James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 1 | // qcms |
| 2 | // Copyright (C) 2009 Mozilla Foundation |
| 3 | // |
| 4 | // Permission is hereby granted, free of charge, to any person obtaining |
| 5 | // a copy of this software and associated documentation files (the "Software"), |
| 6 | // to deal in the Software without restriction, including without limitation |
| 7 | // the rights to use, copy, modify, merge, publish, distribute, sublicense, |
| 8 | // and/or sell copies of the Software, and to permit persons to whom the Software |
| 9 | // is furnished to do so, subject to the following conditions: |
| 10 | // |
| 11 | // The above copyright notice and this permission notice shall be included in |
| 12 | // all copies or substantial portions of the Software. |
| 13 | // |
| 14 | // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, |
| 15 | // EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO |
| 16 | // THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND |
| 17 | // NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE |
| 18 | // LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION |
| 19 | // OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| 20 | // WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| 21 | |
| 22 | #define _ISOC99_SOURCE /* for INFINITY */ |
| 23 | |
| 24 | #include <math.h> |
| 25 | #include <assert.h> |
| 26 | #include <string.h> //memcpy |
| 27 | #include "qcmsint.h" |
| 28 | #include "transform_util.h" |
| 29 | #include "matrix.h" |
| 30 | |
| 31 | #if !defined(INFINITY) |
| 32 | #define INFINITY HUGE_VAL |
| 33 | #endif |
| 34 | |
| 35 | #define PARAMETRIC_CURVE_TYPE 0x70617261 //'para' |
| 36 | |
| 37 | /* value must be a value between 0 and 1 */ |
| 38 | //XXX: is the above a good restriction to have? |
| 39 | float lut_interp_linear(double value, uint16_t *table, size_t length) |
| 40 | { |
| 41 | int upper, lower; |
| 42 | value = value * (length - 1); // scale to length of the array |
| 43 | upper = ceil(value); |
| 44 | lower = floor(value); |
| 45 | //XXX: can we be more performant here? |
| 46 | value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value); |
| 47 | /* scale the value */ |
| 48 | return value * (1./65535.); |
| 49 | } |
| 50 | |
| 51 | /* same as above but takes and returns a uint16_t value representing a range from 0..1 */ |
| 52 | uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, size_t length) |
| 53 | { |
| 54 | /* Start scaling input_value to the length of the array: 65535*(length-1). |
| 55 | * We'll divide out the 65535 next */ |
| 56 | uintptr_t value = (input_value * (length - 1)); |
| 57 | uint32_t upper = (value + 65534) / 65535; /* equivalent to ceil(value/65535) */ |
| 58 | uint32_t lower = value / 65535; /* equivalent to floor(value/65535) */ |
| 59 | /* interp is the distance from upper to value scaled to 0..65535 */ |
| 60 | uint32_t interp = value % 65535; |
| 61 | |
| 62 | value = (table[upper]*(interp) + table[lower]*(65535 - interp))/65535; // 0..65535*65535 |
| 63 | |
| 64 | return value; |
| 65 | } |
| 66 | |
| 67 | /* same as above but takes an input_value from 0..PRECACHE_OUTPUT_MAX |
| 68 | * and returns a uint8_t value representing a range from 0..1 */ |
