|  | // Copyright (c) 2013 The Chromium Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style license that can be | 
|  | // found in the LICENSE file. | 
|  |  | 
|  | #include <cmath> | 
|  | #include <limits> | 
|  |  | 
|  | #include "base/basictypes.h" | 
|  | #include "testing/gtest/include/gtest/gtest.h" | 
|  | #include "ui/gfx/geometry/matrix3_f.h" | 
|  |  | 
|  | namespace gfx { | 
|  | namespace { | 
|  |  | 
|  | TEST(Matrix3fTest, Constructors) { | 
|  | Matrix3F zeros = Matrix3F::Zeros(); | 
|  | Matrix3F ones = Matrix3F::Ones(); | 
|  | Matrix3F identity = Matrix3F::Identity(); | 
|  |  | 
|  | Matrix3F product_ones = Matrix3F::FromOuterProduct( | 
|  | Vector3dF(1.0f, 1.0f, 1.0f), Vector3dF(1.0f, 1.0f, 1.0f)); | 
|  | Matrix3F product_zeros = Matrix3F::FromOuterProduct( | 
|  | Vector3dF(1.0f, 1.0f, 1.0f), Vector3dF(0.0f, 0.0f, 0.0f)); | 
|  | EXPECT_EQ(ones, product_ones); | 
|  | EXPECT_EQ(zeros, product_zeros); | 
|  |  | 
|  | for (int i = 0; i < 3; ++i) { | 
|  | for (int j = 0; j < 3; ++j) | 
|  | EXPECT_EQ(i == j ? 1.0f : 0.0f, identity.get(i, j)); | 
|  | } | 
|  | } | 
|  |  | 
|  | TEST(Matrix3fTest, DataAccess) { | 
|  | Matrix3F matrix = Matrix3F::Ones(); | 
|  | Matrix3F identity = Matrix3F::Identity(); | 
|  |  | 
|  | EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), identity.get_column(1)); | 
|  | matrix.set(0.0f, 1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f, 7.0f, 8.0f); | 
|  | EXPECT_EQ(Vector3dF(2.0f, 5.0f, 8.0f), matrix.get_column(2)); | 
|  | matrix.set_column(0, Vector3dF(0.1f, 0.2f, 0.3f)); | 
|  | EXPECT_EQ(Vector3dF(0.1f, 0.2f, 0.3f), matrix.get_column(0)); | 
|  |  | 
|  | EXPECT_EQ(0.1f, matrix.get(0, 0)); | 
|  | EXPECT_EQ(5.0f, matrix.get(1, 2)); | 
|  | } | 
|  |  | 
|  | TEST(Matrix3fTest, Determinant) { | 
|  | EXPECT_EQ(1.0f, Matrix3F::Identity().Determinant()); | 
|  | EXPECT_EQ(0.0f, Matrix3F::Zeros().Determinant()); | 
|  | EXPECT_EQ(0.0f, Matrix3F::Ones().Determinant()); | 
|  |  | 
|  | // Now for something non-trivial... | 
|  | Matrix3F matrix = Matrix3F::Zeros(); | 
|  | matrix.set(0, 5, 6, 8, 7, 0, 1, 9, 0); | 
|  | EXPECT_EQ(390.0f, matrix.Determinant()); | 
|  | matrix.set(2, 0, 3 * matrix.get(0, 0)); | 
|  | matrix.set(2, 1, 3 * matrix.get(0, 1)); | 
|  | matrix.set(2, 2, 3 * matrix.get(0, 2)); | 
|  | EXPECT_EQ(0, matrix.Determinant()); | 
|  |  | 
|  | matrix.set(0.57f,  0.205f,  0.942f, | 
|  | 0.314f,  0.845f,  0.826f, | 
|  | 0.131f,  0.025f,  0.962f); | 
|  | EXPECT_NEAR(0.3149f, matrix.Determinant(), 0.0001f); | 
|  | } | 
|  |  | 
|  | TEST(Matrix3fTest, Inverse) { | 
|  | Matrix3F identity = Matrix3F::Identity(); | 
|  | Matrix3F inv_identity = identity.Inverse(); | 
|  | EXPECT_EQ(identity, inv_identity); | 
|  |  | 
|  | Matrix3F singular = Matrix3F::Zeros(); | 
|  | singular.set(1.0f, 3.0f, 4.0f, | 
|  | 2.0f, 11.0f, 5.0f, | 
|  | 0.5f, 1.5f, 2.0f); | 
|  | EXPECT_EQ(0, singular.Determinant()); | 
|  | EXPECT_EQ(Matrix3F::Zeros(), singular.Inverse()); | 
|  |  | 
|  | Matrix3F regular = Matrix3F::Zeros(); | 
|  | regular.set(0.57f,  0.205f,  0.942f, | 
|  | 0.314f,  0.845f,  0.826f, | 
|  | 0.131f,  0.025f,  0.962f); | 
