F4A019F, 0x98CF38B6 */ |
| 145 | w4 = -5.95187557450339963135e-04, /* 0xBF4380CB, 0x8C0FE741 */ |
| 146 | w5 = 8.36339918996282139126e-04, /* 0x3F4B67BA, 0x4CDAD5D1 */ |
| 147 | w6 = -1.63092934096575273989e-03; /* 0xBF5AB89D, 0x0B9E43E4 */ |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 148 | |
| 149 | /* sin(pi*x) assuming x > 2^-100, if sin(pi*x)==0 the sign is arbitrary */ |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 150 | static double sin_pi(double x) { |
| 151 | int n; |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 152 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 153 | /* spurious inexact if odd int */ |
| 154 | x = 2.0 * (x * 0.5 - floor(x * 0.5)); /* x mod 2.0 */ |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 155 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 156 | n = (int)(x * 4.0); |
| 157 | n = (n + 1) / 2; |
| 158 | x -= n * 0.5f; |
| 159 | x *= pi; |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 160 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 161 | switch (n) { |
| 162 | default: /* case 4: */ |
| 163 | case 0: |
| 164 | return __sin(x, 0.0, 0); |
| 165 | case 1: |
| 166 | return __cos(x, 0.0); |
| 167 | case 2: |
| 168 | return __sin(-x, 0.0, 0); |
| 169 | case 3: |
| 170 | return -__cos(x, 0.0); |
| 171 | } |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 172 | } |
| 173 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 174 | double __lgamma_r(double x, int* signgamp) { |
| 175 | union { |
| 176 | double f; |
| 177 | uint64_t i; |
| 178 | } u = {x}; |
| 179 | double_t t, y, z, nadj, p, p1, p2, p3, q, r, w; |
| 180 | uint32_t ix; |
| 181 | int sign, i; |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 182 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 183 | /* purge off +-inf, NaN, +-0, tiny and negative arguments */ |
| 184 | *signgamp = 1; |
| 185 | sign = u.i >> 63; |
| 186 | ix = u.i >> 32 & 0x7fffffff; |
| 187 | if (ix >= 0x7ff00000) |
| 188 | return x * x; |
| 189 | if (ix < (0x3ff - 70) << 20) { /* |x|<2**-70, return -log(|x|) */ |
| 190 | if (sign) { |
| 191 | x = -x; |
| 192 | *signgamp = -1; |
| 193 | } |
| 194 | return -log(x); |
| 195 | } |
| 196 | if (sign) { |
| 197 | x = -x; |
| 198 | t = sin_pi(x); |
| 199 | if (t == 0.0) /* -integer */ |
| 200 | return 1.0 / (x - x); |
| 201 | if (t > 0.0) |
| 202 | *signgamp = -1; |
| 203 | else |
| 204 | t = -t; |
| 205 | nadj = log(pi / (t * x)); |
| 206 | } |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 207 | |
George Kulakowski | 17e3b04 | 2016-02-18 15:59:50 -0800 | [diff] [blame] | 208 | /* purge off 1 and 2 */ |
| 209 | if ((ix == 0x3ff00000 || ix == 0x40000000) && (uint32_t)u.i == 0) |
| 210 | r = 0; |
| 211 | /* for x < 2.0 */ |
| 212 | else if (ix < 0x40000000) { |