| 69 | static |
| 70 | uint8_t lut_interp_linear_precache_output(uint32_t input_value, uint16_t *table, size_t length) |
| 71 | { |
| 72 | /* Start scaling input_value to the length of the array: PRECACHE_OUTPUT_MAX*(length-1). |
| 73 | * We'll divide out the PRECACHE_OUTPUT_MAX next */ |
| 74 | uintptr_t value = (input_value * (length - 1)); |
| 75 | |
| 76 | /* equivalent to ceil(value/PRECACHE_OUTPUT_MAX) */ |
| 77 | uint32_t upper = (value + PRECACHE_OUTPUT_MAX-1) / PRECACHE_OUTPUT_MAX; |
| 78 | /* equivalent to floor(value/PRECACHE_OUTPUT_MAX) */ |
| 79 | uint32_t lower = value / PRECACHE_OUTPUT_MAX; |
| 80 | /* interp is the distance from upper to value scaled to 0..PRECACHE_OUTPUT_MAX */ |
| 81 | uint32_t interp = value % PRECACHE_OUTPUT_MAX; |
| 82 | |
| 83 | /* the table values range from 0..65535 */ |
| 84 | value = (table[upper]*(interp) + table[lower]*(PRECACHE_OUTPUT_MAX - interp)); // 0..(65535*PRECACHE_OUTPUT_MAX) |
| 85 | |
| 86 | /* round and scale */ |
| 87 | value += (PRECACHE_OUTPUT_MAX*65535/255)/2; |
| 88 | value /= (PRECACHE_OUTPUT_MAX*65535/255); // scale to 0..255 |
| 89 | return value; |
| 90 | } |
| 91 | |
| 92 | /* value must be a value between 0 and 1 */ |
| 93 | //XXX: is the above a good restriction to have? |
| 94 | float lut_interp_linear_float(float value, float *table, size_t length) |
| 95 | { |
| 96 | int upper, lower; |
| 97 | value = value * (length - 1); |
| 98 | upper = ceil(value); |
| 99 | lower = floor(value); |
| 100 | //XXX: can we be more performant here? |
| 101 | value = table[upper]*(1. - (upper - value)) + table[lower]*(upper - value); |
| 102 | /* scale the value */ |
| 103 | return value; |
| 104 | } |
| 105 | |
| 106 | #if 0 |
| 107 | /* if we use a different representation i.e. one that goes from 0 to 0x1000 we can be more efficient |
| 108 | * because we can avoid the divisions and use a shifting instead */ |
| 109 | /* same as above but takes and returns a uint16_t value representing a range from 0..1 */ |
| 110 | uint16_t lut_interp_linear16(uint16_t input_value, uint16_t *table, int length) |
| 111 | { |
| 112 | uint32_t value = (input_value * (length - 1)); |
| 113 | uint32_t upper = (value + 4095) / 4096; /* equivalent to ceil(value/4096) */ |
| 114 | uint32_t lower = value / 4096; /* equivalent to floor(value/4096) */ |
| 115 | uint32_t interp = value % 4096; |
| 116 | |
| 117 | value = (table[upper]*(interp) + table[lower]*(4096 - interp))/4096; // 0..4096*4096 |
| 118 | |
| 119 | return value; |
| 120 | } |
| 121 | #endif |
| 122 | |
| 123 | void compute_curve_gamma_table_type1(float gamma_table[256], double gamma) |
| 124 | { |
| 125 | unsigned int i; |
| 126 | for (i = 0; i < 256; i++) { |
| 127 | gamma_table[i] = pow(i/255., gamma); |
| 128 | } |
| 129 | } |
| 130 | |
| 131 | void compute_curve_gamma_table_type2(float gamma_table[256], uint16_t *table, int length) |
| 132 | { |
| 133 | unsigned int i; |
| 134 | for (i = 0; i < 256; i++) { |
| 135 | gamma_table[i] = lut_interp_linear(i/255., table, length); |
| 136 | } |
| 137 | } |
| 138 | |
| 139 | void compute_curve_gamma_table_type_parametric(float gamma_table[256], float parameter[7], int count) |
| 140 | { |
| 141 | size_t X; |
| 142 | float interval; |
| 143 | float a, b, c, e, f; |