|  | Matrix3F inv_regular = regular.Inverse(); | 
|  | regular.set(2.51540616f, -0.55138018f, -1.98968043f, | 
|  | -0.61552266f,  1.34920184f, -0.55573636f, | 
|  | -0.32653861f,  0.04002158f,  1.32488726f); | 
|  | EXPECT_TRUE(regular.IsNear(inv_regular, 0.00001f)); | 
|  | } | 
|  |  | 
|  | TEST(Matrix3fTest, EigenvectorsIdentity) { | 
|  | // This block tests the trivial case of eigenvalues of the identity matrix. | 
|  | Matrix3F identity = Matrix3F::Identity(); | 
|  | Vector3dF eigenvals = identity.SolveEigenproblem(NULL); | 
|  | EXPECT_EQ(Vector3dF(1.0f, 1.0f, 1.0f), eigenvals); | 
|  | } | 
|  |  | 
|  | TEST(Matrix3fTest, EigenvectorsDiagonal)  { | 
|  | // This block tests the another trivial case of eigenvalues of a diagonal | 
|  | // matrix. Here we expect values to be sorted. | 
|  | Matrix3F matrix = Matrix3F::Zeros(); | 
|  | matrix.set(0, 0, 1.0f); | 
|  | matrix.set(1, 1, -2.5f); | 
|  | matrix.set(2, 2, 3.14f); | 
|  | Matrix3F eigenvectors = Matrix3F::Zeros(); | 
|  | Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); | 
|  | EXPECT_EQ(Vector3dF(3.14f, 1.0f, -2.5f), eigenvals); | 
|  |  | 
|  | EXPECT_EQ(Vector3dF(0.0f, 0.0f, 1.0f), eigenvectors.get_column(0)); | 
|  | EXPECT_EQ(Vector3dF(1.0f, 0.0f, 0.0f), eigenvectors.get_column(1)); | 
|  | EXPECT_EQ(Vector3dF(0.0f, 1.0f, 0.0f), eigenvectors.get_column(2)); | 
|  | } | 
|  |  | 
|  | TEST(Matrix3fTest, EigenvectorsNiceNotPositive)  { | 
|  | // This block tests computation of eigenvectors of a matrix where nice | 
|  | // round values are expected. | 
|  | Matrix3F matrix = Matrix3F::Zeros(); | 
|  | // This is not a positive-definite matrix but eigenvalues and the first | 
|  | // eigenvector should nonetheless be computed correctly. | 
|  | matrix.set(3, 2, 4, 2, 0, 2, 4, 2, 3); | 
|  | Matrix3F eigenvectors = Matrix3F::Zeros(); | 
|  | Vector3dF eigenvals = matrix.SolveEigenproblem(&eigenvectors); | 
|  | EXPECT_EQ(Vector3dF(8.0f, -1.0f, -1.0f), eigenvals); | 
|  |  | 
|  | Vector3dF expected_principal(0.66666667f, 0.33333333f, 0.66666667f); | 
|  | EXPECT_NEAR(0.0f, | 
|  | (expected_principal - eigenvectors.get_column(0)).Length(), | 
|  | 0.000001f); | 
|  | } | 
|  |  | 
|  | TEST(Matrix3fTest, EigenvectorsPositiveDefinite) { | 
|  | // This block tests computation of eigenvectors of a matrix where output | 
|  | // is not as nice as above, but it actually meets the definition. | 
|  | Matrix3F matrix = Matrix3F::Zeros(); | 
|  | Matrix3F eigenvectors = Matrix3F::Zeros(); | 
|  | Matrix3F expected_eigenvectors = Matrix3F::Zeros(); | 
|  | matrix.set(1, -1,  2, -1,  4,  5, 2,  5,  0); | 
|  | Vector3dF eigenvals =  matrix.SolveEigenproblem(&eigenvectors); | 
|  | Vector3dF expected_eigv(7.3996266f, 1.91197255f, -4.31159915f); | 
|  | expected_eigv -= eigenvals; | 
|  | EXPECT_NEAR(0, expected_eigv.LengthSquared(), 0.00001f); | 
|  | expected_eigenvectors.set(0.04926317f, -0.92135662f, -0.38558414f, | 
|  | 0.82134249f, 0.25703273f, -0.50924521f, | 
|  | 0.56830419f, -0.2916096f, 0.76941158f); | 
|  | EXPECT_TRUE(expected_eigenvectors.IsNear(eigenvectors, 0.00001f)); | 
|  | } | 
|  |  | 
|  | } | 
|  | } |