| 213 | if (ix <= 0x3feccccc) { /* lgamma(x) = lgamma(x+1)-log(x) */ |
| 214 | r = -log(x); |
| 215 | if (ix >= 0x3FE76944) { |
| 216 | y = 1.0 - x; |
| 217 | i = 0; |
| 218 | } else if (ix >= 0x3FCDA661) { |
| 219 | y = x - (tc - 1.0); |
| 220 | i = 1; |
| 221 | } else { |
| 222 | y = x; |
| 223 | i = 2; |
| 224 | } |
| 225 | } else { |
| 226 | r = 0.0; |
| 227 | if (ix >= 0x3FFBB4C3) { /* [1.7316,2] */ |
| 228 | y = 2.0 - x; |
| 229 | i = 0; |
| 230 | } else if (ix >= 0x3FF3B4C4) { /* [1.23,1.73] */ |
| 231 | y = x - tc; |
| 232 | i = 1; |
| 233 | } else { |
| 234 | y = x - 1.0; |
| 235 | i = 2; |
| 236 | } |
| 237 | } |
| 238 | switch (i) { |
| 239 | case 0: |
| 240 | z = y * y; |
| 241 | p1 = a0 + z * (a2 + z * (a4 + z * (a6 + z * (a8 + z * a10)))); |
| 242 | p2 = z * (a1 + z * (a3 + z * (a5 + z * (a7 + z * (a9 + z * a11))))); |
| 243 | p = y * p1 + p2; |
| 244 | r += (p - 0.5 * y); |
| 245 | break; |
| 246 | case 1: |
| 247 | z = y * y; |
| 248 | w = z * y; |
| 249 | p1 = t0 + w * (t3 + w * (t6 + w * (t9 + w * t12))); /* parallel comp */ |
| 250 | p2 = t1 + w * (t4 + w * (t7 + w * (t10 + w * t13))); |
| 251 | p3 = t2 + w * (t5 + w * (t8 + w * (t11 + w * t14))); |
| 252 | p = z * p1 - (tt - w * (p2 + y * p3)); |
| 253 | r += tf + p; |
| 254 | break; |
| 255 | case 2: |
| 256 | p1 = y * (u0 + y * (u1 + y * (u2 + y * (u3 + y * (u4 + y * u5))))); |
| 257 | p2 = 1.0 + y * (v1 + y * (v2 + y * (v3 + y * (v4 + y * v5)))); |
| 258 | r += -0.5 * y + p1 / p2; |
| 259 | } |
| 260 | } else if (ix < 0x40200000) { /* x < 8.0 */ |
| 261 | i = (int)x; |
| 262 | y = x - (double)i; |
| 263 | p = y * |
| 264 | (s0 + y * (s1 + y * (s2 + y * (s3 + y * (s4 + y * (s5 + y * s6)))))); |
| 265 | q = 1.0 + y * (r1 + y * (r2 + y * (r3 + y * (r4 + y * (r5 + y * r6))))); |
| 266 | r = 0.5 * y + p / q; |
| 267 | z = 1.0; /* lgamma(1+s) = log(s) + lgamma(s) */ |
| 268 | switch (i) { |
| 269 | case 7: |
| 270 | z *= y + 6.0; /* FALLTHRU */ |
| 271 | case 6: |
| 272 | z *= y + 5.0; /* FALLTHRU */ |
| 273 | case 5: |
| 274 | z *= y + 4.0; /* FALLTHRU */ |
| 275 | case 4: |
| 276 | z *= y + 3.0; /* FALLTHRU */ |
| 277 | case 3: |
| 278 | z *= y + 2.0; /* FALLTHRU */ |
| 279 | r += log(z); |
| 280 | break; |
| 281 | } |
| 282 | } else if (ix < 0x43900000) { /* 8.0 <= x < 2**58 */ |
| 283 | t = log(x); |
| 284 | z = 1.0 / x; |
| 285 | y = z * z; |
| 286 | w = w0 + z * (w1 + y * (w2 + y * (w3 + y * (w4 + y * (w5 + y * w6))))); |
| 287 | r = (x - 0.5) * (t - 1.0) + w; |
| 288 | } else /* 2**58 <= x <= inf */ |
| 289 | r = x * (log(x) - 1.0); |
| 290 | if (sign) |
| 291 | r = nadj - r; |
| 292 | return r; |
Viet-Trung Luu | 96b05c1 | 2016-01-11 11:26:36 -0800 | [diff] [blame] | 293 | } |
| 294 | |
| 295 | weak_alias(__lgamma_r, lgamma_r); |