| 144 | float y = parameter[0]; |
| 145 | if (count == 0) { |
| 146 | a = 1; |
| 147 | b = 0; |
| 148 | c = 0; |
| 149 | e = 0; |
| 150 | f = 0; |
| 151 | interval = -INFINITY; |
| 152 | } else if(count == 1) { |
| 153 | a = parameter[1]; |
| 154 | b = parameter[2]; |
| 155 | c = 0; |
| 156 | e = 0; |
| 157 | f = 0; |
| 158 | interval = -1 * parameter[2] / parameter[1]; |
| 159 | } else if(count == 2) { |
| 160 | a = parameter[1]; |
| 161 | b = parameter[2]; |
| 162 | c = 0; |
| 163 | e = parameter[3]; |
| 164 | f = parameter[3]; |
| 165 | interval = -1 * parameter[2] / parameter[1]; |
| 166 | } else if(count == 3) { |
| 167 | a = parameter[1]; |
| 168 | b = parameter[2]; |
| 169 | c = parameter[3]; |
| 170 | e = -c; |
| 171 | f = 0; |
| 172 | interval = parameter[4]; |
| 173 | } else if(count == 4) { |
| 174 | a = parameter[1]; |
| 175 | b = parameter[2]; |
| 176 | c = parameter[3]; |
| 177 | e = parameter[5] - c; |
| 178 | f = parameter[6]; |
| 179 | interval = parameter[4]; |
| 180 | } else { |
| 181 | assert(0 && "invalid parametric function type."); |
| 182 | a = 1; |
| 183 | b = 0; |
| 184 | c = 0; |
| 185 | e = 0; |
| 186 | f = 0; |
| 187 | interval = -INFINITY; |
| 188 | } |
| 189 | for (X = 0; X < 256; X++) { |
| 190 | if (X >= interval) { |
| 191 | // XXX The equations are not exactly as definied in the spec but are |
| 192 | // algebraic equivilent. |
| 193 | // TODO Should division by 255 be for the whole expression. |
| 194 | gamma_table[X] = pow(a * X / 255. + b, y) + c + e; |
| 195 | } else { |
| 196 | gamma_table[X] = c * X / 255. + f; |
| 197 | } |
| 198 | } |
| 199 | } |
| 200 | |
| 201 | void compute_curve_gamma_table_type0(float gamma_table[256]) |
| 202 | { |
| 203 | unsigned int i; |
| 204 | for (i = 0; i < 256; i++) { |
| 205 | gamma_table[i] = i/255.; |
| 206 | } |
| 207 | } |
| 208 | |
| 209 | |
| 210 | float clamp_float(float a) |
| 211 | { |
| 212 | if (a > 1.) |
| 213 | return 1.; |
| 214 | else if (a < 0) |
| 215 | return 0; |
| 216 | else |
| 217 | return a; |
| 218 | } |
| 219 | |
| 220 | unsigned char clamp_u8(float v) |
| 221 | { |
| 222 | if (v > 255.) |
| 223 | return 255; |
| 224 | else if (v < 0) |
| 225 | return 0; |
| 226 | else |
| 227 | return floor(v+.5); |
| 228 | } |
| 229 | |
| 230 | float u8Fixed8Number_to_float(uint16_t x) |
| 231 | { |
| 232 | // 0x0000 = 0. |
| 233 | // 0x0100 = 1. |
| 234 | // 0xffff = 255 + 255/256 |
| 235 | return x/256.; |
| 236 | } |
| 237 | |
| 238 | /* The SSE2 code uses min & max which let NaNs pass through. |
| 239 | We want to try to prevent that here by ensuring that |
| 240 | gamma table is within expected values. */ |
| 241 | void validate_gamma_table(float gamma_table[256]) |
| 242 | { |
| 243 | int i; |
| 244 | for (i = 0; i < 256; i++) { |
| 245 | // Note: we check that the gamma is not in range |
| 246 | // instead of out of range so that we catch NaNs |
| 247 | if (!(gamma_table[i] >= 0.f && gamma_table[i] <= 1.f)) { |
| 248 | gamma_table[i] = 0.f; |
| 249 | } |
| 250 | } |
| 251 | } |
| 252 | |
| 253 | float *build_input_gamma_table(struct curveType *TRC) |
| 254 | { |
| 255 | float *gamma_table; |
| 256 | |
| 257 | if (!TRC) return NULL; |
| 258 | gamma_table = malloc(sizeof(float)*256); |
| 259 | if (gamma_table) { |
| 260 | if (TRC->type == PARAMETRIC_CURVE_TYPE) { |
| 261 | compute_curve_gamma_table_type_parametric(gamma_table, TRC->parameter, TRC->count); |
| 262 | } else { |
| 263 | if (TRC->count == 0) { |
| 264 | compute_curve_gamma_table_type0(gamma_table); |
| 265 | } else if (TRC->count == 1) { |
| 266 | compute_curve_gamma_table_type1(gamma_table, u8Fixed8Number_to_float(TRC->data[0])); |
| 267 | } else { |
| 268 | compute_curve_gamma_table_type2(gamma_table, TRC->data, TRC->count); |
| 269 | } |
| 270 | } |
| 271 | } |
| 272 | |
| 273 | validate_gamma_table(gamma_table); |
| 274 | |
| 275 | return gamma_table; |
| 276 | } |
| 277 | |
| 278 | struct matrix build_colorant_matrix(qcms_profile *p) |
| 279 | { |
| 280 | struct matrix result; |
| 281 | result.m[0][0] = s15Fixed16Number_to_float(p->redColorant.X); |
| 282 | result.m[0][1] = s15Fixed16Number_to_float(p->greenColorant.X); |
| 283 | result.m[0][2] = s15Fixed16Number_to_float(p->blueColorant.X); |
| 284 | result.m[1][0] = s15Fixed16Number_to_float(p->redColorant.Y); |
| 285 | result.m[1][1] = s15Fixed16Number_to_float(p->greenColorant.Y); |
| 286 | result.m[1][2] = s15Fixed16Number_to_float(p->blueColorant.Y); |
| 287 | result.m[2][0] = s15Fixed16Number_to_float(p->redColorant.Z); |
| 288 | result.m[2][1] = s15Fixed16Number_to_float(p->greenColorant.Z); |
| 289 | result.m[2][2] = s15Fixed16Number_to_float(p->blueColorant.Z); |
| 290 | result.invalid = false; |
| 291 | return result; |
| 292 | } |
| 293 | |
| 294 | /* The following code is copied nearly directly from lcms. |
| 295 | * I think it could be much better. For example, Argyll seems to have better code in |
| 296 | * icmTable_lookup_bwd and icmTable_setup_bwd. However, for now this is a quick way |
| 297 | * to a working solution and allows for easy comparing with lcms. */ |
| 298 | uint16_fract_t lut_inverse_interp16(uint16_t Value, uint16_t LutTable[], int length) |
| 299 | { |
| 300 | int l = 1; |
| 301 | int r = 0x10000; |
| 302 | int x = 0, res; // 'int' Give spacing for negative values |
| 303 | int NumZeroes, NumPoles; |
| 304 | int cell0, cell1; |
| 305 | double val2; |
| 306 | double y0, y1, x0, x1; |
| 307 | double a, b, f; |
| 308 | |
| 309 | // July/27 2001 - Expanded to handle degenerated curves with an arbitrary |
| 310 | // number of elements containing 0 at the begining of the table (Zeroes) |
| 311 | // and another arbitrary number of poles (FFFFh) at the end. |
| 312 | // First the zero and pole extents are computed, then value is compared. |
| 313 | |
| 314 | NumZeroes = 0; |
| 315 | while (LutTable[NumZeroes] == 0 && NumZeroes < length-1) |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 316 | NumZeroes++; |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 317 | |
| 318 | // There are no zeros at the beginning and we are trying to find a zero, so |
| 319 | // return anything. It seems zero would be the less destructive choice |
| 320 | /* I'm not sure that this makes sense, but oh well... */ |
| 321 | if (NumZeroes == 0 && Value == 0) |
| 322 | return 0; |
| 323 | |
| 324 | NumPoles = 0; |
| 325 | while (LutTable[length-1- NumPoles] == 0xFFFF && NumPoles < length-1) |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 326 | NumPoles++; |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 327 | |
| 328 | // Does the curve belong to this case? |
| 329 | if (NumZeroes > 1 || NumPoles > 1) |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 330 | { |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 331 | int a, b; |
| 332 | |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 333 | // Identify if value fall downto 0 or FFFF zone |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 334 | if (Value == 0) return 0; |
| 335 | // if (Value == 0xFFFF) return 0xFFFF; |
| 336 | |
| 337 | // else restrict to valid zone |
| 338 | |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 339 | a = ((NumZeroes-1) * 0xFFFF) / (length-1); |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 340 | b = ((length-1 - NumPoles) * 0xFFFF) / (length-1); |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 341 | |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 342 | l = a - 1; |
| 343 | r = b + 1; |
| 344 | } |
| 345 | |
| 346 | |
| 347 | // Seems not a degenerated case... apply binary search |
| 348 | |
| 349 | while (r > l) { |
| 350 | |
| 351 | x = (l + r) / 2; |
| 352 | |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 353 | res = (int) lut_interp_linear16((uint16_fract_t) (x-1), LutTable, length); |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 354 | |
| 355 | if (res == Value) { |
| 356 | |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 357 | // Found exact match. |
| 358 | |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 359 | return (uint16_fract_t) (x - 1); |
| 360 | } |
| 361 | |
| 362 | if (res > Value) r = x - 1; |
| 363 | else l = x + 1; |
| 364 | } |
| 365 | |
| 366 | // Not found, should we interpolate? |
| 367 | |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 368 | |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 369 | // Get surrounding nodes |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 370 | |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 371 | val2 = (length-1) * ((double) (x - 1) / 65535.0); |
| 372 | |
| 373 | cell0 = (int) floor(val2); |
| 374 | cell1 = (int) ceil(val2); |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 375 | |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 376 | if (cell0 == cell1) return (uint16_fract_t) x; |
| 377 | |
| 378 | y0 = LutTable[cell0] ; |
| 379 | x0 = (65535.0 * cell0) / (length-1); |
| 380 | |
| 381 | y1 = LutTable[cell1] ; |
| 382 | x1 = (65535.0 * cell1) / (length-1); |
| 383 | |
| 384 | a = (y1 - y0) / (x1 - x0); |
| 385 | b = y0 - a * x0; |
| 386 | |
| 387 | if (fabs(a) < 0.01) return (uint16_fract_t) x; |
| 388 | |
| 389 | f = ((Value - b) / a); |
| 390 | |
| 391 | if (f < 0.0) return (uint16_fract_t) 0; |
| 392 | if (f >= 65535.0) return (uint16_fract_t) 0xFFFF; |
| 393 | |
Alhaad Gokhale | 4f51307 | 2015-03-24 10:49:34 -0700 | [diff] [blame] | 394 | return (uint16_fract_t) floor(f + 0.5); |
James Robinson | 646469d | 2014-10-03 15:33:28 -0700 | [diff] [blame] | 395 | } |
| 396 | |
| 397 | /* |
| 398 | The number of entries needed to invert a lookup table should not |
| 399 | necessarily be the same as the original number of entries. This is |
| 400 | especially true of lookup tables that have a small number of entries. |
| 401 | |
| 402 | For example: |
| 403 | Using a table like: |
| 404 | {0, 3104, 14263, 34802, 65535} |
| 405 | invert_lut will produce an inverse of: |
| 406 | {3, 34459, 47529, 56801, 65535} |
| 407 | which has an maximum error of about 9855 (pixel difference of ~38.346) |
| 408 | |
| 409 | For now, we punt the decision of output size to the caller. */ |
| 410 | static uint16_t *invert_lut(uint16_t *table, int length, size_t out_length) |
| 411 | { |
| 412 | int i; |
| 413 | /* for now we invert the lut by creating a lut of size out_length |
| 414 | * and attempting to lookup a value for each entry using lut_inverse_interp16 */ |
| 415 | uint16_t *output = malloc(sizeof(uint16_t)*out_length); |
| 416 | if (!output) |
| 417 | return NULL; |
| 418 | |
| 419 | for (i = 0; i < out_length; i++) { |
| 420 | double x = ((double) i * 65535.) / (double) (out_length - 1); |
| 421 | uint16_fract_t input = floor(x + .5); |
| 422 | output[i] = lut_inverse_interp16(input, table, length); |
| 423 | } |
| 424 | return output; |
| 425 | } |
| 426 | |
| 427 | static void compute_precache_pow(uint8_t *output, float gamma) |
| 428 | { |
| 429 | uint32_t v = 0; |
| 430 | for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
| 431 | //XXX: don't do integer/float conversion... and round? |
| 432 | output[v] = 255. * pow(v/(double)PRECACHE_OUTPUT_MAX, gamma); |
| 433 | } |
| 434 | } |
| 435 | |
| 436 | void compute_precache_lut(uint8_t *output, uint16_t *table, int length) |
| 437 | { |
| 438 | uint32_t v = 0; |
| 439 | for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
| 440 | output[v] = lut_interp_linear_precache_output(v, table, length); |
| 441 | } |
| 442 | } |
| 443 | |
| 444 | void compute_precache_linear(uint8_t *output) |
| 445 | { |
| 446 | uint32_t v = 0; |
| 447 | for (v = 0; v < PRECACHE_OUTPUT_SIZE; v++) { |
| 448 | //XXX: round? |
| 449 | output[v] = v / (PRECACHE_OUTPUT_SIZE/256); |
| 450 | } |
| 451 | } |
| 452 | |
| 453 | qcms_bool compute_precache(struct curveType *trc, uint8_t *output) |
| 454 | { |
| 455 | |
| 456 | if (trc->type == PARAMETRIC_CURVE_TYPE) { |
| 457 | float gamma_table[256]; |
| 458 | uint16_t gamma_table_uint[256]; |
| 459 | uint16_t i; |
| 460 | uint16_t *inverted; |
| 461 | int inverted_size = 256; |
| 462 | |
| 463 | compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count); |
| 464 | for(i = 0; i < 256; i++) { |
| 465 | gamma_table_uint[i] = (uint16_t)(gamma_table[i] * 65535); |
| 466 | } |
| 467 | |
| 468 | //XXX: the choice of a minimum of 256 here is not backed by any theory, |
| 469 | // measurement or data, howeve r it is what lcms uses. |
| 470 | // the maximum number we would need is 65535 because that's the |
| 471 | // accuracy used for computing the pre cache table |
| 472 | if (inverted_size < 256) |
| 473 | inverted_size = 256; |
| 474 | |
| 475 | inverted = invert_lut(gamma_table_uint, 256, inverted_size); |
| 476 | if (!inverted) |
| 477 | return false; |
| 478 | compute_precache_lut(output, inverted, inverted_size); |
| 479 | free(inverted); |
| 480 | } else { |
| 481 | if (trc->count == 0) { |
| 482 | compute_precache_linear(output); |
| 483 | } else if (trc->count == 1) { |
| 484 | compute_precache_pow(output, 1./u8Fixed8Number_to_float(trc->data[0])); |
| 485 | } else { |
| 486 | uint16_t *inverted; |
| 487 | int inverted_size = trc->count; |
| 488 | //XXX: the choice of a minimum of 256 here is not backed by any theory, |
| 489 | // measurement or data, howeve r it is what lcms uses. |
| 490 | // the maximum number we would need is 65535 because that's the |
| 491 | // accuracy used for computing the pre cache table |
| 492 | if (inverted_size < 256) |
| 493 | inverted_size = 256; |
| 494 | |
| 495 | inverted = invert_lut(trc->data, trc->count, inverted_size); |
| 496 | if (!inverted) |
| 497 | return false; |
| 498 | compute_precache_lut(output, inverted, inverted_size); |
| 499 | free(inverted); |
| 500 | } |
| 501 | } |
| 502 | return true; |
| 503 | } |
| 504 | |
| 505 | |
| 506 | static uint16_t *build_linear_table(int length) |
| 507 | { |
| 508 | int i; |
| 509 | uint16_t *output = malloc(sizeof(uint16_t)*length); |
| 510 | if (!output) |
| 511 | return NULL; |
| 512 | |
| 513 | for (i = 0; i < length; i++) { |
| 514 | double x = ((double) i * 65535.) / (double) (length - 1); |
| 515 | uint16_fract_t input = floor(x + .5); |
| 516 | output[i] = input; |
| 517 | } |
| 518 | return output; |
| 519 | } |
| 520 | |
| 521 | static uint16_t *build_pow_table(float gamma, int length) |
| 522 | { |
| 523 | int i; |
| 524 | uint16_t *output = malloc(sizeof(uint16_t)*length); |
| 525 | if (!output) |
| 526 | return NULL; |
| 527 | |
| 528 | for (i = 0; i < length; i++) { |
| 529 | uint16_fract_t result; |
| 530 | double x = ((double) i) / (double) (length - 1); |
| 531 | x = pow(x, gamma); //XXX turn this conversion into a function |
| 532 | result = floor(x*65535. + .5); |
| 533 | output[i] = result; |
| 534 | } |
| 535 | return output; |
| 536 | } |
| 537 | |
| 538 | void build_output_lut(struct curveType *trc, |
| 539 | uint16_t **output_gamma_lut, size_t *output_gamma_lut_length) |
| 540 | { |
| 541 | if (trc->type == PARAMETRIC_CURVE_TYPE) { |
| 542 | float gamma_table[256]; |
| 543 | uint16_t i; |
| 544 | uint16_t *output = malloc(sizeof(uint16_t)*256); |
| 545 | |
| 546 | if (!output) { |
| 547 | *output_gamma_lut = NULL; |
| 548 | return; |
| 549 | } |
| 550 | |
| 551 | compute_curve_gamma_table_type_parametric(gamma_table, trc->parameter, trc->count); |
| 552 | *output_gamma_lut_length = 256; |
| 553 | for(i = 0; i < 256; i++) { |
| 554 | output[i] = (uint16_t)(gamma_table[i] * 65535); |
| 555 | } |
| 556 | *output_gamma_lut = output; |
| 557 | } else { |
| 558 | if (trc->count == 0) { |
| 559 | *output_gamma_lut = build_linear_table(4096); |
| 560 | *output_gamma_lut_length = 4096; |
| 561 | } else if (trc->count == 1) { |
| 562 | float gamma = 1./u8Fixed8Number_to_float(trc->data[0]); |
| 563 | *output_gamma_lut = build_pow_table(gamma, 4096); |
| 564 | *output_gamma_lut_length = 4096; |
| 565 | } else { |
| 566 | //XXX: the choice of a minimum of 256 here is not backed by any theory, |
| 567 | // measurement or data, however it is what lcms uses. |
| 568 | *output_gamma_lut_length = trc->count; |
| 569 | if (*output_gamma_lut_length < 256) |
| 570 | *output_gamma_lut_length = 256; |
| 571 | |
| 572 | *output_gamma_lut = invert_lut(trc->data, trc->count, *output_gamma_lut_length); |
| 573 | } |
| 574 | } |
| 575 | |
| 576 | } |